• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Angular Velocity Tracking Control of Spacecraft with Dynamic Uncertainties*

    2014-04-24 10:53:20QiaoBing喬兵LiuZhenya劉振亞HuBingshan胡冰山ChenMeng陳萌
    關(guān)鍵詞:冰山

    Qiao Bing(喬兵),Liu Zhenya(劉振亞),Hu Bingshan(胡冰山),Chen Meng(陳萌)

    1.College of Astronautic,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.Institute of Aerospace System Engineering Shanghai,Shanghai,201109,P.R.China

    1 Introduction

    Angular velocity tracking of spacecraft has important applications in the area of space exploration.For example,rigid spacecrafts,such as satellites for surveillance or communication,often have to conduct large and rapid maneuvers for accurate slewing and/or pointing,which require the spacecraft to track the designed angular velocity profile according to the mission specification[1].In the field of on-orbit servicing(OOS)which has been commonly accepted as the capacity to support the sustained development of the space technology for a nation,the autonomous rendezvous and docking are attracting more and more attention of the space community due to the concerns of efficiency,cost and safety.Major space agencies have implemented and is implementing technological demonstration missions for autonomous satellite on-orbit servicing,which include the engineering test satellite—VII(ETS-7)launched by Japanese Aerospace Exploration Agency(JAXA)in 2007[1-3],the orbital express program developed by Defense Advanced Research Projects A-gency(DARPA)in 2007[4-5],the dynamics of the equatorial ionosphere over SHAR(DEOS)program sponsored by Germany Space Agency[6],and the on-going space docking project by China Academy of Space Technology.In such testing programs,the chaser,which is the servicing spacecraft designed to conduct OOS mission,is firstly required to track and rendezvous with an on-orbit client which is the spacecraft to be serviced and then to dock with it.For the successful docking to the client,the chaser must be able to track the angular velocity of the client in the presence of dynamic uncertainties.Therefore the angular velocity tracking is considered as an indispensable ability to the spacecraft.

    Since the on-orbit dynamics of spacecraft is changing due to fuel consumption,failure deployment of a component into the expected configura-tion,docking with another spacecraft,capturing of an object,payloads added or removed,or other environmental effects,all the advanced control technologies based on known dynamics cannot be applied to the problem.Some on-orbit adaptation mechanism should be integrated into the satellite controller.Researchers in space community have devoted much effort to this challenging subject.To deal with the inertia uncertainties of an on-orbit satellite,Ref.[7]derived an adaptive controller,which was an effective PI controller with an integrator,to provide asymptotic tracking of arbitrary angular velocity even without mass distribution information.The quaternion-based adaptive full-state feedback controller[8]was proposed in which the transformed tracking error dynamics were used to compensate for uncertainties in the inertia matrix and a filter motivated by the Lyapunov-like stability analysis was used to generate angular velocities from attitude measurements.Ref.[9]applied a nonlinear passivity-based adaptive control strategy to angular velocity tracking for a spacecraft with unknown inertia parameters,and pointed out that the unknown inertia parameters could be precisely identified with persistency excitation condition.A nonlinear-optimal control strategy was devised in Ref.[10]using Hamilton-Jacobi formulation to deal with the attitude tracking problem of rigid-asymmetric spacecraft.To enable a service satellite to rendezvous and dock with a tumbling satellite whose dynamics model is unknown,Liang and Ma developed a Lyapunov based adaptive control law with dynamics uncertainty compensation capacity to guarantee the asymptotical angular velocity tracking for the priordock alignment and post-docking stabilization[11].In the research described in this paper,an adaptive angular velocity tracking law with an adaptation mechanism to the dynamics uncertainties in inertia of the spacecraft is developed based on the Lyapunov analysis.The proposed adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertainty inertia parameters,although it does not guarantee the inertia tensor be-ing precisely identified.

    2 Problem Description

    The attitude dynamics of a rigid spacecraft is governed by the following Euler equation

    where H∈R3×3is the symmetric inertia matrix of the spacecraft given by

    ω(t)=[ω1t ω2(t) ω3(t)]T∈R3×1represents the angular velocity of the spacecraft,τ=[τ1τ2τ3]T∈R3×1the resultant external torque caused by all attitude actuations acting on the spacecraft expressed in the spacecraft body frame,and S(ω(t))the skew symmetric cross product matrix ofω(t)given by

    The objective of angular velocity tracking for the system described in Eq.(1)is to forceω(t)to track a desired angular velocity trajectory,ωd(t).For this purpose,a nonnegative Lyapunov function candidate can be chosen as follows

    For a multibody dynamic system,the matrix-2S(ω(t)His skew symmetric,which makes(t)(-2S(ω(t))H)(t)=0.Therefore Eq.(5)can be reduced as

    For the purpose of tracking the angular velocityωd(t),the following control law can be chosen

    where Kvis the control gain matrix which is positive and symmetric.Substituting Eq.(7)into Eq.(6)results in the time derivative of Lyapunov function as

    Eq.(8)means the tracking error(t)will converge exponentially to zero.In other words,it can be concluded that the control law given in Eq.(7)can guarantee the spacecraft to track any desired angular velocityωd(t)with an exactly known inertia tensor of the spacecraft.

    In practice,however,it is difficult to obtain the accurate inertia tensor of an on-orbital spacecraft because its inertia parameters can change due to fuel consumption,failure deployment of a component into the expected configuration,docking with another spacecraft,capturing of an object,payloads added or removed,or other environmental effects.This fact indicates that the tracking law given in Eq.(7)can only be implemented based on an estimated inertia tensor of the spacecraft.

    3 Adaptive Angular Velocity Tracking

    In order to deal with the uncertainties of the spacecraft inertia parameters,some adaption mechanism should be incorporated into the tracking law given in Eq.(7).To design such an adaptive tracking law,a nonnegative Lyapunov function candidate can be constructed as follows

    where h=[h11h22h33h12h13h23]Tis the vector consist of the six unique elements of the inertia tensor of H,~h=^h-h(huán),^his the estimation of h,and Pis assumed to be a symmetric and positive-definite gain matrix.Differentiating the Lyapunov function given in Eq.(9)with respect to time,we can get

    where Wis a 3×6matrix given by follows

    Implementing the tracking law given in Eq.(7)based on the estimated inertia tensor,we have

    which leads to

    In this way,the resulting derivative of Lyapunov function will become the following

    which implies that the tracking law given in Eq.(14)with the adaption law given in Eq.(17)will result in a stable closed-loop dynamics even in the presence of inertia uncertainties,and enables the spacecraft to track any prescribed angular velocity trajectory.However,-0,which is ensured by(t)-0according to Eq.(17),only in-dicates that the estimation error will converge to a constant but not necessarily zero.In other words,the adaption law given in Eq.(17)does not guarantee the unknown or uncertain inertia parameters converge to their true values.Although it is not a problem if the final concern is to make the spacecraft stably tracking a desired angular velocity profile,some conditions need to be satisfied if the inertia tensor of the spacecraft is expected to be accurately estimated.

    4 Simulations and Results

    To verify the angular velocity tracking scheme proposed in this paper,computer simulations are conducted on a 3Dspacecraft model which is assumed to have an inertia matrix expressed in its body fixed frame as follows

    from which the vector consisting of the six unique elements of the inertia tensor can be figured out as

    The angular velocity profile to be tracked is produced according to a simulated spacecraft out of control and its angular velocity is plotted in Fig.1.

    Fig.1 Angular velocity to be tracked

    The angular velocity tracking simulations for both the spacecrafts with an exactly known inertia tensor and an uncertain inertia tensor are carried out and their results are described in the following parts.

    4.1 Angular velocity tracking with known H

    In this case,the tracking law given in Eq.(7)is applied with a control gain matrix Kv=diag(10 10 10).And the initial angular velocity of the spacecraft isω(0)=[6 10 8]T(°/s).Fig.2is the time histories of the angular velocities for the spacecraft,from which it can be found that the angular velocities of the spacecraft converge to the desired angular velocities after about 40s,and it means that the nonlinear tracking law given in Eq.(7)can control the spacecraft follow a desired angular velocity trajectories.Fig.3is the time histories of the control torques acting on the axes of the body fixed frame of the spacecraft.

    Fig.2 Time histories of angular velocities

    Fig.3 Time histories of control torques

    4.2 Angular velocity tracking with unknown H

    Suppose only an estimated inertia tensor matrix of the spacecraft is available as^H,the six unique elements are^h0= [220 120 60 60 130 75]T(kg·m2).The initial angular velocity isω(0)=[6 10 8]T(°/s).In this case,the control law given in Eq.(14),which is implemented based on the estimated inertia tensor of the spacecraft,is applied with the control gain matrix Kv=diag(10 10 10).To deal with the uncertainties in the inertial tensor,the adaptation mechanism of Eq.(17)is used with the gain matrix P=diag(10-510-510-510-510-510-5).The simulation results are illustrated in Figs.4—6.From Fig.4which displays the time histories of the angular velocity tracking of the spacecraft,we can see that the angular velocity of the spacecraft eventually converges to the desired angular velocity,which means that adaptive nonlinear control law given in Eqs.(14,17)can drive the spacecraft to follow a desired angular velocity profile.The six estimated unique elements of the inertia tensor of the spacecraft are plotted in Fig.5,which demonstrates that the uncertain inertia tensor of the spacecraft converges to a constant value in the process of control but is not its real value.This is acceptable because the main goal here is to drive the spacecraft to track a desired angular velocity profile as opposed to precisely identify the true value of the spacecraft inertia tensor.In other words,the adaptive nonlinear control law given in Eqs.(14,17)can make the spacecraft stably tracking a desired angular velocity profile though it does not guarantee the unknown or uncertain inertia parameters converge to their true values.The time histories of the control torques acting on the spacecraft are depicted in Fig.6.

    Fig.4 Actual and reference angular velocities

    Fig.5 Time history of six estimated unique elements of inertia tensor of spacecraft

    Fig.6 Time history of torque of spacecraft

    5 Conclusions

    This paper proposes an adaptive nonlinear control algorithm for the angular velocity tracking of spacecraft with dynamic uncertainties.With such an adaptive control method,the spacecraft can be controlled to track any arbitrary angular velocity trajectory even in the presence of uncertainties in inertia tensor so that the spacecraft can fly with no relative angular velocity to the target spacecraft or other objects to be served,which makes it possible for the spacecraft to conduct the subsequent operations such as docking,capturing or other on-orbit manipulation.Based on the assumption that the attitude dynamics of the spacecraft is precisely known,an angular velocity feedback tracking algorithm is firstly developed and the global tracking convergence of the control algorithm is proved through the Lyapunov analysis.To deal with the dynamic uncertainties of the spacecraft in its inertia tensor,a nonlinear adaptation mechanism is then designed based on Lyapunov method.With such an adaptation mechanism the spacecraft can track any desired angular velocity trajectories even an available uncertain inertia tensor.The analysis also shows that the adaptation mechanism does not guarantee the inertia tensor being precisely identified.Computer simulations on a 3Dspacecraft are carried out to verify the effectiveness of the proposed adaptive control policy and the simulation results demonstrate that the proposed adaptive control policy has good angular velocity tracking performance.

    [1] Oda M.Experiences and lessons learned from the ETS-VI1robot satellite[C]//Proceedings of the 2000IEEE International Conference on Robotics a Automation.San Francisco,CA:IEEE,2000:914-919.

    [2] Oda M,Kawano S,Kibe K,et al.ETS-7,a rendezvous docking and space robot technology experiment satellite result of the engineering model development work[C]//Proceedings of the 34th SICE Annual Conference.Hokkaido,Japan:IEEE,1995:1627-1632.

    [3] Kasai T,Oda M,Suzuki T.Results of the ETS-7 mission—Rendezvous docking and space robotics experiment[C]//Proceedings of the 5th International Symposium on Artificial Intelligence,Robotics and Automation in Space.Nordwijk,Netherlands:ESTEC/ESA,1999:299-306.

    [4] Whelan D A,Adler E A,Wilson S B,et al.DARPA orbital express program:Effecting a revolution in space-based systems[C]//International Symposium on Optical Science and Technology,International Socity for Optics and Photonics.San Diego,CA:[s.n.],2000:48-56.

    [5] Seth D P.Orbital express:Leading the way to a new space architecture[C]//Space Core Technology Conference.Colorado:[s.n.],2002:19-21.

    [6] Rupp T,Boge T,Kiehling R,et al.Flight dynamics challenges of the German on-orbit servicing mission DEOS[C]//Proceedings of the 21st International Symposium on Space Flight Dynamics.Toulouse,F(xiàn)rance:[s.n.],2009:1-13.

    [7] Sanyal A K,Chellappa M,et al.Globally convergent adaptive tracking of spacecraft angular velocity with inertia identification and adaptive linearization[C]//Pmceedings of the 42th IEEE Conference on Decision and Control.Maui,Hawaii,USA:IEEE,2003:2704-2709.

    [8] Costic B T,Damon D M,Queiroz M S,et al.A quaternion-based adaptive attitude tracking controller without velocity measurements[C]//Proceedings of the 39th IEEE Conference on Decision and Control.Sydney,Australia:IEEE,2000:2424-2429.

    [9] Thienel J K.Estimation of spacecraft inertia parameters[C]//AIAA Guidance,Navigation and Control Conference and Exhibit.Honolulu,Hawaii:AIAA,2008:1-8.

    [10]Sharma R,Tewari A.Optimal nonlinear tracking of spacecraft attitude maneuvers[J].IEEE Transactions on Control System Technology,2004,12(5):677-682.

    [11]Liang J,Ma O.Angular velocity tracking for satellite rendezvous and docking[J].Acta Astronautica,2011,69(11):1019-1028.

    猜你喜歡
    冰山
    冰山熔化會(huì)使海平面上升嗎
    冰山深處覓生機(jī)
    冰山上的“來客”
    不可思議!冰山變綠了
    暢游南極之崩塌的冰山
    奇!科學(xué)家發(fā)現(xiàn)罕見冰山
    不可錯(cuò)過的秘境:達(dá)古冰山 期待您來做一回冰山上的來客
    崩塌的冰山
    危險(xiǎn)的冰山
    危險(xiǎn)的冰山
    一卡2卡三卡四卡精品乱码亚洲| 中文精品一卡2卡3卡4更新| 高清午夜精品一区二区三区 | 亚洲精品色激情综合| 欧美+亚洲+日韩+国产| 亚洲国产高清在线一区二区三| 欧美日韩综合久久久久久| .国产精品久久| 白带黄色成豆腐渣| 九草在线视频观看| 成年版毛片免费区| 不卡视频在线观看欧美| a级一级毛片免费在线观看| 国产伦精品一区二区三区四那| 级片在线观看| 国产精品麻豆人妻色哟哟久久 | 国产高清视频在线观看网站| 国产成年人精品一区二区| 国产一区二区在线av高清观看| 国产一区二区在线av高清观看| 男女边吃奶边做爰视频| 噜噜噜噜噜久久久久久91| 精品久久国产蜜桃| 国产高清视频在线观看网站| 麻豆国产97在线/欧美| 亚洲精品国产成人久久av| 丰满乱子伦码专区| 18禁在线播放成人免费| 国产黄色小视频在线观看| av卡一久久| 美女内射精品一级片tv| 日韩高清综合在线| av在线播放精品| 亚洲熟妇中文字幕五十中出| 成人国产麻豆网| 99久久精品热视频| 久久中文看片网| 九色成人免费人妻av| 久久久久久久午夜电影| 女人十人毛片免费观看3o分钟| 国产精品久久视频播放| 日本一二三区视频观看| 在线观看午夜福利视频| 99久久精品国产国产毛片| 亚洲四区av| 国产精品美女特级片免费视频播放器| 熟女人妻精品中文字幕| 国产精品一区www在线观看| 日韩一区二区三区影片| 午夜精品国产一区二区电影 | 国产精品伦人一区二区| 黄色视频,在线免费观看| 久久综合国产亚洲精品| 久久午夜福利片| 免费人成视频x8x8入口观看| 久久九九热精品免费| 国产精品久久久久久精品电影小说 | 亚洲精品粉嫩美女一区| 精品午夜福利在线看| 麻豆国产97在线/欧美| 青青草视频在线视频观看| 日韩av在线大香蕉| 国模一区二区三区四区视频| 乱系列少妇在线播放| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品在线观看| 成熟少妇高潮喷水视频| 内地一区二区视频在线| 日日摸夜夜添夜夜爱| 在线观看午夜福利视频| 精品久久国产蜜桃| 一区二区三区高清视频在线| 欧美日韩一区二区视频在线观看视频在线 | 爱豆传媒免费全集在线观看| 国产精品一区二区三区四区久久| 少妇的逼好多水| 亚洲av第一区精品v没综合| 久久午夜福利片| 欧美色视频一区免费| 国产亚洲欧美98| 国产av一区在线观看免费| 亚洲av中文字字幕乱码综合| 国产伦在线观看视频一区| 免费无遮挡裸体视频| 男女啪啪激烈高潮av片| 精品久久久久久久久亚洲| 亚洲精品色激情综合| 少妇裸体淫交视频免费看高清| 一级毛片我不卡| 国产69精品久久久久777片| av黄色大香蕉| 国产伦在线观看视频一区| 日本黄大片高清| 3wmmmm亚洲av在线观看| 欧美精品国产亚洲| 欧美性猛交╳xxx乱大交人| 夜夜爽天天搞| 99riav亚洲国产免费| 国产视频内射| 日韩欧美国产在线观看| 伦精品一区二区三区| 亚洲一区二区三区色噜噜| 少妇丰满av| 亚洲精品国产成人久久av| videossex国产| 国产精品一二三区在线看| 亚洲国产精品国产精品| 人人妻人人看人人澡| 高清午夜精品一区二区三区 | 精品日产1卡2卡| 国产av麻豆久久久久久久| 成人亚洲欧美一区二区av| 欧美日韩在线观看h| 亚洲国产欧美在线一区| 午夜亚洲福利在线播放| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说 | 日本熟妇午夜| 你懂的网址亚洲精品在线观看 | 欧美+亚洲+日韩+国产| 久久热精品热| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区三区| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 久久人妻av系列| 成人永久免费在线观看视频| 亚洲电影在线观看av| 国产 一区精品| av又黄又爽大尺度在线免费看 | 亚洲自偷自拍三级| 国产黄色小视频在线观看| 一本一本综合久久| 亚洲av电影不卡..在线观看| 男女那种视频在线观看| 18+在线观看网站| 在线a可以看的网站| 国产一区二区三区av在线 | 久久精品久久久久久久性| 欧美xxxx黑人xx丫x性爽| 插阴视频在线观看视频| 成年女人永久免费观看视频| 少妇猛男粗大的猛烈进出视频 | 国产人妻一区二区三区在| 久久精品国产亚洲网站| 国产探花在线观看一区二区| 日本一本二区三区精品| 免费无遮挡裸体视频| 大型黄色视频在线免费观看| 丰满乱子伦码专区| 最近的中文字幕免费完整| 国产大屁股一区二区在线视频| 内射极品少妇av片p| 国产三级中文精品| 欧美精品国产亚洲| 亚洲精品影视一区二区三区av| 成年av动漫网址| 小蜜桃在线观看免费完整版高清| av.在线天堂| 久久这里只有精品中国| 欧美性猛交╳xxx乱大交人| 久久久国产成人免费| 99久国产av精品| 麻豆一二三区av精品| 91狼人影院| 在线免费观看不下载黄p国产| 亚洲图色成人| 尾随美女入室| 精品一区二区三区人妻视频| 婷婷色综合大香蕉| 我要搜黄色片| 成人鲁丝片一二三区免费| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 中文欧美无线码| 国产一区亚洲一区在线观看| 夜夜爽天天搞| 成年免费大片在线观看| 国产探花在线观看一区二区| 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 亚洲一级一片aⅴ在线观看| 搡老妇女老女人老熟妇| 国产美女午夜福利| 老女人水多毛片| 婷婷亚洲欧美| 亚洲乱码一区二区免费版| 国产男人的电影天堂91| 国产成人影院久久av| 亚洲久久久久久中文字幕| 熟妇人妻久久中文字幕3abv| 精品人妻偷拍中文字幕| 99热只有精品国产| 卡戴珊不雅视频在线播放| 国产视频内射| 一级毛片aaaaaa免费看小| 国产精品不卡视频一区二区| 边亲边吃奶的免费视频| 亚洲综合色惰| 美女内射精品一级片tv| 老司机福利观看| 在线播放国产精品三级| 特级一级黄色大片| 在线观看av片永久免费下载| 五月玫瑰六月丁香| 亚洲高清免费不卡视频| 亚洲一区高清亚洲精品| 日韩欧美在线乱码| 亚洲精品亚洲一区二区| 91麻豆精品激情在线观看国产| 美女xxoo啪啪120秒动态图| 1024手机看黄色片| 99久久成人亚洲精品观看| 中文字幕av在线有码专区| 欧美三级亚洲精品| 久久久久久久久大av| 99国产精品一区二区蜜桃av| a级毛色黄片| 日韩国内少妇激情av| 国产一区二区三区av在线 | 国产视频内射| 亚洲av中文字字幕乱码综合| 国产一级毛片七仙女欲春2| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩无卡精品| 亚洲熟妇中文字幕五十中出| 卡戴珊不雅视频在线播放| 99热这里只有是精品在线观看| 国产久久久一区二区三区| 成年版毛片免费区| 精品人妻视频免费看| 黄色视频,在线免费观看| 国产成人aa在线观看| 日韩欧美国产在线观看| 国产成人freesex在线| 日韩av不卡免费在线播放| 欧美精品国产亚洲| 免费观看的影片在线观看| 99久久成人亚洲精品观看| 黄色一级大片看看| 只有这里有精品99| 国产成人福利小说| 欧美色视频一区免费| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| www日本黄色视频网| 中文字幕熟女人妻在线| 国产人妻一区二区三区在| 久久久精品大字幕| 精品熟女少妇av免费看| 久久久久久久久大av| 国产成人影院久久av| 国产91av在线免费观看| 特级一级黄色大片| 精品一区二区免费观看| 国产黄a三级三级三级人| 在现免费观看毛片| 男女那种视频在线观看| av福利片在线观看| 一区福利在线观看| 最近中文字幕高清免费大全6| 99热这里只有是精品在线观看| 99精品在免费线老司机午夜| 高清午夜精品一区二区三区 | 国产综合懂色| 小说图片视频综合网站| 爱豆传媒免费全集在线观看| 日本一二三区视频观看| 91精品国产九色| 欧美日韩综合久久久久久| 97超视频在线观看视频| 卡戴珊不雅视频在线播放| 中文字幕制服av| 99久久九九国产精品国产免费| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 久久久久久久久久久丰满| 久久久久久九九精品二区国产| 亚洲欧洲日产国产| 三级毛片av免费| 精品少妇黑人巨大在线播放 | 热99在线观看视频| 欧美激情在线99| 一卡2卡三卡四卡精品乱码亚洲| 变态另类成人亚洲欧美熟女| 精品国产三级普通话版| 少妇猛男粗大的猛烈进出视频 | 欧美高清成人免费视频www| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 欧美xxxx黑人xx丫x性爽| 99久久成人亚洲精品观看| 亚洲国产高清在线一区二区三| 91麻豆精品激情在线观看国产| 美女内射精品一级片tv| 老师上课跳d突然被开到最大视频| 精品熟女少妇av免费看| 在线免费观看的www视频| 亚洲国产色片| 欧美最黄视频在线播放免费| 亚洲电影在线观看av| 丰满的人妻完整版| 日韩高清综合在线| 老女人水多毛片| 亚洲欧美精品自产自拍| 一级毛片电影观看 | av视频在线观看入口| av黄色大香蕉| 日本黄大片高清| 日本免费a在线| 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 国产片特级美女逼逼视频| 国产伦精品一区二区三区四那| 99国产极品粉嫩在线观看| 日本爱情动作片www.在线观看| 欧美另类亚洲清纯唯美| 九草在线视频观看| 深夜精品福利| 99热全是精品| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 国产精品久久久久久精品电影小说 | 日韩欧美在线乱码| 2022亚洲国产成人精品| 一个人免费在线观看电影| 国产精品久久电影中文字幕| 夫妻性生交免费视频一级片| 少妇的逼好多水| 女人被狂操c到高潮| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 成人av在线播放网站| 一个人看视频在线观看www免费| www.色视频.com| 国产老妇伦熟女老妇高清| 日本一本二区三区精品| 永久网站在线| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 亚洲色图av天堂| 丰满人妻一区二区三区视频av| 久久久色成人| 在线播放无遮挡| 最新中文字幕久久久久| av女优亚洲男人天堂| 日本熟妇午夜| 亚洲av男天堂| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 久久久久久久久大av| 99久国产av精品国产电影| av在线亚洲专区| 色吧在线观看| 日本黄色片子视频| 国产白丝娇喘喷水9色精品| 搡女人真爽免费视频火全软件| 男人的好看免费观看在线视频| 国产精品电影一区二区三区| 深夜a级毛片| videossex国产| 中文字幕av在线有码专区| 黄片wwwwww| 亚洲四区av| 亚洲,欧美,日韩| 亚州av有码| 亚洲精品456在线播放app| 婷婷精品国产亚洲av| 久久精品影院6| 男人狂女人下面高潮的视频| .国产精品久久| 91久久精品国产一区二区三区| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看 | av又黄又爽大尺度在线免费看 | 日韩av在线大香蕉| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 亚洲五月天丁香| 中文字幕久久专区| 亚洲精品日韩av片在线观看| .国产精品久久| 97在线视频观看| 干丝袜人妻中文字幕| 99视频精品全部免费 在线| 国产黄a三级三级三级人| 中出人妻视频一区二区| 日本-黄色视频高清免费观看| 青春草亚洲视频在线观看| 在线播放国产精品三级| 男的添女的下面高潮视频| 嫩草影院精品99| 级片在线观看| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 国产蜜桃级精品一区二区三区| 最近的中文字幕免费完整| 亚洲国产精品合色在线| 国产国拍精品亚洲av在线观看| 午夜精品国产一区二区电影 | 日日摸夜夜添夜夜添av毛片| 精品国产三级普通话版| 在现免费观看毛片| 99精品在免费线老司机午夜| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 国产黄片美女视频| 舔av片在线| 国产精品麻豆人妻色哟哟久久 | 国产中年淑女户外野战色| 国产黄片美女视频| 欧美性感艳星| 中文字幕人妻熟人妻熟丝袜美| 亚洲真实伦在线观看| 久久久久九九精品影院| 欧美人与善性xxx| 97超视频在线观看视频| 99久国产av精品| 日本免费一区二区三区高清不卡| 性插视频无遮挡在线免费观看| 亚洲人成网站在线观看播放| 九九久久精品国产亚洲av麻豆| 免费在线观看成人毛片| av福利片在线观看| 美女xxoo啪啪120秒动态图| 精品久久久噜噜| 男女下面进入的视频免费午夜| 午夜激情福利司机影院| 精品不卡国产一区二区三区| 深爱激情五月婷婷| 国内精品久久久久精免费| 色噜噜av男人的天堂激情| 最近2019中文字幕mv第一页| av天堂中文字幕网| 欧美一区二区亚洲| 精品久久久噜噜| 26uuu在线亚洲综合色| 非洲黑人性xxxx精品又粗又长| 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频 | 黑人高潮一二区| 欧美成人精品欧美一级黄| 欧美+亚洲+日韩+国产| 午夜福利视频1000在线观看| 九草在线视频观看| 可以在线观看毛片的网站| 欧美人与善性xxx| 国产一区二区在线av高清观看| 国产av一区在线观看免费| 免费看a级黄色片| 国产美女午夜福利| 小说图片视频综合网站| 精品免费久久久久久久清纯| 亚洲三级黄色毛片| 精品久久久久久久久亚洲| 亚洲四区av| 日韩,欧美,国产一区二区三区 | 国产一区二区在线av高清观看| 老司机福利观看| 亚洲精品久久久久久婷婷小说 | 噜噜噜噜噜久久久久久91| 真实男女啪啪啪动态图| 搡女人真爽免费视频火全软件| 久久精品国产亚洲网站| 我的老师免费观看完整版| videossex国产| 欧美日韩国产亚洲二区| 床上黄色一级片| 久久久久久久亚洲中文字幕| 一区福利在线观看| 桃色一区二区三区在线观看| 悠悠久久av| 禁无遮挡网站| av天堂中文字幕网| 91久久精品国产一区二区成人| 欧美+日韩+精品| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 久久久久久久午夜电影| 亚洲三级黄色毛片| 久久久成人免费电影| 国产一级毛片在线| 99国产极品粉嫩在线观看| 成人av在线播放网站| 欧美日韩一区二区视频在线观看视频在线 | 国产日韩欧美在线精品| 久久精品国产自在天天线| 国产精品伦人一区二区| 神马国产精品三级电影在线观看| 能在线免费观看的黄片| 日本黄大片高清| 99久久精品国产国产毛片| 欧美日韩一区二区视频在线观看视频在线 | 两性午夜刺激爽爽歪歪视频在线观看| 丰满乱子伦码专区| 成人欧美大片| 精品午夜福利在线看| 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 桃色一区二区三区在线观看| 1000部很黄的大片| av天堂在线播放| 成人av在线播放网站| 全区人妻精品视频| videossex国产| 欧美最新免费一区二区三区| 成人午夜高清在线视频| 搞女人的毛片| 最近视频中文字幕2019在线8| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 联通29元200g的流量卡| 免费电影在线观看免费观看| 日本三级黄在线观看| 精品久久久久久久久亚洲| 女人被狂操c到高潮| 国产三级在线视频| 一级黄片播放器| 麻豆久久精品国产亚洲av| 一本一本综合久久| 免费观看在线日韩| 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 久久国内精品自在自线图片| 全区人妻精品视频| 亚洲精品国产av成人精品| 国产亚洲精品久久久久久毛片| 日韩欧美精品免费久久| 欧美激情久久久久久爽电影| 免费观看人在逋| 亚洲无线观看免费| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 免费大片18禁| 亚洲,欧美,日韩| 搡老妇女老女人老熟妇| 欧美人与善性xxx| 综合色丁香网| 欧美+日韩+精品| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 欧美zozozo另类| 成年版毛片免费区| av卡一久久| 国产精品1区2区在线观看.| av卡一久久| 欧美区成人在线视频| 一本久久精品| 国产午夜福利久久久久久| 久久九九热精品免费| 色哟哟哟哟哟哟| 国产片特级美女逼逼视频| 三级国产精品欧美在线观看| 久久久国产成人免费| 精品一区二区三区人妻视频| 国产老妇伦熟女老妇高清| 国产午夜福利久久久久久| 日韩亚洲欧美综合| 12—13女人毛片做爰片一| 乱系列少妇在线播放| 亚洲av中文av极速乱| 青春草国产在线视频 | 舔av片在线| 国产伦在线观看视频一区| 天美传媒精品一区二区| 黄色配什么色好看| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 禁无遮挡网站| 成人毛片a级毛片在线播放| 国产黄色视频一区二区在线观看 | 亚洲精品久久久久久婷婷小说 | 欧美成人a在线观看| .国产精品久久| 高清毛片免费观看视频网站| 不卡一级毛片| 最近的中文字幕免费完整| 中文欧美无线码| 亚洲美女搞黄在线观看| 亚洲综合色惰| 真实男女啪啪啪动态图| 一边亲一边摸免费视频| 久久亚洲国产成人精品v| 我要看日韩黄色一级片| 国产伦理片在线播放av一区 | 欧美成人精品欧美一级黄| 3wmmmm亚洲av在线观看| 国产乱人偷精品视频| 国产精品一区二区三区四区久久| 看黄色毛片网站| 搡老妇女老女人老熟妇| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 日韩一本色道免费dvd| 成人二区视频| 亚洲欧美成人综合另类久久久 | 欧美最黄视频在线播放免费| 97在线视频观看| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 亚洲第一区二区三区不卡| 亚洲欧美日韩高清专用| 国产av在哪里看| 免费黄网站久久成人精品| 黑人高潮一二区| 人人妻人人看人人澡| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久久久毛片| 欧美色视频一区免费| 只有这里有精品99|