• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?

    2016-04-18 05:44:38ZhengzhengCHEN陳正爭(zhēng)XiaojuanCHAI柴曉娟WenjuanWANG王文娟SchoolofMathematicalSciencesAnhuiUniversityHefei230601China
    關(guān)鍵詞:王文娟

    Zhengzheng CHEN(陳正爭(zhēng))Xiaojuan CHAI(柴曉娟)Wenjuan WANG(王文娟)School of Mathematical Sciences,Anhui University,Hefei 230601,China

    ?

    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?

    Zhengzheng CHEN(陳正爭(zhēng))?Xiaojuan CHAI(柴曉娟)Wenjuan WANG(王文娟)
    School of Mathematical Sciences,Anhui University,Hefei 230601,China

    E-mail:chenzzandu@163.com;chaixj.ahu@gmail.com;wangwenjuan@ahu.edu.cn

    AbstractThis paper is concerned with a singular limit for the one-dimensional compressible radiation hydrodynamics model.The singular limit we consider corresponds to the physical problem of letting the Bouguer number in finite while keeping the Boltzmann number constant.In the case when the corresponding Euler system admits a contact discontinuity wave,Wang and Xie(2011)[12]recently veri fied this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact discontinuity wave in the L∝-norm away from the discontinuity line at a rate of,as the reciprocal of the Bouguer number tends to zero.In this paper,Wang and Xie’s convergence rate is improved toby introducing a new a priori assumption and some re fined energy estimates.Moreover,it is shown that the radiation fl ux q tends to zero in the L∝-norm away from the discontinuity line,at a convergence rate as the reciprocal of the Bouguer number tends to zero.

    Key wordsradiation hydrodynamics model;singular limit;contact discontinuity;convergence rate;energy estimates

    2010 MR Subject Classi fi cation35L65;58J45

    ?Received September 15,2014;revised May 25,2015.This work was supported by the Doctoral Scienti fi c Research Funds of Anhui University(J10113190005)and the Tian Yuan Foundation of China(11426031).

    ?Corresponding author:Zhengzheng CHEN.

    1 Introduction

    The compressible radiation hydrodynamics model that governs the motions of the one-dimensional radiating gas can be written in the Lagrangian coordinates as(see[1-6])

    here the unknown functions are the speci fi c volume v>0,the velocity u,the absolute temperature θ>0,the internal energy e,the pressure P and the radiation fl ux q of the fluids respectively.The parameter ε>0 represents the reciprocal of the Bouguer number,and v±>0,u±and θ±are given constants.For the derivation and physical meaning of ε,we refer to[5,6]for details.

    In the ideal fluids,i.e.,ε=0,system(1.1)is reduced to the compressible Euler system:

    which is a strict hyperbolic system of conservation laws.The Riemann problem of system(1.2)admits some basic wave patterns:the shock wave,rarefaction wave,contact discontinuity and some linear combinations of them,called the Riemann solution.

    We are concerned with the limiting process of the the radiation hydrodynamics flows when ε tends to zero and expect that the solution of(1.1)will approach to the Riemann solution of the Euler system(1.2)in such a process.This problem has been recently studied by some authors with signi fi cant progress.In[12],Wang and Xie first considered the singular limit to a single contact discontinuity and proved that the smooth solution of system(1.1)tends to the strong contact discontinuity solution of(1.2)as ε→0.Moreover,a convergence rateis obtained in[12].The main difficulty they encounter lies in deducing the suitable a priori estimates for solutions of(1.1)because the system is much less dissipative.To achieve those,they use a direct but trick energy analysis.Then using some similar ideas as[12],Rohde,Wang and Xie[13]considered the singular limit to the supposition of rarefaction waves and contact discontinuity for system(1.1)with a slower convergence rate

    A natural and interesting problem is that whether the convergence rates established in[12,13]can be improved further?The main purpose of this paper is devoted to this problem and as a first step,we consider the same problem as[12]and focus our attention on improving the convergence rate.By introducing a new a priori assumption(2.6)and some re fined energy estimates,we obtain a faster convergence rate ε78,instead of ε1

    4received in[12].

    Now we begin to formulate our main result.In the present paper,we consider the ideal polytropic fluids so that P and e are given by

    where γ>1 is the adiabatic exponent,s is the entropy and A,R are two positive constants.We impose(1.2)with the following Riemann initial data

    It is known that the contact discontinuity solution of the Riemann problem(1.2)-(1.3)takes the form[8,9]

    provided that

    In the setting of the compressible radiation hydrodynamics model(1.1),the corresponding wave to the contact discontinuity becomes smooth and behaves as a di ff usion wave due to the radiation effect.We call this wave a“viscous contact wave”.As[13],we construct the viscous contact waveas follows.Motivated by(1.5),the pressure of the profileis expected to be almost constant,that is

    And the radiation fl ux Q is expected to act a di ff usion term

    Then the energy equation(1.1)3is approximated by

    Using equations(1.6),(1.7)and Vt=Ux,we get a nonlinear di ff usion equation

    which has a unique self-similarity solutiondue to[10,11,34].Furthermore,Θ(ξ)is a monotone function,increasing if θ+>θ?and decreasing if θ+<θ?.On the other hand,there exists some positive constant,such that for δ=|θ+?θ?|≤,Θ satisfies

    where c0and c1are two positive constants depending only on θ?andOnce Θ is determined,the viscous contact wave profileis defined as follows:

    It is easy to check that the viscous contact wavesatisfies

    and

    Our main result is stated as follows.

    Theorem 1.1For any given(v?,u?,θ?),suppose that(v+,u+,θ+)satisfies(1.5).Let(vcd,ucd,θcd)be the contact discontinuity solution de fined in(1.4)for the Riemann problem(1.2)-(1.3).Then for any given large time T>0 and small constant σ>0,there exists a small constant ε0>0 such that for any ε∈(0,ε0),system(1.1)with the same initial data as those of(ˉV,ˉU,ˉΘ)admits a unique smooth solution(vε,uε,θε,qε)in[0,T]×R,still denoted by(v,u,θ,q).Moreover,it holds that

    where C>0 is a constant independent of ε.

    Remark 1.2In Theorem 1.1,we only require the strength of the contact discontinuity to be finite and have no need to restrict it to be small.

    Remark 1.3Although the convergence rate in(1.14)is the same as that in[12],we can show in(4.3)below that

    Notice that(1.17)and(1.15)obviously improve the corresponding ones obtained in[12].Moreover,(1.16)is essentially new compared with the former results.

    Remark 1.4A similar argument can be applied to study the singular limit for the 1-D compressible radiation hydrodynamics model to the superposition of rarefaction waves and contact discontinuity,and thus improves the main result of[13].

    Now we outline the main ideas used in proving our main result.The faster convergence rateobtained in(1.15)is essentially due to two factors.One is the ansatzde fined(1.10),which was first used in[13]for the study of the singular limit for the 1-D compressible radiation hydrodynamics model to the superposition of rarefaction waves and contact discontinuity.This ansatz satisfies the mass equation and the momentum equationexactly,while the error terms occur only in the energy and radiation equations.Notice that the error term R1is higher order in ε than the corresponding one de fined in[12]and thus leads the convergence to become faster.The other one,which is also the main novelty of this paper,is the new a priori assumption de fined in(2.6)below.To state our argument clearly,let’s recall that the analysis in[12]is to perform some energy estimates based on the a priori assumption that

    We observe that the first termin the right hand of(1.20)can be improved to Cε by some more elaborate energy estimates.Moreover,if we drive the energy estimates under the a priori assumption that

    with a>0 being a positive constant to be determined later,then the estimates(1.19),(1.20)with the termreplaced by Cε andstill hold by the smallness of ε,thus we obtain thatwithrespectively.Then by the Sobolev inequality,the convergence rate for‖(φ,ψ,ζ)(τ)‖L∝is improved toFurthermore,one can prove that‖(φyy,ψyy,ζyy)(τ)‖2≤ Cεθwithand consequently,the norm N(τ0,τ1)de fined in(1.18)can be bounded byand thus the a priori assumption(1.21)is indeed true by choosing a to be some positive constant smaller thanand ε>0 sufficiently small.

    Based on the above observations,we choose the new a priori assumption(2.6)in this paper.Such type a priori assumption is first used in[26]for the study of vanishing viscosity limit torarefaction wave with vacuum for the 1-D compressible Navier-Stokes equations.However,unlike the case of the zero dissipation limit to rarefaction wave[26,27,35],the a priori assumption(2.6)can indeed improve the convergence rate for solutions of the 1-D compressible radiation hydrodynamics model toward the contact discontinuity.We remark that the method of this paper can also be applied to study the zero dissipation limit to contact discontinuity for the 1-D compressible Navier-Stokes equations and thus improves the main results obtained in[17,18].

    Before concluding this section,we point out that there have been extensive studies on the compressible radiation hydrodynamics model and related models.Kawashima and Nishibata[6]studied a singular limit for a certain class of hyperbolic-elliptic coupled systems which contains a compressible radiation hydrodynamic system as a typical example.They shown that the solution to the hyperbolic-elliptic coupled system converges to the solution of the corresponding hyperbolic-parabolic coupled system with a convergence rate.In[24],Lattanzio and Marcati considered both the hyperbolic-parabolic and the hyperbolic-hyperbolic relaxation limits for the scalar Hamer model[7],which is the third order approximation of system(1.1).The results in[24]were later generalized by Francesco[33]to multidimensional case.For more interesting results on the Hamer model,we refer to[19-23,28,29]and the references therein.We should note that the existence and nonlinear stability of the basic waves for the compressible radiation hydrodynamics model has been studied extensively,we refer to[1,2,25,32]for the existence and nonlinear stability of shock profiles,[14-16]for the stability of contact discontinuity wave,and[30,31]for the stability of rarefaction wave.

    The reminder of this paper is organized as follows.After stating some notations,in Section 2,we will reformulate our problem into a perturbation one near the viscous contact wavede fined in(1.10).Section 3 is devoted to deducing the a priori estimates for solutions to the Cauchy problem(2.4).Finally,the proof of our main Theorem 1.1 is given in Section 4.

    NotationsThroughout this paper,for simplicity,we will omit the variables t,x of functions if it does not cause any confusion.C denotes a generic constant which may vary in different estimates.If the dependence need to be explicitly pointed out,the notations Ci(i∈N)are used.Hl(R)denotes the usual l-th order Sobolev space with its norm

    2 Reformulation of the Problem

    This section is devoted to reformulating our original problem.Due to estimates(1.9)and(1.11),to prove the main theorem,it suffices to show that there exists a solution to(1.1)in a neighborhood of the viscous contact waveand the asymptotic behavior of the solution to(1.1)is given byfor small parameter ε.Suppose that(v,u,θ,q)is the solution of system(1.1)with the following initial data:

    De fi ne

    then we deduce from(1.1),(1.12)and(2.1)that

    Using the following scalings:

    then problem(2.3)is reformulated as

    which will be achieved in the sections followed.In what follows,we seek the solutions to problem(2.4)in the following function space:

    for some τ∈[τ0,τ1].

    3 A Priori Estimates

    In this section,we establish the a priori estimates for solutions of the Cauchy problem(2.4).

    Proposition 3.1(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(φ,ψ,ζ,w)∈X[τ0,τ2]is a solution of the Cauchy problem(2.4)for some τ0<τ2≤τ1,and satisfies the a priori assumption(2.6),then there exist positive constants ε0?1 and C0which are independent of ε and τ2,such that for 0<ε<ε0,it holds that

    Proposition 3.1 can be obtained by a series of lemma below.Before proving the a priori estimates(3.1)-(3.2),we have from the a priori assumption(2.6)and the Sobolev inequality

    that

    Furthermore,by the smallness of ε,we have

    and

    With(3.5)-(3.6)in hand,we now give the L2-estimates on(φ,ψ,ζ)(τ,y).

    Lemma 3.2Under the assumptions of Proposition 3.1,if ε is suitably small,then there exists a positive constant C>0 such that

    ProofSimilar to[12],we have

    where

    On the other hand,multiplying(2.4)4by w,we get by a direct computation that

    Notice that Φ(1)=Φ′(1)=0 and Φ′′(s)>0,there exists positive constants C1and C2such that

    Putting(3.9)into(3.8)and integrating the resultant equation in τ and y over[τ0,τ]×R,we have from(3.10)that

    Now we estimate the terms Ii,i=1,2,3,4 one by one.It follows from(2.5)1and the Cauchy inequality that

    here and hereafter,η>0 denotes a suitably small constant and Cη>0 denotes a constant depending on η.

    Using integration by parts,(1.10),(2.5)1,(3.4)and the Cauchy inequality,we have

    and

    Combining(3.11)-(3.15),we get by the smallness of ε and η that

    Then Gronwall’s inequality implies that

    which yields(3.7)immediately.This completes the proof of Lemma 3.2.

    Next,we estimate‖(φy,ψy,ζy)(τ)‖2.

    Lemma 3.3Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    ProofLet S=(v,u,θ),then system(1.1)1,2,3can be rewritten in the following symmetric form

    where g(qy)=(0,0,?qy)?and

    Set W=S?ˉS=(φ,ψ,ζ)(τ,y),it follows from(3.19)and(3.20)that

    with

    Multiplying(3.21)by A0(S)?1and differentiating the resulting equation with respect to y,then multiplying the resultant equation by(Wy)?A0(S),we obtain by a direct calculation that

    here〈·,·〉denotes the usual inner product on R3and

    On the other hand,we rewrite equation(2.4)4as

    Multiplying(3.25)by wyyyields

    Combining(3.23)with(3.26),and integrating the resulting equation in τ and y over[τ0,τ]× R,we have

    Now we estimate Ii,i=6,7,8 term by term.It follows from integration by parts,(2.5)1and(3.4)that

    where we have used the fact that

    due to(3.20)and(3.21),respectively.

    For I7,we have

    Similar to the estimate of I6,we have

    We deduce from(2.5)1,(3.22)and(3.29)that

    thus

    Similarly,

    Combining(3.31),(3.33)and(3.34),we obtain

    For I8,we deduce from integration by parts that

    Similar to the estimates as above,can be estimated as follows

    Thus it follows from(3.36)-(3.40)that

    Substituting(3.28),(3.35)and(3.41)into(3.27),we have by(3.5)-(3.6),Lemma 3.2 and the smallness of ε and η that

    Then(3.18)follows immediately by combining(3.42)and(3.7).This completes the proof of Lemma 3.3.

    To close the a priori estimates,we control the termin the following

    Lemma 3.4Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    ProofWe rewrite equations(2.4)2and(2.4)3as

    Linearizing(3.44)around the viscous contact waveyields

    Integrating(3.46)in τ and y over[τ0,τ2]×R gives rise to

    Now we estimate Ji,i=1,2,3,4,5 respectively.First,we deduce from(2.5)1and the Cauchy inequality that

    where in the last inequality of(3.49),we have used the fact that

    due to(2.5)1.Using the Cauchy inequality,(2.5)1and Lemma 3.2,we obtain

    Similarly,it holds

    and

    Combining(3.47)-(3.52),using Lemmas 3.2-3.3 and the smallness ε and η,we get

    Multiplying(3.54)by 2C3and adding the resultant equation to(3.53),using Lemmas 3.2-3.3 and the smallness ε,we can get(3.43).This completes the proof of Lemma 3.4.

    As a consequence of Lemmas 3.2-3.4,we have

    Corollary 3.5Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    Lemma 3.6Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that for all τ∈[τ0,τ2],

    provided that ε is suitably small.

    ProofWe rewrite equation(2.4)4as

    Multiplying(3.58)by w and integrating the resultant equation in y over R,we have from integration by parts that

    Using the smallness of η and ε,and Corollary 3.5,we obtain

    Then it follows from(3.58)that

    Therefore we have(3.57)holds.This completes the proof of Lemma 3.6.

    By repeating the same argument,we can also obtain

    Lemma 3.7Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    Proof of Proposition 3.1Proposition 3.1 follows immediately from Corollary 3.5 and Lemmas 3.6-3.7.

    4 Proof of Main Result

    Now,we are ready to prove our main result as follows.

    Proof of Theorem 1.1Since Proposition 3.1 is proved,we can close the a priori assumption(2.6)by choosing ε in(3.1)-(3.2)sufficiently small.Then by the standard continuity argument,one can extend the local-in-time solution to the time τ=τ1.Moreover,estimates(3.1)-(3.2)hold for τ2=τ1,that is

    Thus

    which together with(1.11)gives(1.14).Moreover,by the Sobolev inequality(3.3)and(4.1)-(4.2),we have

    then(1.15)and(1.16)follows from(4.4),(1.9)and(4.5),(1.9),respectively.This completes the proof of Theorem 1.1.

    References

    [1]Lin C J,Coulombel J F,Goudon T.Shock pro fl ies for non-equilibrium radiating gases.Phys D,2006,218:83-94

    [2]Lin C J,Coulombel J F,Goudon T.Asymptotic stability of shock pro fl ies in radiative hydrodynamics.C R Math Acad Sci Paris,2007,345:625-628

    [3]Mihalas D,Mihalas B.Foundation of Radiation Hydrodynamics.London:Oxford University Press,1984

    [4]Pomraning G C.The Equations of Radiation Hydrodynamics.New York:Pergamon Press,1973

    [5]Vincenti W,Kruger C.Introduction to Physical Gas Dynamics.New York:Wiley,1965

    [6]Kawashima S,Nishibata S.A singular limit for hyperbolic-parabolic coupled systems in radiation hydrodynamics.Indiana Univ Math J,2001,50:567-589

    [7]Hamer K.Nonlinear effects on the propagation of sound waves in a radiating gas.Quart J Mech Appl Math,1971,24:155-168

    [8]Serre D.Systems of Conservation Laws,Vol 1.Cambridge:Cambridge University Press,1999

    [9]Smoller J.Shock Waves and Reaction-Di ff usion Equations.New York:Springer-Verlag,1994

    [10]Atkinson F V,Peletier L A.Similarity solutions of the nonlinear di ff usion equation.Arch Rational Meth Anal,1974,54:373-392

    [11]Duyn C J,Peletier L A.A class of similarity solutions of the nonlinear di ff usion equation.Nonlinear Anal,1976/77,1(3):223-233

    [12]Wang J,Xie F.Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model.SIAM J Math Anal,2011,43:1189-1204

    [13]Rohde C,Wang W J,Xie F.Hyperbolic-Hyperbolic relaxation limit for a 1D compreesible radiation hydrodynamics model:superposition of rarefaction wave and contact wave.Commun Pure Appl Anal,2013,12:2145-2171

    [14]Wang J,Xie F.Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system,J Di ff er Equ,2011,251:1030-1055

    [15]Xie F.Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model.Discrete Contin Dyn Syst Ser B,2012,17:1075-1100

    [16]Rohde C,Xie F.Decay rates to viscous contact wave for a 1D compressible radiation hydrodynamics model.Math Models Methods Appl Sci,2013,23:441-469

    [17]Ma S X.Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations.J Di ff er Equ,2010,48:95-110

    [18]Ma S X.Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations.J Math Anal Appl,2012,387:1033-1043

    [19]Kawashima S,Nikkuni Y,Nishibata S.Larger-time behavior of solutions to hyperbolic-elliptic coupled systems.Arch Ration Mech Anal,2003,170:297-329

    [20]Kawashima S,Nikkuni Y,Nishibata S.The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics//Analysis of Systems of Conservation Laws.Chapman and Hall/CRC,1997:87-127

    [21]Kawashima S,Nishibata S.Weak solutions with a shock to a model system of the radiating gas.Sci Bull Josai Univ,1998,5:119-130

    [22]Kawashima S,Nishibata S.Cauchy problem for a model system of the radiating gas:weak solutions with a jump and classical solutions.Math Models Methods Appl Sci,1999,9:69-91

    [23]Kawashima S,Nishibata S.Shock waves for a model system of a radiating gas.SIAM J Math Anal,1999,30:95-117

    [24]Lattanzio C,Marcati P.Golobal well-posedness and relaxation limits of a model for radiating gas.J Di ff er Equ,2003,190:439-465

    [25]Lattanzio C,Mascia C,Serre D.Shock waves for radiative hyperbolic-elliptic systems.Indiana Univ Math J,2007,56:2601-2640

    [26]Huang F M,Li M J,Wang Y.Zero dissipation limit to rarefaction wave with vacuum for the 1-D compressible Navier-Stokes equations.SIAM J Math Anal,2012,44:1742-1759

    [27]Huang F M,Li X.Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations.Chin Ann Math Ser B,2012,33:385-394

    [28]Gao W L,Zhu C J.Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions.Math Models Methods Appl Sci,2008,18:511-541

    [29]Gao W L,Ruan L Z,Zhu C J.Decay rates to the planar rarefaction waves for a model system of the radiating gas in n dimensions.J Di ff er Equ,2008,244:2614-2640

    [30]Lin C J.Asymptotic stability of rarefaction waves in radiative hydrodynamics.Commun Math Sci,2011,9:207-223

    [31]Xiao Q H,Liu Y N,Kim J S.Asymptotic behavior of rarefaction waves for a model system of a radiating gas.J Inequal Appl,2012,Art ID:81

    [32]Nguyen T,Plaza R G,Zumbrun K.Stability of radiative shock profiles for hyperbolic-elliptic coupled systems.Phys D,2010,239:428-453

    [33]Francesco M Di.Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables.NoDEA Nonlinear Di ff erential Equations Appl,2007,13:531-562

    [34]Hong H,Huang F M.Asymptotic behavior of solutions toward the superposition of contout discontinuity and shock wave for compressible Navier-Stokes equations with free boundary.Acta Math Sci,2012,32B(1):389-412

    [35]Xin Z P.Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases.Comm Pure Appl Math,1993,46:621-665

    猜你喜歡
    王文娟
    越劇名伶王文娟的世紀(jì)人生
    人人健康(2023年12期)2023-06-28 09:23:22
    “林妹妹”王文娟的性格人生:臺(tái)上復(fù)雜,臺(tái)下簡(jiǎn)單
    廉政瞭望(2021年8期)2021-08-27 08:42:37
    『林妹妹』王文娟的性格人生:臺(tái)上復(fù)雜,臺(tái)下簡(jiǎn)單
    廉政瞭望(2021年15期)2021-08-23 04:57:48
    My English teacher
    “林妹妹”王文娟:養(yǎng)生要糙一點(diǎn)
    Almost Sure Convergence of Weighted Sums for Extended Negatively Dependent Random Variables Under Sub-Linear Expectations
    似一朵青云剛出岫
    東方女性(2017年1期)2017-03-01 17:06:39
    找規(guī)律
    王文娟:越劇“女神”的“簡(jiǎn)單”生活
    迅達(dá)咨詢,享譽(yù)西南——專訪四川省迅達(dá)工程咨詢監(jiān)理有限公司總經(jīng)理 王文娟
    亚洲成人手机| 老熟妇仑乱视频hdxx| 新久久久久国产一级毛片| 搡老岳熟女国产| 人人妻人人爽人人添夜夜欢视频| 精品国产一区二区三区久久久樱花| 亚洲精品日韩在线中文字幕| av片东京热男人的天堂| 成人18禁高潮啪啪吃奶动态图| 国产免费一区二区三区四区乱码| 国产成人欧美| 在线天堂中文资源库| 18在线观看网站| 午夜激情久久久久久久| 不卡av一区二区三区| 久久人人97超碰香蕉20202| 久久天堂一区二区三区四区| av超薄肉色丝袜交足视频| 18禁裸乳无遮挡动漫免费视频| 窝窝影院91人妻| 国产视频一区二区在线看| 精品一品国产午夜福利视频| 天天添夜夜摸| 亚洲国产av新网站| 国产成人a∨麻豆精品| 国产亚洲一区二区精品| 1024香蕉在线观看| 亚洲激情五月婷婷啪啪| 777久久人妻少妇嫩草av网站| 欧美国产精品va在线观看不卡| 国产日韩一区二区三区精品不卡| 国产在线视频一区二区| 男女午夜视频在线观看| 亚洲精品中文字幕在线视频| 国产成人欧美| 午夜影院在线不卡| 深夜精品福利| 91成年电影在线观看| 肉色欧美久久久久久久蜜桃| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产精品久久久不卡| 欧美 日韩 精品 国产| 亚洲精品国产区一区二| 精品国产超薄肉色丝袜足j| 国产精品国产三级国产专区5o| 性色av一级| 乱人伦中国视频| 久久毛片免费看一区二区三区| 亚洲精品美女久久av网站| 51午夜福利影视在线观看| 欧美日韩成人在线一区二区| 别揉我奶头~嗯~啊~动态视频 | 久久影院123| 国产成人精品久久二区二区免费| 久久国产精品影院| 啦啦啦啦在线视频资源| 无遮挡黄片免费观看| kizo精华| 最近中文字幕2019免费版| 欧美亚洲 丝袜 人妻 在线| 极品人妻少妇av视频| 亚洲欧洲日产国产| 美女福利国产在线| 色老头精品视频在线观看| 国产在线一区二区三区精| 亚洲精品久久成人aⅴ小说| 成年美女黄网站色视频大全免费| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品一区二区www | 男人舔女人的私密视频| 亚洲人成77777在线视频| 国产一区二区在线观看av| 精品高清国产在线一区| 男人舔女人的私密视频| 黄频高清免费视频| 欧美国产精品一级二级三级| 久久久精品区二区三区| 成人免费观看视频高清| 亚洲成国产人片在线观看| 无限看片的www在线观看| 日本五十路高清| 成在线人永久免费视频| 亚洲综合色网址| a级毛片黄视频| 考比视频在线观看| 黄片大片在线免费观看| 91精品伊人久久大香线蕉| 日韩制服丝袜自拍偷拍| 免费观看人在逋| 少妇的丰满在线观看| 不卡av一区二区三区| av欧美777| 麻豆av在线久日| av天堂久久9| 久久久久久免费高清国产稀缺| 在线精品无人区一区二区三| 欧美日韩福利视频一区二区| 啦啦啦视频在线资源免费观看| 免费在线观看影片大全网站| videosex国产| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡| 国产精品久久久人人做人人爽| 久久精品成人免费网站| 亚洲精品久久午夜乱码| 99久久人妻综合| 国产精品av久久久久免费| 国产男人的电影天堂91| 日韩中文字幕欧美一区二区| 日韩,欧美,国产一区二区三区| 欧美日韩一级在线毛片| 国产成+人综合+亚洲专区| 美女中出高潮动态图| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 国产精品免费视频内射| 亚洲精品粉嫩美女一区| 一本—道久久a久久精品蜜桃钙片| 男人爽女人下面视频在线观看| 精品人妻在线不人妻| 欧美日韩成人在线一区二区| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 黄频高清免费视频| 精品国产一区二区久久| 美女国产高潮福利片在线看| av在线app专区| 欧美激情极品国产一区二区三区| 成人国语在线视频| 久久国产精品影院| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 久久久久国产精品人妻一区二区| 一区福利在线观看| 免费高清在线观看视频在线观看| 91九色精品人成在线观看| 天天影视国产精品| a在线观看视频网站| 精品国内亚洲2022精品成人 | 欧美乱码精品一区二区三区| h视频一区二区三区| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 国产xxxxx性猛交| 麻豆av在线久日| av在线播放精品| 女人高潮潮喷娇喘18禁视频| 一级片'在线观看视频| 777久久人妻少妇嫩草av网站| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 老司机在亚洲福利影院| 欧美精品高潮呻吟av久久| 欧美激情久久久久久爽电影 | 国产成人精品无人区| 国产一区二区三区av在线| 国产激情久久老熟女| 人妻人人澡人人爽人人| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 多毛熟女@视频| 精品一区二区三区av网在线观看 | 亚洲免费av在线视频| 午夜福利视频精品| 老司机靠b影院| 久久精品熟女亚洲av麻豆精品| 国产欧美亚洲国产| 免费人妻精品一区二区三区视频| 成人18禁高潮啪啪吃奶动态图| 性色av一级| 久久久久精品人妻al黑| 国产av又大| 国产99久久九九免费精品| 自线自在国产av| 午夜福利,免费看| 美女主播在线视频| 精品国产乱子伦一区二区三区 | 啪啪无遮挡十八禁网站| 久久久久国产一级毛片高清牌| 在线观看免费高清a一片| 建设人人有责人人尽责人人享有的| 搡老岳熟女国产| 久久人妻福利社区极品人妻图片| 日韩有码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 午夜福利影视在线免费观看| 亚洲精品一区蜜桃| 国产三级黄色录像| 国产欧美日韩一区二区精品| 精品国产乱子伦一区二区三区 | 亚洲美女黄色视频免费看| 黑人猛操日本美女一级片| 少妇 在线观看| 国产精品久久久人人做人人爽| 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区 视频在线| 麻豆乱淫一区二区| 在线永久观看黄色视频| 国产成人精品无人区| 午夜免费鲁丝| 久久精品aⅴ一区二区三区四区| 69精品国产乱码久久久| 下体分泌物呈黄色| 日韩熟女老妇一区二区性免费视频| 亚洲avbb在线观看| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 免费一级毛片在线播放高清视频 | 亚洲精品自拍成人| 一区二区三区乱码不卡18| 国产一卡二卡三卡精品| 可以免费在线观看a视频的电影网站| 丰满饥渴人妻一区二区三| 天天添夜夜摸| 精品少妇久久久久久888优播| 波多野结衣av一区二区av| 超色免费av| 搡老熟女国产l中国老女人| 久久久欧美国产精品| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久5区| 天堂8中文在线网| 新久久久久国产一级毛片| 超色免费av| 我要看黄色一级片免费的| 国产91精品成人一区二区三区 | 色婷婷久久久亚洲欧美| 日韩三级视频一区二区三区| www.熟女人妻精品国产| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 又黄又粗又硬又大视频| 成人免费观看视频高清| 中国国产av一级| 日本91视频免费播放| 欧美日韩视频精品一区| 久久精品亚洲熟妇少妇任你| videosex国产| 高潮久久久久久久久久久不卡| 男人添女人高潮全过程视频| 久久久精品国产亚洲av高清涩受| 免费在线观看影片大全网站| 久久免费观看电影| 一本大道久久a久久精品| 国产91精品成人一区二区三区 | 曰老女人黄片| 精品久久久久久久毛片微露脸 | 精品一品国产午夜福利视频| 国产成人欧美在线观看 | 丰满饥渴人妻一区二区三| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| 日本欧美视频一区| 国产区一区二久久| 热re99久久精品国产66热6| 男女之事视频高清在线观看| 国产成人a∨麻豆精品| 91麻豆精品激情在线观看国产 | 国产精品久久久人人做人人爽| 最新在线观看一区二区三区| 乱人伦中国视频| 91国产中文字幕| 久久久久网色| 国产免费福利视频在线观看| 一本大道久久a久久精品| 国产欧美亚洲国产| 日本av手机在线免费观看| 青春草视频在线免费观看| 黄色片一级片一级黄色片| 亚洲中文字幕日韩| 日韩人妻精品一区2区三区| 欧美日韩国产mv在线观看视频| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美软件| 日韩电影二区| 天天操日日干夜夜撸| 午夜精品久久久久久毛片777| 午夜福利在线免费观看网站| 两人在一起打扑克的视频| av不卡在线播放| 在线永久观看黄色视频| 欧美人与性动交α欧美精品济南到| 亚洲精品久久午夜乱码| 蜜桃国产av成人99| 国产精品.久久久| 亚洲成国产人片在线观看| 亚洲精品成人av观看孕妇| 大香蕉久久网| 日韩中文字幕视频在线看片| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 18禁黄网站禁片午夜丰满| 色婷婷久久久亚洲欧美| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 欧美国产精品va在线观看不卡| 宅男免费午夜| 视频区图区小说| 午夜福利影视在线免费观看| 在线永久观看黄色视频| 精品国产一区二区久久| 下体分泌物呈黄色| 一二三四社区在线视频社区8| 精品国产一区二区久久| 日韩 亚洲 欧美在线| 欧美日韩中文字幕国产精品一区二区三区 | 人妻久久中文字幕网| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 99热全是精品| 亚洲av国产av综合av卡| 99热全是精品| 久久天躁狠狠躁夜夜2o2o| 五月天丁香电影| 99精国产麻豆久久婷婷| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| a级片在线免费高清观看视频| 亚洲av男天堂| 麻豆乱淫一区二区| 免费女性裸体啪啪无遮挡网站| 岛国毛片在线播放| 精品国产一区二区久久| 一二三四在线观看免费中文在| 俄罗斯特黄特色一大片| 欧美久久黑人一区二区| 新久久久久国产一级毛片| 亚洲激情五月婷婷啪啪| 亚洲av片天天在线观看| 亚洲第一青青草原| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 在线看a的网站| 欧美少妇被猛烈插入视频| 另类精品久久| 肉色欧美久久久久久久蜜桃| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| 电影成人av| 91精品伊人久久大香线蕉| av欧美777| 在线观看免费午夜福利视频| 亚洲午夜精品一区,二区,三区| 91精品三级在线观看| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 欧美大码av| 波多野结衣av一区二区av| 国产精品成人在线| 免费在线观看视频国产中文字幕亚洲 | 久久精品人人爽人人爽视色| 午夜激情久久久久久久| h视频一区二区三区| 欧美另类亚洲清纯唯美| 欧美黑人精品巨大| 久久久精品94久久精品| 欧美黄色片欧美黄色片| 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜一区二区| 我的亚洲天堂| 欧美日本中文国产一区发布| 亚洲精品av麻豆狂野| 亚洲中文av在线| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 亚洲av电影在线进入| 大片免费播放器 马上看| 久久女婷五月综合色啪小说| 亚洲欧美一区二区三区久久| 日韩视频一区二区在线观看| 国产在视频线精品| 国产福利在线免费观看视频| 久热爱精品视频在线9| 电影成人av| 亚洲欧美日韩另类电影网站| 久久性视频一级片| 丝袜在线中文字幕| 久久这里只有精品19| 亚洲伊人色综图| 国产成人av教育| 天天躁夜夜躁狠狠躁躁| 成人国产av品久久久| 国产不卡av网站在线观看| 欧美少妇被猛烈插入视频| kizo精华| 精品国内亚洲2022精品成人 | 精品亚洲乱码少妇综合久久| 在线av久久热| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 一本一本久久a久久精品综合妖精| 欧美大码av| 国产91精品成人一区二区三区 | 不卡一级毛片| 热99re8久久精品国产| 亚洲伊人色综图| 成人国产av品久久久| 啦啦啦 在线观看视频| 脱女人内裤的视频| 亚洲性夜色夜夜综合| 我要看黄色一级片免费的| 国产成人精品久久二区二区91| 9热在线视频观看99| 电影成人av| 欧美成人午夜精品| 午夜精品久久久久久毛片777| 成年av动漫网址| 日本wwww免费看| 国产野战对白在线观看| 国产精品免费大片| kizo精华| 亚洲精品av麻豆狂野| 精品久久久久久久毛片微露脸 | 热99久久久久精品小说推荐| 欧美久久黑人一区二区| av有码第一页| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | 99国产综合亚洲精品| 又黄又粗又硬又大视频| 国产成人一区二区三区免费视频网站| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 男女无遮挡免费网站观看| 三级毛片av免费| 999精品在线视频| 久久久久国内视频| a 毛片基地| 香蕉丝袜av| 免费一级毛片在线播放高清视频 | 九色亚洲精品在线播放| 中文字幕人妻丝袜制服| 精品少妇内射三级| 91精品三级在线观看| 国产高清videossex| 欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 热re99久久精品国产66热6| 免费看十八禁软件| 水蜜桃什么品种好| 成人手机av| 久久人人97超碰香蕉20202| 国产精品亚洲av一区麻豆| 青春草视频在线免费观看| av天堂久久9| 精品少妇黑人巨大在线播放| 亚洲av成人一区二区三| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区mp4| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 大片电影免费在线观看免费| 国产精品二区激情视频| 女人爽到高潮嗷嗷叫在线视频| 久久99一区二区三区| 黑人巨大精品欧美一区二区mp4| 久久香蕉激情| 国产成人系列免费观看| 正在播放国产对白刺激| 国产亚洲欧美在线一区二区| 免费在线观看视频国产中文字幕亚洲 | 国产av国产精品国产| 亚洲九九香蕉| 黑人巨大精品欧美一区二区mp4| 久久精品亚洲av国产电影网| 老司机靠b影院| 一区二区av电影网| av欧美777| 色视频在线一区二区三区| 黄色视频不卡| 欧美 亚洲 国产 日韩一| 亚洲精品自拍成人| 亚洲全国av大片| 777米奇影视久久| 精品乱码久久久久久99久播| 久久 成人 亚洲| 亚洲精品中文字幕一二三四区 | 国产一卡二卡三卡精品| 午夜日韩欧美国产| 永久免费av网站大全| 亚洲中文字幕日韩| 精品国产一区二区久久| 精品人妻在线不人妻| 淫妇啪啪啪对白视频 | 制服人妻中文乱码| 国产免费现黄频在线看| 欧美性长视频在线观看| 免费人妻精品一区二区三区视频| 嫩草影视91久久| 国产男女内射视频| 亚洲精品国产精品久久久不卡| 99国产精品一区二区三区| 国产黄色免费在线视频| av天堂在线播放| 美女扒开内裤让男人捅视频| 黄色视频不卡| 下体分泌物呈黄色| 久久精品久久久久久噜噜老黄| 精品一区二区三卡| 脱女人内裤的视频| 在线看a的网站| 亚洲精品国产区一区二| 亚洲第一欧美日韩一区二区三区 | 日韩欧美免费精品| 99热全是精品| e午夜精品久久久久久久| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 如日韩欧美国产精品一区二区三区| 丁香六月天网| 国产精品一区二区免费欧美 | 人妻人人澡人人爽人人| 大香蕉久久成人网| 天天躁狠狠躁夜夜躁狠狠躁| 欧美人与性动交α欧美精品济南到| 亚洲成人免费av在线播放| 国产精品一区二区在线不卡| 亚洲精品粉嫩美女一区| av不卡在线播放| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 色视频在线一区二区三区| 精品免费久久久久久久清纯 | 热99国产精品久久久久久7| 欧美成狂野欧美在线观看| 成人av一区二区三区在线看 | 国产在线视频一区二区| 欧美激情久久久久久爽电影 | 9191精品国产免费久久| 国产成人影院久久av| 十八禁高潮呻吟视频| 91大片在线观看| 99精国产麻豆久久婷婷| 一边摸一边做爽爽视频免费| 老司机午夜十八禁免费视频| 久久中文看片网| 免费一级毛片在线播放高清视频 | 各种免费的搞黄视频| 亚洲成av片中文字幕在线观看| av不卡在线播放| 久9热在线精品视频| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 国产福利在线免费观看视频| 狠狠精品人妻久久久久久综合| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区三区| 丝袜美腿诱惑在线| 蜜桃国产av成人99| 国产男女内射视频| 国产精品一区二区在线观看99| 97人妻天天添夜夜摸| 国产成人av教育| 国产一卡二卡三卡精品| 亚洲自偷自拍图片 自拍| 国产熟女午夜一区二区三区| 亚洲国产看品久久| 国产免费视频播放在线视频| 一级,二级,三级黄色视频| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 国产福利在线免费观看视频| 欧美+亚洲+日韩+国产| av一本久久久久| 久久人妻福利社区极品人妻图片| 美女视频免费永久观看网站| 午夜成年电影在线免费观看| 国产精品自产拍在线观看55亚洲 | 一级黄色大片毛片| 欧美黄色淫秽网站| 99国产精品免费福利视频| 国产精品久久久久久精品电影小说| 一区二区av电影网| 午夜福利,免费看| 欧美激情久久久久久爽电影 | 国产成+人综合+亚洲专区| 成人黄色视频免费在线看| 青春草视频在线免费观看| 热re99久久国产66热| 大香蕉久久成人网| 精品视频人人做人人爽| 99久久99久久久精品蜜桃| 日本av免费视频播放| 久久亚洲精品不卡| 91九色精品人成在线观看| 一区在线观看完整版| 久久精品国产亚洲av香蕉五月 | 中文字幕高清在线视频| 麻豆av在线久日| 欧美精品高潮呻吟av久久| 国产免费视频播放在线视频| 黄片大片在线免费观看| 男人添女人高潮全过程视频| 精品国产国语对白av| 久久九九热精品免费| 日韩精品免费视频一区二区三区| 91九色精品人成在线观看| 午夜精品久久久久久毛片777| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频| 最黄视频免费看| 亚洲成人国产一区在线观看| 成年人午夜在线观看视频| 99热网站在线观看| 19禁男女啪啪无遮挡网站| 亚洲熟女毛片儿|