• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?

    2016-04-18 05:43:33LinHE何躪ShaojunTANG唐少君TaoWANG王濤SchoolofMathematicsandStatisticsWuhanUniversityWuhan430072China
    關(guān)鍵詞:王濤

    Lin HE(何躪)Shaojun TANG(唐少君)Tao WANG(王濤)School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    ?

    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?

    Lin HE(何躪)Shaojun TANG(唐少君)?Tao WANG(王濤)
    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    E-mail:Linhe1989@whu.edu.cn;shaojun.tang@whu.edu.cn;tao.wang@whu.edu.cn

    AbstractWe study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with densitydependent viscosity.The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation.Our analysis relies upon the technique developed by Kanel′and the continuation argument.

    Key wordsviscous shock waves;density-dependent viscosity;one-dimensional compressible Navier-Stokes equations;nonlinear stability;large density oscillation

    2010 MR Subject Classi fi cation35B35;35Q35;76L05;76N15

    ?Received February 3,2015;revised May 20,2015.This work was supported by“the Fundamental Research Funds for the Central Universities”.

    ?Corresponding author:Shaojun TANG.

    1 Introduction

    We consider the large time behavior of global solutions to Cauchy problem of the onedimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity in Lagrangian coordinates

    with prescribed initial conditions

    here t>0 is the time variable,x∈R is the Lagrangian spatial variable,and v±>0,u±are given constants.The primary dependent variables are the speci fi c volume v and the velocity u.Throughout this manuscript,the pressure p and the viscosity coeffi cientμare given by

    where γ>1 represents the adiabatic exponent,a>0,b>0 and κ are the gas constants.Without loss of generality,we can assume that a=b=1 in the rest of this manuscript.

    Before stating the main problem studied in this manuscript,we first explain our motivation to study the one-dimensional compressible Navier-Stokes equations(1.1)satisfying relations(1.3).According to the study on the kinetic theory of dilute gases,if one derives the one-dimensional compressible Navier-Stokes equations from the Boltzmann equation with slab symmetry through the Chapman-Enskog expansion(see Chapman-Cowling[1]),one can deduce that the fi ve thermodynamical variables,i.e.,the density ρ=v?1,the temperature θ,the internal energy e,the entropy s,and the pressure p,satisfy the equations of the state of the ideal polytropic gases

    for some positive constants l>1,R>0,?b>0,cv>0 and the viscosity coeffi cientμtogether with the heat conductivity coeffi cient κ are no longer positive constants but depend on the temperature.In fact for the cuto ff inverse power force model(cf.[14]),the interacting potential between molecules is proportional to r1?swhere r denotes the distance between molecules and s>5 is a constant and in such a case,one can deduce by employing the properties of the Burnett functions that the viscosity coeffi cientμand the heat conductivity coeffi cient κ satisfy

    Note that as s→+∞,the cuto ff inverse power force model is then reduced to the hard sphere model,while the Maxwell molecule model corresponds to the case of s=5.

    For isentropic polytropic flows,the pressure psatisfies p=?ργfor some positive constants ?>0,γ≥1.Such a fact together with(1.4)imply

    Thus for isentropic polytropic flows,one can get from(1.5)and(1.6)that the dependence of the viscosity coeffi cientμon θ can be transferred into the dependence ofμon the density as

    which is nothing but(1.3)withIt is worth to pointing out that although the fact that s>5 from physical consideration implies thatto illustrate the range of the parameters γ and κ to which our argument can be applied,we will deal with the case when(1.3)hold with the constant κ being independent of γ in the rest of the paper.

    The problem we want to study is on the time-asymptotically nonlinear stability of viscous shock waves for the Cauchy problem(1.1)-(1.2).Recall that a viscous shock wave of(1.1)connecting(v?,u?)and(v+,u+)is a traveling wave solution(v,u)(t,x)≡(V,U)(x?st)of(1.1)satisfying

    where s is the shock speed and(vl,ul)and(vr,ur)are the given far- field states satisfying(v+,u+)∈S1S2(v?,u?),where

    Under the above assumptions imposed on the far- fields(v±,u±)of the initial data,following the standard arguments in[16],we canfind a uniquesuch that(v+,u+)∈where

    is the i-shock curve passing through(vl,ul).It is easy to show that the system(1.1)admits a 1-viscous shock wave(V1,U1)(x?s1t)connecting(v?,u?)with(ˉv,ˉu)and a 2-viscous shock wave(V2,U2)(x?s2t)connecting(ˉv,ˉu)with(v+,u+),and both of them are unique up to a shift,where s1=s1(v?,ˉv)<0 and s2=s2(v+,ˉv)>0.It is expected that the large-time behavior of global solutions of the Cauchy problem(1.1)-(1.2)is described by the superposition of the shifted 1-viscous shock wave(V1,U1)(x?s1t+α1)and the shifted 2-viscous shock wave(V2,U2)(x?s2t+α2):

    where the shifts α1and α2are given by

    with

    Before stating our main result,we first recall some previous results closely related.For the case when the viscosity coeffi cientμ(v)is a constant,stability of viscous shock wave for small initial perturbation with“zero mass”condition was proved in Kawashima-Matsumura[8]for small-amplitude profile and in Matsumura-Nishihara[13]where the corresponding assumption imposed on the amplitude of the viscous shock profile is relaxed to the assumption that

    Notice that

    although for general γ>1,especially for the case when γ is sufficiently large,assumption(1.13)holds only when the strength of the viscous shock profile is sufficiently small,it does hold for any vland vrif γ→1.Later,there appeared many works treating the case when the initial perturbation is not of zero mass.In particular,the asymptotic stability for small-amplitude viscous shock wave of(1.1)and related physical systems was studied in Mascia-Zumbrun[10]and Liu-Zeng[9]with small initial perturbation.As for the asymptotic stability of viscous shock wave with large initial perturbation,it was a long-standing challenging open problem,except for the partial result obtained in[17]where viscous shock waves were shown to be time-asymptotically stable for a certain class of large initial perturbation.

    For the case when the viscosity coeffi cientμ(v)is assumed to satisfy(1.3),there is a huge literature on mathematical studies of the compressible Navier-Stokes equations with densitydependent viscosity with various initial and boundary conditions.We here just mention someworks on the large-time behavior of the solutions.Jiu-Wang-Xin[5,6]proved the timeasymptotic stability of rarefaction waves to the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity for general initial data which may contain the vacuum.As for the stability of viscous shock wave,Matsumura-Wang[14]showed that any viscous shock wave of the system(1.1)-(1.3)with κ≥(γ?1)/2 is asymptotically stable for small initial perturbations with“zero mass”condition.For the corresponding result with large initial perturbation,to the best of our knowledge,no result was obtained.The main purpose of this manuscript is devoted to this problem and what we want to show in this paper is that the viscous shock wave of the compressible Navier-Stokes equations(1.1)is still nonlinear stable for certain class of large initial perturbation which satisfies the“zero mass”condition but can allow the initial density to have large oscillation.

    Now we turn to state our main result.To do so,we need first to introduce some notations as in the following:the strengths of the 1-viscous shock wave and the 2-viscous shock wave are denoted byrespectively.We also set δ:=|u+?u?|,and

    Second,we list some assumptions on the initial data(v0,u0),the strengths of the viscous shock waves δ1,δ2,and the shifts α1,α2as follows:

    (H0)there exist δ-independent constants ?≥0 and C0>0 such that for each x∈R,

    (H1)(v+,u+)∈S1S2(v?,u?)andsuch that

    (H2)the strengths of the viscous shock waves δ1,δ2,the shifts α1,α2de fined by(1.10)and the initial data(v0,u0)are assumed to satisfy

    and for some positive constant C1independent of δ,

    (H3)v?and v+are positive constants independent of δ.

    With the above preparations in hand,we are now ready to state our main result.

    Theorem 1.1Under assumptions(H0)-(H3),we assume further that 0≤κ<12,γ>1 and

    hold for some δ-independent positive constants C2,α and β.If the parameters ?,α and β are assumed to satisfy

    then there exists a suitably small δ0>0 such that if 0<δ≤δ0,the Cauchy problem(1.1)-(1.2)has a unique solution(v,u)satisfying

    and

    for some positive constant C3independent of δ.Furthermore,it holds that

    Remark 1.2It is easy to see that the set of the parameters α>0,β>0,?≥0 which satisfy assumption(1.20)is not empty.In fact,since 0≤κ<12implies that

    such that(1.20)holds.

    Remark 1.3If the parameter α,β,? satisfy min{2α?(γ+1)?,1/2}<2(β+?(1+ κ)),then for δ>0 sufficiently small,we can deduce from(1.21)that for each fixed t≥ 0,Oscv(t):=the oscillation of v(t,x),can be large in our result.We must point out,however,that the H1-norm of the initial perturbation together with the strength of the viscous shock wave are assumed to be sufficiently small in our analysis.It would be a very interesting problem to show that the viscous shock wave to the compressible Navier-Stokes equations(1.1)is nonlinear stable under general large initial perturbation or even the time-asymptotically nonlinear stable of large-amplitude viscous shock waves for a certain class of large initial perturbation like this manuscript.Note that the nonlinear stability of large-amplitude viscous shock waves to the compressible Navier-Stokes equations with constant viscosity coeffi cients under small initial perturbations is treated in[19].

    Before concluding this section,we outline the main idea used in this paper.For generalγ>1,the argument employed in[8,13]relies heavily on the smallness of both δi(i=1,2)and the H2(R)-norm of the initial perturbation.One of the key points in such an argument is that,based on the a priori assumption that the H2(R)-norm of the perturbation is sufficiently small,one can deduce a uniform lower and upper positive bounds on the speci fi c volume v(t,x).With such a bound on v(t,x)in hand,one can thus deduce certain a priori H2(R)energy-type estimates on the perturbations in terms of the initial perturbation(φ0,ψ0)provided that the strengths of the viscous shock waves are suitably small.The combination of the above analysis with the standard continuation argument yields the local stability of weak viscous shock waves for the one-dimensional compressible Navier-Stokes equations with constant viscosity.

    As in[3,11,15]where the global stability of rarefaction waves for the one-dimensional compressible Navier-Stokes equations with constant viscosity was investigated,the main di fficulty for deriving the global stability of viscous shock waves is to deduce the uniform lower and upper bounds on the speci fi c volume v under large initial perturbation.In this paper,we use the smallness of the strengths of viscous shock waves and the H1(R)-norm of the initial perturbation to control the possible growth of the solutions caused by the nonlinearity of the system itself,and then to derive the desired uniform lower and upper bounds on the speci fi c volume v.It is worth pointing out that the argument developed by Kanel′in[7]plays an essential role in our analysis.

    The layout of this paper is as follows.After listing some notations in the rest of this section,we will state some properties of the viscous shock waves and reformulate the problem in Section 2,while Section 3 is devoted to the proof of Theorem 1.1.

    NotationsThroughout this paper,c and C are used to denote various generic positive constants which are independent of δ,the strength of the viscous shock wave.We will use A?B(B?A)if A≤CB for some positive constant C.The notation A~B means that both A?B and B?A.For function spaces,Lq(?)(1≤q≤∞)denotes the usual Lebesgue space on ??R with norm‖·‖Lq(?),while Hq(?)denotes the usual Sobolev space in the L2sense with norm‖·‖Hq(?).To simplify the presentation,we use‖·‖and‖·‖qto denote‖·‖L2(R)and‖·‖Hq(R),respectively.The notation(V,U)(t,x)will be used to denote(V,U)(t,x;α1,α2)in the rest of this manuscript.

    2 Preliminaries

    We collect some basic properties of the viscous shock waves(Vi,Ui)(t,x)(i=1,2)and their superposition(V,U)(t,x).

    We first state the existence of the viscous shock waves(Vi(x?sit),Ui(x?sit))(i=1,2)together with their decay estimates as x?sit→±∞.By using the assumption(H3),a similar proof used in[4]leads to the following lemma.We omit its proof here.

    Lemma 2.1Assume that assumptions(H0)-(H3)hold,then(1.1)admits a viscous shock wave(V1,U1)(x?s2t)of the first family connecting(v?,u?)with(ˉv,ˉu)with speed s1and a viscous shock wave(V2,U2)(x?s2t)of the second family connecting(ˉv,ˉu)with(v+,u+)with speed s2,and both of them are unique up to a shift.Moreover,there exist positive constants c which depends only on v?and v+,such that,for i=1,2,

    Note that(Vi,Ui)(x?sit+αi)(i=1,2)are exact solutions of the compressible Navier-Stokes equation(1.1),while their superposition(V,U)(t,x)satisfies

    where

    The following lemma is concerned with some estimates on g(t,x),which will play an important role in performing the energy estimates.It follows essentially from the argument in[17].Again,we omit its proof for brevity.

    Lemma 2.2Under assumption(1.18),we have

    We de fi ne(φ,ψ)(t,x)by

    and reformulate the original problem from(1.1)and(2.2)as

    We then de fi ne the set of functions in which we find the solutions

    and the local solvability of the Cauchy problem(2.6)in such a set can be stated as in the following proposition.

    Proposition 2.3Let(φ0,ψ0)be in H2(R)satisfying‖(φ0,ψ0)‖2≤M0and assume that m≤V(0,x)+φ0x(x)≤M holds for each x∈R,then there exists t0>0 depending only on m,M and M0such that(2.6)has a unique solution(φ,ψ)(t,x)∈Xm/2,2M(0,t0)which satisfies for each 0≤t≤t0that

    3 Proof of Theorem 1.1

    In this section we first deduce some a priori estimates on the solution(φ,ψ)∈X1/m,M(0,T)to the problem(2.6),and then prove Theorem 1.1 by using the continuation argument.We willuse c and C to denote some generic positive constants independent of T,m,M and δ.Besides,we will often use the notation(v,u)=(V+φx,U+ψx),though the unknown functions are φ and ψ.Moreover,we denote here Nψ(T):=sup[0,T]‖ψ(t)‖L∝,or by Nψfor simplicity.Without loss of generality,we can assume that m≥1 and M≥1.

    Our first lemma is concerned with the basic energy estimate,which is stated in the following lemma.

    Lemma 3.1Under the assumptions in Theorem 1.1,there exists a sufficiently small positive constant δ1independent of δ such that if 0<δ≤δ1,then it holds for each 0≤t≤T that

    where

    ProofFirst,(2.6)2(second equation of(2.6))can be rewritten as

    Multiply(2.6)1by φ and(3.3)by?p′(V)?1ψ to find

    Since v?and v+are independent of δ and δ is assumed to be sufficiently small,we can deduce that V(t,x)can be bounded from both below and above by some positive constants independent of δ.Integrating the above identity with respect to t and x over[0,t]×R yields

    Straightforward calculation leads to

    Noting that Cδ2≥?Vt=?Ux>0 and using Cauchy’s and H?lder’s inequalities,we derive from(3.5)and(2.4)that for each∈>0,

    Estimate(3.1)can be proved by substituting the above estimates on Ij(j=1,···,5)into(3.4)and employing the Gronwall inequality.This completes the proof of Lemma 3.1.

    Lemma 3.2Under the assumptions in Theorem 1.1,if δ is suitably small,then it holds for each 0≤t≤T that

    where Φ0=Φ|t=0,and

    ProofMultiplying?x(2.6)1by p(V)?p(v)and?x(2.6)2by ψx,we obtain the following identity

    Integrating this last identity over[0,t]×R yields

    Since

    we apply Cauchy’s inequality to I6to find

    If we apply H?lder’s inequality to I7and use(2.4),we can deduce

    Plugging(3.10),(3.11)and(3.5)into(3.9)and noting that

    we have

    which combined with(3.1)gives(3.6).The proof of the lemma is completed.

    We next make the estimate on the last term of(3.6),which is stated in the following lemma.

    Lemma 3.3Under the assumptions in Theorem 1.1,a δ-independent positive constant δ2exists such that if

    then we have for each 0≤t≤T that

    and

    ProofMultiplying(2.6)2with φximplies

    where we have used the fact that

    Integrating(3.16)over[0,t]×R,we have from Cauchy’s and H?lder’s inequalities that

    which combined with(2.4)and(3.6)implies

    Noting the simple fact that

    we can prove(3.14)-(3.15)and complete the proof of the lemma.

    To deduce a lower bound and an upper bound on v(t,x),as in[12],we set?v:=v/V and make the estimate onin the following lemma.

    Lemma 3.4Under the assumptions in Theorem 1.1,if δ is suitably small such that(3.13)holds,then it follows that

    ProofSince

    we differentiate(2.6)2and have

    which combined with(3.19)and the identity

    implies

    For each∈>0,

    Estimates(3.5)and(2.1)give

    Apply(2.1)to infer

    Then we apply Cauchy’s inequality and(3.24)to have

    and

    Integrating(3.21)over[0,t]×R and using(3.22)-(3.26),(3.14)-(3.15),and(3.13),we can obtain(3.18)by employing Gronwall’s inequality and(2.4).This completes the proof of the lemma.

    The following lemma concerns the positive lower and upper bounds on v in terms of the initial perturbation.

    Lemma 3.5Under the assumptions in Theorem 1.1,if we assume that(3.13)holds,then we have for each(t,x)∈[0,T]×R that

    with

    ProofRewrite Φ(v,V)as

    and note that

    In order to apply Kanel′s method[7],we constructas

    From the constitutive relations(1.3),we have

    which implies that

    holds for some uniform constant C>0.

    On the other hand,we have

    For the estimates for the second order derivatives of(φ,ψ).since

    we have from Lemmas 3.3-3.5 that

    As for the estimate on‖ψxx(t)‖,we multiply?x(2.6)2by ψxxx,integrate the resulting identity over[0,t]×R,and use the Sobolev’s,Young’s and Gronwall’s inequalities to discover

    which combined with(3.32)yields the following lemma.

    Lemma 3.6If δ is suitably small such that(3.13)holds,then we have for each 0≤t≤T that

    Hence,if(1.19)and(1.20)hold,then we have for 0<δ<1,According to Proposition 2.3,there is a positive constant t1,which depends only on δ and ‖(φ0,ψ0)‖2,such that the Cauchy problem(2.6)admits a unique solution(φ(t,x),ψ(t,x))∈Xm0,M0(0,t1)with m0=2?1C?11δ?and M0=2C1(1+δ??),which satisfies(2.7)for each 0≤t≤t1.Hence we have from(1.19)and Sobolev’s inequality that

    Consequently,

    Thus if(1.20)1holds,we can choose a sufficiently small constant δ1<1 such that if 0<δ≤δ1,the assumptions imposed in Lemmas 3.1-3.6 hold with T=t1,m=m?10and M=M0.Thus we have from(3.27)that for each 0≤t≤t1,

    From(3.15),we can have for each 0≤t≤t1that

    Next if we take(φ(t1,x),ψ(t1,x))as the initial data,we can deduce by employing Proposition 2.3 again that the unique local solution(φ(t,x),ψ(t,x))constructed above can be extended to the time internal[0,t1+t2]and satisfies

    and

    for each t1≤t≤t1+t2.Thus,

    Set

    Then one can easily deduce that if the parameters α>0,β and ? satisfy(1.20)3,then there exists a sufficiently small δ2>0 such that if 0<δ≤δ2,the assumptions listed in Lemmas 3.1-3.6 are satis fied with T=t1+t2,m=m?11and M=M1.Consequently,(3.35),(3.36)and(3.34)hold for each 0≤t≤t1+t2.If we take(φ(t1+t2,x),ψ(t1+t2,x))as the initial data and employ Proposition 2.3 again,we can then extend the above solution(φ(t,x),ψ(t,x))to the time step t=t1+2t2.Repeating the above procedure,we thus extend(φ(t,x),ψ(t,x))step by step to the unique global solution and(3.35),(3.36)and(3.34)hold for all t≥0.The proof of Theorem 1.1 is completed.

    References

    [1]Chapman S,Cowling T.The Mathematical Theory of Non-uniform Gases.3rd ed.London:Cambrige University Press,1970

    [2]Chen Z Z,Xiao Q H.Nonlinear stability of planar shock profiles for the generalized KdV-Burgers equation in several dimensions.Acta Math Sci,2013,33B(6):1531-1550

    [3]Duan R,Liu H X,Zhao H J.Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation.Trans Amer Math Soc,2009,361(1):453-493

    [4]Huang F M,Matsumura A.Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation.Comm Math Phys,2009,289(3):841-861

    [5]Jiu Q S,Wang Y,Xin Z P.Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity.SIAM J Math Anal,2013,45(5):3194-3228

    [6]Jiu Q S,Wang Y,Xin Z P.Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity.Comm Partial Di ff erential Equations,2011,36(4):602-634

    [7]Kanel′J.A model system of equations for the one-dimensional motion of a gas.Di ff erential Equations,1968,4:374-380

    [8]Kawashima S,Matsumura A.Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion.Comm Math Phys,1985,101(1):97-127

    [9]Liu T P,Zeng Y N.Shock waves in conservation laws with physical viscosity.Mem Amer Math Soc,2014,234(1105):viii+168

    [10]Mascia C,Zumbrun K.Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems.Comm Pure Appl Math,2004,57(7):841-876

    [11]Matsumura A,Nishihara K.Global asymptotics toward the rarefaction wave for solutions of viscous psystem with boundary effect.Quart Appl Math,2000,58(1):69-83

    [12]Matsumura A,Nishihara K.Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas.Comm Math Phys,1992,144(2):325-335

    [13]Matsumura A,Nishihara K.On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas.Japan J Appl Math,1985,2(1):17-25

    [14]Matsumura A,Wang Y.Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity.Methods Appl Anal,2010,17(4):279-290

    [15]Nishihara K,Yang T,Zhao H J.Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations.SIAM J Math Anal,2004,35(6):1561-1593

    [16]Smoller J.Shock Waves and Reaction-Di ff usion Equations.Grundlehren der Mathematischen Wissenschaften 285.[Fundamental Principles of Mathematical Sciences].2nd ed.New York:Springer-Verlag,1994

    [17]Wang T,Zhao H J,Zou Q Y.One-dimensional compressible Navier-Stokes equations with large density oscillation.Kinet Relat Models,2013,6(3):649-670

    [18]Xiao Q H,Zhao H J.Nonlinear stability of generalized Benjamin-Bona-Mahony-Burgers shock profiles in several dimensions.J Math Anal Appl,2013,406(1):165-187

    [19]Zumbrun K.Stability of large-amplitude shock waves of compressible Navier-Stokes equations.With an appendix by Helge Kristian Jenssen and Gregory Lyng//Handbook of Mathematical Fluid Dynamics,Vol III.Amsterdam:North-Holland,2004:311-533

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?
    Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information?
    国内揄拍国产精品人妻在线| 婷婷六月久久综合丁香| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 老司机深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲国产欧美网| a级毛片a级免费在线| 国产精品野战在线观看| 久久久久久久午夜电影| 国产成人精品久久二区二区免费| 国产私拍福利视频在线观看| 久久久久精品国产欧美久久久| 国产主播在线观看一区二区| 国产成人啪精品午夜网站| 婷婷六月久久综合丁香| 一本精品99久久精品77| 亚洲精品色激情综合| 淫妇啪啪啪对白视频| 99在线人妻在线中文字幕| 亚洲 欧美一区二区三区| 亚洲中文av在线| 亚洲午夜理论影院| 日韩欧美免费精品| 免费av不卡在线播放| 久久精品91无色码中文字幕| 国产亚洲av高清不卡| 日本 欧美在线| 亚洲熟女毛片儿| 成年人黄色毛片网站| 日韩免费av在线播放| 欧美日本视频| 丰满人妻熟妇乱又伦精品不卡| 免费人成视频x8x8入口观看| 中文字幕人妻丝袜一区二区| 日本五十路高清| 又黄又爽又免费观看的视频| 香蕉国产在线看| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 丰满的人妻完整版| 91老司机精品| 亚洲av日韩精品久久久久久密| 欧美日本视频| 日本 欧美在线| 一区二区三区高清视频在线| 精品电影一区二区在线| 亚洲va日本ⅴa欧美va伊人久久| 好看av亚洲va欧美ⅴa在| 在线播放国产精品三级| 午夜精品久久久久久毛片777| 精品免费久久久久久久清纯| 美女高潮喷水抽搐中文字幕| 亚洲国产精品999在线| 九色国产91popny在线| 黄色视频,在线免费观看| 国产熟女xx| 中国美女看黄片| 男人舔奶头视频| 亚洲国产中文字幕在线视频| 十八禁网站免费在线| 成人永久免费在线观看视频| 最近最新免费中文字幕在线| 国内精品美女久久久久久| 热99re8久久精品国产| 亚洲国产看品久久| 观看免费一级毛片| 听说在线观看完整版免费高清| 亚洲午夜精品一区,二区,三区| 十八禁人妻一区二区| 国产三级中文精品| 久久久久精品国产欧美久久久| 国产亚洲欧美在线一区二区| 在线十欧美十亚洲十日本专区| 国产高清有码在线观看视频| 老汉色∧v一级毛片| 国产成人欧美在线观看| 深夜精品福利| 欧美乱色亚洲激情| 青草久久国产| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频| 精品免费久久久久久久清纯| 黄色 视频免费看| 亚洲欧美精品综合久久99| 欧美中文日本在线观看视频| 久久午夜亚洲精品久久| 亚洲国产精品成人综合色| 听说在线观看完整版免费高清| 欧美黑人欧美精品刺激| 床上黄色一级片| 变态另类成人亚洲欧美熟女| 成年免费大片在线观看| 88av欧美| 亚洲欧美日韩东京热| 麻豆国产av国片精品| 草草在线视频免费看| 无限看片的www在线观看| 看免费av毛片| 亚洲精品中文字幕一二三四区| 欧美+亚洲+日韩+国产| 国产三级在线视频| 精品乱码久久久久久99久播| 久久精品影院6| 一个人免费在线观看电影 | 亚洲成人中文字幕在线播放| 伊人久久大香线蕉亚洲五| 久久精品91蜜桃| av福利片在线观看| 欧美极品一区二区三区四区| 亚洲九九香蕉| 欧美+亚洲+日韩+国产| 国产成人av激情在线播放| a级毛片在线看网站| 日本五十路高清| 窝窝影院91人妻| 中国美女看黄片| 国产一区二区在线观看日韩 | 久久久精品欧美日韩精品| 小蜜桃在线观看免费完整版高清| 国产一区二区三区在线臀色熟女| 欧美乱码精品一区二区三区| 久久午夜亚洲精品久久| 他把我摸到了高潮在线观看| 欧美日韩瑟瑟在线播放| 欧美黄色淫秽网站| 国产三级黄色录像| 国产一区二区三区视频了| 国产av一区在线观看免费| 亚洲欧美日韩卡通动漫| 国产三级在线视频| 亚洲午夜理论影院| 日韩有码中文字幕| 久久中文看片网| 一二三四在线观看免费中文在| 欧美3d第一页| 最近视频中文字幕2019在线8| 12—13女人毛片做爰片一| 真实男女啪啪啪动态图| 一个人观看的视频www高清免费观看 | 一进一出抽搐动态| 别揉我奶头~嗯~啊~动态视频| 高清毛片免费观看视频网站| 麻豆av在线久日| 亚洲五月天丁香| 高清毛片免费观看视频网站| 黄片小视频在线播放| 亚洲国产高清在线一区二区三| 国产aⅴ精品一区二区三区波| www.www免费av| 丰满的人妻完整版| 女同久久另类99精品国产91| 在线播放国产精品三级| 亚洲精品久久国产高清桃花| 在线永久观看黄色视频| 国语自产精品视频在线第100页| 国产精品野战在线观看| 亚洲av片天天在线观看| 亚洲专区字幕在线| 午夜福利18| av国产免费在线观看| 精华霜和精华液先用哪个| 美女大奶头视频| 在线观看一区二区三区| 草草在线视频免费看| 免费高清视频大片| 欧美一区二区精品小视频在线| 精品久久久久久久人妻蜜臀av| 中文字幕精品亚洲无线码一区| 嫩草影院精品99| 91av网一区二区| 免费看光身美女| 蜜桃久久精品国产亚洲av| 老鸭窝网址在线观看| 午夜免费观看网址| 午夜福利在线观看免费完整高清在 | 国产一区二区三区在线臀色熟女| 好男人电影高清在线观看| 亚洲成av人片在线播放无| 国产精品亚洲av一区麻豆| 国产精品自产拍在线观看55亚洲| 日韩欧美精品v在线| 757午夜福利合集在线观看| 久久精品国产99精品国产亚洲性色| 日日干狠狠操夜夜爽| 国产蜜桃级精品一区二区三区| 在线a可以看的网站| 亚洲av成人精品一区久久| 麻豆国产av国片精品| 90打野战视频偷拍视频| 少妇人妻一区二区三区视频| 少妇熟女aⅴ在线视频| 亚洲第一电影网av| 日本一二三区视频观看| 亚洲精品美女久久av网站| 日韩精品青青久久久久久| 国产精品亚洲美女久久久| 欧美日韩亚洲国产一区二区在线观看| 久久久精品欧美日韩精品| 女生性感内裤真人,穿戴方法视频| 波多野结衣高清无吗| 在线视频色国产色| 久久精品aⅴ一区二区三区四区| 丰满的人妻完整版| 国产成人系列免费观看| 国产亚洲av高清不卡| 亚洲中文日韩欧美视频| 欧美日韩亚洲国产一区二区在线观看| 高清毛片免费观看视频网站| 国产精品日韩av在线免费观看| 欧美av亚洲av综合av国产av| 麻豆成人av在线观看| 中文字幕av在线有码专区| 中出人妻视频一区二区| 国产精华一区二区三区| 综合色av麻豆| 美女cb高潮喷水在线观看 | 曰老女人黄片| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 欧美成人一区二区免费高清观看 | 亚洲av五月六月丁香网| 国产精品久久久久久久电影 | 成人av一区二区三区在线看| 天天一区二区日本电影三级| 午夜精品一区二区三区免费看| 性欧美人与动物交配| a在线观看视频网站| 国产精品av久久久久免费| 美女黄网站色视频| 久久国产乱子伦精品免费另类| 全区人妻精品视频| 国产成人精品久久二区二区免费| 久久伊人香网站| 美女 人体艺术 gogo| 久久精品91无色码中文字幕| 国产亚洲欧美在线一区二区| 日本 av在线| 男人舔奶头视频| 女同久久另类99精品国产91| netflix在线观看网站| 级片在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久人妻精品电影| 免费高清视频大片| 一a级毛片在线观看| ponron亚洲| 精品不卡国产一区二区三区| 欧美高清成人免费视频www| 成人18禁在线播放| 亚洲成a人片在线一区二区| 十八禁人妻一区二区| 观看美女的网站| 国产成人福利小说| 国产不卡一卡二| 国产爱豆传媒在线观看| 1024香蕉在线观看| 日韩高清综合在线| 高清在线国产一区| www国产在线视频色| av女优亚洲男人天堂 | 一级毛片高清免费大全| 国产人伦9x9x在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本成人三级电影网站| 波多野结衣高清无吗| 99re在线观看精品视频| 天堂√8在线中文| 国产高清有码在线观看视频| 一级作爱视频免费观看| 欧美极品一区二区三区四区| 特级一级黄色大片| 国产午夜精品论理片| 中文字幕av在线有码专区| 亚洲欧美日韩高清在线视频| 国产精品永久免费网站| 成熟少妇高潮喷水视频| 亚洲成a人片在线一区二区| 亚洲人成电影免费在线| 久久性视频一级片| 亚洲国产欧美一区二区综合| 性色av乱码一区二区三区2| 成人特级av手机在线观看| 亚洲av免费在线观看| 亚洲中文av在线| 婷婷丁香在线五月| 亚洲中文字幕一区二区三区有码在线看 | 成人av在线播放网站| 中文字幕高清在线视频| 日韩欧美精品v在线| 性色avwww在线观看| netflix在线观看网站| 人人妻人人澡欧美一区二区| 99久久无色码亚洲精品果冻| 国产成人av教育| 精品一区二区三区av网在线观看| 国产午夜福利久久久久久| 欧美av亚洲av综合av国产av| 亚洲七黄色美女视频| 亚洲avbb在线观看| 国产亚洲精品久久久久久毛片| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 亚洲人与动物交配视频| 欧美绝顶高潮抽搐喷水| 欧美午夜高清在线| 99在线视频只有这里精品首页| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 国产高清视频在线观看网站| 国产单亲对白刺激| 在线观看免费视频日本深夜| a级毛片a级免费在线| 高清在线国产一区| 日本免费一区二区三区高清不卡| 观看美女的网站| 亚洲人成网站高清观看| 亚洲美女黄片视频| 又大又爽又粗| 中文字幕高清在线视频| 丰满的人妻完整版| 欧美黄色淫秽网站| 国产99白浆流出| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| www日本黄色视频网| 国产精华一区二区三区| 天堂av国产一区二区熟女人妻| av中文乱码字幕在线| 久久亚洲真实| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 亚洲五月天丁香| 国产精品电影一区二区三区| 五月伊人婷婷丁香| 亚洲成av人片免费观看| 国产成+人综合+亚洲专区| 岛国视频午夜一区免费看| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| 国产成人福利小说| 亚洲国产中文字幕在线视频| 午夜福利在线观看免费完整高清在 | 国产私拍福利视频在线观看| 欧美3d第一页| 午夜视频精品福利| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 国产野战对白在线观看| tocl精华| 久久精品亚洲精品国产色婷小说| 99久久精品热视频| 日韩av在线大香蕉| 淫妇啪啪啪对白视频| 99在线人妻在线中文字幕| www国产在线视频色| 999精品在线视频| 99在线人妻在线中文字幕| 色综合欧美亚洲国产小说| 久久精品91蜜桃| 国产成人福利小说| 老司机福利观看| 老熟妇仑乱视频hdxx| 免费人成视频x8x8入口观看| 婷婷丁香在线五月| 久久香蕉精品热| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 亚洲成人免费电影在线观看| 麻豆国产97在线/欧美| 成人18禁在线播放| av中文乱码字幕在线| 久久精品91无色码中文字幕| 国产伦在线观看视频一区| 一二三四社区在线视频社区8| 欧美一级毛片孕妇| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 成人欧美大片| avwww免费| 真人一进一出gif抽搐免费| 亚洲成av人片在线播放无| 一进一出好大好爽视频| 亚洲人成电影免费在线| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 国产日本99.免费观看| 一级黄色大片毛片| 香蕉丝袜av| 国产激情欧美一区二区| 少妇人妻一区二区三区视频| 国产成人aa在线观看| 亚洲欧美精品综合久久99| 精品国产超薄肉色丝袜足j| 精品久久久久久久末码| 人妻丰满熟妇av一区二区三区| 久久婷婷人人爽人人干人人爱| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区mp4| 99国产综合亚洲精品| 国产激情偷乱视频一区二区| 久久99热这里只有精品18| 精品久久久久久成人av| 最好的美女福利视频网| 熟女人妻精品中文字幕| 亚洲最大成人中文| 久久午夜综合久久蜜桃| 国产av一区在线观看免费| 久久久久久人人人人人| 两个人视频免费观看高清| 国产成人av激情在线播放| 最好的美女福利视频网| 亚洲五月婷婷丁香| 熟妇人妻久久中文字幕3abv| 国产黄a三级三级三级人| 18禁黄网站禁片午夜丰满| 欧美日韩精品网址| 色综合站精品国产| 日本一本二区三区精品| 亚洲美女视频黄频| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站 | www.熟女人妻精品国产| 久久久久久久久久黄片| 亚洲中文日韩欧美视频| 欧美日韩乱码在线| 免费av不卡在线播放| 给我免费播放毛片高清在线观看| 又粗又爽又猛毛片免费看| e午夜精品久久久久久久| 久久久久精品国产欧美久久久| av天堂在线播放| 国产v大片淫在线免费观看| 热99在线观看视频| 精品国产乱子伦一区二区三区| 国产精品日韩av在线免费观看| 欧美日韩国产亚洲二区| 亚洲五月天丁香| 999久久久精品免费观看国产| 可以在线观看的亚洲视频| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 在线观看一区二区三区| 亚洲在线自拍视频| 听说在线观看完整版免费高清| 757午夜福利合集在线观看| 一边摸一边抽搐一进一小说| 国产高潮美女av| 夜夜夜夜夜久久久久| 日韩 欧美 亚洲 中文字幕| 制服人妻中文乱码| 九九热线精品视视频播放| 两性午夜刺激爽爽歪歪视频在线观看| 丝袜人妻中文字幕| 久久精品人妻少妇| 亚洲av电影不卡..在线观看| 岛国视频午夜一区免费看| 中文字幕高清在线视频| av视频在线观看入口| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 99re在线观看精品视频| 亚洲在线自拍视频| 国内毛片毛片毛片毛片毛片| 麻豆成人av在线观看| 青草久久国产| 午夜福利在线在线| 午夜成年电影在线免费观看| 变态另类丝袜制服| 亚洲va日本ⅴa欧美va伊人久久| 免费看十八禁软件| 91字幕亚洲| 老司机福利观看| 97超视频在线观看视频| 中文字幕高清在线视频| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕一区二区三区有码在线看 | 欧美一区二区精品小视频在线| av片东京热男人的天堂| 在线永久观看黄色视频| 波多野结衣巨乳人妻| 亚洲av熟女| 一区二区三区激情视频| 国产视频内射| 久久精品国产亚洲av香蕉五月| 99热精品在线国产| 亚洲精品中文字幕一二三四区| 亚洲人成网站在线播放欧美日韩| 18禁黄网站禁片午夜丰满| www日本黄色视频网| av黄色大香蕉| 午夜福利免费观看在线| 激情在线观看视频在线高清| 麻豆成人午夜福利视频| 免费在线观看成人毛片| 久久久成人免费电影| 国产激情偷乱视频一区二区| 日韩av在线大香蕉| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 欧美黄色片欧美黄色片| 国产午夜精品论理片| 欧美成人一区二区免费高清观看 | 老司机福利观看| 日本精品一区二区三区蜜桃| 国产精品99久久久久久久久| 青草久久国产| 少妇人妻一区二区三区视频| 亚洲在线自拍视频| 18禁美女被吸乳视频| 国产99白浆流出| 久久久国产成人精品二区| 在线免费观看的www视频| 欧美乱码精品一区二区三区| 十八禁人妻一区二区| 婷婷精品国产亚洲av在线| 婷婷丁香在线五月| 国产av不卡久久| 国产精品乱码一区二三区的特点| 亚洲色图 男人天堂 中文字幕| 日本与韩国留学比较| 午夜久久久久精精品| or卡值多少钱| 99视频精品全部免费 在线 | 国产欧美日韩一区二区三| 国产成人精品久久二区二区免费| 国产精品久久视频播放| 99国产极品粉嫩在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜福利免费观看在线| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 亚洲激情在线av| 欧美日本视频| 高清毛片免费观看视频网站| 久久久国产欧美日韩av| 亚洲在线观看片| 精品免费久久久久久久清纯| 我的老师免费观看完整版| 人妻久久中文字幕网| 长腿黑丝高跟| 成人高潮视频无遮挡免费网站| 久久久国产成人免费| 少妇丰满av| 亚洲av中文字字幕乱码综合| 国产精品久久视频播放| 2021天堂中文幕一二区在线观| 国产又黄又爽又无遮挡在线| 制服丝袜大香蕉在线| 999精品在线视频| 精品午夜福利视频在线观看一区| 麻豆国产97在线/欧美| 国产乱人伦免费视频| 久久这里只有精品19| 色综合亚洲欧美另类图片| 亚洲成av人片在线播放无| 嫁个100分男人电影在线观看| 久久久国产欧美日韩av| 啦啦啦观看免费观看视频高清| 狠狠狠狠99中文字幕| 国产爱豆传媒在线观看| 在线播放国产精品三级| 免费大片18禁| 亚洲成人久久性| 国产久久久一区二区三区| 久久久精品欧美日韩精品| 日本黄色视频三级网站网址| 婷婷丁香在线五月| 成年女人永久免费观看视频| 全区人妻精品视频| 免费看日本二区| 亚洲精品粉嫩美女一区| 成年版毛片免费区| 亚洲欧美激情综合另类| 深夜精品福利| 曰老女人黄片| 国内精品久久久久久久电影| 亚洲,欧美精品.| 欧美精品啪啪一区二区三区| 国产成人av教育| 亚洲,欧美精品.| 亚洲国产精品合色在线| 禁无遮挡网站| 国产精品影院久久| 黄色 视频免费看| 亚洲成人久久爱视频| 日韩成人在线观看一区二区三区| 欧美中文综合在线视频| 中文字幕人妻丝袜一区二区| 精品国内亚洲2022精品成人| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 欧美成人一区二区免费高清观看 | 日韩av在线大香蕉| 不卡一级毛片| 精品一区二区三区视频在线 | 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| www日本在线高清视频| 免费人成视频x8x8入口观看| 亚洲国产高清在线一区二区三| 三级毛片av免费| 日韩 欧美 亚洲 中文字幕| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 一区二区三区国产精品乱码| 日日干狠狠操夜夜爽| 精品国产超薄肉色丝袜足j| 国产成人av教育| 国产精品,欧美在线|