• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Almost Sure Convergence of Weighted Sums for Extended Negatively Dependent Random Variables Under Sub-Linear Expectations

    2019-03-30 08:21:40WANGWenjuan王文娟WUQunying吳群英
    應(yīng)用數(shù)學(xué) 2019年2期
    關(guān)鍵詞:王文娟群英

    WANG Wenjuan(王文娟),WU Qunying(吳群英)

    (College of Science,Guilin University of Technology,Guilin 541006,China)

    Abstract: In this thesis,we discuss almost sure convergence of weighted sums for END random variables with the condition of CV(|X|p)<∞,even (|X|p)≤CV(|X|p),0

    Key words: Weighted sum;Sub-linear expectation;Almost sure convergence;END random variables

    1.Introduction

    As is well known that limit theorems exert a enormous function on probability limit theory and mathematical statistics.It becomes a vital theoretical tool to study the phenomenon of randomness or uncertainty.In fact,probability measures and linear additivity themselves do not account for many of the uncertainties in statistics,measures of risk,mathematical economics and super-hedging in finance.[4,6?7,8?11]In order to solve this problem,PENG[10?12]established a new system of nonlinear expectations theory from a completely new perspective.This theory does not start from the classical probability space but directly define the independence of random variables from the non-linear expectation space,and proves the theoretical basis of nonlinear expectation with PDE.

    The sub-linear expectation created a lot of fascinating properties which are different from those of the linear expectations.So the limit theorems of the sub-linear expectations have been received a lot of attention and research recently.A great deal of useful results have been established by many researchers.For instance,PENG[10?11]established the basic properties,denoted the relevant definition of notation and distribution and a new central limit theorem in the nonlinear expectation space.CHEN[3]studied three variety of strong laws of larger numbers under the feasible condition of(|X|1+α)<∞for independent identically distributed random variables.ZHANG[17?19]found the the laws of the iterated logarithm for negatively dependent random variables in a successive non-linear expectation.He also established Kolmogorov’s exponential inequalities and the rosenthals inequalities which are the powerful tools for future research in the sub-linear expectation.

    Almost sure convergence is one of the most important issues in limit theorems.In sublinear expectations,due to the uncertainty of expectation and capacity,the strong convergence is essentially different from the ordinary probability space.The study of strong convergence for sub-linear expectations is much more complex and difficult.As a result of the extensive utility of weighted sums in financial statistics,many scholars put emphasis on its properties.Numerous studies on almost sure convergence of weighted sums can be found in probability space.For example,CHOI and SUNG[1]gained the diverse conditions on{ani}and{Xn}under which ∑n i=1aniXiconverges to zero almost surely.CHEN and GAN[2]established the strong laws of large numbers,laws of the single logarithm and Chover’s laws of the iterated logarithm (LIL) for weighted sums of i.i.d.random variables under appropriate conditions concerning both the distribution and the weights.TEICHER[14]researched a Marchinkiewicz-Zygmund type strong law for the special caseXU and YU[15]obtained the law of the single logarithm for NA random variables with the condition ofWU[16]acquired a strong limit theorem for weighted sums of ND random variables.The prime motivation of the article is to gain the almost sure convergence for weighted sums of END random variables with the condition ofCV(|X|p)<∞,even(|X|p)≤CV(|X|p),0

    2.Preliminaries

    The study of this article utilizes the symbols and framework which are established by PENG[10?12].He established the definitions of sub-linear expectation (?E),subadditivity of capacities V,Choquet integrals/expectations (CV,Cv) and some of the properties,and so on.As a result,we can omit these various definitions and relevant properties.

    Under the sub-linear expectation space,CHEN[3]and ZHANG[17?18]researched such a kind of convergence,but they don’t have a specific summary.So,we summarize the definition of almost surely as follows.

    Definition 2.1A sequence of random variables{Xn;n ≥1}is named to converge toXalmost surelyV(a.s.V),denoted byXn →Xa.s.Vasn →∞,ifV(XnX)=0.

    Vcan be substituted for V andvseverally.Byv(A)≤V(A) andv(A)+V(Ac) = 1 for anyA ∈F,it is obvious thatXn →Xa.s.V impliesXn →Xa.s.v,butXn →Xa.s.vdoes not implyXn →Xa.s.V.Further

    and

    Remark 2.1In probability space,it’s commonly known thatXn →Xa.s.??P(Xn →X)=1??P(XnX)=0 fromP(A)+P(Ac)=1.However,in the sub-linear expectation space,the formula V(A) + V(Ac) = 1 is no longer valid,which implies V(Xn →X) =1V(XnX) = 0.In fact,we have V(XnX) = 0 =?V(Xn →X) = 1,but V(Xn →X) = 1V(XnX) = 0.Therefore,we can’t defineXn →Xa.s.V with V(Xn →X)=1.

    Definition 2.2[13]A couple of (V,v) of capacities under the sub-linear space (?,H,?E)is indicated by

    whereAcis the supplement series ofA.By definitions of V andv,it is distinct that V is sub-additive,and

    Definition 2.3[13](Identical distribution)Assume that X1and X2are twon?dimensional random vectors established separately in sub-linear expectation spacesand(?2,H2,).They are named identically distributed,denoted by

    whenever the sub-expectations are limited.A sequence{Xn;n ≥1}of random variables is referred to as identically distributed,for eachi ≥1 if

    Definition 2.4[17](Extended negative dependence) A sequence of random variables{Xn;n ≥1}is called upper (resp.lower) extended negatively dependent if there is some leading constantK ≥1 such that

    whenever the sub-expectations are finite and the non-negative functionsφi(x)∈Cl,Lip(Rn),i=1,2,...,are all non-decreasing (resp.all non-increasing).They are named extended negatively dependent if they are both upper extended negatively dependent and lower extended negatively dependent.

    We can easily see that,if{Xn;n ≥1}is a sequence of independent random variables andf1(x),f2(x),...∈Cl,Lip(Rn),then{fn(Xn);n ≥1}is also a sequence of independent random variables with K = 1;if{Xn;n ≥1}is a sequence of upper (resp.lower) extended negatively dependent random variables andf1(x),f2(x),...∈Cl,Lip(Rn) are all non-decreasing (resp.all non-increasing) functions,then{fk(Xk);k ≥1}is also a sequence of upper (resp.lower)extended negatively dependent random variables.

    By the definition,it is visible that,if Y is independent to X,then Y is extended negatively dependent to X.Example 1.6 in [18] indicates that the reverse is not true.

    Example 2.1[18]Assume thatPis a family of probability measures defined on (?,F).For any random variableξ,we indicate the upper expectation by(ξ)=supQ∈PEQ(ξ).Then(·) is a sub-linear expectation.Moreover,if X and Y are independent under eachQ ∈P,then Y is extended negatively dependent to X under.In reality,

    whenever the sub-expectations are finite andφ1(X)≥0,φ2(Y)≥0.

    However,Y may be not independent to X.

    3.Results and Discussions

    In this section,we discuss our primary result and some useful lemmas.Next,we have a convention,let{Xn;n ≥1}be a sequence of random variables inandThe symbolcis on behalf of a generic positive constant that may be different in various place.Letan ?bnmean that there exists a constantc>0 such thatan ≤cbnfor adequately largen,andI(·) denotes an indicator function.logxis a mark of ln(max(x,e)),where ln is the natural logarithm.

    For the proof of our theorem,we declare the following two lemmas.

    Lemma 3.1( Borel-Cantelli’s Lemma,Lemma 3.9 in [18]){An;n ≥1}is a sequence of events inF.Suppose thatVis a countably sub-additive capacity.thenV(An;i.o.)=0,where

    Lemma 3.2( Theorem 3.1 in [17]){Xn;n ≥1}is a sequence of upper extended negatively dependent random variables inand there exists a constantK >0.Then for allx,y >0,

    where

    The following theorem is the result of the main discussion in this article.

    Theorem 3.1Suppose that 0

    0 satisfying

    Ifp ≥1 further assume that

    Let{ank;1≤k ≤n,n ≥1}be an array of real positive numbers such that

    Then

    whereck=0 if 0

    Further,if{Xn;n ≥1}is lower extended negatively dependent,then

    In particular,if{Xn;n ≥1}is extended negatively dependent andXk=Xkfor 1≤p ≤2,then

    Remark 3.1Theorem 3.1 generalizes SILVA’s result from probability space to sublinear expectation space,which improves SILVA’s conclusion to some extent.Secondly,in sub-linear expectations,ZHANG[17]studied partial sums,and we study the weighted sums in Theorem 3.1.Becauseank= 1 is a condition that does not satisfy the condition(3.4)of Theorem 3.1,the above theorem is different from the strong number theorem studied by ZHANG.

    Remark 3.2According to Definition 2.4,in the sub-linear expectation,the END sequence is a very broad dependent sequence.IfK=1,then the END sequence is a extended independent sequence.IfK=1,n=2,then the END sequence is an ND sequence.Therefore,in the sub-linear expectation,Theorem 3.1 is still valid for extended independent sequences and ND sequences.

    4.Proof

    Proof of Theorem 3.1Without loss of generality,forp ≥1,we can suppose thatXk= 0.Obviously,CV(|X|p)<∞is equivalent toCV(|X|p/cp)<∞for anyc >0.We have

    Note that

    Therefore,(3.2) is equivalent to for anyc>0,

    Note that

    Hence,by (4.1),it indicates that

    For upper extended negatively dependent random variables{Xn;n ≥1},in order to ensure that the truncated random variables are also upper extended negatively dependent,we need that truncated functions belong toCl,Lipand are non-decreasing.Letfc(x)=?cI(xc),for any 1≤k ≤n,n ≥1,

    and

    Then{Yk;1≤k ≤n,n ≥1}is also a sequence of upper extended negatively dependent random variables byfc(x)∈Cl,Lipandfc(x) being non-decreasing.

    Note that

    Thus,to prove (3.5),it suffices to verify that

    It should be pointed out that (3.1) does not imply V(h(Xn)∈A)≤V(h(X1)∈A).Therefore,in the calculation of V(f(Xn)∈A),we need to convert V toby (2.1).On the other hand,in the probability space,there is an equality: EI(|X|≤a)=P(X ≤a),however,in the sub-linear expectation space,is defined through continuous functions inCl,Lipand the indicator functionI(|X| ≤a) is not continuous.Therefore,the expression(|X| ≤a)does not exist.This needs to modify the indicator function by functions inCl,Lip.To this end,we define the functiong(x)∈Cl,Lipas follows.

    For 0<μ<1,letg(x)∈Cl,Lip(R) such that 0≤g(x)≤1 for allx,g(x)=1 if|x|≤μ,andg(x)=0 if|x|>1.Then

    Thus,V(Zk≠0,i.o.) = 0 follows from the Borel-Cantelli’s lemma (Lemma 3.1) and V being countably sub-additive.It follows that from (3.4)

    Now,we prove that|I3| →0,asn →∞.For anyr >0,by thecrinequality and (4.4),we have

    Thus,

    holds from (3.1) and (4.4).

    Case 1 0

    By (4.1) and V(|X|>μn1/p)↓,so we get

    It follows that

    Next,we estimateI31.Letgj(x)∈Cl,Lip(R),j ≥1 such that 0≤gj(x)≤1 for allx,

    Then

    For everyn,there exists a constantksuch that 2k?1≤n<2k,thus,by (4.8),g(x)↓,we get

    By (4.2),it follows that

    Combining (4.7) with (4.9),we get

    Case 2p ≥1.

    Once again,using (3.2)-(3.4),we have

    By (4.10) and (4.11),we get

    Finally,we estimateI2.Becauseis a sequence of upper extended negatively dependent random variables withand satisfies the conditions of Lemma 3.2.By the condition (3.4),ank →0,without loss of generality,we can suppose thatank ≤1,and letthenfor sequenceBy Lemma 3.2,we obtain for every?>0,

    So,

    According to the Borel-Cantelli’s lemma and arbitrariness ofε,we haveYk)>?;i.o.)=0,that is to say,

    Together with (4.3),(4.5),(4.12) and (4.13),we can get (3.5).

    If{Xn;n ≥1}is lower extended negatively dependent,then{?Xn;n ≥1}is upper extended negatively dependent and{?Xn;n ≥1}satisfies the condition of Theorem 3.1.Letting{?Xn;n ≥1}instead of{Xn;n ≥1}in (3.5),we have

    namely,

    and we can get (3.6).Therefore,the proof of Theorem 3.1 is completed.

    5.Conclusions

    We have obtained the almost sure convergence of weighted sums under sub-linear expectations.We point out that the key tools to the proofs of the main results of SILVA[5]are not suitable for our theorem.We propose the new method to prove our result.Moreover,the theorem of our paper not only extends the corresponding results of SILVA[5]under sub-linear expectation space,but also is proved with the conditions ofCV(|X|p)<∞andfurther(|X|p)≤CV(|X|p)<∞,0

    猜你喜歡
    王文娟群英
    山東最受歡迎酒店群英榜
    金橋(2022年1期)2022-02-12 01:36:46
    山東最受歡迎酒店群英榜
    金橋(2021年10期)2021-11-05 07:23:12
    山東最受歡迎酒店群英榜
    金橋(2021年8期)2021-08-23 01:06:32
    My English teacher
    2009,新武器群英薈
    “林妹妹”王文娟:養(yǎng)生要糙一點(diǎn)
    找規(guī)律
    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?
    迅達(dá)咨詢,享譽(yù)西南——專訪四川省迅達(dá)工程咨詢監(jiān)理有限公司總經(jīng)理 王文娟
    千里上墳為一唱
    a级毛片免费高清观看在线播放| 免费看不卡的av| 午夜福利成人在线免费观看| 色视频www国产| 亚洲人成网站在线播| 国产 一区 欧美 日韩| 亚洲天堂国产精品一区在线| 天堂av国产一区二区熟女人妻| 亚洲,欧美,日韩| 蜜桃久久精品国产亚洲av| 国产淫语在线视频| 中文在线观看免费www的网站| 天堂av国产一区二区熟女人妻| 免费看不卡的av| 欧美潮喷喷水| 日韩国内少妇激情av| 老司机影院毛片| 人妻夜夜爽99麻豆av| 亚洲精品日韩在线中文字幕| 少妇被粗大猛烈的视频| 麻豆成人av视频| 精品酒店卫生间| 大话2 男鬼变身卡| freevideosex欧美| 国内揄拍国产精品人妻在线| 国产成年人精品一区二区| 亚洲国产欧美人成| 欧美另类一区| 好男人视频免费观看在线| 亚洲欧美中文字幕日韩二区| 老司机影院成人| 99热全是精品| 国产精品久久久久久久久免| 如何舔出高潮| 中文字幕免费在线视频6| 老女人水多毛片| 欧美一级a爱片免费观看看| 亚洲在久久综合| 成人亚洲欧美一区二区av| 国产精品久久久久久久电影| 国产精品一区二区性色av| 国产高潮美女av| 日韩精品青青久久久久久| 人妻夜夜爽99麻豆av| 国产精品久久久久久久电影| 天堂av国产一区二区熟女人妻| 高清毛片免费看| 天堂俺去俺来也www色官网 | 蜜桃亚洲精品一区二区三区| 亚洲精品乱码久久久v下载方式| 极品少妇高潮喷水抽搐| a级一级毛片免费在线观看| 在线播放无遮挡| 岛国毛片在线播放| 一级毛片黄色毛片免费观看视频| 人人妻人人澡欧美一区二区| 亚洲国产欧美在线一区| 偷拍熟女少妇极品色| 婷婷色综合www| 久久99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 中文字幕av在线有码专区| 国产白丝娇喘喷水9色精品| 直男gayav资源| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产av玫瑰| 1000部很黄的大片| 亚洲国产av新网站| 成人漫画全彩无遮挡| 国产亚洲精品久久久com| 狠狠精品人妻久久久久久综合| 看黄色毛片网站| 国产有黄有色有爽视频| 国产高潮美女av| 亚洲伊人久久精品综合| 丰满乱子伦码专区| 97热精品久久久久久| 熟女人妻精品中文字幕| 欧美极品一区二区三区四区| 夜夜爽夜夜爽视频| 国产黄片美女视频| 永久免费av网站大全| 男女啪啪激烈高潮av片| 美女黄网站色视频| av在线播放精品| 久久久久性生活片| 国产在视频线在精品| 国产午夜精品论理片| 国产精品国产三级国产av玫瑰| 亚洲av国产av综合av卡| 人妻夜夜爽99麻豆av| 亚洲成人中文字幕在线播放| 免费电影在线观看免费观看| 国产精品日韩av在线免费观看| 一个人观看的视频www高清免费观看| 国产亚洲精品久久久com| 精品人妻熟女av久视频| 五月天丁香电影| 好男人在线观看高清免费视频| 午夜激情福利司机影院| 老女人水多毛片| 国产探花极品一区二区| 国内精品美女久久久久久| 国产 一区精品| 亚洲欧洲日产国产| 2021少妇久久久久久久久久久| 国产精品蜜桃在线观看| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 亚洲熟女精品中文字幕| 久久精品综合一区二区三区| 丰满少妇做爰视频| 亚洲精品中文字幕在线视频 | 美女cb高潮喷水在线观看| 女人被狂操c到高潮| 成人综合一区亚洲| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 最后的刺客免费高清国语| 国产精品蜜桃在线观看| 成人美女网站在线观看视频| 色综合色国产| 日日摸夜夜添夜夜添av毛片| 国产免费福利视频在线观看| 国产精品国产三级国产av玫瑰| videossex国产| 丝瓜视频免费看黄片| 亚洲色图av天堂| 热99在线观看视频| 大片免费播放器 马上看| 别揉我奶头 嗯啊视频| 国产高清不卡午夜福利| 又大又黄又爽视频免费| 高清av免费在线| 视频中文字幕在线观看| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| 久久久久久久久中文| 久久久久久久久久久免费av| 国产高清不卡午夜福利| 日产精品乱码卡一卡2卡三| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久成人| 成人毛片a级毛片在线播放| 日本色播在线视频| 成人特级av手机在线观看| 99热全是精品| 国产精品.久久久| 黑人高潮一二区| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看 | 精品熟女少妇av免费看| 欧美性感艳星| 天堂影院成人在线观看| 2021天堂中文幕一二区在线观| 色播亚洲综合网| 男女那种视频在线观看| 黄片无遮挡物在线观看| 在现免费观看毛片| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 亚洲欧美一区二区三区黑人 | 亚洲最大成人手机在线| 国产成人91sexporn| 国产亚洲91精品色在线| 免费观看性生交大片5| 麻豆精品久久久久久蜜桃| 老女人水多毛片| 国产精品一区二区在线观看99 | 国产成人福利小说| 免费观看的影片在线观看| 亚洲人成网站在线播| 国产一区二区三区综合在线观看 | 国产老妇伦熟女老妇高清| 国产综合懂色| 国产精品1区2区在线观看.| 婷婷色综合大香蕉| 国产片特级美女逼逼视频| 日日摸夜夜添夜夜添av毛片| 日日撸夜夜添| 一级av片app| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| 日韩欧美国产在线观看| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 国产成人freesex在线| 国产精品久久久久久精品电影| 狂野欧美白嫩少妇大欣赏| 看十八女毛片水多多多| 国产高清国产精品国产三级 | 男女视频在线观看网站免费| 国产v大片淫在线免费观看| 久久久久久久久久久免费av| 男女国产视频网站| 观看免费一级毛片| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 婷婷色麻豆天堂久久| 欧美成人a在线观看| 80岁老熟妇乱子伦牲交| 日韩欧美三级三区| 精品久久久久久成人av| 国产极品天堂在线| 久久久久网色| 欧美日韩综合久久久久久| 久久久精品欧美日韩精品| 极品少妇高潮喷水抽搐| eeuss影院久久| 成人性生交大片免费视频hd| 国产精品一区二区三区四区免费观看| 最近视频中文字幕2019在线8| 在线观看人妻少妇| 亚洲成人中文字幕在线播放| 久久久久性生活片| 亚洲av日韩在线播放| 久久97久久精品| 午夜免费观看性视频| 免费播放大片免费观看视频在线观看| 国产69精品久久久久777片| 在线天堂最新版资源| 成人漫画全彩无遮挡| 亚洲av成人精品一区久久| av在线观看视频网站免费| 亚洲综合精品二区| 网址你懂的国产日韩在线| 色综合站精品国产| 成人综合一区亚洲| 亚洲怡红院男人天堂| 免费在线观看成人毛片| av在线蜜桃| 女人十人毛片免费观看3o分钟| 日韩欧美一区视频在线观看 | 亚洲av中文字字幕乱码综合| 菩萨蛮人人尽说江南好唐韦庄| 非洲黑人性xxxx精品又粗又长| 国产老妇女一区| 欧美一区二区亚洲| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 久久精品久久久久久久性| 亚洲成人精品中文字幕电影| 久久久色成人| 人体艺术视频欧美日本| 亚洲国产精品成人综合色| 天堂av国产一区二区熟女人妻| 亚洲伊人久久精品综合| 亚洲人成网站在线播| 亚洲av中文av极速乱| 性色avwww在线观看| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 熟女人妻精品中文字幕| 久久久久久久久久成人| 日韩大片免费观看网站| 一级黄片播放器| 白带黄色成豆腐渣| 又粗又硬又长又爽又黄的视频| 午夜爱爱视频在线播放| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 亚洲av电影在线观看一区二区三区 | 亚洲av国产av综合av卡| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 国产有黄有色有爽视频| 国产成人精品婷婷| 国产视频内射| 免费无遮挡裸体视频| 日韩大片免费观看网站| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| av播播在线观看一区| 久久韩国三级中文字幕| 国产精品麻豆人妻色哟哟久久 | 国产精品久久久久久精品电影小说 | 久久这里只有精品中国| 毛片女人毛片| 日韩一区二区视频免费看| 免费高清在线观看视频在线观看| 午夜亚洲福利在线播放| 又爽又黄a免费视频| 国产爱豆传媒在线观看| 国产黄色小视频在线观看| 免费看日本二区| 国产高清不卡午夜福利| 日本猛色少妇xxxxx猛交久久| 国产精品国产三级国产专区5o| 黄色一级大片看看| 我的女老师完整版在线观看| 最近2019中文字幕mv第一页| 黄色配什么色好看| 美女黄网站色视频| 免费在线观看成人毛片| 三级经典国产精品| 亚洲精品色激情综合| 三级毛片av免费| 人妻一区二区av| 汤姆久久久久久久影院中文字幕 | 日本wwww免费看| 日韩,欧美,国产一区二区三区| 日韩不卡一区二区三区视频在线| 日韩欧美精品免费久久| 成人欧美大片| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频 | 又爽又黄a免费视频| av播播在线观看一区| 大香蕉97超碰在线| 亚洲欧美日韩东京热| 又粗又硬又长又爽又黄的视频| 成人亚洲精品av一区二区| 永久网站在线| 国产av国产精品国产| 又黄又爽又刺激的免费视频.| 国内精品美女久久久久久| xxx大片免费视频| 久久精品国产亚洲网站| 国内精品一区二区在线观看| 日韩三级伦理在线观看| 久久99热6这里只有精品| 欧美最新免费一区二区三区| 亚洲内射少妇av| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 偷拍熟女少妇极品色| 乱码一卡2卡4卡精品| 国产 一区精品| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 一个人观看的视频www高清免费观看| 亚洲不卡免费看| 神马国产精品三级电影在线观看| 精品久久久久久久末码| 久久久久久久久久久丰满| 在线观看av片永久免费下载| 69人妻影院| 免费观看精品视频网站| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 成人二区视频| 国产成人精品久久久久久| 91精品伊人久久大香线蕉| 国产成人午夜福利电影在线观看| 边亲边吃奶的免费视频| 久久久久九九精品影院| 一级毛片黄色毛片免费观看视频| 国内精品宾馆在线| 国产高潮美女av| 麻豆成人午夜福利视频| 男女边摸边吃奶| 最近2019中文字幕mv第一页| 国产av在哪里看| 三级国产精品片| 神马国产精品三级电影在线观看| 美女高潮的动态| 亚洲精品,欧美精品| 青春草国产在线视频| 亚洲真实伦在线观看| 99热这里只有是精品在线观看| 亚洲精品视频女| 免费黄色在线免费观看| 国产av在哪里看| 国产精品一二三区在线看| 汤姆久久久久久久影院中文字幕 | 99re6热这里在线精品视频| 亚洲av一区综合| 国产伦一二天堂av在线观看| 国产av国产精品国产| 国产精品一区二区三区四区免费观看| 午夜福利在线观看吧| 免费av不卡在线播放| 性插视频无遮挡在线免费观看| 亚洲av二区三区四区| 精品久久久久久久末码| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 日本黄大片高清| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 久久精品久久久久久久性| 亚洲欧美日韩无卡精品| 晚上一个人看的免费电影| 最新中文字幕久久久久| 国产在视频线在精品| 免费电影在线观看免费观看| 免费人成在线观看视频色| 色哟哟·www| 欧美变态另类bdsm刘玥| 观看美女的网站| 久久久久国产网址| 精品久久久久久久末码| 日本黄大片高清| 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 亚洲一区高清亚洲精品| 亚洲av成人精品一二三区| 又爽又黄a免费视频| 黑人高潮一二区| 成年女人在线观看亚洲视频 | 麻豆乱淫一区二区| eeuss影院久久| 亚洲av在线观看美女高潮| 99久久中文字幕三级久久日本| 国产日韩欧美在线精品| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 久久久精品欧美日韩精品| 99re6热这里在线精品视频| 亚洲aⅴ乱码一区二区在线播放| av福利片在线观看| 男人和女人高潮做爰伦理| 在线观看av片永久免费下载| 婷婷色av中文字幕| 日本wwww免费看| 又黄又爽又刺激的免费视频.| 国产黄a三级三级三级人| 亚洲人成网站在线观看播放| 久久99热这里只频精品6学生| 女人久久www免费人成看片| 能在线免费看毛片的网站| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 黄片无遮挡物在线观看| 内地一区二区视频在线| 国产欧美另类精品又又久久亚洲欧美| 国产美女午夜福利| 久久久午夜欧美精品| 久热久热在线精品观看| 一级毛片 在线播放| 成人一区二区视频在线观看| 国产综合精华液| 三级经典国产精品| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 内地一区二区视频在线| 亚洲国产精品成人久久小说| av在线蜜桃| 亚洲精品第二区| 国产精品国产三级专区第一集| 亚洲精品456在线播放app| 亚洲怡红院男人天堂| 欧美一级a爱片免费观看看| 精品一区在线观看国产| 黄色一级大片看看| 日本欧美国产在线视频| 汤姆久久久久久久影院中文字幕 | av在线观看视频网站免费| 亚洲国产成人一精品久久久| 日韩三级伦理在线观看| kizo精华| 美女内射精品一级片tv| 国产精品综合久久久久久久免费| 亚洲成人一二三区av| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 91久久精品国产一区二区三区| 国产成人freesex在线| 一级毛片我不卡| 国产精品综合久久久久久久免费| 亚洲精品456在线播放app| 99热网站在线观看| 少妇的逼水好多| 日本爱情动作片www.在线观看| 欧美最新免费一区二区三区| 国产人妻一区二区三区在| 黄片无遮挡物在线观看| 亚洲天堂国产精品一区在线| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 2021少妇久久久久久久久久久| freevideosex欧美| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 国产精品人妻久久久久久| 免费观看无遮挡的男女| 国产免费一级a男人的天堂| 青春草国产在线视频| 国产精品av视频在线免费观看| 国产免费又黄又爽又色| 午夜亚洲福利在线播放| 亚洲电影在线观看av| 久久人人爽人人片av| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 搡老妇女老女人老熟妇| 天堂中文最新版在线下载 | 日韩欧美国产在线观看| 国产亚洲最大av| 精品酒店卫生间| 好男人在线观看高清免费视频| 中文欧美无线码| videos熟女内射| 男女国产视频网站| 国产精品一区二区在线观看99 | 免费观看av网站的网址| 久久99热6这里只有精品| 国产成人91sexporn| 少妇的逼水好多| 毛片一级片免费看久久久久| 日韩欧美 国产精品| 成人二区视频| 精品午夜福利在线看| 久久久久久久久久成人| 亚洲最大成人手机在线| 国产黄频视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品综合一区二区三区| 成人亚洲精品一区在线观看 | 久久久精品欧美日韩精品| 国产精品一区二区在线观看99 | 亚洲欧美一区二区三区黑人 | 又粗又硬又长又爽又黄的视频| 欧美激情国产日韩精品一区| 大香蕉97超碰在线| 97人妻精品一区二区三区麻豆| 一级爰片在线观看| 久久99热这里只频精品6学生| 午夜福利在线观看免费完整高清在| 建设人人有责人人尽责人人享有的 | 久久久久久久国产电影| 天堂√8在线中文| 免费看光身美女| 亚洲精品日本国产第一区| 免费观看a级毛片全部| 国产色婷婷99| 久久97久久精品| 日韩欧美 国产精品| 午夜精品国产一区二区电影 | 卡戴珊不雅视频在线播放| 午夜福利网站1000一区二区三区| 18禁动态无遮挡网站| 又粗又硬又长又爽又黄的视频| 人妻制服诱惑在线中文字幕| 成人av在线播放网站| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品免费免费高清| 美女内射精品一级片tv| av在线观看视频网站免费| 观看免费一级毛片| 搡老妇女老女人老熟妇| 边亲边吃奶的免费视频| 欧美高清性xxxxhd video| av一本久久久久| 欧美区成人在线视频| 久久99热6这里只有精品| 爱豆传媒免费全集在线观看| 日本熟妇午夜| 简卡轻食公司| 色综合亚洲欧美另类图片| 尾随美女入室| 日韩亚洲欧美综合| 久久精品夜夜夜夜夜久久蜜豆| 看黄色毛片网站| 插阴视频在线观看视频| 深夜a级毛片| 啦啦啦韩国在线观看视频| 天天躁日日操中文字幕| 国产av在哪里看| 久久久久久久亚洲中文字幕| 天美传媒精品一区二区| 午夜福利网站1000一区二区三区| 九九爱精品视频在线观看| 嫩草影院精品99| 亚洲电影在线观看av| 亚洲av不卡在线观看| 丰满乱子伦码专区| 日本免费在线观看一区| 亚洲av不卡在线观看| 亚洲精品国产成人久久av| 人体艺术视频欧美日本| 亚洲精品456在线播放app| 精品久久国产蜜桃| 精品国产露脸久久av麻豆 | 日日啪夜夜撸| 国产日韩欧美在线精品| 亚洲国产精品成人综合色| 国产黄色免费在线视频| 亚洲av成人精品一区久久| 69av精品久久久久久| 亚洲精品日韩在线中文字幕| 国产精品麻豆人妻色哟哟久久 | 成人毛片60女人毛片免费| 免费黄网站久久成人精品| 国产精品精品国产色婷婷| 人妻夜夜爽99麻豆av| 高清毛片免费看| 国产精品女同一区二区软件| 边亲边吃奶的免费视频| av黄色大香蕉| 日本av手机在线免费观看| 男的添女的下面高潮视频| 日韩欧美国产在线观看| 91在线精品国自产拍蜜月| 国产黄色免费在线视频| 亚洲在线自拍视频| 欧美成人a在线观看| 91aial.com中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 午夜福利在线观看吧| 91av网一区二区| 久久久欧美国产精品| 午夜福利视频1000在线观看| 美女主播在线视频| 国产又色又爽无遮挡免|