• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?

    2016-04-18 05:44:38ZhengzhengCHEN陳正爭(zhēng)XiaojuanCHAI柴曉娟WenjuanWANG王文娟SchoolofMathematicalSciencesAnhuiUniversityHefei230601China
    關(guān)鍵詞:王文娟

    Zhengzheng CHEN(陳正爭(zhēng))Xiaojuan CHAI(柴曉娟)Wenjuan WANG(王文娟)School of Mathematical Sciences,Anhui University,Hefei 230601,China

    ?

    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?

    Zhengzheng CHEN(陳正爭(zhēng))?Xiaojuan CHAI(柴曉娟)Wenjuan WANG(王文娟)
    School of Mathematical Sciences,Anhui University,Hefei 230601,China

    E-mail:chenzzandu@163.com;chaixj.ahu@gmail.com;wangwenjuan@ahu.edu.cn

    AbstractThis paper is concerned with a singular limit for the one-dimensional compressible radiation hydrodynamics model.The singular limit we consider corresponds to the physical problem of letting the Bouguer number in finite while keeping the Boltzmann number constant.In the case when the corresponding Euler system admits a contact discontinuity wave,Wang and Xie(2011)[12]recently veri fied this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact discontinuity wave in the L∝-norm away from the discontinuity line at a rate of,as the reciprocal of the Bouguer number tends to zero.In this paper,Wang and Xie’s convergence rate is improved toby introducing a new a priori assumption and some re fined energy estimates.Moreover,it is shown that the radiation fl ux q tends to zero in the L∝-norm away from the discontinuity line,at a convergence rate as the reciprocal of the Bouguer number tends to zero.

    Key wordsradiation hydrodynamics model;singular limit;contact discontinuity;convergence rate;energy estimates

    2010 MR Subject Classi fi cation35L65;58J45

    ?Received September 15,2014;revised May 25,2015.This work was supported by the Doctoral Scienti fi c Research Funds of Anhui University(J10113190005)and the Tian Yuan Foundation of China(11426031).

    ?Corresponding author:Zhengzheng CHEN.

    1 Introduction

    The compressible radiation hydrodynamics model that governs the motions of the one-dimensional radiating gas can be written in the Lagrangian coordinates as(see[1-6])

    here the unknown functions are the speci fi c volume v>0,the velocity u,the absolute temperature θ>0,the internal energy e,the pressure P and the radiation fl ux q of the fluids respectively.The parameter ε>0 represents the reciprocal of the Bouguer number,and v±>0,u±and θ±are given constants.For the derivation and physical meaning of ε,we refer to[5,6]for details.

    In the ideal fluids,i.e.,ε=0,system(1.1)is reduced to the compressible Euler system:

    which is a strict hyperbolic system of conservation laws.The Riemann problem of system(1.2)admits some basic wave patterns:the shock wave,rarefaction wave,contact discontinuity and some linear combinations of them,called the Riemann solution.

    We are concerned with the limiting process of the the radiation hydrodynamics flows when ε tends to zero and expect that the solution of(1.1)will approach to the Riemann solution of the Euler system(1.2)in such a process.This problem has been recently studied by some authors with signi fi cant progress.In[12],Wang and Xie first considered the singular limit to a single contact discontinuity and proved that the smooth solution of system(1.1)tends to the strong contact discontinuity solution of(1.2)as ε→0.Moreover,a convergence rateis obtained in[12].The main difficulty they encounter lies in deducing the suitable a priori estimates for solutions of(1.1)because the system is much less dissipative.To achieve those,they use a direct but trick energy analysis.Then using some similar ideas as[12],Rohde,Wang and Xie[13]considered the singular limit to the supposition of rarefaction waves and contact discontinuity for system(1.1)with a slower convergence rate

    A natural and interesting problem is that whether the convergence rates established in[12,13]can be improved further?The main purpose of this paper is devoted to this problem and as a first step,we consider the same problem as[12]and focus our attention on improving the convergence rate.By introducing a new a priori assumption(2.6)and some re fined energy estimates,we obtain a faster convergence rate ε78,instead of ε1

    4received in[12].

    Now we begin to formulate our main result.In the present paper,we consider the ideal polytropic fluids so that P and e are given by

    where γ>1 is the adiabatic exponent,s is the entropy and A,R are two positive constants.We impose(1.2)with the following Riemann initial data

    It is known that the contact discontinuity solution of the Riemann problem(1.2)-(1.3)takes the form[8,9]

    provided that

    In the setting of the compressible radiation hydrodynamics model(1.1),the corresponding wave to the contact discontinuity becomes smooth and behaves as a di ff usion wave due to the radiation effect.We call this wave a“viscous contact wave”.As[13],we construct the viscous contact waveas follows.Motivated by(1.5),the pressure of the profileis expected to be almost constant,that is

    And the radiation fl ux Q is expected to act a di ff usion term

    Then the energy equation(1.1)3is approximated by

    Using equations(1.6),(1.7)and Vt=Ux,we get a nonlinear di ff usion equation

    which has a unique self-similarity solutiondue to[10,11,34].Furthermore,Θ(ξ)is a monotone function,increasing if θ+>θ?and decreasing if θ+<θ?.On the other hand,there exists some positive constant,such that for δ=|θ+?θ?|≤,Θ satisfies

    where c0and c1are two positive constants depending only on θ?andOnce Θ is determined,the viscous contact wave profileis defined as follows:

    It is easy to check that the viscous contact wavesatisfies

    and

    Our main result is stated as follows.

    Theorem 1.1For any given(v?,u?,θ?),suppose that(v+,u+,θ+)satisfies(1.5).Let(vcd,ucd,θcd)be the contact discontinuity solution de fined in(1.4)for the Riemann problem(1.2)-(1.3).Then for any given large time T>0 and small constant σ>0,there exists a small constant ε0>0 such that for any ε∈(0,ε0),system(1.1)with the same initial data as those of(ˉV,ˉU,ˉΘ)admits a unique smooth solution(vε,uε,θε,qε)in[0,T]×R,still denoted by(v,u,θ,q).Moreover,it holds that

    where C>0 is a constant independent of ε.

    Remark 1.2In Theorem 1.1,we only require the strength of the contact discontinuity to be finite and have no need to restrict it to be small.

    Remark 1.3Although the convergence rate in(1.14)is the same as that in[12],we can show in(4.3)below that

    Notice that(1.17)and(1.15)obviously improve the corresponding ones obtained in[12].Moreover,(1.16)is essentially new compared with the former results.

    Remark 1.4A similar argument can be applied to study the singular limit for the 1-D compressible radiation hydrodynamics model to the superposition of rarefaction waves and contact discontinuity,and thus improves the main result of[13].

    Now we outline the main ideas used in proving our main result.The faster convergence rateobtained in(1.15)is essentially due to two factors.One is the ansatzde fined(1.10),which was first used in[13]for the study of the singular limit for the 1-D compressible radiation hydrodynamics model to the superposition of rarefaction waves and contact discontinuity.This ansatz satisfies the mass equation and the momentum equationexactly,while the error terms occur only in the energy and radiation equations.Notice that the error term R1is higher order in ε than the corresponding one de fined in[12]and thus leads the convergence to become faster.The other one,which is also the main novelty of this paper,is the new a priori assumption de fined in(2.6)below.To state our argument clearly,let’s recall that the analysis in[12]is to perform some energy estimates based on the a priori assumption that

    We observe that the first termin the right hand of(1.20)can be improved to Cε by some more elaborate energy estimates.Moreover,if we drive the energy estimates under the a priori assumption that

    with a>0 being a positive constant to be determined later,then the estimates(1.19),(1.20)with the termreplaced by Cε andstill hold by the smallness of ε,thus we obtain thatwithrespectively.Then by the Sobolev inequality,the convergence rate for‖(φ,ψ,ζ)(τ)‖L∝is improved toFurthermore,one can prove that‖(φyy,ψyy,ζyy)(τ)‖2≤ Cεθwithand consequently,the norm N(τ0,τ1)de fined in(1.18)can be bounded byand thus the a priori assumption(1.21)is indeed true by choosing a to be some positive constant smaller thanand ε>0 sufficiently small.

    Based on the above observations,we choose the new a priori assumption(2.6)in this paper.Such type a priori assumption is first used in[26]for the study of vanishing viscosity limit torarefaction wave with vacuum for the 1-D compressible Navier-Stokes equations.However,unlike the case of the zero dissipation limit to rarefaction wave[26,27,35],the a priori assumption(2.6)can indeed improve the convergence rate for solutions of the 1-D compressible radiation hydrodynamics model toward the contact discontinuity.We remark that the method of this paper can also be applied to study the zero dissipation limit to contact discontinuity for the 1-D compressible Navier-Stokes equations and thus improves the main results obtained in[17,18].

    Before concluding this section,we point out that there have been extensive studies on the compressible radiation hydrodynamics model and related models.Kawashima and Nishibata[6]studied a singular limit for a certain class of hyperbolic-elliptic coupled systems which contains a compressible radiation hydrodynamic system as a typical example.They shown that the solution to the hyperbolic-elliptic coupled system converges to the solution of the corresponding hyperbolic-parabolic coupled system with a convergence rate.In[24],Lattanzio and Marcati considered both the hyperbolic-parabolic and the hyperbolic-hyperbolic relaxation limits for the scalar Hamer model[7],which is the third order approximation of system(1.1).The results in[24]were later generalized by Francesco[33]to multidimensional case.For more interesting results on the Hamer model,we refer to[19-23,28,29]and the references therein.We should note that the existence and nonlinear stability of the basic waves for the compressible radiation hydrodynamics model has been studied extensively,we refer to[1,2,25,32]for the existence and nonlinear stability of shock profiles,[14-16]for the stability of contact discontinuity wave,and[30,31]for the stability of rarefaction wave.

    The reminder of this paper is organized as follows.After stating some notations,in Section 2,we will reformulate our problem into a perturbation one near the viscous contact wavede fined in(1.10).Section 3 is devoted to deducing the a priori estimates for solutions to the Cauchy problem(2.4).Finally,the proof of our main Theorem 1.1 is given in Section 4.

    NotationsThroughout this paper,for simplicity,we will omit the variables t,x of functions if it does not cause any confusion.C denotes a generic constant which may vary in different estimates.If the dependence need to be explicitly pointed out,the notations Ci(i∈N)are used.Hl(R)denotes the usual l-th order Sobolev space with its norm

    2 Reformulation of the Problem

    This section is devoted to reformulating our original problem.Due to estimates(1.9)and(1.11),to prove the main theorem,it suffices to show that there exists a solution to(1.1)in a neighborhood of the viscous contact waveand the asymptotic behavior of the solution to(1.1)is given byfor small parameter ε.Suppose that(v,u,θ,q)is the solution of system(1.1)with the following initial data:

    De fi ne

    then we deduce from(1.1),(1.12)and(2.1)that

    Using the following scalings:

    then problem(2.3)is reformulated as

    which will be achieved in the sections followed.In what follows,we seek the solutions to problem(2.4)in the following function space:

    for some τ∈[τ0,τ1].

    3 A Priori Estimates

    In this section,we establish the a priori estimates for solutions of the Cauchy problem(2.4).

    Proposition 3.1(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(φ,ψ,ζ,w)∈X[τ0,τ2]is a solution of the Cauchy problem(2.4)for some τ0<τ2≤τ1,and satisfies the a priori assumption(2.6),then there exist positive constants ε0?1 and C0which are independent of ε and τ2,such that for 0<ε<ε0,it holds that

    Proposition 3.1 can be obtained by a series of lemma below.Before proving the a priori estimates(3.1)-(3.2),we have from the a priori assumption(2.6)and the Sobolev inequality

    that

    Furthermore,by the smallness of ε,we have

    and

    With(3.5)-(3.6)in hand,we now give the L2-estimates on(φ,ψ,ζ)(τ,y).

    Lemma 3.2Under the assumptions of Proposition 3.1,if ε is suitably small,then there exists a positive constant C>0 such that

    ProofSimilar to[12],we have

    where

    On the other hand,multiplying(2.4)4by w,we get by a direct computation that

    Notice that Φ(1)=Φ′(1)=0 and Φ′′(s)>0,there exists positive constants C1and C2such that

    Putting(3.9)into(3.8)and integrating the resultant equation in τ and y over[τ0,τ]×R,we have from(3.10)that

    Now we estimate the terms Ii,i=1,2,3,4 one by one.It follows from(2.5)1and the Cauchy inequality that

    here and hereafter,η>0 denotes a suitably small constant and Cη>0 denotes a constant depending on η.

    Using integration by parts,(1.10),(2.5)1,(3.4)and the Cauchy inequality,we have

    and

    Combining(3.11)-(3.15),we get by the smallness of ε and η that

    Then Gronwall’s inequality implies that

    which yields(3.7)immediately.This completes the proof of Lemma 3.2.

    Next,we estimate‖(φy,ψy,ζy)(τ)‖2.

    Lemma 3.3Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    ProofLet S=(v,u,θ),then system(1.1)1,2,3can be rewritten in the following symmetric form

    where g(qy)=(0,0,?qy)?and

    Set W=S?ˉS=(φ,ψ,ζ)(τ,y),it follows from(3.19)and(3.20)that

    with

    Multiplying(3.21)by A0(S)?1and differentiating the resulting equation with respect to y,then multiplying the resultant equation by(Wy)?A0(S),we obtain by a direct calculation that

    here〈·,·〉denotes the usual inner product on R3and

    On the other hand,we rewrite equation(2.4)4as

    Multiplying(3.25)by wyyyields

    Combining(3.23)with(3.26),and integrating the resulting equation in τ and y over[τ0,τ]× R,we have

    Now we estimate Ii,i=6,7,8 term by term.It follows from integration by parts,(2.5)1and(3.4)that

    where we have used the fact that

    due to(3.20)and(3.21),respectively.

    For I7,we have

    Similar to the estimate of I6,we have

    We deduce from(2.5)1,(3.22)and(3.29)that

    thus

    Similarly,

    Combining(3.31),(3.33)and(3.34),we obtain

    For I8,we deduce from integration by parts that

    Similar to the estimates as above,can be estimated as follows

    Thus it follows from(3.36)-(3.40)that

    Substituting(3.28),(3.35)and(3.41)into(3.27),we have by(3.5)-(3.6),Lemma 3.2 and the smallness of ε and η that

    Then(3.18)follows immediately by combining(3.42)and(3.7).This completes the proof of Lemma 3.3.

    To close the a priori estimates,we control the termin the following

    Lemma 3.4Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    ProofWe rewrite equations(2.4)2and(2.4)3as

    Linearizing(3.44)around the viscous contact waveyields

    Integrating(3.46)in τ and y over[τ0,τ2]×R gives rise to

    Now we estimate Ji,i=1,2,3,4,5 respectively.First,we deduce from(2.5)1and the Cauchy inequality that

    where in the last inequality of(3.49),we have used the fact that

    due to(2.5)1.Using the Cauchy inequality,(2.5)1and Lemma 3.2,we obtain

    Similarly,it holds

    and

    Combining(3.47)-(3.52),using Lemmas 3.2-3.3 and the smallness ε and η,we get

    Multiplying(3.54)by 2C3and adding the resultant equation to(3.53),using Lemmas 3.2-3.3 and the smallness ε,we can get(3.43).This completes the proof of Lemma 3.4.

    As a consequence of Lemmas 3.2-3.4,we have

    Corollary 3.5Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    Lemma 3.6Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that for all τ∈[τ0,τ2],

    provided that ε is suitably small.

    ProofWe rewrite equation(2.4)4as

    Multiplying(3.58)by w and integrating the resultant equation in y over R,we have from integration by parts that

    Using the smallness of η and ε,and Corollary 3.5,we obtain

    Then it follows from(3.58)that

    Therefore we have(3.57)holds.This completes the proof of Lemma 3.6.

    By repeating the same argument,we can also obtain

    Lemma 3.7Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    Proof of Proposition 3.1Proposition 3.1 follows immediately from Corollary 3.5 and Lemmas 3.6-3.7.

    4 Proof of Main Result

    Now,we are ready to prove our main result as follows.

    Proof of Theorem 1.1Since Proposition 3.1 is proved,we can close the a priori assumption(2.6)by choosing ε in(3.1)-(3.2)sufficiently small.Then by the standard continuity argument,one can extend the local-in-time solution to the time τ=τ1.Moreover,estimates(3.1)-(3.2)hold for τ2=τ1,that is

    Thus

    which together with(1.11)gives(1.14).Moreover,by the Sobolev inequality(3.3)and(4.1)-(4.2),we have

    then(1.15)and(1.16)follows from(4.4),(1.9)and(4.5),(1.9),respectively.This completes the proof of Theorem 1.1.

    References

    [1]Lin C J,Coulombel J F,Goudon T.Shock pro fl ies for non-equilibrium radiating gases.Phys D,2006,218:83-94

    [2]Lin C J,Coulombel J F,Goudon T.Asymptotic stability of shock pro fl ies in radiative hydrodynamics.C R Math Acad Sci Paris,2007,345:625-628

    [3]Mihalas D,Mihalas B.Foundation of Radiation Hydrodynamics.London:Oxford University Press,1984

    [4]Pomraning G C.The Equations of Radiation Hydrodynamics.New York:Pergamon Press,1973

    [5]Vincenti W,Kruger C.Introduction to Physical Gas Dynamics.New York:Wiley,1965

    [6]Kawashima S,Nishibata S.A singular limit for hyperbolic-parabolic coupled systems in radiation hydrodynamics.Indiana Univ Math J,2001,50:567-589

    [7]Hamer K.Nonlinear effects on the propagation of sound waves in a radiating gas.Quart J Mech Appl Math,1971,24:155-168

    [8]Serre D.Systems of Conservation Laws,Vol 1.Cambridge:Cambridge University Press,1999

    [9]Smoller J.Shock Waves and Reaction-Di ff usion Equations.New York:Springer-Verlag,1994

    [10]Atkinson F V,Peletier L A.Similarity solutions of the nonlinear di ff usion equation.Arch Rational Meth Anal,1974,54:373-392

    [11]Duyn C J,Peletier L A.A class of similarity solutions of the nonlinear di ff usion equation.Nonlinear Anal,1976/77,1(3):223-233

    [12]Wang J,Xie F.Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model.SIAM J Math Anal,2011,43:1189-1204

    [13]Rohde C,Wang W J,Xie F.Hyperbolic-Hyperbolic relaxation limit for a 1D compreesible radiation hydrodynamics model:superposition of rarefaction wave and contact wave.Commun Pure Appl Anal,2013,12:2145-2171

    [14]Wang J,Xie F.Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system,J Di ff er Equ,2011,251:1030-1055

    [15]Xie F.Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model.Discrete Contin Dyn Syst Ser B,2012,17:1075-1100

    [16]Rohde C,Xie F.Decay rates to viscous contact wave for a 1D compressible radiation hydrodynamics model.Math Models Methods Appl Sci,2013,23:441-469

    [17]Ma S X.Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations.J Di ff er Equ,2010,48:95-110

    [18]Ma S X.Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations.J Math Anal Appl,2012,387:1033-1043

    [19]Kawashima S,Nikkuni Y,Nishibata S.Larger-time behavior of solutions to hyperbolic-elliptic coupled systems.Arch Ration Mech Anal,2003,170:297-329

    [20]Kawashima S,Nikkuni Y,Nishibata S.The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics//Analysis of Systems of Conservation Laws.Chapman and Hall/CRC,1997:87-127

    [21]Kawashima S,Nishibata S.Weak solutions with a shock to a model system of the radiating gas.Sci Bull Josai Univ,1998,5:119-130

    [22]Kawashima S,Nishibata S.Cauchy problem for a model system of the radiating gas:weak solutions with a jump and classical solutions.Math Models Methods Appl Sci,1999,9:69-91

    [23]Kawashima S,Nishibata S.Shock waves for a model system of a radiating gas.SIAM J Math Anal,1999,30:95-117

    [24]Lattanzio C,Marcati P.Golobal well-posedness and relaxation limits of a model for radiating gas.J Di ff er Equ,2003,190:439-465

    [25]Lattanzio C,Mascia C,Serre D.Shock waves for radiative hyperbolic-elliptic systems.Indiana Univ Math J,2007,56:2601-2640

    [26]Huang F M,Li M J,Wang Y.Zero dissipation limit to rarefaction wave with vacuum for the 1-D compressible Navier-Stokes equations.SIAM J Math Anal,2012,44:1742-1759

    [27]Huang F M,Li X.Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations.Chin Ann Math Ser B,2012,33:385-394

    [28]Gao W L,Zhu C J.Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions.Math Models Methods Appl Sci,2008,18:511-541

    [29]Gao W L,Ruan L Z,Zhu C J.Decay rates to the planar rarefaction waves for a model system of the radiating gas in n dimensions.J Di ff er Equ,2008,244:2614-2640

    [30]Lin C J.Asymptotic stability of rarefaction waves in radiative hydrodynamics.Commun Math Sci,2011,9:207-223

    [31]Xiao Q H,Liu Y N,Kim J S.Asymptotic behavior of rarefaction waves for a model system of a radiating gas.J Inequal Appl,2012,Art ID:81

    [32]Nguyen T,Plaza R G,Zumbrun K.Stability of radiative shock profiles for hyperbolic-elliptic coupled systems.Phys D,2010,239:428-453

    [33]Francesco M Di.Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables.NoDEA Nonlinear Di ff erential Equations Appl,2007,13:531-562

    [34]Hong H,Huang F M.Asymptotic behavior of solutions toward the superposition of contout discontinuity and shock wave for compressible Navier-Stokes equations with free boundary.Acta Math Sci,2012,32B(1):389-412

    [35]Xin Z P.Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases.Comm Pure Appl Math,1993,46:621-665

    猜你喜歡
    王文娟
    越劇名伶王文娟的世紀(jì)人生
    人人健康(2023年12期)2023-06-28 09:23:22
    “林妹妹”王文娟的性格人生:臺(tái)上復(fù)雜,臺(tái)下簡(jiǎn)單
    廉政瞭望(2021年8期)2021-08-27 08:42:37
    『林妹妹』王文娟的性格人生:臺(tái)上復(fù)雜,臺(tái)下簡(jiǎn)單
    廉政瞭望(2021年15期)2021-08-23 04:57:48
    My English teacher
    “林妹妹”王文娟:養(yǎng)生要糙一點(diǎn)
    Almost Sure Convergence of Weighted Sums for Extended Negatively Dependent Random Variables Under Sub-Linear Expectations
    似一朵青云剛出岫
    東方女性(2017年1期)2017-03-01 17:06:39
    找規(guī)律
    王文娟:越劇“女神”的“簡(jiǎn)單”生活
    迅達(dá)咨詢,享譽(yù)西南——專訪四川省迅達(dá)工程咨詢監(jiān)理有限公司總經(jīng)理 王文娟
    亚洲国产高清在线一区二区三| 99久久久亚洲精品蜜臀av| 超碰成人久久| 我的老师免费观看完整版| 无遮挡黄片免费观看| 亚洲精品美女久久久久99蜜臀| 免费搜索国产男女视频| 日韩欧美在线二视频| 99久久99久久久精品蜜桃| 麻豆久久精品国产亚洲av| 国产91精品成人一区二区三区| 岛国在线免费视频观看| 97超级碰碰碰精品色视频在线观看| 日韩大尺度精品在线看网址| 女同久久另类99精品国产91| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 国产精品亚洲美女久久久| 国产精品影院久久| 琪琪午夜伦伦电影理论片6080| 给我免费播放毛片高清在线观看| 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 免费av毛片视频| 母亲3免费完整高清在线观看| 麻豆国产av国片精品| 亚洲九九香蕉| 女人爽到高潮嗷嗷叫在线视频| 国产黄片美女视频| 在线观看www视频免费| 婷婷亚洲欧美| 国产成人精品久久二区二区免费| 老司机午夜福利在线观看视频| 久久这里只有精品19| xxxwww97欧美| 亚洲avbb在线观看| 欧美久久黑人一区二区| 一级毛片精品| 91在线观看av| 国产精品一区二区精品视频观看| 身体一侧抽搐| 国产亚洲精品第一综合不卡| 午夜a级毛片| 亚洲男人天堂网一区| 国产三级黄色录像| 黄色片一级片一级黄色片| 窝窝影院91人妻| 久久久久久人人人人人| 国产一区二区三区在线臀色熟女| 国产单亲对白刺激| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 1024手机看黄色片| 国产成人精品久久二区二区免费| 一级a爱片免费观看的视频| 欧美日韩亚洲综合一区二区三区_| 国产成人aa在线观看| 国产1区2区3区精品| 12—13女人毛片做爰片一| 亚洲国产欧洲综合997久久,| 黄色片一级片一级黄色片| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 一个人免费在线观看电影 | 国产成人精品无人区| 中出人妻视频一区二区| 日韩精品中文字幕看吧| 欧美午夜高清在线| 在线观看午夜福利视频| 一级毛片女人18水好多| 国产三级中文精品| 听说在线观看完整版免费高清| 国产精华一区二区三区| av在线天堂中文字幕| 欧美极品一区二区三区四区| 亚洲人与动物交配视频| 99热这里只有精品一区 | 欧美日韩乱码在线| 亚洲精品久久国产高清桃花| 最近在线观看免费完整版| 成年免费大片在线观看| 日韩欧美国产在线观看| 天堂av国产一区二区熟女人妻 | 欧美日本亚洲视频在线播放| 此物有八面人人有两片| 最近最新中文字幕大全免费视频| 国产一区二区激情短视频| 欧美又色又爽又黄视频| 后天国语完整版免费观看| 久久香蕉国产精品| 黄片小视频在线播放| 亚洲国产欧洲综合997久久,| 极品教师在线免费播放| 久久久久久久午夜电影| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 99国产精品一区二区三区| 国产一区在线观看成人免费| 丝袜人妻中文字幕| 精品高清国产在线一区| 美女大奶头视频| 欧美黑人巨大hd| 久久久久精品国产欧美久久久| 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 蜜桃久久精品国产亚洲av| av免费在线观看网站| 国产欧美日韩一区二区三| 91国产中文字幕| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 欧美久久黑人一区二区| 嫩草影视91久久| 极品教师在线免费播放| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 久久久水蜜桃国产精品网| 国产精品美女特级片免费视频播放器 | 国产成人精品无人区| 成人18禁在线播放| www.自偷自拍.com| 日本 欧美在线| 国产在线精品亚洲第一网站| 国产av在哪里看| 国产伦人伦偷精品视频| 观看免费一级毛片| 人人妻人人澡欧美一区二区| 久久精品91无色码中文字幕| 国产1区2区3区精品| 日韩成人在线观看一区二区三区| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 成人国产一区最新在线观看| 中亚洲国语对白在线视频| 久久热在线av| 亚洲真实伦在线观看| 两个人视频免费观看高清| 高清在线国产一区| 两个人的视频大全免费| 国产高清有码在线观看视频 | 美女大奶头视频| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 麻豆久久精品国产亚洲av| 久久中文字幕人妻熟女| 成人18禁高潮啪啪吃奶动态图| 国内少妇人妻偷人精品xxx网站 | 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看 | 国产精品亚洲一级av第二区| 极品教师在线免费播放| 亚洲在线自拍视频| 99re在线观看精品视频| 一进一出抽搐动态| 变态另类成人亚洲欧美熟女| 一二三四社区在线视频社区8| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看 | 欧美日本视频| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 宅男免费午夜| 中出人妻视频一区二区| 日韩免费av在线播放| 亚洲七黄色美女视频| 最新美女视频免费是黄的| 国产三级中文精品| 在线观看免费日韩欧美大片| 国产午夜精品论理片| 国产av一区二区精品久久| 成人av在线播放网站| 欧美乱色亚洲激情| 哪里可以看免费的av片| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 五月伊人婷婷丁香| 国产精品1区2区在线观看.| www.精华液| 国产精品免费视频内射| 久久99热这里只有精品18| 欧美一级毛片孕妇| 国产亚洲精品综合一区在线观看 | 午夜福利免费观看在线| 久久这里只有精品19| 国产伦在线观看视频一区| 午夜视频精品福利| 精品乱码久久久久久99久播| 久久中文字幕人妻熟女| √禁漫天堂资源中文www| 亚洲国产日韩欧美精品在线观看 | 国产探花在线观看一区二区| 午夜福利高清视频| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区精品| 看黄色毛片网站| 国产亚洲精品久久久久久毛片| 国产一区二区在线观看日韩 | 色综合欧美亚洲国产小说| 国产亚洲精品一区二区www| 一边摸一边做爽爽视频免费| 欧美日本视频| 精品国产亚洲在线| 黄色女人牲交| 亚洲五月天丁香| 国产精品永久免费网站| 日本成人三级电影网站| 日本 av在线| 亚洲国产欧美一区二区综合| 99热这里只有精品一区 | 日韩大尺度精品在线看网址| 久久婷婷成人综合色麻豆| 亚洲精品美女久久av网站| 国产亚洲av嫩草精品影院| 两个人看的免费小视频| 妹子高潮喷水视频| 久久久久久久午夜电影| 亚洲免费av在线视频| 757午夜福利合集在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 色综合婷婷激情| 国产人伦9x9x在线观看| 国产午夜精品论理片| 两个人的视频大全免费| 欧美黄色片欧美黄色片| 99riav亚洲国产免费| 色播亚洲综合网| 又粗又爽又猛毛片免费看| 波多野结衣高清作品| 国产av又大| 中文在线观看免费www的网站 | 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区精品| 免费在线观看视频国产中文字幕亚洲| 久久久久亚洲av毛片大全| 久久精品综合一区二区三区| bbb黄色大片| 特级一级黄色大片| 99久久精品热视频| 国产av又大| 日日摸夜夜添夜夜添小说| 一级a爱片免费观看的视频| 亚洲精品中文字幕一二三四区| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 久久久久久久久中文| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| 一级毛片精品| 国产在线观看jvid| 亚洲精品久久国产高清桃花| 黄色毛片三级朝国网站| 神马国产精品三级电影在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 欧美又色又爽又黄视频| 欧美成人一区二区免费高清观看 | 日韩精品中文字幕看吧| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 99热这里只有精品一区 | 男女之事视频高清在线观看| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久成人aⅴ小说| 99精品久久久久人妻精品| 亚洲专区字幕在线| 日韩欧美一区二区三区在线观看| 好男人在线观看高清免费视频| 亚洲av成人一区二区三| 久久久久亚洲av毛片大全| 亚洲五月天丁香| 人人妻人人看人人澡| 日本 av在线| 很黄的视频免费| 熟女电影av网| 国产精品自产拍在线观看55亚洲| 在线播放国产精品三级| 国产男靠女视频免费网站| 大型av网站在线播放| 波多野结衣巨乳人妻| 99久久精品热视频| 免费在线观看亚洲国产| 亚洲午夜精品一区,二区,三区| 欧美日韩中文字幕国产精品一区二区三区| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 成在线人永久免费视频| 成人18禁高潮啪啪吃奶动态图| 久久人人精品亚洲av| 91国产中文字幕| 亚洲一区二区三区不卡视频| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 12—13女人毛片做爰片一| 一级片免费观看大全| 亚洲人成网站高清观看| 国产在线观看jvid| bbb黄色大片| 一区二区三区激情视频| 黄频高清免费视频| 午夜久久久久精精品| 97人妻精品一区二区三区麻豆| 欧美日韩中文字幕国产精品一区二区三区| 老鸭窝网址在线观看| 国产精品电影一区二区三区| av在线播放免费不卡| 久久这里只有精品19| 小说图片视频综合网站| 精品国产乱码久久久久久男人| 人妻丰满熟妇av一区二区三区| 久久这里只有精品中国| 精品一区二区三区四区五区乱码| 亚洲人成网站在线播放欧美日韩| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 久久这里只有精品19| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 女人爽到高潮嗷嗷叫在线视频| 一二三四社区在线视频社区8| 久久伊人香网站| 亚洲欧美日韩无卡精品| 一进一出抽搐动态| 亚洲精品在线美女| av超薄肉色丝袜交足视频| 国产亚洲精品一区二区www| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看| 黄色 视频免费看| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 最近在线观看免费完整版| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| xxxwww97欧美| 熟女电影av网| av在线天堂中文字幕| 淫妇啪啪啪对白视频| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 国产亚洲精品av在线| 免费电影在线观看免费观看| 99久久精品国产亚洲精品| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久久5区| 最近最新中文字幕大全电影3| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 香蕉久久夜色| АⅤ资源中文在线天堂| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 色播亚洲综合网| 真人做人爱边吃奶动态| 国产精品av视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 天堂√8在线中文| 99热这里只有精品一区 | 韩国av一区二区三区四区| 黄片小视频在线播放| 欧美色欧美亚洲另类二区| 亚洲熟女毛片儿| 欧美黑人欧美精品刺激| 亚洲avbb在线观看| 久久精品人妻少妇| 久久精品国产亚洲av高清一级| 国产精品电影一区二区三区| 中文字幕人成人乱码亚洲影| 香蕉国产在线看| 国产精品99久久99久久久不卡| 国产精品爽爽va在线观看网站| 一本精品99久久精品77| 美女大奶头视频| 国产精华一区二区三区| 激情在线观看视频在线高清| 露出奶头的视频| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 国产成人影院久久av| 亚洲国产精品合色在线| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 日韩欧美 国产精品| 99热只有精品国产| 桃色一区二区三区在线观看| 成人国产综合亚洲| 亚洲激情在线av| 麻豆成人午夜福利视频| 国内精品久久久久精免费| 男女午夜视频在线观看| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 999精品在线视频| 我要搜黄色片| 99精品在免费线老司机午夜| 美女午夜性视频免费| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 国产麻豆成人av免费视频| 夜夜看夜夜爽夜夜摸| 国产成人精品无人区| 在线国产一区二区在线| 亚洲男人天堂网一区| 蜜桃久久精品国产亚洲av| 日本五十路高清| 午夜精品在线福利| 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲| 日韩大尺度精品在线看网址| 1024香蕉在线观看| 日韩欧美在线二视频| 国产真实乱freesex| 又黄又爽又免费观看的视频| 色精品久久人妻99蜜桃| 999精品在线视频| 亚洲色图 男人天堂 中文字幕| 老司机靠b影院| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av在线| www国产在线视频色| 久久亚洲精品不卡| 日本一本二区三区精品| 女生性感内裤真人,穿戴方法视频| 9191精品国产免费久久| 日韩av在线大香蕉| 亚洲熟女毛片儿| 欧美日韩一级在线毛片| 在线视频色国产色| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 色综合婷婷激情| 亚洲七黄色美女视频| 在线观看66精品国产| 精品欧美国产一区二区三| 精品电影一区二区在线| 亚洲第一欧美日韩一区二区三区| 999久久久精品免费观看国产| www.www免费av| 三级国产精品欧美在线观看 | 亚洲欧美日韩高清在线视频| 最近视频中文字幕2019在线8| 国产精品亚洲美女久久久| 啪啪无遮挡十八禁网站| 我的老师免费观看完整版| 亚洲欧美激情综合另类| 欧美黑人精品巨大| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 激情在线观看视频在线高清| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 日本 av在线| 黄色a级毛片大全视频| 亚洲av电影在线进入| 欧美日韩瑟瑟在线播放| 啪啪无遮挡十八禁网站| 老司机靠b影院| 两人在一起打扑克的视频| 国产真人三级小视频在线观看| 欧美大码av| 欧美一区二区国产精品久久精品 | 国产精品爽爽va在线观看网站| 亚洲欧美日韩东京热| 国产成人影院久久av| 大型黄色视频在线免费观看| 成人亚洲精品av一区二区| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 麻豆成人av在线观看| 久久久久亚洲av毛片大全| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 黄频高清免费视频| 亚洲国产日韩欧美精品在线观看 | 一区二区三区国产精品乱码| 午夜福利免费观看在线| 看黄色毛片网站| 亚洲九九香蕉| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 中文字幕av在线有码专区| 色综合站精品国产| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 一级毛片精品| 黄色视频不卡| 丁香六月欧美| 久久香蕉国产精品| 黄色a级毛片大全视频| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 欧美又色又爽又黄视频| av福利片在线| 国产高清视频在线播放一区| 亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 别揉我奶头~嗯~啊~动态视频| 久久久久久人人人人人| 在线观看免费午夜福利视频| 999久久久国产精品视频| 在线观看免费午夜福利视频| 久久久久久九九精品二区国产 | 色哟哟哟哟哟哟| 最近在线观看免费完整版| 一区二区三区高清视频在线| 国产真实乱freesex| 男人舔女人的私密视频| 99热6这里只有精品| 久久精品人妻少妇| aaaaa片日本免费| 天天躁狠狠躁夜夜躁狠狠躁| 女人被狂操c到高潮| 色噜噜av男人的天堂激情| 高清在线国产一区| 18禁国产床啪视频网站| 亚洲av成人精品一区久久| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 中文字幕av在线有码专区| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 欧美日韩乱码在线| 黑人操中国人逼视频| 精品免费久久久久久久清纯| 久久天躁狠狠躁夜夜2o2o| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 91av网站免费观看| 亚洲色图av天堂| 1024视频免费在线观看| 免费在线观看影片大全网站| 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片免费观看直播| www国产在线视频色| 亚洲av成人不卡在线观看播放网| 午夜免费激情av| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 在线观看免费午夜福利视频| 91字幕亚洲| 男插女下体视频免费在线播放| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 国产黄片美女视频| 免费看美女性在线毛片视频| 亚洲午夜理论影院| 99国产精品一区二区蜜桃av| 色老头精品视频在线观看| 中国美女看黄片| 色哟哟哟哟哟哟| 一级作爱视频免费观看| 国产爱豆传媒在线观看 | 亚洲国产精品合色在线| 麻豆av在线久日| 妹子高潮喷水视频| 免费在线观看黄色视频的| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| 久久这里只有精品中国| 亚洲av成人精品一区久久| 变态另类丝袜制服| 欧美日本视频| 亚洲国产精品成人综合色| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 国产男靠女视频免费网站| 亚洲avbb在线观看| 日韩欧美三级三区| 国产av麻豆久久久久久久| 久久中文字幕一级| 国产精品一区二区精品视频观看| 久久性视频一级片| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 国产精品一区二区免费欧美| 九九热线精品视视频播放| 亚洲av片天天在线观看| 免费搜索国产男女视频| 人妻夜夜爽99麻豆av| 亚洲成a人片在线一区二区| 国产主播在线观看一区二区| 午夜精品一区二区三区免费看| 舔av片在线| 国产精品98久久久久久宅男小说| 一级作爱视频免费观看| 成人三级黄色视频| 日本一本二区三区精品| 国产精品自产拍在线观看55亚洲| av免费在线观看网站| 好男人在线观看高清免费视频| 国产av在哪里看| 观看免费一级毛片| 人成视频在线观看免费观看| 亚洲精品一区av在线观看| 夜夜躁狠狠躁天天躁| 久久天躁狠狠躁夜夜2o2o| 国产成人系列免费观看|