• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel*

    2014-04-24 10:53:12ZhangJingzhou張靖周LiuBo劉波XuHuasheng徐華勝
    關(guān)鍵詞:劉波

    Zhang Jingzhou(張靖周),Liu Bo(劉波),Xu Huasheng(徐華勝)

    1.Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;3.China Gas Turbine Establishment,Aviation Industry Corporation of China,Chengdu,610500,P.R.China

    1 Introduction

    As a matter of fact,the inlet and exit temperature levels and pressure are progressively getting higher in modern gas-turbine combustors while the percentage of compressed air available for cooling purpose becomes more limited.Undoubtedly,the decrease of the quantity of cooling air available and the increase of the gas temperature in the combustion chamber are contradictory elements of the problem,which presents a great challenge for engineers to design an efficient costeffective cooling system to meet combustor durability requirement.

    Jet impingement is one of the most efficient solutions for the effective cooling of the combustor in gas turbine engines[1,2].The heat and mass transfer produced by the turbulent impinging jets have been characterized in a number of investiga-tions reviewed by Viskanta[3],Weigand and Spring[4].Basic investigations on single impinging jet with and without cross-flow were conducted for example by Goldstein and Behbahani[5],Lee et al[6],and Colucci and Viskanta[7].These investigations have shown that the heat transfer produced by an impinging jet depends mainly on a number of parameters,including the Reynolds number of the jet,the nozzle-to-plate spacing,the presence of a confining wall,and the Prandtl number,etc.Convective heat transfer enhancement,increase in the heat transfer rate uniformity,improvement in the coverage of the impingement surface,and decrease in the coolant mass flow rate are some of the concerns of jet impingement[8-14].

    With regards to the effects of a confining wall on the jet impingement,Garimella and Rice[15]as well as Fitzerald and Garimella[16]performed experiments to examine the flow field of a confined jet impingement.A toroidal recirculation-flow pattern in the downstream was clearly shown.Angibletti et al[17]investigated the flow field and heat transfer for a jet impinging on a flat plate.Zhang et al[18]and Wang et al[19]studied the effect of crossflow on jet impingement heat transfer for inline and staggered arrays.Parida et al[20]made an experimental and numerical investigation on the confined oblique impingement configurations for high heat flux applications.It was observed that for the inclined impingement case,the flow had to turn and adjust to the cylindrical jet before starting to develop inside the jet holes.This caused the formation of two nonsymmetrical secondary flow regions.Especially due to this large secondary flow region,the jets got accelerated and flowed out at relatively higher velocity causing the heat transfer rates to increase locally.Moreover,the swirl generated after impingement sustained itself for a longer distance,thereby increasing the overall heat transfer rates.Some researchers addressed the effects of nozzle geometry on heat transfer and fluid flow.

    Although a considerable amount of investigations have been conducted on the jet impingement heat transfer so that the design of impingement cooling systems could be optimized to produce the most effective cooling with a minimum amount of coolant,little work has been made on the heat transfer characteristics of jet impingement inside a semi-confined channel where the coolant air is constrained to evacuate in a single preferential direction toward the trailing exit.This situation could be viewed as a simplified model of impingement-convection heat transfer encountered in the combustor liner cooling configurations.The motivation of present study is to explore the effects of the impingement Reynolds number,impingement distance and the hole pitch on the flow and heat transfer characteristics inside the semi-confined channel.

    2 Experimental Procedures

    2.1 Experimental setup

    The experimental setup is sketched in Fig.1(a).It basically consists of a test section connected to a coolant air supply passage.The coolant air from the compressor is firstly drawn through a standard flow meter and forced to enter into the plenum chamber.Then the coolant air is discharged through the orifice plate to impinge at the target plate.After impingement on the target plate,the spent air is constrained inside the semichannel to exit in only one direction(the positive x-direction as seen in Fig.1(b)).

    Fig.1 Schematic diagram of experimental setup

    The orifice plate is made of epoxy resin of 5mm thickness.The spanwise width(y-direction)is 100mm and the streamwise length(x-di-rection)is 200mm.Single-row and double-row of circular sharp-edged holes are used to generate the impinging jets.The diameter(d)of each hole is equal to 2mm,as shown in Fig.1(c).Singlerow of impinging jets is positioned 3dfrom the closed side of the test section.The spanwise pitch(yn)between adjacent holes varies from 3dto 5d.With regard to the double-row configuration,the first row of jets is positioned 3ddownstream from the closed side of the test section.Two rows of jets are arranged inline with streamwise pitch(xn)of 3d,4dor 5d,respectively.

    The impingement target is a thin constantan foil of 0.01mm thickness(70mm long,100mm wide)which is mounted on the inner surface of a nylon plate(200mm long,100mm wide and 20mm thick).The foil spans the width of the plate and is tightened up by the adjustable copper bars to tension the foil after it is heated.The impingement distance or the nozzle-to-plate spacing between the orifice plate and the target plate is adjusted by a spacer thickness,giving some different non-dimensional orifice-to-target space ratios(zn/d,impingement distance to the diameter of jet hole).The foil is heated by DC current with two-side edges connecting to the copper bars to ensure uniform heat flux.The voltage(V)and the current(I)are recorded to determine the heat flux.In the experiment,the constant heat-flux on the heating foil surface is set as 5 000W/m2.To make the object thermal image be detected by the infrared camera,a viewing window with 30mm wide and 70mm long is opened in the nylon insulation plate.

    2.2 Measurement and parameter definition

    The impingement Reynolds number is determined as

    where dis the inlet diameter of jet hole,νthe kinematic viscosity of the jet,ujthe mean jet velocity at the inlet,˙mthe total mass flow rate of the air emerging from the orifice plate,μis the dynamic viscosity of the jet,and Nis the number of holes in the orifice plate.

    The temperature distribution on the rear face of the foil(the opposite side of jet impingement)is measured by an infrared camera(TVS-2000 MK)working in the 3—5μm band at speed of 30 frames per second.The field of view is 25°×18.8°/0.4m,the instantaneous field of view is 1.3mrad,and the thermal sensitivity is 0.07°C at 30°C.The infrared camera calibration is conducted by using a series of thermocouples placed on the black painted test surface to act as the benchmark[21,22].These thermocouples are used to estimate the emissivity of the test surface.The emissivity of the black painted surface when viewed directly is about 0.96.Three copper-constantan thermocouples are fixed on the foil to check the heater temperature and to help determine steadystate conditions.Once the temperature field on the impinging target reaches steady,the thermal image is recorded by the infrared camera.The detective distance is set as 100mm and accordingly the transmissivity for the infrared camera is approximately regarded as 1.

    In the present case,the infrared camera is used in conjunction with the″heated thin foil″steady state heat transfer sensor(Carlomagno and Cardone[23]).Since the impingement target thickness is very thin,the Biot number(Bi=hδ/λs,where his the convective heat transfer coefficient on the target surface,δandλsare the thickness and thermal conductivity of the thin target plate,respectively)is small with respect to unity,the temperature on the face of the foil opposite to the jet impingement may be considered practically the same as that on the target surface directly impinged by the jets.Considering the energy balance of a thin plate in steady state conditions,the local convective heat transfer coefficient on the target surface is evaluated as

    where Twis the target wall temperature,Tjthe impinging jet temperature(metered in the plenum chamber),qjthe Joule heat flux,and qradationthe radiation heat flux,and qconvectionthe natural convection heat flux on the rear foil surface.

    Due to the thermal inertia of the foil and the time averaging process of the image,present measurements have to be considered as time averaged.This means that temperature fluctuations due to flow turbulence are not measured.

    The net rate of radiation heat flux is estimated as

    where Tais the surrounding ambient temperature,εbackthe emissivity of nylon plate,andσthe Stefan-Boltzmann constant.

    The heat loss from the back of foil by natural convection mode is determined according to the empirical relation for natural convection from vertical flat plate.

    where hfis the natural convection heat transfer coefficient over the back of heated foil,which is determined according to the empirical relation for natural convection from vertical flat plate.

    Heat transfer measurements are expressed in dimensionless form in terms of Nusselt number.The laterally-averaged Nusselt number is defined as

    whereλis the thermal conductivity of air,and hav,xthe laterally-averaged convective heat transfer coefficient.

    The discharge coefficient,which is inversely proportional to the pressure drop across the coolant hole in the rib-roughened channel,is defined as

    where p*is the coolant flow total pressure in the plenum chamber metered by apressure probe,p0the coolant flow static pressure at semi-confined channel outlet,approximately regarded as the ambient pressure.

    In all experiments,the measured temperature difference(between the surface and ambient)is at least 10°C with an uncertainty of±2%.The uncertainty of the power supplied to the heater,is assumed to be the same as the uncer-tainty of the heat flux out of the heater,that is,approximately±6%.The uncertainty in the thermal conductivity of air,given the small temperature fluctuations,is estimated to be less than±2%.The uncertainty of the flow rate is about 1%.And the measured errors of pressure are estimated as±3%.Following the uncertainty analysis based on Moffat[24],the maximum uncertainty in the measurement of the average convective heat transfer is±8%.The uncertainty in discharge coefficient measurements is estimated in the order of±5%.

    2.3 Baseline validation of single jet impingement

    Baseline validation is made to provide checks on the present measurement apparatus and procedures.The baseline test aiming at a single round jet employed for this purpose matches that employed by Gao et al[9]with Rej=23 000and nozzle-to-plate distance of 2diameters.Fig.2presents the comparison of area-averaged Nusselt number profiles.Here the area-averaged Nusselt number is defined in terms of the region of radius(R)surrounding the jet impinging stagnation point.

    Fig.2 Baseline validation of area-averaged Nusselt numbers under single jet impingement

    Fig.2illustrates that the averaged Nusselt number distributions on the impinged plate for both works exhibite the same behaviors.The good agreement of area-averaged Nusselt number distribution with Gao et al[9]validates the experimental procedures and apparatus employed in the present study.

    3 Results and Discussion

    3.1 Temperature distributions

    Fig.3presents the temperature distributions on the constant heat-flux(q=5 000W/m2)heating foil surface under orifice-to-target spacing zn/d=2and spanwise pitch yn/d=3.Fig.4presents the temperature distributions for double-row case under zn/d=1,xn/d=3and yn/d=4.It seems that each impingement jet is responsible for a high heat transfer zone around the stagnation point.As the impingement Reynolds increases,the stagnation zone corresponding to each impinging jet is extended and the temperature on the stagnation zone is decreased obviously,which is coincidental perfectly to the previous studies.

    Fig.3 Thermal images on target for single-row case(yn/d=3,zn/d=2)

    3.2 Heat transfer coefficients

    Heat transfer variations with the impingement distance zn/dhave been investigated extensively.A few laterally-averaged Nusselt number profiles extracted from these measurements are displayed in Fig.5.

    Fig.4 Thermal images on target for double-row case(xn/d=3,yn/d=4,zn/d=1)

    As a consequence,it is notable that the im-pingement distance zn/d=2leads to the highest local heat transfer over the range of impingement distances tested for the single-row case.The heat transfer rate generated by the impingement distance zn/d=3is close to that for zn/d=2.A rapidly decrease of laterally-averaged Nusselt number appears under impingement distance zn/d=1.At this distance,the confinement effect is greatly penalizing due to the self-interaction of impinging jet and circular flow induced by the impinging jet near the closed side of semi-confined channel.This effect seems more vigorous under higher impingement Reynolds number.While for the double-row case,the optimum impingement distance is zn/d=1.This tendency is completely contrary to that of single-row case.With regard to the double-row case,the interaction of the jets from front row and rear row will play an important role in the heat transfer.In the case of zn/d=1,the stagnation zone corresponding to each row may be seriously affected by the other row.The junction effect may be superior to confinement effect,re-sulting in tremendous heat transfer enhancement under zn/d=1.

    Fig.5 Laterally-averaged Nusselt numbers under different zn/d

    Fig.6shows the influence of spanwise jet-tojet pitch(yn/d)on the laterally-averaged Nusselt number in the single-row case,while Fig.7shows the influence of streamwise jet-to-jet pitch(xn/d)on the laterally-averaged Nusselt number in the double-row case.As expected,under the same impingement Reynolds number,the laterallyaveraged Nusselt number is decreased with the increase of yn/d.With regard to the double-row case,the increase of xn/dextends the impinging cooling region.Besides,there is a little decrease of heat transfer coefficient in the region between two row impinging holes.

    Fig.6 Laterally-averaged Nusselt numbers under different yn/d

    By comparison of the single-row and doublerow cases,it is found that the laterally-averaged Nusselt number distributions within the zone of the first row of double-row case do not fit perfectly with the single-row case.Downstream of this region,heat transfer is drastically reduced in the single-row case since the impingement is not efficient any more whereas the impinging jets from the secondary row maintain high heat exchanges in the double-row configuration.

    Fig.7 Laterally-averaged Nusselt numbers under different xn/d

    It is noticed that the quantity of air used to impinge the target is associated with the number of impinging jets and the impingement Reynolds number.Therefore,one should not compare directly the averaged Nusselt numbers for different spanwise spacings from Figs.6,7.To evaluate the overall cooling efficiency of the different impingement configurations and to compare these different impingement cases directly,one can work at a fixed mass flow rate of coolant per unit area of cooled surface.In the present study,Gjis expressed as

    where Gjrepresents the air quantity devoted to the cooling of a given area(as seen in Fig.1)surrounding the impinging jet.

    For the sigle-row jet impingement with zn/d=2,the area-averaged Nusselt numbers are ex-pressed as functions of Gjin Fig.8.It is interesting to find that the increase of impingement Reynolds number does not mean that the heat transfer rate will be certainly increased at a fixed value of Gj.As an example,for Gjfixed at 8.5,area-averaged Nusselt number is increased by 20%when changing the impingement configuration fromyn/d=4and Rej=28 400to yn/d=5and Rej=34 800.Furthermore the influence of yn/don area-averaged Nusselt number seems more significantly under the larger impingement Reynolds number.

    Fig.8 Area-averaged Nusselt numbers vs.Gj

    With regard to the relation of front row and rear row,it behaves more complicated.As we know,the jets from the first row impinging holes form uneven cross flow relative to the downstream jets,which deflects the downstream jets from the normal direction and weakens the convective heat transfer capacity of downstream jets.Simultaneously,the secondary jets behave as″disturbed pins″to the cross flow,which often enhances the convective heat transfer capacity of cross flow.The contradictory aspects are responsible for the complicated heat transfer features along downstream of the first row.In the case of zn/d=1,the impingement jets maintain stronger penetration in the surrounding fluid,which is weakly affected by the cross flow.At the same time,the cross flow is strengthened more obviously,so that the heat transfer enhancement shows advantageous in the region corresponding to the secondary row.While in the case of a larger zn/d,the jet penetration is decadent to be easily deflected by the cross flow and the convective heat transfer of the cross flow is also weaken,and the laterally-averaged Nusselt number is thus reduced on the second row compared with the peak Nusselt number on the first row.

    3.3 Discharge coefficients

    The discharge coefficient is inversely proportional to the pressure drop between the jet inlet and the channel outlet.Fig.9presents the influence of zn/d on the discharge coefficients in the single-row case.It is shown that the impingement distance zn/d=1leads to the lowest discharge coefficient over the range of impingement distances tested for the single-row case,which indicates that the pressure drop for this situation is the biggest.By comparison,the influence of zn/don the discharge coefficients is more obvious when the spanwise jet-to-jet pitch is smaller.

    Fig.9 Discharge coefficients vs.Rejunder different zn/d

    The influence of yn/don the discharge coefficients is shown in Fig.10.It is evident that yn/d has an important effect on the discharge coeffi-cient in the single-row case.When the spanwise jet-to-jet pitch is smaller,the interaction of the adjacent jets will be more intensive,owing to the increases of flow loss and a smaller discharge coefficient.As it can be seen from the figures,the influence is more significant in the higher impingement Reynolds number.

    Fig.10 Discharge coefficients vs.Rejunder different yn/d

    Fig.11 Comparison of discharge coefficients

    Fig.11presents the comparison of discharge coefficients between single-row case and double-row case.It can be found that the discharge coefficient in the double-row case decreases compared with that of the single-row case at the same impingement Reynolds number.Due to the interaction of jets between adjacent streamwise rows,the flow loss inside the channel increases,which is contributed to the decrease of the discharge coefficient.

    4 Conclusions

    Experimental investigation is conducted to investigate the flow and heat transfer performances of impingement cooling inside semi-confined channel.Effects of impingement Reynolds number,orifice-to-target spacing and hole pitch on the convective heat transfer coefficient and discharge coefficient are revealed.The results are summarized as follows:

    (1)The impingement distance zn/d=2leads to the highest local heat transfer over the range of impingement distances tested for the single-row case.The impingement heat transfer is enhanced with the increase of impinging Reynolds number or the decrease of spanwise jet-to-jet pitch.

    (2)The laterally-averaged Nusselt number distributions within the zone of the first row of double-row case do not fit perfectly with the single-row case.The optimum impingement distance is zn/d=1in the double-row case.And the laterally-averaged Nusselt number is reduced on the second row compared to the first row at larger impingement distance.

    (3)The spanwise jet-to-jet pitch has an important effect on the discharge coefficient.A smaller jet-to-jet pitch generally results in a lower discharge coefficient.This influence is more significant under the higher impingement Reynolds number.The discharge coefficient in the doublerow case is decreased relative to the single-row case at the same impingement Reynolds number.

    [1] Leger B,Miron P,Emidio J M.Geometric and aerothermal influences on multi-h(huán)oled plate temperature:application on combustor wall[J].International Jour-nal of Heat and Mass Transfer,2003,46:1215-1222.

    [2] Facchini B,Surace M,Tarchi L.Impingement cooling for modern combustors:experimental analysis and preliminary design[R].ASME Paper GT 2005-68361,2005.

    [3] Viskanta R.Heat transfer to impinging isothermal gas and flame jets[J].Experimental Thermal and Fluid Science,1993,6:111-134.

    [4] Weigand B,Spring S.Multiple jet impingement—A Review[J].Heat Transfer Research,2011,42:101-142.

    [5] Goldstein R J,Behbahani A I.Impingement of a circular jet with and without cross flow[J].International Journal of Heat and Mass Transfer,1982,25:1377-1382.

    [6] Lee D,Greif R,Lee S,et al.Heat transfer from a flat plate to a fully developed axisymmetric impinging jet[J].ASME J Heat Transfer,1995(117):772-776.

    [7] Colucci D W,Viskanta R.Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J].Experimental Thermal and Fluid Science,1996,13:71-80.

    [8] Brignoni L A,Garimella S V.Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement[J].International Journal of Heat and Mass Transfer,2000,43:1133-1139.

    [9] Gao N,Sun H,Ewing D.Heat transfer to impinging round jets with triangular tabs[J].International Journal of Heat and Mass Transfer,2003,46:2557-2569.

    [10]Alekseenko S V,Bilsky A V,Dulin V M,et al.Experimental study of an impinging jet with different swirl rates[J].Int J Heat Fluid Flow,2007(28):1340-1359.

    [11]Katti V,Prabhu S V.Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular jet[J].International Journal of Heat and Fluid Flow,2008,29:1279-1294.

    [12]Koseoglu M F,Baskayab S.The role of jet inlet geometry in impinging jet heat transfer,modeling and experiments[J].International Journal of Thermal Science,2010,49:1417-1426.

    [13]Violato D,Ianiro A,Cardone G,et al.Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J].International Journal of Heat and Fluid Flow,2012,37:22-36.

    [14]Yu Y Z,Zhang J Z,Xu H S.Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J].International Journal of Heat and Mass Transfer,2014,72:222-233.

    [15]Garimella S V,Rice R A.Confined and submerged liquid jet impingement heat transfer[J].ASME Journal of Heat Transfer,1995,117:871-877.

    [16]Fitzgerald J A,Garimella S V.A study of the flow field of a confined and submerged impinging jet[J].International Journal of Heat and Mass Transfer,1998,41:1025-1034.

    [17]Angibletti M,Di Tommaso R M,Nino E,et al.Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jet[J].International Journal of Heat and Mass Transfer,2003,46:1703-1713.

    [18]Zhang J Z,Li Y K,Tan X M,et al.Numerical computation and experimental investigation on local convective heat transfer characteristics for jet array impingement[J].Chinese Journal of Aeronautics,2005,25:339-342.

    [19]Wang T,Lin M J,Bunker R S.Flow and heat transfer of confined impingement jets cooling using a 3-D transient liquid crystal scheme[J].International Journal of Heat and Mass Transfer,2005,48:4887-4903.

    [20]Parida P R,Ekkad S V,Ngo K.Experimental and numerical investigation of confined oblique impingement configurations for high heat flux applications[J].International Journal of Thermal Science,2011,50:1037-1050.

    [21]Zhang J Z,Gao S,Tan X M.Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontal forced flow[J].International Journal of Heat and Mass Transfer,2013,57:321-330.

    [22]Tan X M,Zhang J Z.Flow and heat transfer characteristics under synthetic jets impingement driven by piezoelectric actuator[J].Experimental Thermal and Fluid Science,2013,48:134-146.

    [23]Carlomagno G M,Cardone G.Infrared thermography for convective heat transfer measurements[J].Experiments in Fluids,2010,49:1187-1218.

    [24]Moffat R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1:3-17.

    [25]Goldstein R J,Seol W S.Heat transfer to a row of impinging circular air jets including the effect of entrainment[J].International Journal of Heat and Mass Transfer,1991,34:2133-2146.

    猜你喜歡
    劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國畫家(2023年1期)2023-02-16 07:57:50
    Electron delocalization enhances the thermoelectric performance of misfit layer compound(Sn1-xBixS)1.2(TiS2)2
    Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100?
    Retrieval of multiple scattering contrast from x-ray analyzer-based imaging*
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動手
    “故事大王”講故事
    大連大學(xué)美術(shù)學(xué)院劉波繪畫作品選
    在线免费观看的www视频| 大香蕉97超碰在线| 亚洲av成人精品一二三区| 午夜福利网站1000一区二区三区| 黄色日韩在线| 赤兔流量卡办理| 精品久久久噜噜| 天堂影院成人在线观看| 国内精品宾馆在线| 欧美xxxx黑人xx丫x性爽| 少妇裸体淫交视频免费看高清| 长腿黑丝高跟| 亚洲av男天堂| 五月伊人婷婷丁香| 免费看a级黄色片| 天天躁夜夜躁狠狠久久av| 国产成人一区二区在线| 免费人成在线观看视频色| 成年免费大片在线观看| 在线免费十八禁| 美女内射精品一级片tv| 乱人视频在线观看| 精品久久久久久久久av| 国产一区二区在线av高清观看| 免费电影在线观看免费观看| 久久精品夜夜夜夜夜久久蜜豆| 久久99蜜桃精品久久| 身体一侧抽搐| 三级男女做爰猛烈吃奶摸视频| 欧美日韩国产亚洲二区| 免费一级毛片在线播放高清视频| 亚洲精品一区蜜桃| 蜜桃久久精品国产亚洲av| 超碰97精品在线观看| 久久人人爽人人片av| 精品人妻熟女av久视频| 亚洲最大成人手机在线| 一级毛片我不卡| 日日摸夜夜添夜夜爱| 国产高清有码在线观看视频| 久久久久精品久久久久真实原创| 人人妻人人澡欧美一区二区| 亚洲av日韩在线播放| 中文亚洲av片在线观看爽| 在线播放无遮挡| 亚洲欧美成人精品一区二区| 少妇的逼水好多| 国产在视频线在精品| 久久人妻av系列| 91精品国产九色| 亚洲国产精品成人久久小说| 男人的好看免费观看在线视频| 丰满少妇做爰视频| 丰满乱子伦码专区| 国产伦精品一区二区三区视频9| 亚洲国产精品sss在线观看| 婷婷色麻豆天堂久久 | 大香蕉久久网| 在线播放无遮挡| 精品国内亚洲2022精品成人| 一级毛片aaaaaa免费看小| 国产av一区在线观看免费| 中文字幕制服av| 久久草成人影院| 桃色一区二区三区在线观看| 国产淫片久久久久久久久| 一区二区三区免费毛片| 国模一区二区三区四区视频| 亚洲高清免费不卡视频| 校园人妻丝袜中文字幕| 搡老妇女老女人老熟妇| 综合色丁香网| 成人午夜高清在线视频| 久久99热这里只频精品6学生 | 搡老妇女老女人老熟妇| 免费大片18禁| 99久久精品热视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色综合亚洲欧美另类图片| 91久久精品电影网| 波多野结衣高清无吗| 欧美三级亚洲精品| 亚洲欧美精品自产自拍| 1000部很黄的大片| 欧美一区二区精品小视频在线| 免费观看在线日韩| 国产高潮美女av| 狠狠狠狠99中文字幕| 综合色av麻豆| 综合色av麻豆| 免费电影在线观看免费观看| 亚洲av免费在线观看| 变态另类丝袜制服| 中文精品一卡2卡3卡4更新| 精品久久久久久久久av| 天堂√8在线中文| 日本猛色少妇xxxxx猛交久久| 欧美性猛交黑人性爽| 国产精品一区二区三区四区久久| 在线免费观看的www视频| 亚洲一级一片aⅴ在线观看| 天堂√8在线中文| 亚洲自偷自拍三级| 久久久久久大精品| 日韩成人av中文字幕在线观看| 最近中文字幕高清免费大全6| 国产精品久久久久久av不卡| 性插视频无遮挡在线免费观看| videossex国产| 一本久久精品| 麻豆成人午夜福利视频| 亚洲欧美一区二区三区国产| 能在线免费观看的黄片| 成人av在线播放网站| 欧美色视频一区免费| 国产精品美女特级片免费视频播放器| 中文字幕精品亚洲无线码一区| 免费看日本二区| 久久久久久久国产电影| 级片在线观看| 99热精品在线国产| 亚洲人成网站在线观看播放| 国产精品野战在线观看| 日韩欧美在线乱码| 亚洲无线观看免费| 最近中文字幕2019免费版| 亚洲精品,欧美精品| 免费播放大片免费观看视频在线观看 | 婷婷色av中文字幕| 免费在线观看成人毛片| 女人被狂操c到高潮| 99久国产av精品| 久久久久久久国产电影| 九九爱精品视频在线观看| 亚洲图色成人| 亚洲三级黄色毛片| 少妇的逼水好多| 91狼人影院| 亚洲欧美日韩东京热| 在线a可以看的网站| 色综合色国产| 色网站视频免费| 国产乱人视频| 亚洲成人精品中文字幕电影| 国产精品av视频在线免费观看| 国产av不卡久久| 青青草视频在线视频观看| 一本久久精品| 麻豆乱淫一区二区| 最近2019中文字幕mv第一页| 成人鲁丝片一二三区免费| 九九爱精品视频在线观看| 十八禁国产超污无遮挡网站| 小蜜桃在线观看免费完整版高清| a级一级毛片免费在线观看| 久久久a久久爽久久v久久| 午夜视频国产福利| 九草在线视频观看| 天天一区二区日本电影三级| 国产白丝娇喘喷水9色精品| 男的添女的下面高潮视频| 汤姆久久久久久久影院中文字幕 | 亚洲三级黄色毛片| 国产免费男女视频| 国产黄片美女视频| 一区二区三区高清视频在线| 欧美区成人在线视频| 国产极品精品免费视频能看的| 2021天堂中文幕一二区在线观| 国产午夜精品久久久久久一区二区三区| 日本午夜av视频| 免费av毛片视频| 成人特级av手机在线观看| 一级毛片我不卡| 又爽又黄无遮挡网站| 天堂影院成人在线观看| 可以在线观看毛片的网站| 国产成人午夜福利电影在线观看| .国产精品久久| 日本五十路高清| 免费av毛片视频| 国产精品精品国产色婷婷| 日韩欧美精品免费久久| 最近的中文字幕免费完整| 国产91av在线免费观看| 成人午夜精彩视频在线观看| 亚洲国产日韩欧美精品在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲在久久综合| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| 免费观看的影片在线观看| 成年av动漫网址| 白带黄色成豆腐渣| 男人舔女人下体高潮全视频| 菩萨蛮人人尽说江南好唐韦庄 | 午夜免费激情av| 免费黄色在线免费观看| 十八禁国产超污无遮挡网站| 国产精品.久久久| 一区二区三区高清视频在线| 欧美bdsm另类| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| 亚洲欧美日韩卡通动漫| 国产真实乱freesex| 韩国高清视频一区二区三区| 又爽又黄a免费视频| 少妇的逼水好多| 99久久九九国产精品国产免费| 精品人妻偷拍中文字幕| 亚洲精品日韩av片在线观看| 国产高清视频在线观看网站| 嫩草影院精品99| 男女国产视频网站| 午夜亚洲福利在线播放| 99久久精品国产国产毛片| 国产视频内射| 国产成人精品一,二区| 看片在线看免费视频| 国产精品一区二区在线观看99 | 亚洲高清免费不卡视频| 国产麻豆成人av免费视频| 国产精品永久免费网站| 国产又色又爽无遮挡免| 精品不卡国产一区二区三区| 亚洲成人精品中文字幕电影| 日韩大片免费观看网站 | 超碰97精品在线观看| 日本三级黄在线观看| 日韩一区二区视频免费看| 中文资源天堂在线| 久久久久久久久久久免费av| 久久热精品热| 97人妻精品一区二区三区麻豆| 久久久久久伊人网av| 成人午夜高清在线视频| 亚洲成人久久爱视频| 国产在视频线在精品| 精品酒店卫生间| 少妇人妻一区二区三区视频| 有码 亚洲区| 禁无遮挡网站| 免费黄网站久久成人精品| 久久这里有精品视频免费| 网址你懂的国产日韩在线| 中文欧美无线码| 久久久精品欧美日韩精品| 嫩草影院新地址| 久久人人爽人人片av| 真实男女啪啪啪动态图| 人妻制服诱惑在线中文字幕| 久久精品人妻少妇| 我的女老师完整版在线观看| 久久久精品欧美日韩精品| 国模一区二区三区四区视频| av女优亚洲男人天堂| 尤物成人国产欧美一区二区三区| 久久久久国产网址| 日韩av不卡免费在线播放| 国产私拍福利视频在线观看| 国产成人福利小说| 久久久久九九精品影院| 嘟嘟电影网在线观看| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 国产成人免费观看mmmm| 久久午夜福利片| 亚洲人成网站在线播| 亚洲国产精品合色在线| 只有这里有精品99| 丰满乱子伦码专区| 99在线视频只有这里精品首页| 久久精品国产亚洲av天美| 亚洲欧美成人精品一区二区| 我的老师免费观看完整版| 精品午夜福利在线看| 久久国内精品自在自线图片| 色尼玛亚洲综合影院| 成年版毛片免费区| 国产av在哪里看| 国产视频首页在线观看| 午夜激情欧美在线| 看黄色毛片网站| 日韩精品青青久久久久久| 亚洲av免费在线观看| 久久6这里有精品| 免费黄色在线免费观看| 欧美一级a爱片免费观看看| 夫妻性生交免费视频一级片| 成人国产麻豆网| 一夜夜www| 美女cb高潮喷水在线观看| 又爽又黄无遮挡网站| av线在线观看网站| 欧美变态另类bdsm刘玥| 日韩欧美 国产精品| 天堂√8在线中文| 久久国内精品自在自线图片| 国产日韩欧美在线精品| 寂寞人妻少妇视频99o| 亚洲精品色激情综合| 亚洲aⅴ乱码一区二区在线播放| 超碰97精品在线观看| 亚洲人成网站在线观看播放| 永久免费av网站大全| 国产精品久久久久久精品电影| 亚洲欧美日韩卡通动漫| 国产单亲对白刺激| kizo精华| av在线观看视频网站免费| 欧美性猛交黑人性爽| 成人性生交大片免费视频hd| 久久人妻av系列| 插逼视频在线观看| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 又黄又爽又刺激的免费视频.| 日本免费在线观看一区| 高清日韩中文字幕在线| 午夜免费激情av| 成人美女网站在线观看视频| .国产精品久久| 欧美日韩精品成人综合77777| 午夜亚洲福利在线播放| 免费看av在线观看网站| 亚洲性久久影院| 我的老师免费观看完整版| 亚洲av免费在线观看| 国产精品一区www在线观看| 啦啦啦韩国在线观看视频| 1000部很黄的大片| 成年女人永久免费观看视频| 老司机影院成人| 乱码一卡2卡4卡精品| 国产午夜福利久久久久久| 亚洲18禁久久av| 亚洲四区av| 午夜精品一区二区三区免费看| 永久免费av网站大全| 久久精品综合一区二区三区| 一级黄片播放器| 欧美人与善性xxx| 日本午夜av视频| 嫩草影院入口| 国产高清三级在线| 纵有疾风起免费观看全集完整版 | 我的老师免费观看完整版| 噜噜噜噜噜久久久久久91| 国产亚洲一区二区精品| 黄色日韩在线| 一边亲一边摸免费视频| 秋霞在线观看毛片| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 日日干狠狠操夜夜爽| 久久精品国产鲁丝片午夜精品| 久久精品91蜜桃| 精品久久国产蜜桃| 日韩一区二区三区影片| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 久久精品久久精品一区二区三区| 亚洲精品乱码久久久v下载方式| 国产av码专区亚洲av| 精品久久国产蜜桃| 三级国产精品片| 久久久久久久久久久免费av| 亚洲精品色激情综合| 国产中年淑女户外野战色| 久久久久免费精品人妻一区二区| 国产精品无大码| av在线播放精品| 高清毛片免费看| 免费观看在线日韩| 国产成人精品婷婷| 午夜激情福利司机影院| 国产亚洲精品av在线| 少妇被粗大猛烈的视频| 91精品伊人久久大香线蕉| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 久久精品影院6| 99热这里只有是精品在线观看| 国产精品国产高清国产av| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 九草在线视频观看| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久精品电影小说 | 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 2021天堂中文幕一二区在线观| 国产精品久久久久久av不卡| 国产成人a区在线观看| 亚洲真实伦在线观看| 国产精品久久视频播放| 午夜精品一区二区三区免费看| 欧美又色又爽又黄视频| 亚洲av一区综合| 99久久人妻综合| 男女啪啪激烈高潮av片| 一二三四中文在线观看免费高清| 日本一本二区三区精品| 免费看a级黄色片| 成人无遮挡网站| 麻豆一二三区av精品| 国产一区二区三区av在线| 少妇猛男粗大的猛烈进出视频 | 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 91狼人影院| 久久久久久久久久黄片| 精品无人区乱码1区二区| 国语自产精品视频在线第100页| 久久精品综合一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产一级毛片七仙女欲春2| 欧美一区二区亚洲| 国产在视频线在精品| 精品人妻偷拍中文字幕| 日本爱情动作片www.在线观看| 中文字幕人妻熟人妻熟丝袜美| 男女啪啪激烈高潮av片| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 日日摸夜夜添夜夜添av毛片| 亚洲av.av天堂| 18禁在线播放成人免费| 亚洲欧美精品综合久久99| 国产黄片美女视频| 国产黄a三级三级三级人| 欧美成人免费av一区二区三区| 亚洲av日韩在线播放| 丝袜美腿在线中文| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 中文乱码字字幕精品一区二区三区 | 精品欧美国产一区二区三| 久久久久久久久久成人| 美女黄网站色视频| 午夜激情福利司机影院| 精品国产一区二区三区久久久樱花 | 欧美激情国产日韩精品一区| 色吧在线观看| 久久99热6这里只有精品| 亚洲电影在线观看av| 久久综合国产亚洲精品| 国产日韩欧美在线精品| 最新中文字幕久久久久| 最近的中文字幕免费完整| .国产精品久久| 舔av片在线| 免费观看精品视频网站| 欧美bdsm另类| 在线免费观看不下载黄p国产| 在线a可以看的网站| 搡老妇女老女人老熟妇| 久久久精品大字幕| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 大香蕉久久网| 久久久久久大精品| 老女人水多毛片| 久久99蜜桃精品久久| 亚洲va在线va天堂va国产| 亚洲国产欧美人成| 99久久成人亚洲精品观看| 91av网一区二区| 国产中年淑女户外野战色| 人人妻人人澡人人爽人人夜夜 | 天天躁夜夜躁狠狠久久av| 欧美成人a在线观看| 日韩成人伦理影院| 麻豆国产97在线/欧美| 色尼玛亚洲综合影院| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 久久久久久久久久成人| 国产亚洲91精品色在线| 亚洲不卡免费看| 国产三级在线视频| videossex国产| 亚洲国产精品合色在线| 色哟哟·www| 午夜久久久久精精品| 免费播放大片免费观看视频在线观看 | 亚洲婷婷狠狠爱综合网| 天天一区二区日本电影三级| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 精品久久久久久久久亚洲| 三级毛片av免费| 亚洲第一区二区三区不卡| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 亚洲国产欧美在线一区| 精品久久久久久久久久久久久| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 伦理电影大哥的女人| 一级毛片久久久久久久久女| 欧美潮喷喷水| 黑人高潮一二区| 日韩欧美国产在线观看| 成人国产麻豆网| 亚洲欧美精品综合久久99| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| 欧美区成人在线视频| 99久久无色码亚洲精品果冻| 一个人看视频在线观看www免费| 91久久精品国产一区二区三区| 国产精品野战在线观看| 日韩大片免费观看网站 | 欧美日本视频| 色哟哟·www| 天堂网av新在线| av免费在线看不卡| 内地一区二区视频在线| 91av网一区二区| 青春草国产在线视频| 国产乱人视频| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 欧美zozozo另类| 免费看光身美女| 天美传媒精品一区二区| 97超碰精品成人国产| 男女边吃奶边做爰视频| 精品久久久久久成人av| 纵有疾风起免费观看全集完整版 | 97超视频在线观看视频| 九九爱精品视频在线观看| 亚洲欧美日韩无卡精品| 三级国产精品片| 久久欧美精品欧美久久欧美| 久99久视频精品免费| 午夜福利在线观看免费完整高清在| 一区二区三区免费毛片| 伦理电影大哥的女人| 日日干狠狠操夜夜爽| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 精品久久久噜噜| 黑人高潮一二区| 又黄又爽又刺激的免费视频.| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 亚洲精品乱码久久久v下载方式| 久久精品夜夜夜夜夜久久蜜豆| 免费黄网站久久成人精品| 国产不卡一卡二| 九九爱精品视频在线观看| 久久99热这里只有精品18| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄 | 大香蕉久久网| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 亚洲av中文字字幕乱码综合| 中国国产av一级| 一个人看视频在线观看www免费| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 岛国在线免费视频观看| 日本熟妇午夜| 亚洲av熟女| 人人妻人人澡人人爽人人夜夜 | 国产视频内射| 91久久精品电影网| 日韩 亚洲 欧美在线| 日本五十路高清| 一级av片app| 午夜a级毛片| 高清在线视频一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| www.av在线官网国产| 亚洲五月天丁香| 国产av码专区亚洲av| 免费观看的影片在线观看| 全区人妻精品视频| 国产精品熟女久久久久浪| 人妻夜夜爽99麻豆av| 人妻少妇偷人精品九色| 久久热精品热| 三级国产精品片| 国产午夜精品久久久久久一区二区三区| 成人二区视频| eeuss影院久久| 亚洲图色成人| 亚洲自偷自拍三级| 看片在线看免费视频| 美女xxoo啪啪120秒动态图| 少妇熟女aⅴ在线视频| 好男人视频免费观看在线| 日本免费在线观看一区| 日本欧美国产在线视频| 亚洲精品自拍成人| 亚洲精品456在线播放app| 国产私拍福利视频在线观看| 99热这里只有是精品50| 麻豆国产97在线/欧美| 亚洲无线观看免费| 91在线精品国自产拍蜜月| 欧美不卡视频在线免费观看|