• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LüROTH EXPANSION?

    2016-04-18 05:44:36ZhenliangZHANG張振亮SchoolofMathematicalSciencesHenanInstituteofScienceandTechnologyXinxiang453003ChinaSchoolofMathematicsandStatisticsHuazhongUniversitryofScienceandTechnologyWuhan430074ChinaEmailzhliangzhanghotmailcomChuny

    Zhenliang ZHANG(張振亮)School of Mathematical Sciences,Henan Institute of Science and Technology,Xinxiang 453003,China;School of Mathematics and Statistics,Huazhong Universitry of Science and Technology,Wuhan 430074,ChinaE-mail:zhliang zhang@hotmail.comChunyun CAO(曹春云)College of Science,Huazhong Agricultural Universitry,Wuhan 430070,ChinaE-mail:caochunyun@mail.hzau.edu.cn

    ?

    ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LüROTH EXPANSION?

    Zhenliang ZHANG(張振亮)
    School of Mathematical Sciences,Henan Institute of Science and Technology,
    Xinxiang 453003,China;
    School of Mathematics and Statistics,Huazhong Universitry of Science and Technology,
    Wuhan 430074,China
    E-mail:zhliang zhang@hotmail.com
    Chunyun CAO(曹春云)?
    College of Science,Huazhong Agricultural Universitry,Wuhan 430070,China
    E-mail:caochunyun@mail.hzau.edu.cn

    AbstractFor any x∈(0,1](except at most countably many points),there exists a unique sequence{dn(x)}n≥1of integers,called the digit sequence of x,such that

    The dexter in finite series expansion is called the Lüroth expansion of x.This paper is concerned with the size of the set of points x whose digit sequence in its Lüroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions with arbitrary common di ff erence.More precisely,we determine the Hausdor ff dimension of the above set.

    Key wordsLüroth expansion;arithmetic progression;Hausdor ff dimension

    2010 MR Subject Classi fi cation11K55;28A80

    ?Received September 15,2014;revised March 6,2015.This work was supported by NSFC(11326206,11426111).

    ?Corresponding author:Chunyun CAO.

    1 Introduction

    The Lüroth expansion was first introduced by Lüroth[1]in 1883.For any x∈(0,1],the Lüroth map T:(0,1]→(0,1]is de fined by

    Then we de fi ne the integer sequence

    where Tndenotes the nth iterate of T(T0=Id(0,1]).

    By algorithm(1.1)and(1.2),any x∈(0,1](except at most countably many points)can be developed uniquely into an in finite series expansion of the form

    which is called the Lüroth expansion of x and denote it by x=[d1(x),d2(x),···,dn(x),···]for short.

    The above algorithm implies dn≥2 for all n≥1.On the contrary,for a sequence of integers{dn}n≥1satisfying dn≥2,?n≥1,there exists a unique x∈(0,1]such that dn(x)=dn,?n∈N in the Lüroth expansion of x.Namely,each irrational x∈(0,1]is corresponding to an in finite integer sequence{dn}n≥1.

    Whether integer subset contains arbitrarily long arithmetic progressions is a long-standing question in number theory,especially for some peculiar subsets,such as primes.For this,Van der Waerden[2]in 1927 established that while the set of integers is arbitrarily partitioned into two classes,at least one class contains arbitrarily long arithmetic progressions.In 2008,Green and Tao[3]gave a a ffi rmative answer to the problem that the primes contain arbitrarily long arithmetic progressions.

    Since{dn}n≥1can assume arbitrarily large values,it is possible that there are points whose sequence of digits in its Lüroth expansion contains arbitrarily long arithmetic progressions.In this paper,we discuss the above long-standing question in the setting of Lüroth expansion in the view of metric number theory.To be speci fi c,we are interested in the set of points whose sequence of digits in its Lüroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions.Denote such a set by ES,i.e.,

    Furthermore,we care about the points whose sequence of digits in its Lüroth expansion contains the arithmetic progressions with arbitrary common di ff erence as well as satisfying above properties.More precisely,we consider the set EASde fined as follows:

    It is natural to ask how large such sets are in the sense of Lebesgue measure or Hausdor ff dimension.We prove that

    The growth speed of the digit sequence{dn(x)}n≥1was studied in[4].The metric and ergodic properties of the digit sequence{dn(x)}n≥1and the Lüroth map T de fined by(1.1)were extensively studied in[5](see also[6-11]).The behavior of approximating real numbers by Lüroth expansion was thoroughly investigated in[12-14].Since the Lüroth system can also be viewed as an in finite iterated function system,dimensional theory in Lüroth expansionis also attached great importance.The spectrum analysis of the frequency of the digits was given in[15,16].Especially in[17],they showed that the set of numbers with bounded Lüroth expansions(or bounded Lüroth series)is winning and strong winning,which implies that the set of full Hausdor ff dimension may contain no such numbers considered in this paper.

    2 Proof of Theorem 1.1

    In this section,we prove the main result of this note.Let us first fi x some notations and briefly recall some basic properties and known results of Lüroth expansion.

    For any n≥1 and dj≥2,1≤j≤n,call(d1,d2,···,dn)an admissible block of order n.For any n≥1,denote by Lnthe collection of all admissible blocks of order n,i.e.,

    For any(d1,d2,···,dn)∈ Ln,let

    where cl denotes the closure of a set.It is clear that In(d1,d2,···,dn)is a subinterval of(0,1],and from the algorithm(1.1),its length is given by the following formula.

    In order to compute the Hausdor ff dimension of the set ES,we recall a result of Shen which will be used later to estimate the upper bound of dimHES.

    Lemma 2.2(see[4])dimH{x∈[0,1):dn(x)→∞as n→∞}=12.

    We also need the following lemma(usually called Billingsley’s theorem),which is an important tool to obtain a lower bound on the Hausdor ff dimension in fractal geometry.

    Lemma 2.3(see[18])Let E?(0,1]be a Borel set andμis a measure withμ(E)>0.If for any x∈E,

    where B(x,r)is the ball with center x and radius r,then

    Now let us begin the proof of Theorem 1.1.

    The upper bound on dimHESis easily available from Lemma 2.2 by noting that{dn(x)}n≥1is strictly increasing implies that dn(x)→∞as n→∞.That is,

    To determine the lower bound of dimHEAS,for any integer α>2,we will first construct a proper set E(α)such that for any x∈E(α),the digit sequence of x is strictly increasing.Moreover,the Hausdor ff dimension of E(α)is approximate to12with the increase of α.From this springboard set,we construct a subset of the target set EASby inserting a group of arithmetic progressions at the appropriate positions in the digit sequences of the points in E(α).By the appropriate choice of the positions,we will find a H?lder function between this subset and E(α).The above idea has been applied successfully in[19,20].

    Lemma 2.4Let α≥2 be an integer,denote

    Then

    ProofIn order to estimate the Hausdor ff dimension of E(α),we shall make use of a kind of symbolic space described as follows.For any n≥1,set

    For each n≥1 and(d1,d2,···,dn)∈Dn,we call In(d1,d2,···,dn)an admissible cylinder of order n with respect to E(α).Then

    Now we construct a set functionμon admissible cylinder by:μ(I)=1 and for any n≥1,

    By the Carathéodory extension theorem,μcan be extended to a probability measure supported on E(α).

    In light of Billingsley’s theorem,we are required to check the above de fined measureμ satisfies(2.1)for all x∈E(α).For each x∈E(α),there exists a sequence{dn}n≥1such that for each n≥1,x∈In(d1,d2,···,dn)and(d1,d2,···,dn)∈Dn.For any 0<r<18,there exists n≥1 such that

    Note that for any adjacent admissible cylinders of order n with respect to E(α):I(d1,···,dn)and I(d1,···,dn+1),we have

    since dn>(2n)α≥4.Then B(x,r)can intersect at most fi ve nth order admissible cylinders and at least one(n+1)th order admissible cylinder.As a result,we have

    By Lemma 2.1,the proof is completed.

    From this springboard set,now we turn to construct points of EAS.For any l≥1 and d≥1,let Ldl={d,2d,···,ld}be an arithmetic progression with length l and common di ff erence d.Put

    The new arranged sequence is denoted by{Lk}k≥1.It is easy to observe that,for any k≥1,

    where maxLkdenotes the maximum of Lk.Without any confusion,Lkis considered as a vector with its elements arranged in increasing order.

    For every x∈E(α),we will construct a point y belonging to EAS.For this purpose,the strategy is to insert vectors Lk+dnk(x)at the position nk(to be chosen)of the digit sequence of Lüroth expansion of x.More precisely,let{nk}k≥0be a sequence of integers such that

    and

    For each x∈E(α),we construct the point y as follows.

    For 1≤n≤n1,set dn(y)=dn(x).

    For n≤n1+|L1|,set(dn1+1(y),···,dn1+|L1|(y))=dn1(x)+L1.

    For n>n1+|L1|,let k≥1 be the integer such that

    Then as above,

    For nk+|L1|+···+|Lk|<n≤nk+1+|L1|+···+|Lk|,set

    For nk+1+|L1|+···+|Lk|<n≤nk+1+|L1|+···+|Lk+1|,set

    By the construction,it is evident that arbitrarily long arithmetic progressionswith arbitrary common di ff erence occur in the sequence{dn(y)}n≥1.Besides,from condition(2.2)satis fied by the sequence{nk}k≥0and the fact maxLk≤k2,the sequence{dn(y)}n≥1is also strictly increasing.So,we conclude that y∈EAS.We call x the seed of y and denote by FS(α)the collection of points constructed in the above way,then we have

    Now we establish a connection between FS(α)and E(α)by means of a(1+∈)?1-H?lder function.Note that(2.3),for any∈>0,we can choose k0large enough such that for everyn≥nk0and k≥k0,

    Fix d1,d2,···,dnk0with(2j)α≤dj≤(2j+1)αfor 1≤j≤nk0.Let

    and denote by FS(d1,d2,···,dnk0)the corresponding set of points y whose seed belongs to the set E(d1,d2,···,dnk0).

    Now we de fi ne a map

    where x is the seed of y.It is easy to find the map f is bijective.What is more,we will claim the map f is(1+∈)?1?H?lder function.For any pair y1,y2∈FS(d1,d2,···,dnk0),let x1,x2be the seeds of y1and y2,respectively.Denote byˉn the smallest integer such thatThenAssume that

    for some k≥k0.Recall that if x is the seed of y,then for nk+1+|L1|+···+|Lk|<n≤nk+1+|L1|+···+|Lk+1|,

    Therefore,for any nk+1+|L1|+···+|Lk|≤n<nk+1+|L1|+···+|Lk+1|,if dn(y1)=dn(y2),then dnk+1(x1)=dnk+1+|L1|+···+|Lk|(y1)=dnk+1+|L1|+···+|Lk|(y2)=dnk+1(x2).So dn+1(y1)=

    dn+1(y2).By the de finition ofˉn,we only need to consider the case

    First of all,we estimate the gap between y1and y2.Without loss of generality,assume thatis on the left

    Thus,

    Combining this with

    we can obtain that the gap between y1and y2is greater than the distance between the right endpoint ofHence

    since α≥2 and nk∈N.

    Next,we estimate the gap between x1and x2.Recall thatnk+1+|L1|+···+|Lk|,we have

    So,by Lemma2.1,

    Noticing that

    and

    By(2.5)we have

    So,the map f is(1+∈)?1-H?lder function.Then

    for any(d1,d2,···,dnk0)∈Dnk0.Since

    and∈is arbitrary,we get

    By Lemma 2.4 and let α→∞,then we can get

    AcknowledgementsThe authors are grateful to Professor J.Wu for many helpful advices.

    References

    [1]Lüroth J.Ueber eine eindeutige entwickelung von zahlen in eine unendliche reihe.Math Ann,1883,21:411-423

    [2]Van der Waerden B L.Beweis einer Baudetschen Vermutung.Nieuw Arch Wisk,1927,15:212-216

    [3]Green B,Tao T.The primes contain arbitrarily long arithmetic progressions.Ann Math,2008,167:481-547

    [4]Shen L M,Fang K.The fractional dimensional theory in Lüroth expansion.Czech Math J,2011,61:795-807

    [5]Dajani K,Kraaikamp C.Ergodic Theory of Numbers.The Carus Mathematical Monographs 29.Washigton D C:Mathematical Association of America,2002

    [6]Galambos J.Representations of Real Numbers by In finite Series.Lecture Notes in Mathematical 502.Berlin:Springer,1976

    [7]Jager H,de Vroedt C.Lüroth series and their ergodic properties.Nederl Akad Wet,Proc,Ser,1969,72:31-42

    [8]Kesseb?hmer M,Munday S,Stratmann B O.Strong renewal theorems and Lyapunov spectra for α-Farey and α-Lüroth systems.Ergodic Theory Dyn Syst,2012,32:989-1017

    [9]Shen L M,Liu Y H,Zhou Y Y.A note on a problem of J.Galambos.Turkish J Math,2008,32:103-109

    [10]?alát T.Zur metrischen theorie der Lürothschen Entwicklungen der reellen Zahlen.Czech Math J,1968,18:489-522

    [11]Wang S K,Xu J.On the Lebesgue measure of sum-level sets for Lüroth expansion.J Math Anal Appl,2011,374:197-200

    [12]Barrionuevo J,Burton R M,Dajani K,Kraaikamp C.Ergodic properties of generalized Lüroth series.Acta Arith,1996,74:311-327

    [13]Cao C Y,Wu J,Zhang Z L.The e ffi ciency of approximating the reals by Lüroth expansion.Czech Math J,2013,63:497-513

    [14]Dajani K,Kraaikamp C.On approximation by Lüroth series.J Théor Nombres Bordeaux,1996,8:331-346

    [15]Barreiraa L,Iommi G.Frequency of digits in the Lüroth expansion.J Number Theory,2009,129:1479-1490

    [16]Fan A H,Liao L M,Ma J H,Wang B W.Dimension of Besicovitch-Eggleston sets in countable symbolic space.Nonlinearity,2010,23:1185-1197

    [17]Mance B,Tseng J.Bounded Lüroth expansions:applying Schmidt games where in finite distortion exists.Acta Arith,2013,158:33-47

    [18]Falconer K J.Techniques in Fractal Geometry.Chichester:John Wiley&Sons,1997

    [19]Hu D G,Hu X H.Arbitrarily long arithmetic progressions for continued fractions of laurent series.Acta Math Sci,2013,33B(4):943-949

    [20]Tong X,Wang B W.How many points contain arithmetic progressions in their continued fraction expansion? Acta Arith,2009,139:369-376

    亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品电影小说 | 久久久久久伊人网av| 亚洲国产精品sss在线观看| 久久精品国产自在天天线| 日日啪夜夜撸| 波多野结衣高清无吗| 只有这里有精品99| 久久精品国产自在天天线| 成人特级av手机在线观看| 亚洲av熟女| 18禁裸乳无遮挡免费网站照片| 97在线视频观看| 亚洲欧美精品专区久久| 亚洲精华国产精华液的使用体验| 久久这里有精品视频免费| 夜夜爽夜夜爽视频| 内地一区二区视频在线| 天堂影院成人在线观看| 国产精品.久久久| 91av网一区二区| 欧美性感艳星| 少妇人妻精品综合一区二区| 欧美日本视频| 亚洲av中文av极速乱| 国产私拍福利视频在线观看| 国产一区有黄有色的免费视频 | 国产精品1区2区在线观看.| 十八禁国产超污无遮挡网站| 国产精品99久久久久久久久| 黄片wwwwww| 综合色av麻豆| 亚洲国产精品成人综合色| 久久午夜福利片| 日本一二三区视频观看| 九九热线精品视视频播放| 精华霜和精华液先用哪个| 欧美bdsm另类| 免费看a级黄色片| 国产极品天堂在线| 久久久久久伊人网av| 成人无遮挡网站| 亚洲精品一区蜜桃| 国产白丝娇喘喷水9色精品| av国产免费在线观看| 一级二级三级毛片免费看| 午夜精品在线福利| 26uuu在线亚洲综合色| 尾随美女入室| 欧美日本视频| 亚洲,欧美,日韩| 在线a可以看的网站| 大香蕉久久网| 精品一区二区三区人妻视频| 成年女人永久免费观看视频| 韩国高清视频一区二区三区| 日韩在线高清观看一区二区三区| 在线观看66精品国产| 免费无遮挡裸体视频| 日本免费一区二区三区高清不卡| 日本wwww免费看| 床上黄色一级片| 网址你懂的国产日韩在线| 三级经典国产精品| 亚洲国产高清在线一区二区三| 国产精品不卡视频一区二区| 亚洲天堂国产精品一区在线| 国产日韩欧美在线精品| 看片在线看免费视频| 免费看光身美女| 国产成人freesex在线| 夫妻性生交免费视频一级片| 免费观看在线日韩| 国产免费福利视频在线观看| 日本五十路高清| 亚洲真实伦在线观看| 热99在线观看视频| 级片在线观看| 夜夜看夜夜爽夜夜摸| 男人舔女人下体高潮全视频| 长腿黑丝高跟| 精品免费久久久久久久清纯| 美女xxoo啪啪120秒动态图| 欧美日韩在线观看h| 免费av不卡在线播放| 大香蕉久久网| 欧美精品一区二区大全| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 观看免费一级毛片| 91久久精品电影网| 国产黄色小视频在线观看| 中文字幕亚洲精品专区| 国产熟女欧美一区二区| 淫秽高清视频在线观看| 国产精品伦人一区二区| 人体艺术视频欧美日本| 成年女人永久免费观看视频| 亚洲欧美一区二区三区国产| 中文在线观看免费www的网站| 国产在视频线在精品| 晚上一个人看的免费电影| 麻豆精品久久久久久蜜桃| 成年免费大片在线观看| 欧美另类亚洲清纯唯美| 三级国产精品片| 国产精品久久电影中文字幕| 亚洲丝袜综合中文字幕| 天天一区二区日本电影三级| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| av黄色大香蕉| 国产爱豆传媒在线观看| 国产精品三级大全| 一级毛片我不卡| 亚洲欧美日韩高清专用| 久久国内精品自在自线图片| 狂野欧美激情性xxxx在线观看| 少妇的逼好多水| 成年女人永久免费观看视频| 97热精品久久久久久| 一本一本综合久久| 亚洲人成网站在线播| 亚洲色图av天堂| 最近最新中文字幕免费大全7| 久久久国产成人免费| 人人妻人人看人人澡| 男女啪啪激烈高潮av片| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 国产在线一区二区三区精 | 一二三四中文在线观看免费高清| 日本猛色少妇xxxxx猛交久久| 久久精品久久精品一区二区三区| 三级毛片av免费| 三级毛片av免费| 久久人妻av系列| 人妻夜夜爽99麻豆av| 日韩强制内射视频| 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠久久av| 国产精品女同一区二区软件| 成年av动漫网址| 精品少妇黑人巨大在线播放 | av又黄又爽大尺度在线免费看 | 中文字幕熟女人妻在线| 国产亚洲最大av| 亚洲最大成人手机在线| 国产乱来视频区| 国产亚洲av片在线观看秒播厂 | 免费观看在线日韩| 日韩强制内射视频| 国产又黄又爽又无遮挡在线| 2021天堂中文幕一二区在线观| 综合色丁香网| 蜜桃亚洲精品一区二区三区| 看片在线看免费视频| 欧美人与善性xxx| 国产一区有黄有色的免费视频 | 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 色视频www国产| 中文字幕久久专区| 只有这里有精品99| 禁无遮挡网站| 国产又色又爽无遮挡免| 国产 一区精品| 国产在视频线精品| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 国产精品美女特级片免费视频播放器| 亚洲经典国产精华液单| 嫩草影院精品99| 男人狂女人下面高潮的视频| 亚洲性久久影院| 永久免费av网站大全| 欧美一区二区精品小视频在线| 97超碰精品成人国产| 久久精品久久久久久久性| 亚洲va在线va天堂va国产| 国产91av在线免费观看| 尾随美女入室| 日韩精品青青久久久久久| 国产高清视频在线观看网站| 毛片一级片免费看久久久久| 亚洲综合精品二区| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 成人漫画全彩无遮挡| 熟女人妻精品中文字幕| 国产成人a区在线观看| 久久鲁丝午夜福利片| 黄色配什么色好看| 一级黄色大片毛片| h日本视频在线播放| 日日啪夜夜撸| 青春草亚洲视频在线观看| 老司机影院成人| 日本三级黄在线观看| 国产高清不卡午夜福利| 一级毛片久久久久久久久女| 夜夜爽夜夜爽视频| 国产精品av视频在线免费观看| 亚洲国产精品成人久久小说| av福利片在线观看| 草草在线视频免费看| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 亚洲四区av| 午夜福利视频1000在线观看| 99热全是精品| 中文在线观看免费www的网站| 亚洲丝袜综合中文字幕| 精品熟女少妇av免费看| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 精品一区二区免费观看| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影| 久久精品影院6| 成人av在线播放网站| 欧美97在线视频| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲精品av在线| 成人亚洲欧美一区二区av| 午夜a级毛片| 久久99热这里只有精品18| 一边亲一边摸免费视频| 男女视频在线观看网站免费| 人妻系列 视频| 国产探花在线观看一区二区| 精品一区二区三区人妻视频| 欧美zozozo另类| a级一级毛片免费在线观看| 国产伦精品一区二区三区视频9| 三级毛片av免费| 成年版毛片免费区| 日韩制服骚丝袜av| 午夜老司机福利剧场| 国产亚洲一区二区精品| 夜夜爽夜夜爽视频| 久久精品国产亚洲av涩爱| 国产免费一级a男人的天堂| 亚洲一级一片aⅴ在线观看| 99在线视频只有这里精品首页| 偷拍熟女少妇极品色| 国产在视频线精品| 高清在线视频一区二区三区 | 日韩强制内射视频| 欧美潮喷喷水| 美女黄网站色视频| 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看 | 午夜久久久久精精品| 伦理电影大哥的女人| 男的添女的下面高潮视频| 热99在线观看视频| 综合色丁香网| 久久久久网色| 精品久久久噜噜| 精品不卡国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲va在线va天堂va国产| 久久精品国产亚洲av涩爱| 国产男人的电影天堂91| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 亚洲精品自拍成人| 色综合亚洲欧美另类图片| 成人特级av手机在线观看| 亚洲最大成人手机在线| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 一本久久精品| 老司机影院毛片| 国产黄色小视频在线观看| 亚洲av中文字字幕乱码综合| 床上黄色一级片| videos熟女内射| 亚洲精品日韩av片在线观看| 韩国高清视频一区二区三区| 久久久久久九九精品二区国产| 日韩欧美精品免费久久| 黄色日韩在线| 色哟哟·www| 韩国av在线不卡| 伊人久久精品亚洲午夜| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 久久99热6这里只有精品| 啦啦啦观看免费观看视频高清| 在线天堂最新版资源| 日日撸夜夜添| 国产在视频线精品| 少妇的逼水好多| 中文欧美无线码| 两个人视频免费观看高清| av黄色大香蕉| 91午夜精品亚洲一区二区三区| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 人体艺术视频欧美日本| 一级毛片我不卡| h日本视频在线播放| 日本免费a在线| kizo精华| 舔av片在线| 国产精品电影一区二区三区| 日韩欧美三级三区| 如何舔出高潮| 纵有疾风起免费观看全集完整版 | 2021少妇久久久久久久久久久| 国产人妻一区二区三区在| 赤兔流量卡办理| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| 亚洲精品一区蜜桃| 日本-黄色视频高清免费观看| 丰满乱子伦码专区| 人妻系列 视频| 国产成人a区在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 精品人妻视频免费看| 亚洲高清免费不卡视频| 国产成人精品一,二区| 人体艺术视频欧美日本| 美女黄网站色视频| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 22中文网久久字幕| 69人妻影院| 亚洲在久久综合| 日本色播在线视频| 欧美3d第一页| 免费观看a级毛片全部| 免费黄色在线免费观看| 国语自产精品视频在线第100页| 久久这里只有精品中国| 男人和女人高潮做爰伦理| 国产精品人妻久久久久久| 亚洲自拍偷在线| 亚洲av电影在线观看一区二区三区 | 亚洲欧美清纯卡通| 免费黄网站久久成人精品| 亚洲经典国产精华液单| 少妇被粗大猛烈的视频| 成年女人永久免费观看视频| 成年免费大片在线观看| 国产精品.久久久| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 国产一区二区亚洲精品在线观看| 午夜视频国产福利| 综合色av麻豆| 国产午夜精品论理片| 偷拍熟女少妇极品色| 色5月婷婷丁香| 久久久久久大精品| 国产 一区 欧美 日韩| 只有这里有精品99| 欧美xxxx黑人xx丫x性爽| 中文在线观看免费www的网站| 国产免费福利视频在线观看| 男人舔女人下体高潮全视频| 免费大片18禁| 高清在线视频一区二区三区 | 精华霜和精华液先用哪个| 精品欧美国产一区二区三| 国产成人一区二区在线| 精品免费久久久久久久清纯| 国产精品.久久久| 99国产精品一区二区蜜桃av| .国产精品久久| 成人无遮挡网站| 在线观看66精品国产| 一级毛片我不卡| 国产精品一区二区在线观看99 | 国产不卡一卡二| 97热精品久久久久久| 在线播放国产精品三级| .国产精品久久| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 成人亚洲欧美一区二区av| 欧美一区二区国产精品久久精品| 欧美成人午夜免费资源| 天天躁夜夜躁狠狠久久av| 两个人视频免费观看高清| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 色尼玛亚洲综合影院| 亚洲综合色惰| 久久久精品大字幕| 国产精品日韩av在线免费观看| 欧美变态另类bdsm刘玥| 国产精品日韩av在线免费观看| 级片在线观看| 黄片wwwwww| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 看黄色毛片网站| 男女下面进入的视频免费午夜| 人妻少妇偷人精品九色| 国产免费男女视频| 七月丁香在线播放| 国产精品久久久久久久久免| 亚洲精品自拍成人| 国产精品伦人一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 只有这里有精品99| 精品久久久久久成人av| 日韩欧美三级三区| 欧美变态另类bdsm刘玥| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添av毛片| 亚洲内射少妇av| 18禁动态无遮挡网站| 精品国产一区二区三区久久久樱花 | 天堂影院成人在线观看| 蜜臀久久99精品久久宅男| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 精品午夜福利在线看| 18禁动态无遮挡网站| 3wmmmm亚洲av在线观看| 国产 一区 欧美 日韩| 高清av免费在线| 国产又色又爽无遮挡免| 日日干狠狠操夜夜爽| 亚洲成色77777| 亚洲最大成人手机在线| 午夜日本视频在线| 成人亚洲精品av一区二区| 亚洲av.av天堂| 啦啦啦韩国在线观看视频| 久久久久久大精品| 欧美激情久久久久久爽电影| 亚洲精品国产av成人精品| 欧美一区二区精品小视频在线| 建设人人有责人人尽责人人享有的 | 国产一区有黄有色的免费视频 | 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| www.色视频.com| 国产精品蜜桃在线观看| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 色播亚洲综合网| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 建设人人有责人人尽责人人享有的 | 乱系列少妇在线播放| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 成人综合一区亚洲| 亚洲国产欧美在线一区| 99热这里只有是精品50| 一级毛片电影观看 | 国产视频首页在线观看| 色综合色国产| 春色校园在线视频观看| 午夜福利在线在线| 青春草国产在线视频| 欧美又色又爽又黄视频| 国产麻豆成人av免费视频| av.在线天堂| 91久久精品国产一区二区成人| 免费av观看视频| 久久久久久久久久黄片| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| 两个人的视频大全免费| 精品熟女少妇av免费看| 日韩高清综合在线| 永久免费av网站大全| 成人鲁丝片一二三区免费| 久久久成人免费电影| 乱码一卡2卡4卡精品| 亚洲一级一片aⅴ在线观看| 国产在视频线在精品| 99久久精品热视频| 欧美成人免费av一区二区三区| 国产女主播在线喷水免费视频网站 | 男女啪啪激烈高潮av片| 99在线视频只有这里精品首页| 99视频精品全部免费 在线| 狠狠狠狠99中文字幕| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看 | 国产精品人妻久久久影院| 精品99又大又爽又粗少妇毛片| 91av网一区二区| 欧美成人精品欧美一级黄| 只有这里有精品99| 国产在视频线在精品| 综合色av麻豆| 在线a可以看的网站| 亚洲欧美一区二区三区国产| 成人国产麻豆网| 亚洲av成人精品一区久久| 国产av不卡久久| 国产精品电影一区二区三区| 有码 亚洲区| 联通29元200g的流量卡| 国产精品一及| 午夜精品国产一区二区电影 | 日本猛色少妇xxxxx猛交久久| 国产色爽女视频免费观看| 热99re8久久精品国产| 亚洲av中文av极速乱| a级毛色黄片| 国产真实伦视频高清在线观看| 99热全是精品| av在线观看视频网站免费| 国产精品一二三区在线看| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 又粗又硬又长又爽又黄的视频| 麻豆成人av视频| 亚洲va在线va天堂va国产| 国产av在哪里看| 国产在视频线在精品| 嫩草影院精品99| 99视频精品全部免费 在线| 免费在线观看成人毛片| 色吧在线观看| 国产午夜精品一二区理论片| 97热精品久久久久久| 汤姆久久久久久久影院中文字幕 | 国产综合懂色| 久久精品综合一区二区三区| 中文资源天堂在线| 日本爱情动作片www.在线观看| 黄色一级大片看看| 日韩av在线大香蕉| 岛国毛片在线播放| 一边摸一边抽搐一进一小说| 国产精品1区2区在线观看.| 一二三四中文在线观看免费高清| 天堂av国产一区二区熟女人妻| 精品一区二区免费观看| 直男gayav资源| 国产成人91sexporn| videos熟女内射| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 精品久久久久久久久av| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 国产午夜精品一二区理论片| 听说在线观看完整版免费高清| 美女脱内裤让男人舔精品视频| 久久精品久久久久久久性| 精品午夜福利在线看| 黄色一级大片看看| 欧美色视频一区免费| 午夜a级毛片| 国产精品人妻久久久久久| 亚洲综合精品二区| 97人妻精品一区二区三区麻豆| 青春草视频在线免费观看| 久久久久久大精品| 看免费成人av毛片| 插阴视频在线观看视频| 午夜福利在线观看免费完整高清在| 午夜福利视频1000在线观看| 国产成人精品久久久久久| 1024手机看黄色片| 三级国产精品欧美在线观看| 国产精华一区二区三区| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 国内精品美女久久久久久| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 内地一区二区视频在线| 午夜a级毛片| 最近最新中文字幕大全电影3| 色哟哟·www| 人妻制服诱惑在线中文字幕| 欧美xxxx性猛交bbbb| 最近最新中文字幕免费大全7| 免费看光身美女| 三级毛片av免费| 免费观看a级毛片全部| 国产综合懂色| 男女国产视频网站| 久久久久久久久久成人| 视频中文字幕在线观看| 网址你懂的国产日韩在线| 97热精品久久久久久| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 亚洲中文字幕日韩| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 亚洲人与动物交配视频| 97人妻精品一区二区三区麻豆| 亚洲不卡免费看| 久久久久久久久大av| 国产成人精品一,二区|