• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compensation Algorithm Based on Estimation State for Transmission Delay in Cooperative Localization*

    2014-04-24 10:53:22WangLeigang王雷鋼ZhangTao張濤YangWeifeng楊偉鋒
    關(guān)鍵詞:易腐居民區(qū)張濤

    Wang Leigang(王雷鋼),Zhang Tao(張濤),Yang Weifeng(楊偉鋒)

    1.Department of Automation,Tsinghua University,Beijing,100084,P.R.China;2.Luoyang Electronic Equipment Test Center of China,Luoyang,471003,P.R.China

    1 Introduction

    In the cooperative localization(CL),by integrating and sharing the absolute measurements(e.g.,GPS,landmark,etc.)and the relative measurement(distance/bearing),the accuracy and reliability of the estimation position of each agent in a group are improved drastically[1-2].The advantage of the CL stems from the individual measurement information can be shared among the members of a group[3-4].However,this advantage comes at the cost of increased computation and communication requirements[5].For example,the agents equipped with high precision position device or luckily receiving GPS need to broadcast their own state information to other agents in a timely and accurate communication manner.

    When there exists the communication link,the transmission delay is inevitable for the environment or information processing.Based on Kalman filter,there is some research on this is-sue[6-7],such as extrapolation of measurements[8],re-organized innovation[9],state augmented and so on.In Ref.[10],by establishing a delay,state-space model for state prediction and delay information is fed back to the model.In Ref.[11],the history state parameters are reserved for observation update,by which the predicted estimation state is acquired and then used to substitute the present state estimation.While the relevance of the information is not considered and the available information is thus utilized incompletely.A delayed extended Kalman filter(DEKF)is designed by state reverse in Ref.[12],where the relevance of the information is considered.But big storage space is consumed and the estimation is conservative.In Ref.[13],based on the path prediction of master unmanned underwater vehicles(UUV),an unequal interval filtering algorithm without state reverse is proposed.However,the state of the master UUV need to be propagated in each slave UUV.Though it is suitable for leader-follower cooperative structure,it does not fit for the distributed structure in which all the agents are identical in a group.

    2 Related Models

    Let us consider a group of n mobile agents which is moving in two-dimension(2D).And the proprioceptive sensors(e.g.,wheel encoders),exteroceptive sensors(e.g.,laser rangefinder,radio ranging)and GPS receiver are mounted on each agent and all of these sensors are homogeneous.The proprioceptive sensors measure the self motion of the agent and monitor the environment for localization features.And the exteroceptive sensors detect and identify other agents moving in its vicinity and measure their respective distance.The objective of CL is to combine these measurements with the equation of motion to obtain more accurate position estimation.

    (1)Agent motion model

    The ith agent equation of motion is as follows[14]

    where xi= [xi,yi,ψi]∈R3×1is the agent state,including agent location(xi,yi)and agent headingψi.It is assumed that onboard introspective sensors measure the linear speed Viand angular speedωiof the agent.Each agent has a GPS receiver and an exteroceptive sensor to measure agent-to-agent distance.

    (2)Measurement model

    where kis the agent index.ˉVi,ˉωi,ˉxiare the true values.zi,zijare the absolute measurements and the relative measurements.Suppose thatεi,ζi,wi,vijare subject to the standard normal distribution.For normal distribution,there are moment parameter and information parameter two expressions.In this paper,the former,namely,the mean and covariance{^X,P}are adopted.

    For the nonlinear system,the extended Kalman filter(EKF)is used to estimate the moment parameters.By Taylor series expansion,the approximate transition matrixΦ,the control matrix B,and the observation matrix Hare acquired as follows

    And thus state propagation is given as

    where Tsis the simulation cycle and u=V,[ ω]Tand^xthe estimated state vector.~x and~z denote the prediction state and observation,respectively.

    Kalman filter estimation includes propagation and observation update cycles.In the perception cycle,based on the evolution of the system equations,the measured control inputs and the statistical description of the system noise,the knowledge about the system state is propagated to the next step.In the observation update cycle,where relative pose measurements are processed to update the propagated estimates calculated during the previous cycle.In the CL,most of the time the agents propagate their position and covariance estimation based on their own perception,while the observation updates are usually rare,and they take place only when the measurements occur[3].

    3 Compensation Based on Estimation State

    The transmission delay issue caused by poor communication in CL is focused in this paper.Assume that the agent i gets the GPS or the relative measurements to other agent at time step k and these measurements are processed and packed.Consequently,the information packet Ci(k)is formed and then repeatedly broadcasts until it is received by the others in the group or a new measurement occurs.If Ci(k)can be received by other agents immediately,the observation update will be done in the receiver as usual[3-4].How ever,in sheltered areas such as buildings,forests,valleys or a variety of hostile jamming environment,the information packets Ci(k)may be delayed for some time before being received by the agent j.If the available Ci(k)at time step k+m is discarded and not used to the present state updates of agent j,it will be a great waste.The primary contribution of the proposed algorithm is that the k-moment observation information of the agents i can be used to update the state of agent j at time step k+m.And the compensation manoeuvre is based on the estimated state rather than extrapolating or re-organizing the observed information as mentioned above.

    The distribution algorithm is the foundation in the CL.And a large body of work has been done in the recent past.Since other agent′s position is used for new position estimation,the correlation between them arises naturally.The quantitative representation of the correlation is a covariance term,which can be regarded as an indicator about how much information has been shared by different agents.And the key of distributed implement is to assign the correlation to different agents and keep them update,such as singular value decomposition(SVD)[3],augmented information filter(AIF)[4],covariance intersection(CI)algorithm[15-16]and so on.

    In order to implement the distributed computing of the covariance term,in this paper a bank of propagation calculators(i=1,…,n)are established in each agent.When the first relative measurement occurs between the master and slave agents(the master can detect other agents and receive the state estimation information from others and the slave is just opposite.This relationship is relative and it will determine whether original base cells should be set to identity matrix or not in an observation update cycle),a new covariance is calculated in the master agent and then retained in it as the original base cells of propagation calculators.Accordingly,in the slave agent,the counterpart is set to identity matrix automatically.In a time update cycle,all these original base cells in propagation calculators are used for update of covariance factors,and only its own state transition matrix is required.In the observation update cycle,as new original base cells,the new covariance matrix and identity matrix are re-assigned to the master and slave agents respectively.In the time update cycle,covariance factors are dependently propagated in each agent.By this method,not only the independence is guaranteed and the covariance update is maintained,but also the error propagation of matrix decomposition and calculation consumption is avoided.The above-mentioned method is used as basis for delay effect analysis in the following.

    3.1 No transmission delay

    In this case,firstly,the following assumptions are stated:

    (1)The observed information is available instantaneously and the agent j receives the information packet Ci(k)(at least including vi,Hi,Si,,where the innovation is vi=zi(k)-h(huán)i((k)),and the covariance of innovation is Si=Hi(k)(k)(Hi(k))T+Ri)from agent i.

    (2)The agent jis the master and the agent i is the slave during the last progress of transmission,and before update the moment parameters of agent i and j are(k),(k),x(k),(k),respectively.

    And the covariance factors of them are thus updated as Eqs.(5-8).

    Agent i

    Agent j

    Based on Eqs.(5-8),in the following time update phrase,the covariance factors of agents are updated respectively.At time step k+m,the covariance factors are updated as

    whereΓi(k,m)=Φi(k+m)…Φi(k+1)is defined as the state transition matrix impacting factor.

    Considering Eqs.(6,8,9,10),the state of agent i and the covariance between agents i and j are obtained as

    3.2 mtransmission delay cycles

    In this case,the agent j gets the information packet Ci(k)from agent i at time step k+mnot k.So in the agent j,the time update is still going on at time step k.(In principle,the observation update should be done at this time.)In the following time update phrase,the role of the agent i is still the master relative to agent j.However,under normal communication,the master-slave relationship between agents i and j should be changed at time step k.Therefore,this relationship is erroneously remained for mtransmission delay cycles.At time step k+m,the covariance(k+m)(k+m)are updated as

    綜上所述,各分類(lèi)方案的優(yōu)先排序?yàn)椋悍桨敢唬痉桨溉痉桨付?,即方案一(基于有害垃圾單?dú)投放的干濕(易腐垃圾、其他垃圾) 兩分法)為現(xiàn)階段最適合于海口市居民區(qū)的生活垃圾分類(lèi)投放方案。

    Agent i

    Agent j

    Contrasting Eqs.(11,15),it obtains the difference quantity of estimated state parameters between no delay and mdelay cycles as follows

    Notice that in the estimation ofthe knowledge of~Pji(k)is required.Assume that the state transition matrix impacting factorΓis known.And then the covariance factorP(k)in agent jat time step kcan be deduced by Eq.(14).Furthermore,the prediction covariance(k)is acquired.So how to getΓbecomes critical for the issue at hand.From the original form ofΓ,it needs historical state transition matrix to be multiplied continuously.As these can be prohibitively expensive in calculation and storage,it is motivated to pursue a reduced-complexity equivalent expression that is introduced next.

    Since

    Then

    The equivalent expression of the state transition matrix impacting factorΓis shown in Eq.(17).The expression form is transformed from multiplication to addition,which has two advantages.On the one hand,the consumption of matrix multiplication is saved.On the other,only measured velocity,angular velocity are needed for Γ.It is not necessary to record all the state transition matrix from the previous time of Ci(k)arrival to now.

    The present covariance can be acquired by Eqs.(13,14)as follows

    Contrasting Eqs.(12,18),the difference of the covariance between no transmission delay and mdelay cycles is obtained as

    Notice that(where kpdenotes the time when the last observation occurs before step kand(kp)is derived from the covariance matrix decomposition)and=()Andkis thus in-vertible matrix and Eq.(19)is valid.

    By far,both the state and covariance compensation amount can be obtained by Eqs.(16,19).The present estimated state can be updated byΔ~xandΔPaccordingly.The state and covariance factor of agents i and j are updated respectively as follows

    Agent i

    Agent j

    In summary,the algorithm flow on CL is described as Fig.1considering the transmission delay.When the information packet arrives,it should be determined whether there exits time delay or not(each agent requires rigorously time synchronization).If not,the state parameters and covariance factors are updated naturally.Otherwise,the compensation should be considered and then the compensation update is completed.

    Fig.1 Flowchart of CL considering transmission delay

    By the algorithm,there are several characteristics as follows:

    (1)During each observation cycle as well as“delay”observation,the total communication cost per agent is reduced fromO((n-1)(t2-t1)/Ts)to O(n-1)(where t1,t2denote the moments when last and present observation take place,respectively).Even so,the relation among agents can be well-kept.

    (2)The state transition matrix impacting factorΓin“delay”observation cycle can be obtained by addition rather than matrix multiplication.The computation cost per agent is O(2m).

    (3)Since the moment when the observation occurs is not available for the other receiver agents in advance,theoretically,all state informationΦ(k)should be recorded for later use.By Eq.(12),it shows that history velocity,angular velocity instead ofΦ(k)are enough forΓ.

    4 Simulation Results

    It is supposed that three robots are adopted in simulation,since the generalization to an arbitrary number of robots is straightforward and all of them move along different circles in 2D.The relative positions are shown in Fig.2.The starting positions are(0,-0.4),(1.5,-0.4),(0,1.9).Robot 1is moving counter-clockwise.And Robot 2and Robot 3are moving clockwise.The simulation period is Ts=0.4s.The odometry and radio measurements of linear and rotational velocity and agent-to-agent distance are corrupted by zero-mean Gaussian noise withσV=0.05,σω=0.1,σr=0.001.It should be noted that since the performance of navigation unit(e.g.,accelerometer,gyroscope)is not considered in this paper,they are assumed to be ideal in drift herein and accumulated error caused by drift is omitted advisedly for the purpose of this paper.

    In simulation,Agent 2receives GPS at certain intervals.Agents 1and 3cannot obtain GPS but they can detect Agent 2at some time.The scheme is designed as follows:

    (1)The time series when Agent 2gets GPS are 0.4,3.6,…,19.6,with an interval of 3.2s(the simulation lasts 20s).

    Fig.2 Trajectories of three agents with delay compensation

    (2)The time series when Agent 1detects Agent 2are 2,3.2,4.8,9.6,14.4.

    (3)The time series when Agent 3detects Agent 2read 2.4,4,6,11.2,16.

    It is supposed that at t=6.8s(k=18),the observation information of Agent 2cannot be received by Agent 1and Agent 3immediately.Until five cycles pass(m=5),the observation is accepted by Agents 1and 3.

    Fig.2shows the relative layout and the trajectories of three agents,where the red solid curve represents the revised trajectory by GPS and relative distance with transmission delay.Although Agents 1and 3receive the observation information from Agent 2with transmission delay,by the compensation the delay effect on position estimation can be eliminated.In Fig.3,the comparisons of the position error of Agent 1under no-delay,and delay with/without compensation are demonstrated.The black dashed curve represents the transmission delay,which is compensated by the compensation algorithm in this paper.It can be seen from Figs.3-5that the position estimation precision will be reduced(As in Fig.5,there is at least no increase error)if delay information can be utilized.By the proposed method,the estimation curve is drawn back to the circumstances with no delay once compensation occurs.Otherwise,it will continue to be the green curve.After compensation,the estimated position curve is almost in accord with that of no transmission delay.

    Fig.3 Comparison of estimated position of Agent 1 with/without transmission delay

    Fig.4 Comparison of estimated xcoordinate of Agent 1 with/without transmission delay

    Fig.5 Comparison of estimated ycoordinate of Agent 1 with/without transmission delay

    In order to verify the validity of the algo-rithm,three simulation modes are adopted in the simulation.In the first mode,the observation information from Agent 2at k=18is received by others,which is a benchmark for the other two modes.The second mode is that the observation information cannot be received before the next new measurement.While the third mode is that the observation information is received after 3delay cycles pass(k+m=21)and then the receiver agents are compensated.The comparison results of the estimated state^x,^y,^ψand the error of A-gent 3under no delay and delay with/without compensation are demonstrated in the Tables 1-3.By compensation,the error amount is reduced to about 10%.So the precision of the estimated state is improved dramatically due to the compen-sation.Moreover,the simulations also show that even though no relative measurement occurs among agents during time step k=18—23,for relation which has been setup before,Agents 1and 3can benefit from the absolute measurement from Agent 2.

    Table 1 Comparison of estimated^xof Robot 3under three modes m

    Table 2 Comparison of estimated^yof Robot 3under three modes m

    Table 3 Comparison of estimated^ψo(hù)f Robot 3under three modes m

    5 Conclusions

    The reliability of the algorithm in CL must be considered in poor communication scenario.The proposed method of state and covariance compensation algorithm for communication delay is useful,especially for the case where the observation information is subject to several times broadcasting and then is received by other agents.By using the method,the observation information is maximally utilized.The distinguishable feature of the algorithm is that it is based on the estimated state compensation rather than the observed information correction.However,it is assumed that the estimated moment parameters in the two different cases are approximate in a short period.Whereby,the state transition matrices at same moments in different cases are identical.But there are some differences in practice,which explains why the results in compensated states are not completely consistent with those of no transmission delay in the simulations.

    [1] Burgard W,Moors M,F(xiàn)ox D,et al.Collaborative multi-robot exploration[C]∥IEEE International Conference on Robotics and Automation.[S.l.]:IEEE,2000,1:476-481.

    [2] Nicosia J.Decentralized cooperative navigation for spacecraft[C]∥IEEE Aerospace Conference.[S.l.]:IEEE,2007:1-6.

    [3] Roumeliotis S I,Bekey G A.Distributed multirobot localization[J].IEEE Transactions on Robotics and Automation,2002,18(5):781-795.

    [4] Mu Hua.Decentralized algorithms of cooperative navigation for mobile platform[D].Changsha:National University of Defense Technology,2010.(in Chinese)

    [5] Trawny N,Roumeliotis S I,Giannakis G B.Cooperative multi-robot localization under communication constraints[C]∥IEEE International Conference on Robotics and Automation.[S.l.]:IEEE,2009:4394-4400.

    [6] Wang Z D,Yang F W,Daniel W C Ho,et al.Robust H∞filtering for stochastic time-delay systems with missing measurements[J].IEEE Transactions on Signal Processing,2006,54(7):2579-2587.

    [7] Lu X,Xie L H,Zhang H S,et al.Robust Kalman filtering for discrete-time systems with measurement delay[J].IEEE Transactions on Circuits and Systems,2007,54(6):522-526.

    [8] Larsen T D,Andersen N A,Ravn O,et al.Incorporation of time delayed measurements in a discretetime Kalman filter[C]∥37th IEEE Conference on Decision and Control.Tampa,USA:[s.n.],1998,4:3972-3977.

    [9] Lu X,Zhang H S,Wang W,et al.Kalman filtering for multiple time-delay systems[J].Automatica,2005,41(8):1455-1461.

    [10]Chen H Y,Wang J D,Xu T.Flight delay state space model based on genetic EM algorithm[J].Transactions of Nanjing University of Aeronautics and Astronautics,2011,28(3):276-281.

    [11]Maczka D K,Gadre A S,Stilwell D J.Implementation of a cooperative navigation algorithm on a platoon of autonomous underwater vehicles[C]∥IEEE International Conference on OCEANS.[S.l.]:IEEE,2007:1-6.

    [12]Yao Y,Xu D,Yan W.Cooperative localization with communication delays for MAUVs[C]∥IEEE International Conference on Intelligent Computing and Intelligent Systems.[S.l.]:IEEE,2009,1:244-249.

    [13]Yao Yao,Xu Demin.Cooperative localization of multiple UUVs with communication delays a real-time update method based on path prediction[J].Robot,2011,33(2):161-168.(in Chinese)

    [14]Rajnikant Sharma.Bearing-only cooperative localization and path-planning of ground and aerial robots[D].Provo,USA:Department of Electrical and Computer Engineering,Brigham Young University,2011.

    [15]Chen L,Arambel P O,Mehra R K.Estimation under unknown correlation:Covariance intersection revisited[J].IEEE Transactions on Automatic Control,2002,47(11):1879-1882.

    [16]Arambel P O,Rago C,Mehra R K.Covariance intersection algorithm for distributed spacecraft state estimation[C]∥IEEE Proceedings of the 2001A-merican Control Conference.[S.l.]:IEEE,2001,6:4398-4403.

    猜你喜歡
    易腐居民區(qū)張濤
    張濤書(shū)法作品
    易腐果蔬動(dòng)態(tài)保質(zhì)期評(píng)估和庫(kù)存管理策略探討
    ——基于集成射頻識(shí)別技術(shù)
    阿U漫說(shuō)垃圾分類(lèi)
    智慧少年(2022年2期)2022-06-23 15:03:57
    冰城“方艙”開(kāi)建!
    易腐垃圾處理技術(shù)及其效果研究進(jìn)展
    家庭易腐垃圾處理現(xiàn)狀分析與建議
    “熊”視眈眈
    暢談(2018年17期)2018-10-28 12:30:46
    集萌社
    是誰(shuí)讓危險(xiǎn)品企業(yè)埋伏居民區(qū)?
    Analysis of the Rupture of Sino—Soviet Alliance
    科技視界(2015年9期)2015-04-07 11:07:33
    久久人妻熟女aⅴ| 一二三四中文在线观看免费高清| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影| 亚洲久久久国产精品| 亚洲精品乱码久久久久久按摩| 日韩大片免费观看网站| 大片免费播放器 马上看| 色视频www国产| 国产在线男女| 少妇高潮的动态图| 亚洲熟女精品中文字幕| 久久青草综合色| 少妇熟女欧美另类| 国产毛片在线视频| 国产精品无大码| 亚洲精品国产色婷婷电影| 在线 av 中文字幕| 乱码一卡2卡4卡精品| 国产精品.久久久| av免费观看日本| 国产综合精华液| 免费在线观看成人毛片| 欧美人与善性xxx| 午夜福利网站1000一区二区三区| 国产国拍精品亚洲av在线观看| 夜夜骑夜夜射夜夜干| 97在线人人人人妻| 亚洲国产高清在线一区二区三| 少妇人妻久久综合中文| 我要看黄色一级片免费的| 日日啪夜夜爽| 天堂中文最新版在线下载| 我的女老师完整版在线观看| 久久久色成人| 国产午夜精品一二区理论片| 国产精品福利在线免费观看| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 人人妻人人看人人澡| 中文天堂在线官网| 多毛熟女@视频| 在线免费十八禁| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 欧美日韩视频高清一区二区三区二| 国产精品偷伦视频观看了| av又黄又爽大尺度在线免费看| 精品久久久久久久末码| 一个人免费看片子| 1000部很黄的大片| 一级毛片电影观看| 欧美丝袜亚洲另类| 国产又色又爽无遮挡免| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 亚洲av综合色区一区| 国产伦在线观看视频一区| 91午夜精品亚洲一区二区三区| 有码 亚洲区| a 毛片基地| 久久这里有精品视频免费| 男女啪啪激烈高潮av片| 欧美少妇被猛烈插入视频| 欧美精品亚洲一区二区| 亚洲无线观看免费| 欧美日韩在线观看h| 深爱激情五月婷婷| 欧美日韩亚洲高清精品| 99视频精品全部免费 在线| 免费播放大片免费观看视频在线观看| 国产在视频线精品| 男人添女人高潮全过程视频| av在线观看视频网站免费| 国产精品精品国产色婷婷| 久久精品国产亚洲网站| 国产在线免费精品| 一级毛片 在线播放| 国产精品久久久久成人av| av在线老鸭窝| 国产精品一区二区性色av| 大码成人一级视频| 亚洲精品成人av观看孕妇| 免费看不卡的av| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 老熟女久久久| 午夜福利高清视频| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 欧美日韩精品成人综合77777| 亚洲,一卡二卡三卡| 熟妇人妻不卡中文字幕| 日本-黄色视频高清免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩亚洲欧美综合| 免费看不卡的av| 中文欧美无线码| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 网址你懂的国产日韩在线| 久久久成人免费电影| 高清欧美精品videossex| 夜夜爽夜夜爽视频| 欧美日韩视频精品一区| 国产在视频线精品| 尾随美女入室| 菩萨蛮人人尽说江南好唐韦庄| 97热精品久久久久久| 国产一区有黄有色的免费视频| 日韩欧美 国产精品| av一本久久久久| 人妻系列 视频| 国产在线视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 国产精品熟女久久久久浪| 国产淫语在线视频| 哪个播放器可以免费观看大片| 啦啦啦视频在线资源免费观看| 久久久久久久久久久丰满| av.在线天堂| 精品久久国产蜜桃| 国产欧美日韩一区二区三区在线 | 国产精品不卡视频一区二区| 国产精品秋霞免费鲁丝片| 春色校园在线视频观看| 亚洲国产精品999| 美女主播在线视频| 国产淫片久久久久久久久| 国产成人午夜福利电影在线观看| 精品国产三级普通话版| 欧美精品亚洲一区二区| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| 国产精品爽爽va在线观看网站| 日韩一区二区三区影片| 欧美日韩综合久久久久久| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 亚洲欧美日韩东京热| 久久久久久伊人网av| 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 久久这里有精品视频免费| 日本av免费视频播放| 美女内射精品一级片tv| 精品视频人人做人人爽| 最黄视频免费看| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频 | 麻豆国产97在线/欧美| 国产乱来视频区| 国产白丝娇喘喷水9色精品| 大码成人一级视频| 欧美极品一区二区三区四区| 欧美精品人与动牲交sv欧美| 欧美日韩视频高清一区二区三区二| 亚洲不卡免费看| 国产免费福利视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区视频在线| 成人免费观看视频高清| 丰满乱子伦码专区| 丝袜喷水一区| 欧美精品一区二区免费开放| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 91aial.com中文字幕在线观看| 黄色怎么调成土黄色| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| 网址你懂的国产日韩在线| 亚洲欧洲国产日韩| 成人漫画全彩无遮挡| 乱系列少妇在线播放| 免费黄频网站在线观看国产| 久久综合国产亚洲精品| 夜夜骑夜夜射夜夜干| 欧美成人午夜免费资源| 欧美日本视频| 人妻夜夜爽99麻豆av| 一区二区av电影网| 欧美另类一区| 久久久色成人| 99热这里只有是精品50| 亚洲成人av在线免费| 视频区图区小说| av在线播放精品| 免费看av在线观看网站| 中文资源天堂在线| 男人舔奶头视频| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡 | 欧美亚洲 丝袜 人妻 在线| 又粗又硬又长又爽又黄的视频| 欧美日韩国产mv在线观看视频 | 日本vs欧美在线观看视频 | 午夜视频国产福利| 国产成人午夜福利电影在线观看| 欧美日韩综合久久久久久| 国产一区二区三区av在线| 亚洲精品国产色婷婷电影| 在线 av 中文字幕| 亚洲天堂av无毛| 国产精品福利在线免费观看| 丰满人妻一区二区三区视频av| 在线观看三级黄色| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 亚洲av二区三区四区| 久久精品久久久久久噜噜老黄| 女人十人毛片免费观看3o分钟| 免费黄网站久久成人精品| 亚洲色图av天堂| www.色视频.com| 亚洲av免费高清在线观看| 青春草视频在线免费观看| 午夜福利网站1000一区二区三区| 欧美国产精品一级二级三级 | 亚洲av免费高清在线观看| 亚洲第一av免费看| 亚洲欧美一区二区三区黑人 | 卡戴珊不雅视频在线播放| 人妻 亚洲 视频| 久久久成人免费电影| 国产乱来视频区| 免费观看在线日韩| 精品久久久久久久末码| 九草在线视频观看| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 777米奇影视久久| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 免费观看无遮挡的男女| 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影| videos熟女内射| 欧美精品一区二区免费开放| 99热全是精品| 欧美精品一区二区大全| 99久久精品国产国产毛片| 国产成人freesex在线| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 国产精品无大码| 国产人妻一区二区三区在| .国产精品久久| 久久影院123| 新久久久久国产一级毛片| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 性色avwww在线观看| 亚洲最大成人中文| 久久久久久久久大av| av卡一久久| 91久久精品国产一区二区三区| 一二三四中文在线观看免费高清| 国产成人精品一,二区| 精品人妻视频免费看| 99九九线精品视频在线观看视频| 熟妇人妻不卡中文字幕| 日韩人妻高清精品专区| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 国产人妻一区二区三区在| 岛国毛片在线播放| 大码成人一级视频| 水蜜桃什么品种好| 亚洲最大成人中文| 亚洲精品乱久久久久久| 久久久久国产精品人妻一区二区| 午夜视频国产福利| 一区在线观看完整版| 最后的刺客免费高清国语| 国产精品人妻久久久久久| 日本av免费视频播放| 国模一区二区三区四区视频| 成年av动漫网址| 久久女婷五月综合色啪小说| 97超视频在线观看视频| 亚洲欧美一区二区三区国产| 欧美+日韩+精品| 精品国产三级普通话版| 日本一二三区视频观看| 人妻 亚洲 视频| 观看av在线不卡| 高清欧美精品videossex| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩无卡精品| videossex国产| av视频免费观看在线观看| 观看av在线不卡| 高清欧美精品videossex| 久久毛片免费看一区二区三区| 亚洲欧洲国产日韩| 99热这里只有精品一区| 最黄视频免费看| 热re99久久精品国产66热6| 日韩一区二区三区影片| 亚洲色图av天堂| 日韩成人av中文字幕在线观看| 国产又色又爽无遮挡免| 国产精品爽爽va在线观看网站| 国产淫语在线视频| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美 | 国产一区二区三区综合在线观看 | 亚洲成色77777| 色视频在线一区二区三区| 亚洲人成网站在线观看播放| 欧美另类一区| 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 在线观看免费视频网站a站| 各种免费的搞黄视频| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 99热全是精品| 亚洲精品,欧美精品| 一级黄片播放器| 永久免费av网站大全| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| av卡一久久| 亚洲中文av在线| 亚洲色图综合在线观看| 成人免费观看视频高清| 国产免费一区二区三区四区乱码| 大陆偷拍与自拍| 六月丁香七月| 国产av精品麻豆| videossex国产| .国产精品久久| 午夜福利视频精品| 黑丝袜美女国产一区| 天天躁日日操中文字幕| 国产精品一区二区在线观看99| 高清不卡的av网站| 网址你懂的国产日韩在线| 卡戴珊不雅视频在线播放| www.av在线官网国产| av国产精品久久久久影院| 内射极品少妇av片p| 欧美一区二区亚洲| 精品少妇黑人巨大在线播放| 久久精品久久精品一区二区三区| 国产在线免费精品| 国产免费视频播放在线视频| 大陆偷拍与自拍| 午夜老司机福利剧场| 波野结衣二区三区在线| 一级毛片我不卡| 九九在线视频观看精品| 2021少妇久久久久久久久久久| 免费观看在线日韩| 简卡轻食公司| 男人舔奶头视频| 少妇熟女欧美另类| 久久国产乱子免费精品| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 老师上课跳d突然被开到最大视频| 久久久成人免费电影| av黄色大香蕉| 国产一区亚洲一区在线观看| 日韩电影二区| 91久久精品国产一区二区三区| 久久久欧美国产精品| 噜噜噜噜噜久久久久久91| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| 国产精品99久久久久久久久| 一二三四中文在线观看免费高清| 亚洲成人av在线免费| 一本久久精品| 日韩欧美 国产精品| 国产美女午夜福利| 中文欧美无线码| 香蕉精品网在线| 在线观看一区二区三区| 国产大屁股一区二区在线视频| av免费在线看不卡| 精品一区二区三卡| 日韩强制内射视频| 国产探花极品一区二区| 美女内射精品一级片tv| 国产成人精品久久久久久| 在线 av 中文字幕| 亚洲精品久久久久久婷婷小说| 99热这里只有是精品在线观看| 日本av免费视频播放| 国产精品蜜桃在线观看| 色婷婷av一区二区三区视频| 精品一区二区三卡| 狂野欧美激情性xxxx在线观看| 久久av网站| 久久久久久久精品精品| 亚洲经典国产精华液单| 日本欧美国产在线视频| 婷婷色麻豆天堂久久| 欧美3d第一页| 亚洲av成人精品一二三区| 又爽又黄a免费视频| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久 | 日韩电影二区| 中国国产av一级| 久久精品国产亚洲av涩爱| 91精品国产国语对白视频| 最近中文字幕2019免费版| 在现免费观看毛片| 国产亚洲5aaaaa淫片| 香蕉精品网在线| 亚洲国产av新网站| 国产成人a区在线观看| 一级a做视频免费观看| 91精品一卡2卡3卡4卡| 亚洲精品久久午夜乱码| 国产av精品麻豆| 亚洲精品日本国产第一区| 亚洲激情五月婷婷啪啪| 亚洲精品456在线播放app| 日韩伦理黄色片| 乱码一卡2卡4卡精品| 日韩av免费高清视频| 在线播放无遮挡| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 成年人午夜在线观看视频| 男女边摸边吃奶| 超碰97精品在线观看| 少妇人妻 视频| 久久久久久久亚洲中文字幕| 日韩强制内射视频| 色综合色国产| 五月天丁香电影| 国产极品天堂在线| 欧美成人午夜免费资源| 啦啦啦在线观看免费高清www| 国产精品人妻久久久久久| 最近中文字幕高清免费大全6| 黑丝袜美女国产一区| 亚洲国产精品成人久久小说| 日本av免费视频播放| 国产深夜福利视频在线观看| 久久久久视频综合| 久久亚洲国产成人精品v| 国产成人免费无遮挡视频| 熟女电影av网| 一级黄片播放器| 少妇被粗大猛烈的视频| 亚洲av成人精品一区久久| 久久久久久久久久成人| 久久人人爽av亚洲精品天堂 | 日本欧美国产在线视频| 欧美亚洲 丝袜 人妻 在线| 如何舔出高潮| 日韩中文字幕视频在线看片 | 亚洲高清免费不卡视频| 交换朋友夫妻互换小说| 国产v大片淫在线免费观看| 一级毛片 在线播放| 久热这里只有精品99| 精品少妇久久久久久888优播| 99精国产麻豆久久婷婷| 狂野欧美白嫩少妇大欣赏| av免费观看日本| 在线观看人妻少妇| 国产精品一区二区在线不卡| 免费av不卡在线播放| 亚洲国产精品成人久久小说| 国产免费一级a男人的天堂| 秋霞在线观看毛片| 亚洲怡红院男人天堂| 成年女人在线观看亚洲视频| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲自偷自拍三级| 国产伦在线观看视频一区| 成人无遮挡网站| 国产永久视频网站| 精品99又大又爽又粗少妇毛片| 18禁裸乳无遮挡动漫免费视频| 18+在线观看网站| 久久精品久久精品一区二区三区| 亚洲第一区二区三区不卡| 久久精品国产亚洲网站| 日本vs欧美在线观看视频 | 免费高清在线观看视频在线观看| 蜜桃久久精品国产亚洲av| 一边亲一边摸免费视频| 国产成人freesex在线| 毛片女人毛片| 少妇人妻一区二区三区视频| 国产成人精品一,二区| 久久人人爽av亚洲精品天堂 | 日韩一区二区三区影片| 久久久久久伊人网av| 免费看不卡的av| 好男人视频免费观看在线| 男女边摸边吃奶| 国产久久久一区二区三区| 欧美国产精品一级二级三级 | 亚洲国产精品专区欧美| 国产精品国产av在线观看| 99久久综合免费| 久久精品人妻少妇| 亚洲精品一区蜜桃| 久久久久人妻精品一区果冻| 成人亚洲欧美一区二区av| 亚洲人与动物交配视频| 九九久久精品国产亚洲av麻豆| 亚洲av中文字字幕乱码综合| 欧美成人a在线观看| 亚洲激情五月婷婷啪啪| 久久精品国产鲁丝片午夜精品| 精品一区在线观看国产| 黑丝袜美女国产一区| 韩国av在线不卡| 日日撸夜夜添| 中国美白少妇内射xxxbb| 能在线免费看毛片的网站| 只有这里有精品99| 又黄又爽又刺激的免费视频.| 视频中文字幕在线观看| 欧美xxⅹ黑人| 极品教师在线视频| 麻豆国产97在线/欧美| 三级经典国产精品| 久久人人爽人人片av| 久久99热这里只有精品18| 18+在线观看网站| 一区二区三区乱码不卡18| 日本与韩国留学比较| 99热这里只有是精品50| 亚洲色图综合在线观看| 午夜福利高清视频| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区三区| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 亚洲内射少妇av| 精品酒店卫生间| 水蜜桃什么品种好| 少妇人妻久久综合中文| 国产毛片在线视频| 亚洲精品日本国产第一区| 精品国产乱码久久久久久小说| 秋霞伦理黄片| 18禁在线无遮挡免费观看视频| 日产精品乱码卡一卡2卡三| 国产高清三级在线| 久久99热这里只频精品6学生| 亚洲精品aⅴ在线观看| 亚洲不卡免费看| 国产精品精品国产色婷婷| 免费观看在线日韩| 午夜精品国产一区二区电影| 成人特级av手机在线观看| 熟女电影av网| 欧美成人精品欧美一级黄| 男女边吃奶边做爰视频| 欧美日韩综合久久久久久| 亚洲成人一二三区av| 2018国产大陆天天弄谢| 免费av不卡在线播放| 国产69精品久久久久777片| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 色视频www国产| 一边亲一边摸免费视频| 久久国产精品大桥未久av | 日本黄色日本黄色录像| 精品人妻熟女av久视频| 美女国产视频在线观看| 麻豆成人av视频| 国产淫片久久久久久久久| 99久久精品热视频| 亚洲,欧美,日韩| 精品人妻熟女av久视频| 一级毛片 在线播放| 亚洲国产日韩一区二区| 在线免费观看不下载黄p国产| 日韩大片免费观看网站| www.av在线官网国产| 免费在线观看成人毛片| 亚洲av福利一区| .国产精品久久| 亚洲av综合色区一区| 夫妻午夜视频| 欧美日韩一区二区视频在线观看视频在线| 国产一级毛片在线| 黑人猛操日本美女一级片| av.在线天堂| 欧美高清性xxxxhd video| 免费大片18禁| 在线观看av片永久免费下载| 丝袜喷水一区|