• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drag Reducing and Increasing Mechanism on Triangular Riblet Surface*

    2014-04-24 10:53:20FengBeibei封貝貝ChenDarong陳大融WangJiadao汪家道YangXingtuan楊星團(tuán)
    關(guān)鍵詞:汪家星團(tuán)

    Feng Beibei(封貝貝),Chen Darong(陳大融) Wang Jiadao(汪家道),Yang Xingtuan(楊星團(tuán))

    1.Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing,100084,P.R.China;2.The State Key Laboratory of Tribology,Tsinghua University,Beijing,100084,P.R.China

    1 Introduction

    Riblet surface on fluid drag reduction has been a field of intensive research due to its significant impact on energy saving and drag reduction.There are many engineering applications in aeronautics,marine,ground vehicles,and in pipelines as well those can be greatly benefited from any significant amount of drag reduction.Aiming at maximizing the net drag reduction,considerable efforts have been devoted to the theoretical understanding of drag reduction mechanism and the development of an optimum shape of riblets.Suzuki et al[1-2]thought the mean velocity profile in viscous sublayer would be modified,which played a significant role on reducing the drag,and measured the velocity field in triangular riblet region.While Vukoslavcevic et al[3-4]used hot-wires in their measurements.Static pressure distribution in the riblet grooves should generate exclude additional forces in the streamwise direction[5].Vortices induced in the riblet grooves(called the″Second Vortex″theory in some references)are considered the most important factor to analyze the mechanism of the turbulent drag reduction over riblet surfaces[6].Thanks to the experiments and simulations carried out by many laboratories,the development of optimum shape of riblets is available,including different cross-section shapes,i.e.,triangular,rectangular,trapezoidal,sawtooth,and scalloped ones[7-11].Luchini et al[12]suggested that riblet surface can hamper the lateral component of the near-wall flow,and wall shear stress.Choi et al[13]supported this view by experimental investigations.Wang[14]studied experimentally the flow velocity and turbulent characteristics on riblet surface to explore the drag reduction mechanism in water tunnel.Yu et al[15]developed a numerical method to study drag reduction mechanism on a symmetric V-groove spaced triangular and valley curvature riblet surface.But,most of the researches merely focused on the reduction of surface friction drag[15].For the riblet surface,the pressure drag resulting from the deviation of static pressure has an important effect on the drag of friction in high-speed air flow.However,numerical techniques have still lagged experimental studies due to the lack of computational resources,especially for the numerical simulation of drag reduction on riblet surface in high-speed air flow.

    The objective of the present study is to propose a simple and accurate numerical treatment for the flow characteristics inside the riblet grooves through computational simulation which was often adopted to study the flow characteristics for high-speed air flow[16],and to analyze drag reducing and increasing mechanism on triangular riblet surface.The proposed method in this paper is to avoid the heavy computational effort needed in mapping techniques and the excessive grid clustering near the riblet surface as well.In addition,the method is intended to be used for perpetual computations for different geometrical parameters while the Mach number ranging from Ma=0.05to Ma=0.95.For this purpose,a finite volume code is modified to reconstruct the cells near the riblet and a second-order upwind discretization is used in calculation at the newly constructed surfaces.The reliability of the method is judged by comparing the results with those of experiments[17].The underlying changes along with mach number inside riblet grooves are presented to explain the mechanism of drag reduction and increase.

    2 Numerical Approach

    Numerical simulations based on k-εturbulence model are conducted to study the flow characteristics in thin triangular riblet grooves.The k-εturbulence model is proved to be a useful tool for the understanding of mass transfer and Reynolds stress in momentum equation in turbulence boundary layer of high-speed air flow[18]compared with the k-ωturbulence model which is based easily on the method of the near wall function[19].The flow characteristic is described by the distributions of velocity field,mass transfer,static pressure and Reynolds shear stress.

    2.1 Treatment of cut cell

    The challenge in the present study is to treat an infinitesimal body whose thickness is less than the nominal grid sizes.Schematic description of the problem is shown in Fig.1.Such tiny riblets can be represented in rectangular coordinate system.To avoid the heavy computational effort followed by mapping techniques and the excessive grid clustering near the riblets surfaces as well,a modified calculation unit is adopted to simulate the flow characteristics inside riblet grooves,as shown in Fig.1.

    Fig.1 Riblet configuration described by five variable parametres

    With the inclusion of the riblet surface and smooth surface inside the domain,the calculation unit is shown in Fig.2.Force analysis focuses on four different parts of the riblet surface compared with a smooth surface.Furthermore,the flow characteristic parameters on every part of the riblet surface can also be obtained.

    Fig.2 Transverse view of numerical grids

    A transverse view of the numerical grid in the vicinity of riblets is shown in Fig.2for the thin triangular riblet surface.

    2.2 Computational details

    The computational domain has a dimension of 120μm×100μm,which is relatively larger than the minimal riblet groove unit.The riblets are described with four geometrical parameters despite of their various geometry.In this paper,nineteen cases with certain geometry have been studied while Mach number ranging from Ma=0.05to Ma=0.95with interval of 0.05.Renormalisation group(RNG)k-εturbulent model is used with consideration of pressure gradient.To avoid the false diffusion effect,quadratic upstream interpolation for convective kinetics(QUICK)format is used in the numerical method.No-slip boundary conditions on the channel wall are adopted.Calculation range of geometric parameterαis set from 60°to 120°,and riblet depth dfrom 10μm to 100μm,respectively.Moreover,computational domain field covers

    Equation solver adopts Fluent 6.3.26,pressure based and Green-Gauss node based cases.The fluid medium is air,with standard initial conditions(101 325Pa,25°C).Convergence standard is 10-6for continuity equation,others 10-5.

    The calculating object has 16 875cells,34 025faces,and 17 151nodes in the directions.Uniform meshes are used in every calculation cases.To obtain credible results,grid-independent verification is conducted to study the effect of grid size on distribution of wall static pressure and shear stress through comparision of four groups of meshes with densities of 50 625,60 241,68 527and 76 257,respectively.Results indicate that the distribution of wall static pressure and shear stress almost remains the same when computational grid is encrypted from 68 572 to 76 257,with deviation of 0.8%wall static pressure and 1.5%wall shear stress.Thus,the computational grid with density of 68 572is adopted in this paper.

    The number of grid points near the wall and inside the grooves is much larger than that of the slowly-changed flow region.The no-slip boundary condition is adopted in simulation cases.The turbulent flow is assumed fully developed over the riblets so that the inlet/outlet boundary conditions are simply assigned in the directions.The fluid material is defined as compressible gas.The Courant number is 1 000,which is already fully convergent with high efficiency after 100iterations.

    In the case with Ma=0.2,the residual value for each variable degrades below 10-3,judging that the calculation is fully convergent.The residual value curves of monitored parameters are presented in Fig.3.

    Fig.3 Residual monitors of continuity,x-velocity,yvelocity,energy and nut(convergence criterion)

    3 Results and Discussion

    3.1 Force analysis

    Force on riblet surface is analyzed in detail.Viscous force and pressure force are considered as the two main forces applied on the surface.On a smooth surface,pressure drag is zero because no microvortical structure generates on the smooth surface,which will cause deviation of static pres-sure on the front and rear ends of the riblets.Viscous force is now the total force,and due to the strong shear on the smooth surface,skin friction is totally composed of viscous force.On riblet surfaces,an obvious phenomena is that microvortex will be induced in riblet grooves,which greatly degrades the strong wall shear.And,viscous force resulting from the shearing at solid-vapor interface is correspondingly decreasing,which is the main factor of drag-reduced riblet surfaces.Meanwhile,pressure drag is caused by the deviation of static pressure,high pressure at the front end of riblets,and low pressure zone at the rear end of riblets.Besides,it is related to the induced microvortex in riblet grooves.Microvortex affected by the riblet geometry will have an influence on static distribution and pressure drag.Especially,in high-speed air flow the microvortex formed in riblet grooves significantly affects the skin friction,whose characteristics are also closely related to viscous force and pressure force.It is thus necessary to study the microvortex on riblet surfaces.

    Taking the flow Mach number Ma=0.8for instance,flow of microvortex is shown in Fig.4.The microvortex center leans to the front end of riblet,resulting in high pressure zone in this area.When Ma=0.8,the average line speed of microvortex is estimated to be 42.8—57.0m/s approximately.High-speed rotation of microvortex is due to energy and momentum transfer at the turbulence boundary layer.And the linear speed and wall shearing are greatly degraded compared with those of a smooth surface,thus causing viscous drag reduction.Table 1shows the force on smooth surface and riblet surface when Ma=0.8.On smooth surface,pressure force is zero when there is no static pressure distribution deviation and viscous force is about 1.6×10-2N.So,total force on a smooth surface is equal to viscous force with the value of 1.6×10-2N.On the riblet surface,pressure force is about 2.5×10-2N due to the static pressure distribution deviation,and viscous force is about 13.1×10-2N,which is obviously degraded.It can be found that the total force is less than that of smooth surface.Riblet structure significantly degrades the surface force.

    Fig.4 Microvortex induced in riblet grooves

    Table 1 Force analysis on riblet surface 10-2 N

    3.2 Drag reducing and drag increasing cases

    The code is validated by simulation using a certain geometry riblet surface and compared with the smooth surface.Wall friction generates from the intense shear when high-speed air flows over the wall.Joseph and Ke[20-21]emphasized that the fluid speeds in the drag reducing regime were comparable to the speed of shear wave propagation.On riblet surface,the Reynolds shear stress drops owing to the effect of vortices induced inside riblet grooves as shown in Fig.4.The valleys in Fig.5(a)and Fig.6(a)show the degraded zone of Reynolds shear stress to nearly zero which is the dominant factor resulting in drag reduction.Meanwhile,on riblet surface an additional force will generate in the streamwise direction since the dissipation of static pressure exists inside the grooves.Besides,a low pressure zone and a high pressure zone occur on the riblet surface.The pressure differences bring forth additional forces which is significantly related to Mach number as well as the shape and size of riblets.The balance of drag reduction due to degradation of Reynolds shear stress and additional force resulted from zone located at the front end is about 4.9kPa.The additional force relies on the pressure difference which shows significantly inconsistency in both drag reducing and drag increasing cases.

    Fig.5 Dissipation of Reynolds shear stress and static pressure on riblet surface when Ma=0.2(Drag reducing case)

    Fig.6 Dissipation of Reynolds shear stress and static pressure on riblet surface when Ma=0.8(Drag increasing case)

    3.3 Reynolds shear stress

    Reynolds shear stress is plotted in Fig.5(a)for the drag reducing case where the stress is suppressed due to vortices induced in riblet grooves as shown in Fig.4.Reynolds shear stress is greatly weakened compared with that on the smooth surface both in drag reducing and drag increasing cases.The curve valley of Reynolds shear stress is identical and the curve shifts up when close to the end of grooves.Accordingly,wall friction will decrease resulting in drag reduction in the case of optimized riblet surface.

    3.4 Static pressure and pressure drag

    Distribution of static pressure is modified over thin triangular riblet surface.High pressure zone and low pressure zone at several locations of riblet grooves are verified,which results in the exclude additional forces on riblet surface.The force generates from the deviation of static pressures on the front and rear ends of a riblet groove.

    Fig.7illustrates the distribution of wall static pressure on smooth surface and riblet surface when Ma=0.8.Regardless of Mach number,it would be almost the same distribution as that of static pressure.In the simulation,the value of center pressure of high pressure zone located at the rear end of groove is 19.0kPa,while the value of low pressure on triangular riblet surface is 4 943Pa.Consequently,pressure differences would lead to the wall friction up and down.

    Fig.7 Dissipation of wall static pressure on smooth surface and riblet surface when Ma=0.8

    Moreover,dissipation of Reynolds shear stress and static pressure in drag reducing and increasing cases are shown in Figs.5,6.In spite of Ma,Reynolds shear stress is obviously degraded.But pressure difference shows exponential growth along with Ma.The gap between peak and valley of static pressure on riblet surface is increased and the additional pressure drag is bigger than the decreased wall friction due to the degradation of shear stress.

    The pressure values on riblet surface increase significantly with the growth of Ma,as shown in Fig.8.

    Fig.8 Growth of maximum static pressure in the center of high-pressure zone when Ma=0—0.95

    The increase of static pressure with Mafits an exponential function,which can be described as follows

    where yis the maximum static pressure and xthe Mach number.A drag increasing trend,especially of the pressure drag,exists due to the significant growth of static pressure along with Ma.In different simulation cases,the distribution of static pressure remains the same,especially the exponential growth of center static pressure.It is independent of riblet geometry.The coefficients A1,t1,y0however are closely related to the riblet geometry.Different riblets affect the distribution of static pressure,which is the main reason to optimize the configuration parameters of riblets.Distribution of static pressure and pressure drag will change when the shape and size of riblets vary.

    4 Conclusions

    Research on viscous drag reduction becomes more and more important nowadays due to the shortage of fossil fuel and its high prices.Riblet surface,as one of successful and reliable passive techniques on drag reduction and increase,is investigated numerically in this paper.The accurate numerical treatment based on k-εturbulence model for thin triangular riblet surface at high-speed air flow is proved to be an efficient method to study the characteristics of flow and drag reducing and increasing mechanism.Several typical simulation cases are adopted to explore drag reducing and increasing mechanism through flow alteration analysis.Microvortex induced in riblet grooves will greatly reduce the viscous force and correspondingly pressure force resulting from the deviation of static pressure occurs,which leads to drag increase.In this paper,force analysis on riblet surface is performed and compared with smooth surface.With the triangular riblets aligned on the surface,the shear stress will be significantly decreased and leads to an obvious valley on the curve of distribution of wall shear stress.Accordingly,drag reduction would result from the decreased shear stress.The additional force generating from deviation of static pressure on the front and rear ends of the riblet groove will lead to pressure drag increase,showing exponential growth with Mach number.

    The proposed numerical method in this paper is useful and efficient for triangular riblet surface on drag reducing and increasing mechanism and flow structure analysis.

    [1] Suzuki Y,Kasagi N.Turbulent drag reduction mechanism above a riblet surface[J].AIAA Journal,1994,32(9):1781-1790.

    [2] Garcia-Mayoral R,Jimenez J.Drag reduction by riblets[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,369(1940):1412-1427.

    [3] Vukoslavcevic P,Wallace J M,Balint J L.Viscous drag reduction using streamwise-aligned riblets[J].AIAA Journal,1992,30(4):1119-1122.

    [4] Park S R,Wallace J M.Flow alteration and drag reduction by riblets in a turbulent boundary layer[J].AIAA Journal,1994,32(1):31-38.

    [5] Okamo Toshiki,Yoshisaki Takashi,Kobayashi Masato.Drag reduction in pipe flow with riblet[J].Nippon Kikai Gakkai Ronbunshu,B Hen/Transactions of the Japan Society of Mechanical Engineers Part B,2002,68(668):1058-1064.

    [6] Zhang H Y,Yang H X,Li G.Numerical study of turbulent drag reduction over riblet surface[C]∥Pro-ceedings of the International Offshore and Polar Engineering Conference.Vancouver,Canada:[s.n.],2008:441-445.

    [7] EL-Samni O A,Chun H H,Yoon H S.Drag reduction of turbulent flow over thin rectangular riblets[J].International Journal of Engineering Science,2007,45(2/8):436-454.

    [8] Jimenez Javier.Turbulent flows over rough walls[J].Annual Review of Fluid Mechanics,2004,36:173-196.

    [9] Peet Yulia,Sagaut Pierre.Theoretical prediction of turbulent skin friction on geometrically complex surfaces[J].Physics of Fluids,2009,21(10):105105.

    [10]Bechert D W,Bruse M,Hage W,et al.Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J].Journal of Fluid Mechanics,1997,338:59-87.

    [11]Gruneberger Rene,Hage Wolfram.Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings[J].Experiments in Fluids,2011,50(2):363-373.

    [12]Luchini P,Manzo F,Pozzi A.Resistance of a grooved surface to parallel flow and cross flow[J].J Fluid Mech,1991,228:87-109.

    [13]Choi K S.Breakdown of the Reynolds analogy over drag-reducing riblets surface[J].Applied Scientific Research(The Hague),1993,51(1/2):149-154.

    [14]Wang Jinjun,Lan Shilong,Miao Fuyou.Drag reduction characteristics of turbulent boundary layer flow over riblets surfaces[J].Shipbuliding of China,2001,4:1-5.(in Chinese)

    [15]Yu Lei,Yang Xudong.Numerical analysis of turbulent drag reduction using riblets[J].Aeronautical Computing Technique,2009,39(1):56-59.(in Chinese)

    [16]Fang Yihong,Liu Yifang,Ye Xinfu.Existence of shocklets in supersonic boundary layer and its relation with 3-D disturbance[C]∥2nd WSEAS International Conference on Fluid Mechanics and Heat and Mass Transfer.Corfu Island,Greece:[s.n.],2011:152-157.

    [17]Joseph D D,Renardy Y.Fundamentals of two-fluid dynamics:Mathematical theory and applications[M].New York:Springer-Verlag,1993.

    [18]Sheikhy Nasrin,Bahrami Milad,Rahimi Asghar B.Analyzing the cross section effect of hypersonic flow past a conical body via perturbation method[C]∥Proc IASME/WSEAS Int Conf Fluid Mech Aerodyn.Moscow,Russia:[s.n.],2009:182-187.

    [19]Beghidja A,Gouidmi H,Benderradd R.Study of the interaction shock wave boundary layer with the K-ω turbulence model[J].WSEAS Trans Inf Sc Appl,2006,3(5):921-926.

    [20]Joseph D D,Christodoulou C.Independent confirmation that delayed die swell is a hyperbolic transition[J].J Non-Newtonian Fluid Mech,1995,48(3):225-235.

    [21]Ke Feng,Liu Yingzheng,Jin Chunyu,et al.Experimental measurements of turbulent boundary layer flow over a square-edged rib[J].Journal of Hydrodynamics,2006,18(Suppl 3):461-464.(in Chinese)

    猜你喜歡
    汪家星團(tuán)
    鹽河舊事
    遼河(2023年4期)2023-06-01 13:01:09
    汪家塬:紅色老堡寨,教育“第一村”
    頂包
    金山(2022年4期)2022-04-09 16:54:11
    書癡范用
    老汪家的炒栗子店
    昴星團(tuán)
    宇宙中的拓荒者——球狀星團(tuán)
    感懷我的老板——汪家玉
    英仙座雙星團(tuán)
    矩尺座
    飛碟探索(2012年5期)2012-09-22 02:46:46
    99久久99久久久精品蜜桃| 精品一区二区三区av网在线观看 | 一本综合久久免费| 久久久久久人人人人人| 考比视频在线观看| 亚洲九九香蕉| 制服诱惑二区| 99精品在免费线老司机午夜| 黄色 视频免费看| 日韩欧美一区视频在线观看| 成在线人永久免费视频| 久久久精品国产亚洲av高清涩受| 国产1区2区3区精品| 999久久久精品免费观看国产| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 精品福利永久在线观看| 亚洲免费av在线视频| 精品国产乱子伦一区二区三区| 一级毛片精品| 9191精品国产免费久久| 香蕉久久夜色| 成人免费观看视频高清| 人妻 亚洲 视频| 亚洲久久久国产精品| 久久免费观看电影| 久久午夜综合久久蜜桃| 岛国在线观看网站| 考比视频在线观看| 欧美成狂野欧美在线观看| av天堂久久9| 国产精品98久久久久久宅男小说| 日韩欧美一区视频在线观看| 国产精品九九99| 国产免费福利视频在线观看| 国产精品一区二区在线观看99| 久久久国产精品麻豆| 亚洲人成77777在线视频| 性色av乱码一区二区三区2| 一级片免费观看大全| 欧美成狂野欧美在线观看| 丰满迷人的少妇在线观看| 欧美成人午夜精品| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 国产精品一区二区免费欧美| 久久久精品区二区三区| 性高湖久久久久久久久免费观看| 国产麻豆69| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 两个人免费观看高清视频| 人成视频在线观看免费观看| 成人影院久久| 精品国产亚洲在线| 国产精品九九99| 国产精品美女特级片免费视频播放器 | 中文字幕av电影在线播放| 日本黄色视频三级网站网址 | 啪啪无遮挡十八禁网站| 成人18禁高潮啪啪吃奶动态图| 黄色成人免费大全| 亚洲av美国av| 一区二区av电影网| 午夜福利视频精品| 亚洲av成人不卡在线观看播放网| 精品久久久久久久毛片微露脸| 国产麻豆69| 在线观看舔阴道视频| av天堂在线播放| 90打野战视频偷拍视频| 婷婷丁香在线五月| 欧美成人午夜精品| 女性生殖器流出的白浆| 亚洲人成伊人成综合网2020| 成年人午夜在线观看视频| 国产xxxxx性猛交| 亚洲av日韩在线播放| 2018国产大陆天天弄谢| 国产亚洲一区二区精品| 精品久久久久久久毛片微露脸| aaaaa片日本免费| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 国产男女超爽视频在线观看| 精品欧美一区二区三区在线| 亚洲欧美激情在线| 欧美激情 高清一区二区三区| 嫁个100分男人电影在线观看| 欧美精品av麻豆av| 国产成人欧美| 国产精品av久久久久免费| 欧美黄色淫秽网站| 一级a爱视频在线免费观看| 精品人妻在线不人妻| 18在线观看网站| 久久热在线av| 国产在线一区二区三区精| 天天添夜夜摸| 午夜久久久在线观看| 亚洲精品一卡2卡三卡4卡5卡| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩高清在线视频 | 成年女人毛片免费观看观看9 | 亚洲精品国产区一区二| 国产av精品麻豆| 久久精品国产99精品国产亚洲性色 | 热re99久久精品国产66热6| 午夜福利,免费看| 男人操女人黄网站| 日日爽夜夜爽网站| av线在线观看网站| 一夜夜www| 国产成人啪精品午夜网站| 一级黄色大片毛片| 久久精品人人爽人人爽视色| 欧美成人免费av一区二区三区 | 亚洲中文字幕日韩| 90打野战视频偷拍视频| 国产精品免费大片| 美女视频免费永久观看网站| 亚洲性夜色夜夜综合| 成人国产av品久久久| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 超碰97精品在线观看| 日本黄色日本黄色录像| 中文字幕色久视频| 黄色成人免费大全| 人人妻人人澡人人爽人人夜夜| 一本—道久久a久久精品蜜桃钙片| www日本在线高清视频| 国产主播在线观看一区二区| 一级片免费观看大全| 国产在线精品亚洲第一网站| 日韩成人在线观看一区二区三区| 国产成人影院久久av| 久久99热这里只频精品6学生| 久久人人97超碰香蕉20202| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲国产一区二区在线观看 | 免费少妇av软件| 精品国产乱码久久久久久男人| 一级片'在线观看视频| 又紧又爽又黄一区二区| 久久久国产精品麻豆| 欧美一级毛片孕妇| 999精品在线视频| 国产成人精品在线电影| 国产片内射在线| 亚洲精品中文字幕在线视频| 丝袜美腿诱惑在线| 婷婷丁香在线五月| 亚洲午夜理论影院| 亚洲五月色婷婷综合| 悠悠久久av| 久久毛片免费看一区二区三区| 久久中文字幕一级| 亚洲色图 男人天堂 中文字幕| 国产人伦9x9x在线观看| 免费日韩欧美在线观看| 国产日韩欧美亚洲二区| 亚洲精品粉嫩美女一区| 嫁个100分男人电影在线观看| 成人影院久久| 老熟妇乱子伦视频在线观看| 男女午夜视频在线观看| 国产一区二区三区综合在线观看| 在线观看免费日韩欧美大片| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 黄色a级毛片大全视频| 天堂俺去俺来也www色官网| 天堂动漫精品| 无人区码免费观看不卡 | 五月开心婷婷网| 国产福利在线免费观看视频| 国产男女内射视频| 亚洲va日本ⅴa欧美va伊人久久| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 大码成人一级视频| 又紧又爽又黄一区二区| 国产成人精品在线电影| 国产高清videossex| 另类精品久久| 亚洲九九香蕉| 精品第一国产精品| 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 免费少妇av软件| 国产黄色免费在线视频| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| 青草久久国产| 9191精品国产免费久久| 亚洲精品一二三| 欧美日韩福利视频一区二区| 免费日韩欧美在线观看| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 午夜福利乱码中文字幕| 日本撒尿小便嘘嘘汇集6| 成年人午夜在线观看视频| www.999成人在线观看| 99久久国产精品久久久| 久久国产精品影院| 久久中文字幕人妻熟女| 国产日韩一区二区三区精品不卡| 男女午夜视频在线观看| 欧美精品一区二区免费开放| 亚洲专区字幕在线| 一本一本久久a久久精品综合妖精| 日韩有码中文字幕| 成年版毛片免费区| 一个人免费在线观看的高清视频| 久久ye,这里只有精品| 国产成人欧美| 丝袜美腿诱惑在线| 99热国产这里只有精品6| 精品少妇内射三级| 18禁观看日本| 国产欧美日韩精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 久久久国产一区二区| 不卡一级毛片| 亚洲精品中文字幕一二三四区 | 亚洲九九香蕉| 国产免费视频播放在线视频| 国产主播在线观看一区二区| 精品欧美一区二区三区在线| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 免费高清在线观看日韩| xxxhd国产人妻xxx| 他把我摸到了高潮在线观看 | a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 中文字幕制服av| 日韩人妻精品一区2区三区| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| www.精华液| 亚洲精品在线观看二区| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 亚洲av美国av| 欧美大码av| 丝袜喷水一区| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区| 高清黄色对白视频在线免费看| 精品高清国产在线一区| 美女高潮喷水抽搐中文字幕| 久久久精品94久久精品| 欧美在线黄色| 国产97色在线日韩免费| 亚洲伊人色综图| 大香蕉久久成人网| 五月天丁香电影| 国产精品一区二区在线观看99| 黄片播放在线免费| 亚洲精品一二三| 成人三级做爰电影| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 99国产精品一区二区蜜桃av | 国产亚洲精品第一综合不卡| 国产av又大| 午夜激情av网站| 欧美激情高清一区二区三区| 丝袜美足系列| 亚洲精品国产精品久久久不卡| 久久久精品94久久精品| 欧美黑人精品巨大| 色综合欧美亚洲国产小说| 午夜免费成人在线视频| 亚洲国产av新网站| 黄色 视频免费看| 18在线观看网站| a级毛片黄视频| 丝袜美腿诱惑在线| 91九色精品人成在线观看| 成年人免费黄色播放视频| 久久ye,这里只有精品| 男女无遮挡免费网站观看| 一区福利在线观看| 日韩一卡2卡3卡4卡2021年| 免费在线观看影片大全网站| 波多野结衣一区麻豆| 在线观看66精品国产| 久久99一区二区三区| 亚洲成人手机| 成人亚洲精品一区在线观看| 美女福利国产在线| 国产在线免费精品| 国产成人免费无遮挡视频| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区 | 久久久国产成人免费| 亚洲欧美激情在线| 黄片大片在线免费观看| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 日日夜夜操网爽| 一本一本久久a久久精品综合妖精| 一级毛片电影观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 飞空精品影院首页| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| a在线观看视频网站| av免费在线观看网站| 满18在线观看网站| 国产精品久久久久久精品电影小说| 狠狠婷婷综合久久久久久88av| 美女福利国产在线| 露出奶头的视频| 脱女人内裤的视频| 亚洲中文av在线| 黄色a级毛片大全视频| a级片在线免费高清观看视频| 欧美国产精品一级二级三级| h视频一区二区三区| 在线av久久热| 午夜福利视频在线观看免费| 中文字幕色久视频| 国产精品麻豆人妻色哟哟久久| e午夜精品久久久久久久| 999久久久国产精品视频| 美女主播在线视频| 自线自在国产av| 国产欧美日韩精品亚洲av| 成人影院久久| 久久av网站| 在线播放国产精品三级| 精品乱码久久久久久99久播| 人人妻人人添人人爽欧美一区卜| 啦啦啦 在线观看视频| 一级毛片女人18水好多| 国产一区二区三区综合在线观看| 免费一级毛片在线播放高清视频 | 757午夜福利合集在线观看| 肉色欧美久久久久久久蜜桃| 亚洲自偷自拍图片 自拍| 大陆偷拍与自拍| 午夜91福利影院| 成在线人永久免费视频| 老司机深夜福利视频在线观看| 黄色视频,在线免费观看| 午夜福利视频精品| 国产av精品麻豆| 一区二区三区乱码不卡18| 国产成人精品在线电影| 日韩免费高清中文字幕av| 久久中文字幕一级| 757午夜福利合集在线观看| 在线看a的网站| 国产老妇伦熟女老妇高清| 国产成人精品久久二区二区91| 五月天丁香电影| 99国产精品一区二区蜜桃av | 热99久久久久精品小说推荐| 国产在线精品亚洲第一网站| 黄色视频不卡| 99九九在线精品视频| 国产精品自产拍在线观看55亚洲 | 亚洲美女黄片视频| 亚洲精品乱久久久久久| 丝袜喷水一区| 亚洲国产中文字幕在线视频| 日韩欧美一区视频在线观看| 久久国产精品人妻蜜桃| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 91成年电影在线观看| 色综合婷婷激情| 露出奶头的视频| 精品久久久精品久久久| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 亚洲七黄色美女视频| 亚洲va日本ⅴa欧美va伊人久久| 在线看a的网站| 亚洲色图av天堂| 电影成人av| 国产亚洲av高清不卡| 国产黄频视频在线观看| 黄色 视频免费看| 国产欧美日韩综合在线一区二区| 99国产极品粉嫩在线观看| 欧美黄色淫秽网站| h视频一区二区三区| 高清在线国产一区| 精品人妻熟女毛片av久久网站| 91老司机精品| 午夜福利免费观看在线| 99国产精品一区二区三区| 交换朋友夫妻互换小说| 下体分泌物呈黄色| 最新的欧美精品一区二区| 999久久久精品免费观看国产| 午夜精品久久久久久毛片777| 少妇粗大呻吟视频| 亚洲人成伊人成综合网2020| 欧美在线黄色| 久久人妻av系列| 精品人妻熟女毛片av久久网站| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 久久精品亚洲熟妇少妇任你| 午夜福利在线观看吧| 亚洲欧美激情在线| 国产欧美日韩综合在线一区二区| 一个人免费看片子| 成人18禁在线播放| 高清视频免费观看一区二区| 免费一级毛片在线播放高清视频 | 欧美成人午夜精品| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| 亚洲国产中文字幕在线视频| 中文字幕人妻丝袜一区二区| 99九九在线精品视频| 51午夜福利影视在线观看| 777久久人妻少妇嫩草av网站| 一区二区三区精品91| 欧美亚洲日本最大视频资源| 极品人妻少妇av视频| 国产在线观看jvid| 亚洲欧洲日产国产| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 在线天堂中文资源库| 久久人人爽av亚洲精品天堂| 国产野战对白在线观看| 欧美变态另类bdsm刘玥| 国产成人系列免费观看| 国产精品一区二区在线观看99| 亚洲欧美日韩高清在线视频 | 亚洲人成电影免费在线| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 欧美大码av| 国产精品国产av在线观看| 国产成人啪精品午夜网站| 亚洲第一av免费看| 亚洲成a人片在线一区二区| 亚洲熟女毛片儿| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区| 国产精品自产拍在线观看55亚洲 | 中文字幕精品免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产av精品麻豆| 中文字幕精品免费在线观看视频| 免费看十八禁软件| 大型黄色视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕制服av| 国产精品亚洲av一区麻豆| 午夜福利一区二区在线看| 久久99热这里只频精品6学生| 免费高清在线观看日韩| 水蜜桃什么品种好| 在线观看免费午夜福利视频| 一个人免费看片子| 成人18禁高潮啪啪吃奶动态图| 日韩熟女老妇一区二区性免费视频| 99国产精品一区二区三区| 99riav亚洲国产免费| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 人妻一区二区av| 精品少妇内射三级| 母亲3免费完整高清在线观看| 久久婷婷成人综合色麻豆| 最新在线观看一区二区三区| 国产av一区二区精品久久| 免费在线观看日本一区| 91av网站免费观看| 一区二区三区激情视频| 黄片大片在线免费观看| 日韩一区二区三区影片| 日韩大码丰满熟妇| 日本黄色视频三级网站网址 | 黑人猛操日本美女一级片| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美软件| 日韩大码丰满熟妇| 十八禁高潮呻吟视频| 亚洲欧洲日产国产| 国产亚洲欧美在线一区二区| www日本在线高清视频| 成年人黄色毛片网站| 丁香六月天网| 久久国产精品人妻蜜桃| 欧美日韩亚洲综合一区二区三区_| 麻豆成人av在线观看| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲| 精品国产乱子伦一区二区三区| 精品国产乱码久久久久久男人| 国产视频一区二区在线看| 亚洲人成伊人成综合网2020| 考比视频在线观看| 午夜日韩欧美国产| 亚洲av国产av综合av卡| 精品人妻1区二区| 国产高清国产精品国产三级| 国产av精品麻豆| 欧美成人午夜精品| 国产区一区二久久| 一本一本久久a久久精品综合妖精| 精品久久久精品久久久| 大香蕉久久成人网| tube8黄色片| 黄片播放在线免费| 日本a在线网址| 美女视频免费永久观看网站| 亚洲综合色网址| 在线天堂中文资源库| 美女国产高潮福利片在线看| 免费观看a级毛片全部| 国产xxxxx性猛交| 久久青草综合色| 99国产精品一区二区蜜桃av | 日韩熟女老妇一区二区性免费视频| 下体分泌物呈黄色| 热99re8久久精品国产| 考比视频在线观看| 欧美日韩国产mv在线观看视频| 又大又爽又粗| 精品人妻1区二区| 久久人妻av系列| 黄频高清免费视频| 欧美日韩黄片免| 亚洲综合色网址| 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 亚洲av片天天在线观看| 嫁个100分男人电影在线观看| 无遮挡黄片免费观看| 亚洲欧美日韩高清在线视频 | 久久婷婷成人综合色麻豆| 色综合欧美亚洲国产小说| 岛国毛片在线播放| 亚洲精品一卡2卡三卡4卡5卡| 老司机午夜十八禁免费视频| 国产伦理片在线播放av一区| 在线观看舔阴道视频| 久久九九热精品免费| 男女午夜视频在线观看| 色视频在线一区二区三区| 亚洲精品中文字幕一二三四区 | 亚洲综合色网址| 国产精品.久久久| 亚洲精品一卡2卡三卡4卡5卡| aaaaa片日本免费| 亚洲男人天堂网一区| 一本综合久久免费| 国产熟女午夜一区二区三区| 久热这里只有精品99| 亚洲欧美一区二区三区久久| 久久九九热精品免费| 男女无遮挡免费网站观看| 丝袜美足系列| 国产精品成人在线| 国产又色又爽无遮挡免费看| 国产成人精品久久二区二区免费| 在线观看免费日韩欧美大片| 午夜福利欧美成人| 亚洲国产欧美网| 亚洲av日韩在线播放| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全电影3 | av超薄肉色丝袜交足视频| 十八禁高潮呻吟视频| 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 国产精品久久久久成人av| 免费在线观看黄色视频的| 1024香蕉在线观看| 欧美精品啪啪一区二区三区| 无人区码免费观看不卡 | 欧美日韩国产mv在线观看视频| 欧美成狂野欧美在线观看| 一区福利在线观看| 天天躁日日躁夜夜躁夜夜| 国产熟女午夜一区二区三区| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美软件| 国产极品粉嫩免费观看在线| 精品视频人人做人人爽| 亚洲欧美一区二区三区久久| 久9热在线精品视频| 欧美在线黄色| 午夜91福利影院| 亚洲一卡2卡3卡4卡5卡精品中文|