• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing

    2023-03-09 05:45:32BeiLIU劉備HuaLIANG梁華andBoruiZHENG鄭博睿
    Plasma Science and Technology 2023年1期
    關(guān)鍵詞:劉備

    Bei LIU(劉備),Hua LIANG(梁華) and Borui ZHENG(鄭博睿)

    1 Science and Technology on Plasma Dynamics Laboratory,Air Force Engineering University,Xi’an 710038,People’s Republic of China

    2 The Green Aerotechnics research Institute of Chongqing Jiaotong University,Chongqing 401120,People’s Republic of China

    Abstract The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD)plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz)calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz)or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity.

    Keywords:plasma-induced vortex,flow separation control,NS-DBD,LES

    1.Introduction

    Nanosecond pulsed dielectric barrier discharge(NS-DBD)and alternative current dielectric barrier discharge(ACDBD)are two main plasma flow separation control methods.Because of the higher actuation frequency and intensity of NS-DBD in contrast with AC-DBD,the control effect of NS-DBD is better than that of AC-DBD[1,2].Studies show that when the flow Mach number is 0.4,AC-DBD almost has no control effect[3]while even though the flow Mach number reaches 0.74,NS-DBD also has a good control effect on flow separation[4].NS-DBD is even used to control the strong shock wave ahead of a circular cylinder in which the flow Mach number is 5[5].

    The mechanism of AC-DBD plasma actuation for flow control is momentum effects due to ionic wind created by the discharge,which can accelerate the flow in the boundary layer.Therefore,the ability of the flow to resist adverse pressure gradient becomes stronger.Experimental studies show that the ionic wind can only reach to several meters per second(less than 10 m s?1)discharging in quiescent air[6],so the control effect of AC-DBD is limited.Whereas,the mechanism of NS-DBD plasma actuation for flow control is transient heat effects which induce shock waves and starting vortexes that interact with the separated flow[7,8],resulting in the flow separation being controlled.Experimental studies show that the induced flow velocity of NS-DBD is less than 1 m s?1[9].

    For both AC-DBD and NS-DBD,the effects on flow separation control are closely related to the actuation frequency.Audieret alstudied a post-stall flow over NACA0012 airfoil by AC-DBD experimentally[10].Results show that the higher the actuation frequency,the better the control effect,and the closer to the control effect of steady actuation.Abdollahzadehet alvalidated the conclusion by a numerical study which is also about the flow separation control of NACA0012 airfoil by AC-DBD[11].Sidorenkoet alstudied the control effect of NS-DBD on an airfoil by experimental method.Results show that the optimum actuation frequency depends on the angle of attack and flow velocity[12].Niuet alconducted an experimental study on flow separation control of a flying wing by NS-DBD when theRenumber is 2.61×106and Mach number is 0.2.Results show that the actuation frequency of 100 Hz is better than those of 200 and 300 Hz[13].

    Obviously,for the flow separation control of NS-DBD,it is not the case that the higher the actuation frequency,the better the control effect.The actuation frequency is generally dimensionless as follows:

    wherefis the actuation frequency,U∞is the flow velocity,cis the reference length.It is believed that the control effect is best whenF+=1in 2D cases for NS-DBD and the reference length is the chord length of the airfoil[14].But for 3D cases such as a swept wing,how to take the reference length is a problem,especially for the wing with a large root-tip ratio.In order to investigate the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing,a numerical study with high precision is essential because more flow field details can be obtained than an experimental study.But most of the numerical studies are conducted over an airfoil,few are over a swept wing due to large computation consumption.

    There is an optimum actuation frequency for NS-DBD plasma flow control,but the control mechanism is still not clear,especially for a swept wing(there is no definite reference length).The mechanism of NS-DBD plasma flow control is mainly about the interaction between plasma-induced vortexes and separated flow,but the interaction process is also not clear.In this study,in order to investigate the interaction mechanism,large eddy simulation(LES)method is adopted to simulate the flow over a swept wing.Owning to the higher accuracy than Reynolds Averaged Navier–Stokes and less computation than direct numerical simulation(DNS),LES method has been extensively used in the flow simulation with large separation[15–17].Although the computation of delayed detached eddy simulation(DDES)is less than LES,considering more turbulence dissipation which could affect the investigation of the vortex interaction,the DDES method is not adopted.

    The rest of this article is organized as follows:section 2 is the experimental study of plasma flow separation control;section 3 validates the LES method according to the experimental data;section 4 shows the numerical study of plasma flow separation control;section 5 is for conclusions.

    2.Experimental study

    The experimental model is made of aluminum alloy and the surface is very smooth,see figure 1(a).The plane size is shown in figure 1(b).The sweep angle is 20 degree and the lengths of wing root,wing tip,leading edge,and tailing edge are 0.903 m,0.15 m,1.15 m,and 1.104 m,respectively.The length of average aerodynamic chord length is 0.527 m.The relative thickness from the wing root section to the wing tip section varies uniformly from 6.8% to 5.6%.The five cross sections which are at 0%,25%,50%,75%,100% spanwise positions respectively are shown in figure 1(c).

    The experiment is conducted in a low-speed acoustic wind tunnel in which there is a 139.0512.5 m3××silencing section to reduce the noise and the turbulence.The section size of the wind tunnel test part is21.5 m2,×and the maximum test wind speed is 110 m s?1(0.32 Mach).The wind speed required for the experiment is 0.25 Mach.The model in the wing with and without plasma actuation is shown in figure 2.Anode and cathode materials are attached to the leading edge of the wing which has been proved to be the best position[18](see figure 2(b)).A cross section of the installed wing with plasma actuation is shown in figure 2(c).The thicknesses of the anode and cathode are both 0.1 mm and the thickness of the electrolyte is 0.18 mm.The lengths of the anode and cathode are 3 mm and 5 mm,respectively and the distance between them is 0 mm.

    In the experiment,high voltage pulses are generated by a nanosecond pulse generator(HVP-20),the applied voltage and the discharge current are measured by a voltage probe(Tektronix P6015A)and a current probe(Tektronix TCP312+TCPA300),respectively and the signals are recorded on an oscilloscope(Tektronix DPO4104).A single pulse waveform which is used in this experiment is shown in figure 3.The applied voltage is 8 kV and the full width half maximum is 300 ns.The experimental velocity is 85 m s?1(0.25 Mach),the pressure is 1 atm,the temperature is 290 K and the turbulent intensity at the wing tunnel inlet is 0.16%.The Reynold number is calculated based on unit length(1 m).According to the principle that the optimal actuation frequency meetsF+=1,if taking the wing root length as the reference length,it will be 94 Hz;if taking the wing tip length,it will be 567 Hz;if taking the average aerodynamic chord length,it will be 161 Hz.The higher the actuation frequency,the larger the energy,the easier it is to break through the plasma actuator,resulting in leakage.Because the whole experimental system is very expensive and the experimental model is mental,for the sake of safety,only the actuation frequency of 100 Hz is conducted.(When taking the wing root length as the reference length,the optimal actuation frequency is 94 Hz.)In addition,this problem is mainly investigated by numerical simulation,the small amount of experimental data is used to validate the numerical method.The energy of the single pulse in figure 3 is 79.08 mJ and it is calculated by the following formula:

    The length of the actuator is 1.15 m,so the energy per unit length of the pulse is 0.688 mJ cm?1which is within the scope given by Takashimaet al[8].If the actuation frequency is 100 Hz,the output power will be 7.908 W;if the actuation frequency is 1000 Hz,the output power will be 79.08 W.

    The experimental results are shown in figure 4.When the actuation voltage is 8 kV and the actuation frequency is 100 Hz,the maximum lift coefficient with the plasma actuation is 18.1% larger than that without the plasma actuation,and the stall angle of attack was delayed by 4°–5°.It indicates that NSDBD has a good effect on control flow separation.

    3.LES method validation

    Spatial resolution,temporal resolution and sub-grid model are the three critical factors that must be considered in the usage of LES[19].For the spatial resolution,as the computational mesh is successively refined,increasingly fine-scale turbulent structures are resolved,the computation eventually transitions to a DNS.For the temporal resolution,the time-step size needs to be able to describe the important physical phenomena.Obviously,smaller time steps are more desirable from an accuracy point of view,but also increase the resources required for the simulation.For the sub-grid model,the finest-scale fluid structures are not resolved in LES but equivalent by the sub-grid model and different subgrid models have different schemes and different accuracy.In the simulation,central difference scheme is adopted and SIMPLEC method is used for pressure–velocity coupling.The time step can be dimensionless as follows:

    U∞is the flow velocity(85 m s?1),cis the reference length(0.15 m,wing tip length),tΔ is set as a constant of 0.00001 s in the base flow simulation,so dtis 0.0057.Sorensenet al[20]studied the influence of time steps on calculation.Results show that dt=0.01 is enough.In order to validate the grid and the sub-gird model,two sets of grids and two sub-grid models are selected.The total number of the coarse grid is 24 million and the fine grid is 68 million.They both meety-plus less than 1.Two sub-grid models are WMLES and WALE.WALE is a wall-solved model which has a high precision but with the increase ofRenumber,the computation increases rapidly.WMLES is a wall-modelling model which can greatly reduce the computation in the highRenumber condition.The angle of attack in the calculation is 18°.The contrast of aerodynamic force coefficients between the experiment and the simulation is shown in table 1(Clis the lift coefficient,Cdis the drag coefficient,ΔCland ΔCdare the contrast of the lift coefficient and the drag coefficient between the calculation and the experiment,respectively).The simulation with fine grid and WALE model agrees best with the experiment.

    Table 1.Contrast of aerodynamic force coefficients between the experiment and the simulation when the angle of attack is 18°.

    Figure 5 shows the vortex structures of the four simulation conditions when the time is at 0.6 s.It is obvious that the finer the grid is,the finer scale vortex structures can be caught and WALE model can catch finer scale vertex structures than WMLES model when the grid is same.So,the fine gird and WALE model are selected to conduct the numerical studies.

    Figure 1.Experimental model(a),plane size(b),and five cross sections(c).

    Figure 2.Experimental model without plasma actuator(a),with plasma actuator(b),a cross section of the model with plasma actuator(c).

    Figure 3.Voltage and current waveform of a single pulse.

    Figure 4.Contrast of experimental results between with and without plasma actuation when the actuation frequency is 100 Hz and the actuation voltage is 8 kV(Ma=0.25, Re=5.74×106),lift coefficient(a),drag coefficient(b).

    Figure 5.Vortex structures of the four simulation conditions when flow time is at 0.6 s(Q=10 000),fine gird+WALE(a),coarse grid+WALE(b),fine grid +WMLES(c),coarse gird +WMLES(d).

    Figure 6.Contrast of aerodynamic force coefficients between the calculation and the experiment without the plasma actuation,lift coefficient(a),drag coefficient(b).

    Figure 7.The determination process of x and y in formula(4).

    Figure 8.The spatial distribution of the heat source on the leading edge.

    Figure 9.Aerodynamic coefficients under different actuation frequencies when the angle of attack is 18°,lift coefficient of 50 Hz(a),drag coefficient of 50 Hz(b),lift coefficient of 100 Hz(c),drag coefficient of 100 Hz(d),lift coefficient of 160 Hz(e),drag coefficient of 160 Hz(f),lift coefficient of 200 Hz(g),drag coefficient of 200 Hz(h),lift coefficient of 500 Hz(i),drag coefficient of 500 Hz(j),lift coefficient of 1000 Hz(k),drag coefficient of 1000 Hz(l).

    Figure 10.Contrast of aerodynamic force coefficients between the calculation and the experiment with the plasma actuation(f =100 Hz),lift coefficient(a),drag coefficient(b).

    The scheme of ‘Fine grid+WALE’ is adopted to simulate other angles of attack states which are 14°,16°,20°,and 22°.The contrast of aerodynamic force coefficients between the calculation and the experiment without the plasma actuation is shown in figure 6.Results are in good agreement between the calculation and the experiment.

    4.Numerical study

    In the numerical study,the effect of NS-DBD plasma actuation on the flow is equivalent to a heat source model which can be depicted as follows[21]:

    S(W m?3)is the maximum value of the heat source which is 5×1012in this simulation according to[21].a(m)andb(m)characterize the range of the heat source region in thexandydirections,respectively.In this simulation,ais 0.0015 m,bis 0.0005 m according to[21]andh(t)is a step function with a value of 0 or 1,which is used to control the actuation frequency.The determination process ofxandyin formula(4)is shown in figure 7.

    Assuming a point N in the flow,so there is only one planeCperpendicular to the leading-edge AB of the wing and passing through the point N.Assuming that the intersection of planeCand AB is point M,if a point in the flow is on the planeC,the heat source must be calculated according to the coordinate system with point M as the origin.There must be a point O on the planeCand the wing surface closest to the point N,so the distance of NO isyand the distance of MO isxin formula(3).The spatial distribution of the heat source on the leading-edge is shown in figure 8.The action time of the heat source in each actuation cycle is 300 ns(half maximum width of the voltage waveform in figure 3).If the actuation frequency is 100 Hz,the actuation cycle is 0.01 s,so for most of the time in a cycle,there is no heat source.In order to save computation,the variable time step method which can change from 10 to 1000 ns is adopted.

    In order to study the influent of the actuation frequency on flow separation control,six different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz are selected.Among these,when the actuation frequency is 160 Hz and taking the average aerodynamic chord length of the wing as the reference length,F+equals 1.In the numerical simulation,the energy of each discharge cycle is same,so the energy with an actuation frequency of 500 Hz is 10 times that with an actuation frequency of 50 Hz.

    Aerodynamic coefficients under different actuation frequencies when the angle of attack is 18° are shown in figure 9.The value indicated by dotted line is time-averaged.When the plasma heat source begins to act,the lift coefficient will decrease sharply and the drag coefficient will decrease sharply owing to the high-temperature and high-pressure region on the leading-edge.When the actuation frequency is from 100 to 200 Hz(comparing with the base condition,the lift increase is 10.55%(100 Hz),11.39%(160 Hz),11.36%(200 Hz),respectively),a good effect on lift increasing can be obtained and when the actuation frequency is 500 Hz(the lift increasing is 8.96%),the control effect is also not bad.But when the actuation frequencies are 50 Hz(the lift increasing is 4.27%)and 1000 Hz(the lift increasing is 3.01%),it gets worse.Therefore,it is not that the higher the actuation frequency,the greater the energy,and the better the control effect.The fluctuation of aerodynamic coefficients gets smaller when the actuation frequency gets higher.This suggests that the higher the energy,the stronger the influence of plasma actuation on the flow.

    The contrast of aerodynamic force coefficients between the calculation(14°,16°,18°,20°,22°)and the experiment with the plasma actuation frequency of 100 Hz is shown in figure 10.Because the plasma heat model is different from the actual discharge,the aerodynamic coefficients,especially the lift coefficient,have some differences from the experimental results,but the change tendency is consistent.The contrast of aerodynamic force coefficients between the experiment and the calculation when the plasma actuation frequency is 100 Hz and the angle of attack is 18° is shown in table 2.

    Figure 11 shows the evolution of plasma-induced vortex structures when the actuation frequency is 100 Hz and the angle of attack is 18°,which are phase-averaged over the cycles in figure 9(c).The plasma-induced vortexes roll the high-speed fluid outside the boundary layer into the boundary layer so that the flow is reattached and the lift is increased.As the plasma-induced vortex moves downstream,the intensity of the induced vortex first increases and then decreases,and when it is at the 3T/4,the induced vortex intensity is already very low and when it is at the 4T/4,the induced vortex disappears above the wing.

    Figure 12 shows the condition when the actuation frequency is 200 Hz and the plasma-induced vortex structures are phase-averaged over the cycles in figure 9(g).Because the condition in which the actuation frequency is 160 Hz is similar,it is not shown.During the whole period of actuation,the plasma-induced vortex structures are always above the wing,so it always has an effect on lift increasing.

    Table 2.Contrast of aerodynamic force coefficients between the experiment and the simulation when the plasma actuation frequency is 100 Hz and the angle of attack is 18°.

    Figures 13 and 14 show the condition when the actuation frequency is 500 Hz and 1000 Hz,respectively,and the plasma-induced vortex structures are phase-averaged over the cycles in figures 9(i)and(k),respectively.Obviously,on one hand,the plasma-induced vortex structures are not fully developed during an actuation period,especially for the condition of 1000 Hz.This is the main reason why the control effect gets worse.On the other hand,the vortex structures above the wing become more regular own to the higher frequency and larger energy of plasma actuation,especially for the condition of 1000 Hz.This is the main reason why the fluctuation of aerodynamic coefficients gets smaller.

    Figure 15 shows the condition when the actuation frequency is 50 Hz and the plasma-induced vortex structures are phase-averaged over the cycles in figure 9(a).When they are at 2T/4,3T/4,and 4T/4,the plasma-induced vortex structures disappear above the wing and have no effect on lift increasing.This is the main reason why the control effect gets worse.

    Figure 11.Evolution of plasma-induced vortex structures when the actuation frequency is 100 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 12.Evolution of plasma-induced vortex structures when the actuation frequency is 200 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 13.Evolution of plasma-induced vortex structures when the actuation frequency is 500 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 14.Evolution of plasma-induced vortex structures when the actuation frequency is 1000 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 15.Evolution of plasma-induced vortex structures when the actuation frequency is 50 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    5.Conclusions

    In this work,numerical studies on plasma separation control of a swept wing with different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted,and experiment studies in which the actuation voltage is 8 kV and the actuation frequency is 100 Hz are conducted to validate the numerical method.Some conclusions can be drawn as follows:

    (1)The mechanism of NS-DBD plasma flow separation control is mainly through the interaction between the plasma-induced vortexes which are closely related to the actuation frequency and the separated flow.If the actuation frequency is too low,the plasma-induced vortexes will disappear in a period within an actuation cycle;if the actuation frequency is too high,the plasmainduced vortex cannot develop completely,resulting in a weak vortex intensity.

    (2)The higher the actuation frequency,the stronger the influence of plasma actuation on the flow,the more regular the vortex structures above the wing and the smaller the fluctuation of aerodynamic coefficients.

    (3)For the flow separation control over an airfoil,there is an optimal actuation frequency which meetsF+=1to make the control effect best.For the flow separation control over a swept wing,there is a range of the actuation frequency which includes the frequency calculated by the average aerodynamic chord length to make the control effect good.

    Acknowledgments

    This research was supported by the National Science and Technology Major Project(No.J2019-II-0014-0035),Academician Workstation Foundation of the Green Aerotechnics Research Institute of Chonging Jiaotong University(No.GATRI2020C06003).

    猜你喜歡
    劉備
    修德箴言
    讀懂劉備
    海峽姐妹(2020年11期)2021-01-18 06:16:24
    三顧茅廬(中)
    劉備與徐州
    劉備為何不在赤壁大戰(zhàn)前取荊州
    劉備托孤
    快樂語文(2017年12期)2017-05-09 22:07:40
    相面
    意林(2016年24期)2017-01-04 21:58:26
    徐庶以馬試劉備
    劉備的愛
    小說月刊(2014年2期)2014-04-18 14:06:43
    劉備別具特色的用人之道
    軍事歷史(1996年1期)1996-08-20 07:15:32
    成在线人永久免费视频| 乱人伦中国视频| av不卡在线播放| 91麻豆av在线| 国产伦人伦偷精品视频| 男女午夜视频在线观看| 高清欧美精品videossex| 香蕉丝袜av| 国产精品久久久久成人av| 国产精品二区激情视频| 成年女人毛片免费观看观看9 | 叶爱在线成人免费视频播放| 精品国内亚洲2022精品成人 | 精品少妇久久久久久888优播| 午夜久久久在线观看| 亚洲av国产av综合av卡| 欧美激情 高清一区二区三区| 黄网站色视频无遮挡免费观看| 丰满迷人的少妇在线观看| 香蕉丝袜av| 老熟妇乱子伦视频在线观看| 高清黄色对白视频在线免费看| 欧美精品啪啪一区二区三区| 精品国产一区二区三区久久久樱花| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| www.精华液| av视频免费观看在线观看| 制服人妻中文乱码| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| a级片在线免费高清观看视频| 久久久国产一区二区| 2018国产大陆天天弄谢| 国产人伦9x9x在线观看| 国产成人免费无遮挡视频| 欧美乱码精品一区二区三区| 777久久人妻少妇嫩草av网站| 老汉色∧v一级毛片| 国产日韩欧美亚洲二区| 亚洲精品一二三| 国产精品九九99| 青青草视频在线视频观看| 精品乱码久久久久久99久播| 搡老乐熟女国产| 亚洲精品一二三| 青青草视频在线视频观看| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | 精品少妇一区二区三区视频日本电影| 一级,二级,三级黄色视频| 久久国产精品影院| 最新的欧美精品一区二区| 日韩中文字幕欧美一区二区| 国产色视频综合| 亚洲专区中文字幕在线| 亚洲国产av影院在线观看| 久久精品国产a三级三级三级| 精品久久久久久电影网| 91成人精品电影| 色综合欧美亚洲国产小说| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 国产不卡av网站在线观看| 精品第一国产精品| 亚洲中文av在线| 亚洲av片天天在线观看| 亚洲av第一区精品v没综合| 侵犯人妻中文字幕一二三四区| 欧美日韩视频精品一区| 国产精品影院久久| 国产激情久久老熟女| 欧美黄色片欧美黄色片| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 麻豆乱淫一区二区| aaaaa片日本免费| 亚洲国产毛片av蜜桃av| 最近最新中文字幕大全电影3 | 日韩欧美三级三区| 亚洲成人手机| 日韩人妻精品一区2区三区| 12—13女人毛片做爰片一| 精品一区二区三区四区五区乱码| 男女午夜视频在线观看| 成人影院久久| 免费高清在线观看日韩| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区久久| 热99久久久久精品小说推荐| 少妇猛男粗大的猛烈进出视频| 亚洲精品中文字幕一二三四区 | 9色porny在线观看| 久久精品国产99精品国产亚洲性色 | 午夜福利视频精品| 这个男人来自地球电影免费观看| 国产又爽黄色视频| 成人精品一区二区免费| 欧美老熟妇乱子伦牲交| 国产av国产精品国产| 欧美精品一区二区大全| 日韩免费av在线播放| 正在播放国产对白刺激| 精品久久久久久久毛片微露脸| 亚洲人成77777在线视频| 午夜福利在线免费观看网站| kizo精华| av线在线观看网站| 变态另类成人亚洲欧美熟女 | 国产精品自产拍在线观看55亚洲 | 亚洲人成电影免费在线| 国产免费av片在线观看野外av| 午夜福利影视在线免费观看| 成人黄色视频免费在线看| h视频一区二区三区| 午夜福利影视在线免费观看| 两性夫妻黄色片| 欧美变态另类bdsm刘玥| 日韩免费高清中文字幕av| 免费在线观看黄色视频的| 18禁国产床啪视频网站| 亚洲自偷自拍图片 自拍| 波多野结衣一区麻豆| 国产精品香港三级国产av潘金莲| 久久精品国产综合久久久| 制服诱惑二区| 日韩欧美一区二区三区在线观看 | 天堂中文最新版在线下载| 黑人巨大精品欧美一区二区mp4| 成人国产av品久久久| 日韩高清综合在线| 久久人人精品亚洲av| 日韩大尺度精品在线看网址| 亚洲精品久久国产高清桃花| 国产精品久久久av美女十八| 亚洲国产欧美网| 美女cb高潮喷水在线观看 | 好男人在线观看高清免费视频| 色综合亚洲欧美另类图片| 老司机深夜福利视频在线观看| 99在线视频只有这里精品首页| 亚洲激情在线av| 成年版毛片免费区| 免费看日本二区| 欧美成人性av电影在线观看| 别揉我奶头~嗯~啊~动态视频| 中亚洲国语对白在线视频| 美女大奶头视频| 亚洲av片天天在线观看| 久99久视频精品免费| 97超视频在线观看视频| 亚洲av五月六月丁香网| 91麻豆av在线| 男女之事视频高清在线观看| 男女午夜视频在线观看| 国产午夜福利久久久久久| 婷婷精品国产亚洲av在线| 中文字幕av在线有码专区| 国产精品久久久久久人妻精品电影| 久久人人精品亚洲av| 国产精品99久久久久久久久| 狂野欧美白嫩少妇大欣赏| 床上黄色一级片| 欧美日韩黄片免| 国产高清三级在线| 俺也久久电影网| 久久99热这里只有精品18| 免费av不卡在线播放| 亚洲国产精品久久男人天堂| 69av精品久久久久久| 搡老岳熟女国产| 少妇熟女aⅴ在线视频| 宅男免费午夜| 黄色成人免费大全| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品一区二区蜜桃av| 国产精品香港三级国产av潘金莲| 国产毛片a区久久久久| 少妇的丰满在线观看| 免费观看人在逋| 久久国产乱子伦精品免费另类| 真人做人爱边吃奶动态| 熟女人妻精品中文字幕| 19禁男女啪啪无遮挡网站| ponron亚洲| 亚洲中文日韩欧美视频| 久久这里只有精品19| 国产精品女同一区二区软件 | 中文字幕高清在线视频| 一进一出抽搐动态| 亚洲性夜色夜夜综合| 亚洲,欧美精品.| 精品免费久久久久久久清纯| 国产伦人伦偷精品视频| 狠狠狠狠99中文字幕| 亚洲欧美日韩卡通动漫| 麻豆av在线久日| 国产亚洲av嫩草精品影院| 久久久国产精品麻豆| 欧美av亚洲av综合av国产av| 国产精品1区2区在线观看.| 国产又黄又爽又无遮挡在线| 欧美日韩一级在线毛片| 亚洲狠狠婷婷综合久久图片| 国产真人三级小视频在线观看| 亚洲最大成人中文| svipshipincom国产片| 男人和女人高潮做爰伦理| 国产精品日韩av在线免费观看| 午夜福利在线观看吧| 99精品久久久久人妻精品| 日韩有码中文字幕| 美女 人体艺术 gogo| 桃色一区二区三区在线观看| 国产97色在线日韩免费| 日本三级黄在线观看| 亚洲国产色片| 长腿黑丝高跟| 国产乱人伦免费视频| 国产精品久久久久久人妻精品电影| 成人av一区二区三区在线看| 精品久久久久久久久久免费视频| 一个人观看的视频www高清免费观看 | 欧美丝袜亚洲另类 | 欧美性猛交黑人性爽| 亚洲人成网站在线播放欧美日韩| 99久久精品国产亚洲精品| 国产精品日韩av在线免费观看| 老汉色∧v一级毛片| 老司机福利观看| 香蕉丝袜av| 99国产极品粉嫩在线观看| 日韩欧美在线乱码| 国产美女午夜福利| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久久电影 | 中文在线观看免费www的网站| 亚洲精品色激情综合| 黄色日韩在线| av黄色大香蕉| 国模一区二区三区四区视频 | 18禁国产床啪视频网站| 91字幕亚洲| 啦啦啦韩国在线观看视频| 久久久水蜜桃国产精品网| h日本视频在线播放| 日韩欧美在线二视频| 中文字幕最新亚洲高清| 国产野战对白在线观看| 又黄又爽又免费观看的视频| 日本三级黄在线观看| 免费看十八禁软件| 亚洲精品色激情综合| 九九在线视频观看精品| 日日夜夜操网爽| 一进一出抽搐动态| 国产一区二区激情短视频| 老汉色∧v一级毛片| 小蜜桃在线观看免费完整版高清| 99久久国产精品久久久| 叶爱在线成人免费视频播放| 一级a爱片免费观看的视频| 999久久久国产精品视频| 啦啦啦观看免费观看视频高清| 成人性生交大片免费视频hd| 亚洲av电影在线进入| 国产亚洲精品久久久com| 久久人人精品亚洲av| 一进一出抽搐gif免费好疼| 夜夜躁狠狠躁天天躁| 国产成人一区二区三区免费视频网站| 成人特级av手机在线观看| 日本五十路高清| 九色国产91popny在线| 精品国产乱码久久久久久男人| 色综合婷婷激情| 国产成人精品久久二区二区91| 最近视频中文字幕2019在线8| 久久久成人免费电影| 动漫黄色视频在线观看| 日韩欧美三级三区| www.www免费av| 精品久久久久久成人av| 91九色精品人成在线观看| 日韩人妻高清精品专区| 日韩av在线大香蕉| 久久午夜综合久久蜜桃| 久久久国产欧美日韩av| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 久久久久亚洲av毛片大全| 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 全区人妻精品视频| 国产精品av久久久久免费| 午夜福利成人在线免费观看| 18禁观看日本| 亚洲av熟女| 少妇的逼水好多| 亚洲av成人不卡在线观看播放网| 成年人黄色毛片网站| 一级毛片高清免费大全| 在线免费观看的www视频| 国产麻豆成人av免费视频| h日本视频在线播放| 亚洲激情在线av| tocl精华| 午夜两性在线视频| 欧美一区二区国产精品久久精品| 又黄又粗又硬又大视频| 久久这里只有精品中国| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 国产精品一及| 亚洲欧美激情综合另类| 精品电影一区二区在线| 国产高清有码在线观看视频| 一本综合久久免费| 床上黄色一级片| 狂野欧美激情性xxxx| 日韩人妻高清精品专区| 国模一区二区三区四区视频 | 五月玫瑰六月丁香| 国产久久久一区二区三区| 久久中文字幕一级| 啦啦啦韩国在线观看视频| 日韩欧美精品v在线| 成人性生交大片免费视频hd| 熟妇人妻久久中文字幕3abv| 国产精品av久久久久免费| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 色播亚洲综合网| 国产亚洲精品一区二区www| 国产高清激情床上av| 欧美中文日本在线观看视频| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 国内精品久久久久精免费| 人人妻人人澡欧美一区二区| 日韩欧美免费精品| 制服人妻中文乱码| 久久99热这里只有精品18| 1024手机看黄色片| 少妇熟女aⅴ在线视频| 露出奶头的视频| 国产成人啪精品午夜网站| 欧美日本亚洲视频在线播放| 男插女下体视频免费在线播放| 精品国产乱子伦一区二区三区| 在线永久观看黄色视频| 久久这里只有精品19| 亚洲熟女毛片儿| 亚洲av日韩精品久久久久久密| 熟女少妇亚洲综合色aaa.| 神马国产精品三级电影在线观看| 精品久久久久久久末码| 99久久99久久久精品蜜桃| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色| 日本免费一区二区三区高清不卡| 母亲3免费完整高清在线观看| 一本精品99久久精品77| 国产一区二区在线观看日韩 | 国产精品影院久久| 国产成人aa在线观看| 99国产精品99久久久久| 19禁男女啪啪无遮挡网站| ponron亚洲| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| 1024香蕉在线观看| 国产综合懂色| 在线观看一区二区三区| 91麻豆av在线| 好男人电影高清在线观看| 亚洲欧美日韩卡通动漫| 网址你懂的国产日韩在线| 亚洲中文av在线| 丁香六月欧美| 免费av毛片视频| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 免费看日本二区| 国内精品美女久久久久久| 国产精品女同一区二区软件 | 一二三四在线观看免费中文在| 一夜夜www| 最近最新中文字幕大全电影3| 欧美午夜高清在线| 国产综合懂色| 婷婷六月久久综合丁香| 丰满人妻熟妇乱又伦精品不卡| 91字幕亚洲| 免费搜索国产男女视频| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| 窝窝影院91人妻| 99精品欧美一区二区三区四区| 午夜福利成人在线免费观看| 成人av一区二区三区在线看| 国产成人av教育| av天堂在线播放| 亚洲精华国产精华精| 变态另类成人亚洲欧美熟女| 久久久久九九精品影院| 亚洲色图av天堂| 国产精品 国内视频| 亚洲国产日韩欧美精品在线观看 | 母亲3免费完整高清在线观看| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 午夜免费观看网址| 国产高清videossex| 午夜视频精品福利| 丝袜人妻中文字幕| 中文在线观看免费www的网站| 亚洲专区中文字幕在线| 69av精品久久久久久| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 精品福利观看| 最近视频中文字幕2019在线8| 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 亚洲成人久久爱视频| 天堂av国产一区二区熟女人妻| 男人舔女人的私密视频| 十八禁人妻一区二区| 亚洲午夜理论影院| 午夜福利欧美成人| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| 久久久成人免费电影| 日本撒尿小便嘘嘘汇集6| 黄色成人免费大全| 一夜夜www| 99国产精品一区二区蜜桃av| 白带黄色成豆腐渣| 国产精品爽爽va在线观看网站| 搡老熟女国产l中国老女人| 日韩免费av在线播放| 欧美成人性av电影在线观看| 日本在线视频免费播放| 亚洲自拍偷在线| 舔av片在线| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站 | av视频在线观看入口| 国产成人精品久久二区二区免费| 啦啦啦免费观看视频1| 香蕉国产在线看| 亚洲精品乱码久久久v下载方式 | 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 岛国在线免费视频观看| 老司机深夜福利视频在线观看| 日韩免费av在线播放| 亚洲精品中文字幕一二三四区| 午夜成年电影在线免费观看| 99精品欧美一区二区三区四区| 午夜久久久久精精品| 日本 av在线| 欧美丝袜亚洲另类 | 国产一级毛片七仙女欲春2| 久久久久久久精品吃奶| 国产成+人综合+亚洲专区| 久久久久久久午夜电影| 中文字幕久久专区| 欧美日韩乱码在线| 亚洲专区字幕在线| 中国美女看黄片| 久久久久国产精品人妻aⅴ院| 日韩高清综合在线| 婷婷精品国产亚洲av| 亚洲成av人片免费观看| 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 欧美色欧美亚洲另类二区| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 国产极品精品免费视频能看的| 精品久久久久久久末码| 窝窝影院91人妻| 88av欧美| 国产精品一区二区免费欧美| 免费av毛片视频| 亚洲欧洲精品一区二区精品久久久| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 18禁黄网站禁片免费观看直播| 欧美色欧美亚洲另类二区| 免费在线观看影片大全网站| 欧美黄色淫秽网站| 亚洲av五月六月丁香网| 一个人观看的视频www高清免费观看 | 日本一本二区三区精品| 国产欧美日韩一区二区三| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 亚洲一区高清亚洲精品| 亚洲成人久久性| 欧美成狂野欧美在线观看| 亚洲在线观看片| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 国产精品98久久久久久宅男小说| 国产成人精品久久二区二区91| 欧美日韩黄片免| 美女cb高潮喷水在线观看 | 免费观看的影片在线观看| 国产免费男女视频| 午夜亚洲福利在线播放| 色综合婷婷激情| a级毛片在线看网站| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添小说| 欧美黑人欧美精品刺激| 夜夜躁狠狠躁天天躁| 欧美中文综合在线视频| 香蕉国产在线看| 色在线成人网| 国产精品香港三级国产av潘金莲| 香蕉av资源在线| 久久久国产精品麻豆| 午夜福利视频1000在线观看| 51午夜福利影视在线观看| av视频在线观看入口| 美女 人体艺术 gogo| 老司机福利观看| netflix在线观看网站| 国产精品亚洲一级av第二区| 一区二区三区国产精品乱码| 白带黄色成豆腐渣| 亚洲成人免费电影在线观看| 免费看光身美女| 亚洲国产精品成人综合色| 亚洲精品久久国产高清桃花| 成年女人毛片免费观看观看9| 校园春色视频在线观看| 天堂网av新在线| 级片在线观看| 精品福利观看| 18禁黄网站禁片免费观看直播| 两个人视频免费观看高清| 国产麻豆成人av免费视频| 亚洲五月婷婷丁香| 高清在线国产一区| 亚洲专区国产一区二区| 最新中文字幕久久久久 | 国产探花在线观看一区二区| 老熟妇仑乱视频hdxx| 岛国视频午夜一区免费看| 亚洲狠狠婷婷综合久久图片| 日韩有码中文字幕| 免费看日本二区| 日本熟妇午夜| 男人舔女人下体高潮全视频| 国产伦人伦偷精品视频| 九色国产91popny在线| 97人妻精品一区二区三区麻豆| 俺也久久电影网| 亚洲一区二区三区不卡视频| 国产一级毛片七仙女欲春2| 国产乱人视频| 国产一级毛片七仙女欲春2| 夜夜看夜夜爽夜夜摸| 国产乱人视频| 一个人免费在线观看的高清视频| 女警被强在线播放| 亚洲自偷自拍图片 自拍| 九九久久精品国产亚洲av麻豆 | 日韩欧美在线二视频| 国产精品98久久久久久宅男小说| 五月玫瑰六月丁香| 国产视频内射| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区mp4| 午夜a级毛片| 欧美av亚洲av综合av国产av| 免费大片18禁| 91麻豆av在线| 欧洲精品卡2卡3卡4卡5卡区| av福利片在线观看| 亚洲av成人av| 两个人视频免费观看高清| 91久久精品国产一区二区成人 | 久久香蕉国产精品| 久久久国产成人精品二区| 毛片女人毛片| 免费观看精品视频网站| 日韩人妻高清精品专区| 国产精品精品国产色婷婷| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| 成人特级av手机在线观看| 十八禁网站免费在线| 长腿黑丝高跟| 国产精品亚洲av一区麻豆| 又紧又爽又黄一区二区| 亚洲av成人av| 母亲3免费完整高清在线观看| 日本一本二区三区精品| 美女大奶头视频| 母亲3免费完整高清在线观看| 成人av在线播放网站|