• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers?

    2021-03-11 08:34:26RunzeLi李潤澤YucaiLi李予才YuSheng盛宇andKaiyouWang王開友
    Chinese Physics B 2021年2期
    關(guān)鍵詞:潤澤

    Runze Li(李潤澤), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王開友),3,4,?

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    4Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: perpendicular magnetic anisotropy,RF magnetron sputtering,ion irradiation,spin orbit torque

    1. Introduction

    Current induced magnetization switching of perpendicular magnetic anisotropy (PMA) materials by spin orbit torque is promising for the next generation magnetoresistive random access memory (MRAM).[1–4]In the heavy metal/ferromagnetic metal(HM/FM)bilayer system,the PMA is sensitive to the HM/FM interface and FM can be switched by the spin current injected from the HM layer.[5–7]The critical switching current density and charge-to-spin conversion efficiency are dependent on the PMA in the HM/FM system.[8,9]PMA of thin films can be affected by various techniques:thermal annealing,ion irradiation,or oxidation.[10–17]In the previous works,these methods all need an additional process after the thin films growth to modify PMA.Therefore,it is essential to develop new effective ways to modify PMA of thin films.

    Magnetron sputtering is a widely used method in thin films growth. Metals are generally deposited by direct current (DC) sputtering. However, for insulating target materials such as oxides and ceramics, there is a charge building up on the surface of the target with DC signal, which hinders the sputtering to proceed. By using a radio frequency(RF)source,the electrostatic charge can be discharged in each cycle, which allows the deposition of quality insulators such as AlOxand MgO. During RF magnetron sputtering, the deposited film is grounded and the target is connected to a RF power (13.56 MHz). The insulator target acts as a conductor for the RF alternating current field but also acts as an isolate for a self-induced DC field. When the target is anode,the deposited film will be irradiated by the positive ions in ignited plasma. Plasma during RF magnetron sputtering is mainly restrained near the target, thus the positive ion density on the target surface is higher than that on the deposited film surface.Even so,the magnetic properties of the deposited film can be affected by this ion irradiation. To our knowledge,few works have taken this effect into consideration.[18,19]

    In this work, we investigate how the magnetic properties could be engineered by the RF magnetron sputtering. We firstly demonstrated that the influence of ion irradiation during RF magnetron sputtering should not be neglected and PMA of the deposited film could be tailored. AlOxis widely used in the spintronic research,[1,2]so we chose AlOxas the insulator target to investigate the RF magnetron sputtering effect. Then we studied the underlying physical mechanisms of the PMA changes by SRIM simulation. Finally, the influences of RF magnetron sputtering on SOT induced magnetization switching were investigated.

    2. Method

    To investigate the influences of RF magnetron sputtering on the deposited magnetic film, we firstly deposited Ta(1)/Pt(4)/Co(0.8)/Ru(2) (the numbers are layer thicknesses in nm)thin films on thermally oxidized silicon substrates using a DC magnetron sputtering system. The AlOxlayer was subsequently deposited on these films in different RF magnetron sputtering time tRF(1–10 min) with RF power PRF=100 W. The base pressure of the sputtering system was less than 5×10?8Torr. The DC sputtering conditions for all the metallic layers were: Ar gas pressure of 0.8 mTorr and DC power of 30 W with the deposition rates between 0.01 nm/s and 0.02 nm/s. The Ar gas pressure of 2 mTorr and RF power of 100 W were used to deposit AlOxlayer with the deposition rate of 0.2 nm/min. Thus we can use the RF magnetron sputtering time tRFto represent the deposited AlOxlayer thickness.The samples were then patterned into Hall bars with the width of 10μm and the length of 50μm by standard photo lithography and Ar+ion milling,as shown in Fig.1(a). The Hall bar structure allows us to probe the ferromagnetic state of the devices by measuring the anomalous Hall effect(AHE).A small current of 100μA was used to detect the ferromagnetic states while minimizing the heating effect.

    Fig.1. (a)Schematic of the studied magnetic multilayer system and the experimental measurements set-up for the Hall bar devices with the definition of x–y–z coordinates. (b) Out-of-plane magnetization hysteresis loops measured by AHE for devices deposited AlOx layer with tRF =0, 1, 2, 3, 10 min, respectively, at fixed PRF =100 W. (c) In-plane magnetization hysteresis loops measured by VSM. (d) Magnetic coercive field HC and anisotropy field HK obtained from(b)and(c)respectively as functions of tRF.

    3. Result and discussion

    Typical magnetic parameters (coercive and anisotropy fields)were deduced from the hysteresis loops to characterize PMA.Figure 1(b)shows the AHE hysteresis loops under the out-of-plane magnetic field. Clear square magnetic hysteresis loops were obtained for all the samples,indicating that all the films exhibit good perpendicular magnetic anisotropy even after RF magnetron sputtering. The same magnitude of the AHE resistance suggests the magnetization of all the samples can be fully reversed by the vertical magnetic field continuously. However,the coercive field HCof the devices decreases from 175 Oe to 95 Oe with increasing tRFfrom 0 to 3 min,which is shown in Fig.1(d). For devices with tRFfurther increasing up to 10 min, the HCis almost unchanged. Similar results in PMA Ta/Pt/Co/Pt and Ta/Pt/Co/Ti structures were also observed(details see supplementary Fig.S1). Anisotropy field HKis defined as the required minimum external magnetic field to fully align the magnetization along the hard axis.For Ta(1)/Pt(4)/Co(0.8)/Ru(2)structure,to obtain the relation between the magnetic anisotropy field HKand the variation of tRF, the magnetic hysteresis loops with the in-plane magnetic field swept between+15000 Oe and ?15000 Oe for different samples were measured via a vibrating-sample magnetometer(VSM)at room temperature. The results are shown in Fig.1(c). Similar with HC,the determined HKdecreases dramatically initially and reduces to the half value of the sample without RF magnetron sputtering,which indicates the reduced PMA with increasing RF magnetron sputtering time. The HKthen keeps almost unchanged with tRFfurther increasing, as shown in Fig.1(d). The almost unchanged HKand HCfor the samples with tRF>3 min suggest that the impacts on the magnetic properties with further RF magnetron sputtering gradually diminish.

    To identify the reason for this phenomenon, several experiments were performed. Firstly,we excluded the oxidation of Co atoms after deposition of the AlOx,x-ray photoelectron spectroscopy(XPS)spectra of the Co layer was measured for the deposited magnetic samples. No obvious difference is observed before and after the deposition of the AlOx(details see supplementary Fig.S2), which indicates that 2 nm thick Ru layer is sufficiently thick to prevent oxidation of the Co atoms.Secondly,we removed the upper AlOxlayer on the samples by the chemical etching technique and the hysteresis loops were subsequently measured again. The influences of the RF magnetron sputtering remained,thus the effect of interfacial stress was ruled out. Finally, the measured hysteresis loops for the structure of Ta/Pt/Co/Ru with different Ru thickness tRuwere shown in supplementary Fig.S3. The magnetic properties almost keep the same between the tRu=6 nm and tRu=2 nm samples,indicating that it is not the thickness of the top layer that modifies the PMA of the deposited film. Considering that these above factors were all excluded and ion irradiation induced PMA weakness has been observed in other works,[11,20]we believe that ion irradiation induced by RF magnetron sputtering is the main reason for the PMA modification in our experiments.

    Fig.2. (a) The magnetic coercive field HC and anisotropy field HK against RF magnetron sputtering power PRF, with tRF = 2 min and tRu =2 nm. (b) HC and HK as functions of Ru layer thickness tRu,with tRF=2 min and PRF=100 W.

    The irradiation energy of Ar+ions in plasma is related to the RF power. We expect a more significant reduction of the HCand HKwhen a higher RF magnetron sputtering power is used. Besides,a thicker Ru layer tRucan screen the irradiation effect more effectively. To verify our predictions, the AlOxlayer was deposited on Ta(1)/Pt(4)/Co(0.8)/Ru(2) magnetic thin films with different power intensities PRF(40–120 W)for 2 min. The DC self-bias potential is 160 V when PRF=40 W and linearly increases to 300 V when PRF=120 W. As presented in Fig.2(a), compared with the sample without AlOxcapping layer, the HCis reduced by 15 Oe and 80 Oe with PRF= 40 W and 120 W, respectively. In Fig.2, the HKwas measured by AHE and the detailed calculation process was shown in supplementary Fig.S4. Figure 2(a) shows that the HKalso decreases with the increasing PRF. When PRF=120 W,the HKreduces to 25%of the initial HKvalue.Then, the AlOxwas deposited with the fixed PRF=100 W and tRF=2 min on Ta(1)/Pt(4)/Co(0.8)/Ru(tRu)thin films with varying Ru layer thickness from 2 nm to 6 nm. As shown in Fig.2(b), with the increase of tRu, the reduction of HCand HKinduced by RF magnetron sputtering decreases,indicating that the Ar+ions irradiation effect is gradually screened by the thicker Ru layer.

    To understand the underlying physical mechanisms of the PMA changes in our experiments, the ion irradiation in the RF magnetron sputtering process was modeled by Monte Carlo simulation programs(SRIM).[21,22]We used the grown Ta(1)/Pt(5)/Co(0.8)/Ru(2)structure for simulation. The damages in the deposited film caused by ion irradiation have two major terms: (I) displacement atoms, the atoms which are knocked off from their original normal lattice positions by an energetic Ar+ion; (II) vacancies, empty lattice sites caused by atoms’displacement.The DC self-bias potential was 300 V when PRF=120 W,thus ion irradiation energy EAr+=300 eV was set in the SRIM simulation. Although the fluence of Ar+ion irradiation on the target is much higher than that on the deposited film, we can estimate the ion fluence at the deposited film FSby the ion fluence at the target FTaccording to their relation. The RF source is a sinusoidal alternating current signal. If we ignore the influence of the transverse electromagnetic wave, FTcan be approximately calculated by the equation FT≈4PRFtRF/πVRFeA, where VRFis the DC selfbias potential, e is the charge of electron, and A is the area of the target. The shape of the plasma acting on the target surface is approximately a sphere, thus FScan be estimated by the equation FS≈(RT/RS)2×FT, where the distance between the plasma and the deposited film RSis 45 cm and the radius of the plasma sphere RTis 5 cm. The deposited AlOxlayer will make the ion irradiation have less influence on the Pt/Co/Ru structure. This can be equivalent to the shorter of the ion irradiation time, so we used a shorter simulation irradiation time compared to the time in the actual experiments.With the Ar+ion irradiation energy EAr+=300 eV and ion fluence FS=5.9×1016ions/cm2, the simulation results are shown in Fig.3. Figure 3(a)shows the distribution of the displacement Ru and Co atoms and figure 3(b)shows the spatial distribution of the vacancies in the Co layer. There are two mechanisms accounting for the PMA modification in our experiments. Firstly,some Ru atoms are driven into the Co layer by the irradiation process and the penetrated Ru atoms can subsequently bombard the Co atoms. As shown in Fig.3(a),although most Co atoms keep stay in the Co layer,part of the Co atoms can be bombarded into the Pt layer. The PMA of Pt/Co/Ru is strongly dependent on the Pt/Co interface quality,thus atoms intermixing at the Pt/Co interface can result in a weaker PMA.[23]Secondly, the magnetic properties of Pt/Co films depend on not only the Pt/Co interface,but also the structure of the Co layer as well. Defects such as interstitial atoms and vacancies in the Co layer will change the magnetic domain structure of the Co layer.[24–26]At the places irradiated,the magnetic domains would be more easily switched by the external magnetic field,which has been confirmed in previous study of the Pt/Co/Pt films.[11]Therefore,the weakened PMA of Pt/Co/Ru multilayers can be explained by the atoms intermixing at the Pt/Co interface and the change of the magnetic domain structure in the Co layer. Considering that the PMA of the Pt/Co based thin films can be affected by RF magnetron sputtering, the SOT induced magnetization switching should be influenced as well.

    Fig.3. The simulated results of SRIM. (a) Displacement Ru and Co atoms distribution after Ar+ ion irradiation with ion irradiation energy EAr+ =300 eV and ion fluence F =5.9×1016 ions/cm2. (b)Vacancy number distribution in Co layer after Ar+ ion irradiation.

    As shown in Fig.4(a), current pulse induced magnetization switching for devices Ta(1)/Pt(4)/Co(0.8)/Ru(2)/AlOx(tRF)was investigated. Every 2 seconds, a pulse current Ipulsewith duration of 15 ms was injected to the devices. RHallwas measured by a low current of 100μA after each pulse to probe the magnetization state. Because of the spin Hall effect(SHE)in the Pt layer,the charge current in the x direction gives rise to a spin current in the out-of-plane direction, with the spin orientation along the y direction. The spin current is absorbed by the adjacent Co layer,resulting in both a damping-like torque τ‖~m×y×m and a field-like torque τ⊥~m×y,where m is the unit vector that denotes the magnetization direction. Neither torque possesses an up-or down-direction preference.But if an external magnetic field is applied collinearly to the current,the symmetry in the response to the SHE torque is broken and the magnetization can be deterministically switched.[4]For our devices,an external magnetic field HX=?300 Oe is applied along the ?x direction, thus positive currents favor a positive magnetization(resulting in a positive Hall resistance),while negative currents favor a negative magnetization.

    Fig.4. (a) Illustration of the spin Hall effect in the Pt layer with an external magnetic field of HX =?300 Oe. (b) Current pulse induced magnetization switching for the devices with tRF=0,1,2,3 min.

    The current induced magnetization switching loops for the devices with tRF=0, 1, 2, 3 min are shown in Fig.4(b).The threshold current intensity Ithdecreases with increasing tRF, which is consistent with the fact that PMA of the thin films is weakened after RF magnetron sputtering. However,the magnitude of the maximum anomalous Hall resistance becomes smaller with tRF≥2 min, which is different from the constant maximum anomalous Hall resistance reversed by the vertical magnetic field. In our experiments, the samples exhibit a multi-domain structure,thus the magnetization reversal process is dominated by magnetic domain propagation.[27,28]Considering there is spatial inhomogeneity, the domain walls would be easily nucleated in the more seriously irradiated area.On the other hand, after RF magnetron sputtering, defects in the Co layer and degradation of the Pt/Co and Co/Ru interfaces can act as pinning centers. When tRF=1 min, the influence of these pinning centers was not strong. The critical switching current density decreased and a full SOT induced magnetization switching could be achieved. For more serious irradiated devices with tRF=2, 3 min, SOT cannot induce a full magnetization switching. The reason might be that the pinning centers hinder parts of the magnetic domains to be switched by SOT,which results in the smaller Hall resistance. We have also investigated the difference in magnetic domains switching process after RF magnetron sputtering by polar magnetooptical Kerr effect(MOKE)measurement technique. The experiment results are shown in Fig.S5 in supplementary materials,which suggests that the magnetic domains in the irradiated area become more easily to be nucleated and reversed,which is in good agreement with the current induced magnetization switching.

    4. Conclusions

    In summary, AlOxwas deposited on Pt/Co/NM type structures by RF magnetron sputtering technique. We found that ion irradiation during RF magnetron sputtering can weaken the PMA of the deposited films. Using a smaller RF magnetron sputtering power and increasing the thickness of the NM layer can reduce the impacts of this ion irradiation.The simulation results of SRIM indicate that the degradation of the Pt/Co interfaces and the increasing defects in the Co layer can account for the PMA weakness. In the SOT induced magnetization switching process, both the Hall resistance and the threshold switching current density decreased after RF magnetron sputtering. Our results will attract the attention of the RF magnetron sputtering and may lead to innovative spintronic applications.

    猜你喜歡
    潤澤
    Ultrafast magneto-optical dynamics in nickel(111)single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
    Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
    《德音潤澤:董仲舒名言品鑒》出版
    弘揚(yáng)剪紙藝術(shù) 文化潤澤心靈
    商用車后下部防護(hù)碰撞特性分析
    傾心之吻
    逛公園
    An Interesting Class:賈潤澤
    鄭潤澤作品
    書香詩韻 潤澤童心
    輔導(dǎo)員(2017年9期)2017-06-01 12:10:06
    飞空精品影院首页| 黄色怎么调成土黄色| 99热国产这里只有精品6| 免费高清在线观看视频在线观看| 久久免费观看电影| 亚洲欧美精品自产自拍| 成在线人永久免费视频| 亚洲视频免费观看视频| 久久天堂一区二区三区四区| 一区二区日韩欧美中文字幕| 国产日韩欧美在线精品| 精品视频人人做人人爽| 日韩精品免费视频一区二区三区| 日韩 欧美 亚洲 中文字幕| videos熟女内射| av线在线观看网站| 纯流量卡能插随身wifi吗| 日韩一区二区三区影片| 国产精品久久久久久精品电影小说| 国产成+人综合+亚洲专区| 91九色精品人成在线观看| 热re99久久国产66热| 大片免费播放器 马上看| 99国产精品99久久久久| 日日爽夜夜爽网站| 久久国产亚洲av麻豆专区| 久久 成人 亚洲| 少妇猛男粗大的猛烈进出视频| 两个人看的免费小视频| 亚洲avbb在线观看| 国产亚洲精品第一综合不卡| 可以免费在线观看a视频的电影网站| 黄色视频,在线免费观看| 亚洲全国av大片| 午夜福利影视在线免费观看| 成人三级做爰电影| 国产精品久久久久久人妻精品电影 | 日本91视频免费播放| 一区二区三区乱码不卡18| 午夜福利影视在线免费观看| 一本综合久久免费| 欧美 亚洲 国产 日韩一| 免费日韩欧美在线观看| 精品福利观看| 免费在线观看影片大全网站| 亚洲欧美清纯卡通| 黑人操中国人逼视频| 久久精品亚洲熟妇少妇任你| 久久国产精品影院| 久久久精品区二区三区| 国产无遮挡羞羞视频在线观看| 侵犯人妻中文字幕一二三四区| 久久久精品区二区三区| 飞空精品影院首页| 97在线人人人人妻| 欧美97在线视频| 久久毛片免费看一区二区三区| 美女中出高潮动态图| 欧美变态另类bdsm刘玥| 欧美老熟妇乱子伦牲交| 十八禁网站免费在线| 91精品三级在线观看| 一级片免费观看大全| 天天添夜夜摸| 亚洲欧美精品综合一区二区三区| 正在播放国产对白刺激| 黄色视频在线播放观看不卡| 免费在线观看完整版高清| 日韩,欧美,国产一区二区三区| 久久99一区二区三区| 国产欧美日韩综合在线一区二区| 法律面前人人平等表现在哪些方面 | 国产日韩一区二区三区精品不卡| 久久久久网色| 考比视频在线观看| 两性夫妻黄色片| 国产男女内射视频| 国产精品久久久久久精品电影小说| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| 人人妻人人澡人人看| 两个人看的免费小视频| 一二三四在线观看免费中文在| 免费少妇av软件| 99国产综合亚洲精品| 精品国产乱码久久久久久小说| xxxhd国产人妻xxx| 激情视频va一区二区三区| 国产淫语在线视频| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 午夜91福利影院| 亚洲伊人色综图| 成人免费观看视频高清| 国产一区二区在线观看av| 日日爽夜夜爽网站| 韩国精品一区二区三区| 俄罗斯特黄特色一大片| 在线av久久热| 无限看片的www在线观看| 亚洲精品一区蜜桃| 成在线人永久免费视频| 91麻豆av在线| a 毛片基地| 免费人妻精品一区二区三区视频| 亚洲av男天堂| 五月天丁香电影| 美女午夜性视频免费| 老司机影院毛片| 精品国产一区二区久久| 我要看黄色一级片免费的| 亚洲成人手机| 一本久久精品| svipshipincom国产片| 亚洲伊人久久精品综合| 精品国产一区二区久久| 亚洲国产欧美在线一区| 亚洲国产中文字幕在线视频| 高潮久久久久久久久久久不卡| 欧美日韩国产mv在线观看视频| av国产精品久久久久影院| 久久综合国产亚洲精品| 美女福利国产在线| 国产在视频线精品| 成人三级做爰电影| 亚洲精品自拍成人| 亚洲男人天堂网一区| 亚洲国产成人一精品久久久| 精品福利观看| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 黑人欧美特级aaaaaa片| a级毛片在线看网站| 在线看a的网站| 成在线人永久免费视频| 国产欧美亚洲国产| avwww免费| 日韩欧美国产一区二区入口| 欧美亚洲日本最大视频资源| 美女国产高潮福利片在线看| 国产成+人综合+亚洲专区| 中文字幕高清在线视频| 国产99久久九九免费精品| 91大片在线观看| 婷婷丁香在线五月| 久久久久视频综合| 国产亚洲一区二区精品| 精品久久久久久久毛片微露脸 | 午夜91福利影院| 国产一区有黄有色的免费视频| 男女下面插进去视频免费观看| 亚洲国产欧美在线一区| 蜜桃国产av成人99| 亚洲欧美一区二区三区黑人| av天堂久久9| 黄色 视频免费看| 国产在线免费精品| 91麻豆av在线| 国产成人欧美| 中文字幕人妻丝袜制服| 欧美精品av麻豆av| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 啦啦啦视频在线资源免费观看| 亚洲av成人不卡在线观看播放网 | 九色亚洲精品在线播放| 成年人免费黄色播放视频| 热99re8久久精品国产| 久久精品国产综合久久久| 国产一区有黄有色的免费视频| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 亚洲成人手机| 热99久久久久精品小说推荐| 国产国语露脸激情在线看| 亚洲专区字幕在线| 久久中文看片网| 免费在线观看黄色视频的| 人妻人人澡人人爽人人| 1024香蕉在线观看| 成人国语在线视频| 亚洲中文字幕日韩| 精品国产乱码久久久久久男人| 2018国产大陆天天弄谢| 成年av动漫网址| 免费女性裸体啪啪无遮挡网站| www.熟女人妻精品国产| 国产深夜福利视频在线观看| 国产精品 国内视频| 久久99热这里只频精品6学生| 韩国精品一区二区三区| 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 考比视频在线观看| 99热网站在线观看| 精品国产超薄肉色丝袜足j| 国产免费现黄频在线看| 丰满人妻熟妇乱又伦精品不卡| 飞空精品影院首页| 老鸭窝网址在线观看| 国产99久久九九免费精品| 丝袜喷水一区| 制服诱惑二区| 五月天丁香电影| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人啪精品午夜网站| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女 | 在线精品无人区一区二区三| 国产亚洲欧美精品永久| 亚洲 国产 在线| 高清黄色对白视频在线免费看| 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 中文字幕av电影在线播放| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 久久久久精品人妻al黑| 日本猛色少妇xxxxx猛交久久| 成人av一区二区三区在线看 | 精品少妇一区二区三区视频日本电影| 天天添夜夜摸| 91老司机精品| 男女午夜视频在线观看| 国产色视频综合| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 久久久精品94久久精品| 亚洲成人免费av在线播放| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 啦啦啦免费观看视频1| 亚洲熟女精品中文字幕| 搡老熟女国产l中国老女人| av视频免费观看在线观看| 久久这里只有精品19| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 欧美精品av麻豆av| 美女午夜性视频免费| 最黄视频免费看| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放| 美女扒开内裤让男人捅视频| av在线app专区| 久久性视频一级片| 一边摸一边抽搐一进一出视频| 黄色视频不卡| 亚洲欧洲精品一区二区精品久久久| 99国产极品粉嫩在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 91字幕亚洲| 国产亚洲av高清不卡| 高清欧美精品videossex| 国产成人av激情在线播放| 日本一区二区免费在线视频| 最黄视频免费看| 国产精品亚洲av一区麻豆| 美女扒开内裤让男人捅视频| 亚洲欧洲精品一区二区精品久久久| 免费在线观看日本一区| av电影中文网址| 麻豆乱淫一区二区| 精品人妻1区二区| 亚洲国产精品999| 久久女婷五月综合色啪小说| 日本a在线网址| 脱女人内裤的视频| 热99久久久久精品小说推荐| 久久久国产一区二区| 纯流量卡能插随身wifi吗| 伊人亚洲综合成人网| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| svipshipincom国产片| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 成在线人永久免费视频| 王馨瑶露胸无遮挡在线观看| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 亚洲av美国av| 黄片播放在线免费| 亚洲,欧美精品.| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 亚洲精品国产av蜜桃| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 亚洲国产精品一区二区三区在线| 99国产精品一区二区三区| 老司机影院毛片| 亚洲精品av麻豆狂野| 国产不卡av网站在线观看| 成年女人毛片免费观看观看9 | 热re99久久国产66热| 一二三四社区在线视频社区8| svipshipincom国产片| 国产xxxxx性猛交| 亚洲av男天堂| 在线观看人妻少妇| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网 | 欧美av亚洲av综合av国产av| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 日韩一卡2卡3卡4卡2021年| 999久久久国产精品视频| 久久精品亚洲av国产电影网| 国产日韩欧美视频二区| 一区二区三区精品91| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影 | 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 国产成人精品在线电影| 热re99久久国产66热| 亚洲精品粉嫩美女一区| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 脱女人内裤的视频| 国产三级黄色录像| 日日摸夜夜添夜夜添小说| 91精品三级在线观看| 国产一区二区 视频在线| 欧美午夜高清在线| 中国国产av一级| h视频一区二区三区| 中文字幕色久视频| 男人添女人高潮全过程视频| av网站在线播放免费| 午夜福利视频在线观看免费| 老司机午夜福利在线观看视频 | 久久亚洲国产成人精品v| 国产成人啪精品午夜网站| 男女无遮挡免费网站观看| 少妇的丰满在线观看| 91成人精品电影| 精品一区二区三区四区五区乱码| 97在线人人人人妻| 桃花免费在线播放| 国产在线观看jvid| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 欧美另类亚洲清纯唯美| 日韩欧美一区二区三区在线观看 | a在线观看视频网站| 亚洲欧美日韩另类电影网站| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| 午夜老司机福利片| 精品亚洲乱码少妇综合久久| 欧美亚洲 丝袜 人妻 在线| 99九九在线精品视频| 亚洲成av片中文字幕在线观看| 亚洲综合色网址| 亚洲全国av大片| 嫁个100分男人电影在线观看| 91精品国产国语对白视频| 欧美在线黄色| 成人免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| 18在线观看网站| av电影中文网址| 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 亚洲 国产 在线| 免费人妻精品一区二区三区视频| 中文字幕精品免费在线观看视频| 十八禁网站免费在线| 亚洲综合色网址| 亚洲精品一区蜜桃| 久久免费观看电影| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 美女脱内裤让男人舔精品视频| 国产亚洲精品一区二区www | 五月开心婷婷网| 亚洲中文日韩欧美视频| 肉色欧美久久久久久久蜜桃| 欧美日韩精品网址| 国产精品偷伦视频观看了| 婷婷色av中文字幕| 精品国产乱码久久久久久小说| 久久久久久久国产电影| 最新在线观看一区二区三区| 国产在线观看jvid| 男女国产视频网站| 国产欧美日韩精品亚洲av| 啦啦啦视频在线资源免费观看| 90打野战视频偷拍视频| 亚洲精品国产av成人精品| 91av网站免费观看| 欧美激情久久久久久爽电影 | 正在播放国产对白刺激| 亚洲精品美女久久久久99蜜臀| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品粉嫩美女一区| 搡老熟女国产l中国老女人| 男女之事视频高清在线观看| a 毛片基地| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频| 日本一区二区免费在线视频| 一个人免费看片子| 成人国语在线视频| 久久人人97超碰香蕉20202| 1024视频免费在线观看| 精品国产国语对白av| 日韩精品免费视频一区二区三区| 午夜老司机福利片| 热99国产精品久久久久久7| 国产三级黄色录像| 国产精品一区二区免费欧美 | 欧美一级毛片孕妇| 乱人伦中国视频| 久久久国产成人免费| 欧美成人午夜精品| 亚洲国产精品一区二区三区在线| 午夜日韩欧美国产| 久久久久精品人妻al黑| 欧美大码av| 日韩电影二区| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 男人操女人黄网站| 亚洲专区国产一区二区| 国产成人精品无人区| 亚洲欧美清纯卡通| 国产免费现黄频在线看| 黄片播放在线免费| 90打野战视频偷拍视频| 亚洲欧美清纯卡通| 18在线观看网站| 欧美日韩亚洲高清精品| 99热网站在线观看| 久久精品国产亚洲av香蕉五月 | 成人影院久久| 青春草视频在线免费观看| www.熟女人妻精品国产| 啦啦啦 在线观看视频| 欧美乱码精品一区二区三区| 国产精品 国内视频| 久久人人爽人人片av| 男女下面插进去视频免费观看| 午夜福利影视在线免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 国产精品1区2区在线观看. | 午夜成年电影在线免费观看| 国产真人三级小视频在线观看| 日韩大码丰满熟妇| 曰老女人黄片| videosex国产| 黄色毛片三级朝国网站| 亚洲男人天堂网一区| 黑人欧美特级aaaaaa片| 99国产精品免费福利视频| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 日韩中文字幕欧美一区二区| 美女大奶头黄色视频| 女性被躁到高潮视频| 久久国产精品大桥未久av| 国产99久久九九免费精品| 人人妻人人爽人人添夜夜欢视频| 欧美精品av麻豆av| 考比视频在线观看| 国产亚洲午夜精品一区二区久久| 巨乳人妻的诱惑在线观看| 中文字幕色久视频| 欧美av亚洲av综合av国产av| e午夜精品久久久久久久| 韩国精品一区二区三区| 国产成人一区二区三区免费视频网站| 飞空精品影院首页| 后天国语完整版免费观看| 黄网站色视频无遮挡免费观看| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 一级片免费观看大全| 国产精品一区二区精品视频观看| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 欧美精品啪啪一区二区三区 | 91麻豆av在线| www.999成人在线观看| 亚洲欧美一区二区三区久久| 天堂中文最新版在线下载| av电影中文网址| 久久99一区二区三区| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 亚洲专区国产一区二区| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性bbbbbb| 伊人亚洲综合成人网| 美女国产高潮福利片在线看| 国产免费福利视频在线观看| 国产在视频线精品| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| 国产福利在线免费观看视频| 亚洲国产精品成人久久小说| 男女免费视频国产| 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| 国产精品1区2区在线观看. | 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 国产深夜福利视频在线观看| 首页视频小说图片口味搜索| 国产野战对白在线观看| 亚洲国产精品一区三区| 99精国产麻豆久久婷婷| 午夜两性在线视频| 日本vs欧美在线观看视频| 欧美午夜高清在线| 精品久久久精品久久久| 成人手机av| 国产精品久久久av美女十八| 一级毛片女人18水好多| 纵有疾风起免费观看全集完整版| 免费在线观看影片大全网站| 777米奇影视久久| 99国产精品免费福利视频| 在线十欧美十亚洲十日本专区| 麻豆国产av国片精品| 午夜影院在线不卡| 日日夜夜操网爽| 国产成人精品久久二区二区91| 女人被躁到高潮嗷嗷叫费观| 777米奇影视久久| 岛国毛片在线播放| 老熟妇乱子伦视频在线观看 | 日韩中文字幕欧美一区二区| 各种免费的搞黄视频| 高清视频免费观看一区二区| 老司机影院成人| 日韩有码中文字幕| 久久精品aⅴ一区二区三区四区| 热re99久久国产66热| 丝袜人妻中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区av网在线观看 | 国产黄频视频在线观看| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| 天天操日日干夜夜撸| 亚洲精品国产av蜜桃| 男女国产视频网站| 香蕉丝袜av| 欧美 日韩 精品 国产| √禁漫天堂资源中文www| 日韩视频一区二区在线观看| 日韩一区二区三区影片| 国产成人免费观看mmmm| 一二三四社区在线视频社区8| 9热在线视频观看99| 国产国语露脸激情在线看| 国产不卡av网站在线观看| 欧美人与性动交α欧美软件| 中文字幕人妻熟女乱码| 在线永久观看黄色视频| 我要看黄色一级片免费的| 69精品国产乱码久久久| 考比视频在线观看| 又黄又粗又硬又大视频| 亚洲熟女精品中文字幕| 精品人妻在线不人妻| 亚洲av成人一区二区三| 欧美日韩成人在线一区二区| tube8黄色片| 日日摸夜夜添夜夜添小说| 久久久久国内视频| 亚洲第一av免费看| 啦啦啦在线免费观看视频4| 人成视频在线观看免费观看| 成人国产一区最新在线观看| 9色porny在线观看| 在线看a的网站| 国产精品影院久久| 精品国产乱子伦一区二区三区 | 悠悠久久av| 法律面前人人平等表现在哪些方面 | 伦理电影免费视频| 黄频高清免费视频| www.自偷自拍.com| 淫妇啪啪啪对白视频 | 91九色精品人成在线观看| 男人操女人黄网站| 在线永久观看黄色视频| 国产成人精品久久二区二区免费| 黄频高清免费视频|