• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES?

    2016-04-18 05:44:29SahbiBOUSSANDELFacultdesSciencesdeGab6072ZrigGabCitRiadhTunisiaLaboratoireEDPetApplicationsLR03ES04Tunisia

    Sahbi BOUSSANDELFaculté des Sciences de Gabès 6072 Zrig Gabès Cité Riadh Tunisia-Laboratoire EDP et Applications LR03ES04,Tunisia

    ?

    EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES?

    Sahbi BOUSSANDEL
    Faculté des Sciences de Gabès 6072 Zrig Gabès Cité Riadh Tunisia-Laboratoire EDP et Applications LR03ES04,Tunisia

    E-mail:sahbi.boussandel@yahoo.fr

    AbstractThis paper deals with an abstract periodic gradient system in which the gradient is taken with respect to a variable metric.We obtain an existence and uniqueness result via the application of a global inverse theorem.

    Key wordsexistence and uniqueness;periodic solutions;gradient systems;global inverse theorem

    2010 MR Subject Classi fi cation34K30

    ?Received September 25,2014;revised May 16,2015.

    1 Introduction

    In this paper,we investigate the existence and the uniqueness of solutions for the first order nonlinear periodic differential equation

    where E:RN→R is a twice differentiable functional,?g(t)E denotes the gradient of E with respect to a time-variable inner product〈·,·〉g(t),p≥2 and f∈Lp(0,T;RN).

    The periodic boundary value problems were studied intensively in recent years under several assumptions on the functional E.Many methods and tools were used in order to solve these problems,e.g.,fixed point methods,degree theory,variational methods,the upperlower solutions method and perturbation and iterative techniques.We refer the reader to[7,8,11,14,16,18-23,32,34]and the references therein for more details about these methods and for abstract results and their applications.

    In this paper,the techniques of the proofs are based on the application of the following global inverse functions theorem.

    Theorem 1.1(see[24])Let X and Y be two Banach spaces,and let φ:X→Y be a map.The following assertions are equivalent:

    i)φ is a homeomorphism from X into Y,

    ii)φ is a local homeomorphism and proper.

    Recall that the map φ is proper if φ?1(C)is a compact set in X whenever C is a compact set in Y.

    Several authors obtained existence and uniqueness results for boundary value problems using global inversion theorems;see for example[1-3,5,6,9,12,13,15,17,26-30,33,35,36].

    In order to apply Theorem 1.1,we reformulate problem(1.1)as an algebraic equation

    where φ:X→Y is a mapping from a Banach space X into a Banach space Y,and we prove that φ satisfies assumptions of Theorem 1.1.Under some monotonicity condition on the derivative operator E′and under some nondegeneracy condition on g we prove that problem(1.1)admits a unique solution.In the setting of gradient systems in which the gradient is taken with respect to variable metrics,we refer to[10,Theorem 2.10 and Proof of Theorem 6.1-Part 1]in which the metric depends on the space variable,and to[4,Proof of Theorem 4-Part 1]in which the author considered metrics depending on the time and space variables.The problems considered in[4]and[10]are with initial data.

    2 Functional Setting and Assumptions

    First,we recall from[10]some basic facts and results about Euclidian and Riemannian metrics.Let N∈N?and let E:RN→R be a Fréchet differentiable functional.We denote by〈·,·〉and‖·‖the Euclidian inner product and norm on RN,respectively.The Euclidian gradient of E is the function?E which assigns to every point u∈RNthe unique element ?E(u)∈RNsuch that

    By the Riesz-Fréchet theorem,the euclidian gradient?E is well de fined in the sense that it exists and it is unique.We denote by Inner(RN)the set of all inner products on RN.Let T>0 and let g:[0,T]→Inner(RN)be a function and denote by〈·,·〉g(t)the inner product g(t)at a time t∈[0,T]and by‖·‖g(t)the norm associated with this inner product.For every t∈[0,T],the gradient of E with respect to the inner product〈·,·〉g(t)is the function?g(t)E which assigns to every point u∈RNthe unique element?g(t)E(u)∈RNsuch that

    By the Riesz-Fréchet theorem,the euclidian gradient?g(t)E exists and is unique for every t∈[0,T].

    For every t∈[0,T],let Q(t)∈L(RN)be de fined by

    Then we have

    Remark 2.1We note that if E is of class C2,we can de fi ne,for every t∈[0,T],the functiongiven for every u∈RNby

    where?2E(u)denotes the Hessian matrix of E at the point u.

    We assume that E and g satisfy the following assumptions:

    (H1)E∈C2(RN,R),

    (H3)?c′>0,c′′≥0?u∈RN,〈?E(u),u〉≥c′‖u‖2?c′′‖u‖,

    (H4)for every v,w∈RN,the function t→〈v,w〉g(t)is measurable on[0,T],

    (H5)?c1,c2>0,?u∈RN,?t∈[0,T],c1‖u‖≤‖u‖g(t)≤c2‖u‖.

    Let p∈[2,∞)and Y=Lp(0,T;RN)which is a Banach space for the norm

    If p=2,then L2(0,T;RN)is a Hilbert space for the inner product

    Let further

    which is a Banach space for the norm

    If p=2,then X is a Hilbert space for the inner product

    Recall,from the Sobolev embedding theorem,that

    with continuous embedding,so that the condition u(0)=u(T)which appears in the de finition of the space X makes sense.

    3 Some Preliminary Results

    In this section,we give some preliminary lemmas which turn out essential for the proof of the main result.The first one provides a regularity result for the Nemytskii operator associated to the function?g(·)E.

    Lemma 3.1Let

    be the Nemytskii operator de fined by

    Under assumptions(H1),(H4)and(H5),the Nemytskii operator F is well de fined,continuously differentiable on X and the derivative is given by

    ProofLet

    be the Nemytskii operator de fined by

    Then we have

    The fact that G is continuously differentiable follows similarly as in the proof of[25,Theorem 3.1],and we have

    Since,for every t∈[0,T]and every v,w∈RN,〈v,w〉=〈Q(t)?1v,w〉g(t),we deduce from assumption(H5)that

    and therefore

    It follows that F is well de fined,continuously differentiable on X,and for every u,v∈X,we have

    For the second result,we give su ffi cient conditions that ensure the existence and the uniqueness of solutions for a linear nonautonomous problem with periodic boundary condition.

    Theorem 3.2Assume that p=2.Let(A(t))t∈[0,T]?L(RN)be such that A is measurable on[0,T]and assume that

    (a)?c>0,?t∈[0,T],?x∈RN,〈A(t)x,x〉≥c‖x‖2,

    Then,for every f∈L2(0,T;RN),there exists a unique u∈W1,2(0,T;RN)which is solution of the nonautonomous linear problem

    ProofLet f∈L2(0,T;RN).For every α∈[0,1],we de fi ne the linear operator

    where Id is the identity operator on RN,and we consider the linear nonautonomous problem

    We introduce the set

    For every α∈[0,1],we de fi ne the linear operator Tα:X→Y by

    We note,by assumption(b),that Tαis a bounded operator.We note also that α∈M if and only if the operator Tαis invertible.

    For α=0,eq.(3.2)is a simple ordinary differential equation which has a unique solution u∈X,and henceWe will show that M is an open and closed set in[0,1].Let us prove that M is an open set in[0,1].This is a consequence of assumption(b)and the Neumann Series.Indeed,by assumption(b),there exists C1>0 such that

    where I is the natural embedding from X into Y.Fix an α∈M and denote

    Let β∈[0,1]such that

    and prove that Tβis invertible.By using(3.3)and(3.4),we have

    It follows by the Neumann series that the operatoris invertible.However,

    Now,we prove that M is a closed set in[0,1].Let(αn)be any sequence in M which converges to α∈[0,1].From the de finition of the set M,for every n∈N,there exists a unique un∈W1,2(0,T;RN)which is solution of

    We multiply eq.(3.5)by unwith respect to the inner product of L2(0,T;RN),and we obtain

    By using the periodic boundary condition un(0)=un(T),we have

    and hence by assumption(a),identity(3.6)implies

    Therefore

    where c′=min(1,c).It follows that

    Moreover,by assumption(b)and estimate(3.7),we can deduce from eq.(3.5)that

    and therefore,by combining this last estimate with estimate(3.7)we obtain

    Let h∈X.We use estimate(3.8)in order to obtain

    We let n→∞in this last estimate and we obtain

    From this last estimate it follows that the operator Tα:X→Y is injective and by[31,Lemma 4.47],Tαhas closed range.By[31,Theorem 4.48],it remains to prove that the operator Tα:X→Y is surjective,that is RanTαis dense in Y.Suppose by contradiction that RanTαY.Then,there exists k∈Y{0}such that for every h∈X we have〈Tαh,k〉L2=0.Since the sequenceis bounded in X,and since X is re fl exive,it therefore admits a weakly convergent subsequence(again denoted bywith some weak limit h∈X.Then

    a contradiction to the fact that k0.Hence RanTα=Y,that is Tαis surjective.Since[0,1]is connected,we can deduce that M=[0,1]and the conclusion follows by taking α=1.

    4 The Main Result

    We consider the following gradient system

    The main result of this paper is the following theorem.

    Theorem 4.1Let p∈[2,∞).Under assumptions(H1)-(H5),for every f∈Lp(0,T;RN),problem(4.1)admits a unique solution u∈W1,p(0,T;RN).

    ProofFor the proof,we apply Theorem 1.1.We study the cases p=2 and p>2 separately.

    Case 1p=2.

    Let φ:X→Y be the function de fined by

    The map L:u→u′is linear and bounded from X into Y,therefore continuously differentiable and we have

    Hence by Lemma 3.1,φ is well de fined,continuously differentiable on X and the derivative of φ is given by

    Let u∈X be fixed.We prove that φ′(u)is invertible.This is equivalent to the property that for every e∈L2(0,T;RN),the nonautonomous linear problem

    admits a unique solution.Let

    We have for every t∈[0,T],

    Since,for every t∈[0,T],we have(see the proof of Lemma 3.1),we obtain

    By using the continuous embedding W1,2(0,T;RN)C([0,T];RN),there existssuch that

    Since E is of class C2,there existssuch that

    and consequently,we obtain

    This proves that assumption(b)of Theorem 3.2 is satis fied.Moreover,we have from assumption(H2)

    Therefore,as a consequence of Theorem 3.2,problem(4.2)admits a unique solution and thenφ′(u)is a linear homeomorphism from X into Y.Hence,φ is a local homeomorphism.

    In order to show that φ is a proper map,let C be any compact set of Y and prove thatφ?1(C)is a compact set of X.Let(un)be any sequence of φ?1(C).Then there exists(vn)a sequence in C such that vn=φ(un)for any n∈N,i.e.,

    Since C is compact,we can extract from(vn)a subsequence(which we denote again(vn))such that vn→v in C.

    By multiplying identity(4.3)bywith respect to the inner product〈·,·〉g(t),then by integrating over the interval(0,T),we have

    By using the fact that un(0)=un(T),we have

    and hence we obtain

    From assumption(H5)we have

    and therefore

    Since(vn)is bounded inis bounded in L2(0,T;RN)too.By multiplying identity(4.3)by un(t)with respect to the inner product〈·,·〉g(t),then by integrating over the interval(0,T),we have

    By using assumption(H3),we deduce

    This implies that

    Since?E is continuous on RN,it follows from convergence(4.4)that?E(un)→?E(u)in L2(0,T;RN).Since,for every t∈[0,T],we have?g(·)E(u)in L2(0,T;RN).From identity(4.3),we deduce thatFrom convergence(4.5),we haveand therefore u′= v??g(·)E(u).Hence,un→u in W1,2(0,T;RN),and φ(u)=v∈C.Moreover,we deduce from the fact that un(0)=un(T)and the convergence(4.4)that u(0)=u(T).It follows that un→u in φ?1(C)that is φ?1(C)is a compact set of X.By Theorem 1.1,φ is global homeomorphism from X into Y,and hence problem(4.1)admits a unique solution u∈W1,2(0,T;RN).

    Case 2p>2.

    We prove that this case is a consequence of Case 1.Let f∈Lp(0,T;RN).Since p>2 we have f∈L2(0,T;RN)and by Case 1,there exists a unique u∈W1,2(0,T;RN)which is solution of problem(4.1).Since W1,2(0,T;RN)is a subspace of C([0,T];RN),the function t→?E(u(t))is continuous on[0,T]and then?E(u)∈Lp(0,T;RN).By using the fact that,for every t∈[0,T],we deduce that?g(·)E(u(·))∈Lp(0,T;RN).It follows from eq.(4.1)that u′∈Lp(0,T;RN).Hence,u∈W1,p(0,T;RN)is the unique solution of problem(4.1).

    5 Application

    Let E:RN→R be a twice continuously differentiable functional,let ε>0 and m:[0,T]→be a measurable function.We assume that E satisfies the following assumption:

    (H)?c>0,?u,v∈RN,E′′(u)(v,v)≥c‖v‖2.

    Let further g:[0,T]→Inner(RN)be the function de fined by

    For every t∈[0,T]and every u,v∈RN,we have

    Hence,we have

    We note that assumption(H2)is equivalent to the following property

    It follows that

    so that assumption(H3)is well satis fied.

    It is not difficult to verify that E and g satisfy the other assumptions of Theorem 4.1,so that we obtain the following corollary.

    Corollary 5.1Let p∈[2,∞).For every f∈Lp(0,T;RN),there exists a unique u∈W1,p(0,T;RN)which is solution of

    References

    [1]Ahmad S.An existence theorem for periodically perturbed conservative systems.Michigan Math J,1973,20:385-392

    [2]Amann H.On the unique solvability of semi-linear operator equations in Hilbert spaces.J Math Pures Appl,1982,61:149-175

    [3]Amaral L,Pera M.On periodic solutions of nonconservative systems.Nonlinear Anal,1982,6:733-743

    [4]Boussandel S.Global existence and maximal regularity of gradient systems.J Di ff er Equ,2011,250(2):929-948

    [5]Brown K J.Nonlinear boundary value problems and a global inverse function theorem.Ann Mat Pura Appl,1975,106(4):205-217

    [6]Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse functions theorem.Nonlinear Anal,1980,4:193-201

    [7]Capietto A,Mawhin J,Zanolin F.A continuation approach to superlinear periodic boundary value problems.J Di ff er Equ,1990,88:347-395

    [8]Chen Y,Chen J,Wan Z.Remarks on the periodic boundary value problems for first-order differential equations.Comput Math Appl,1999,37:49-55

    [9]Chen J,O’Regan D.On periodic solutions for even order differential equations.Nonlinear Analysis,2008,69:1138-1144

    [10]Chill R,Fasangová E.Gradient systems.In:13th International Internet Seminar

    [11]Fonda A Sfecci A.A general method for the existence of periodic solutions of differential systems in the plane.J Di ff er Equ,2012,252:1369-1391

    [12]Dalmasso R.An existence and uniqueness theorem for a second order nonlinear system.J Math Anal Appl,2007,327:715-722

    [13]Dalmasso R.Unique solvability for a second order nonlinear system via two global inversion theorems.Ele J Di ff er Equ,2008,(11):1-8

    [14]Lakshmikantham V,Leela S.Existence and monotone method for periodic solutions of first-oder differential equations.J Math Anal Appl,1983,91:237-243

    [15]Lin D,Yang Y Zhu D.Periodic solutions for some ordinary differential equations involving stability.Nonlinear Analysis,2001,45:963-971

    [16]Liu Y.Multiple solutions of periodic boundary value problems for first order differential equations.Comput Math Appl,2007,54:1-8

    [17]Mawhin J.Contractive mappings and periodically perturbed conservative systems.Arch Math,1976,12:67-73

    [18]Mawhin J.Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS-Regional Conf Math 40.Providence,RI:Amer Math Soc,1979

    [19]Mawhin J.First order ordinary differential equations with several periodic solutions.J Appl Math Phy(ZAMP),1987,38:257-265

    [20]Mawhin J,Thompson H B.Periodic or bounded solutions of Caretéodory systems of ordinary differential equations.J Dyn Di ff er Equ,2003,15(2/3):327-334

    [21]Mawhin J.Topological Fixed Point Theory and Nonlinear Di ff erential Equations.Handbook of Topological Fixed Point Theory.Springer,2005

    [22]Nagle R K,Sinkala Z.Existence of 2π-periodic solutions for nonlinear systems of first-order ordinary differential equations at resonance.Nonlinear Analysis,TMA,1995,25:l-16

    [23]Nieto J J,Alvarez-Noriega N.Periodic boundary value problems for nonlinear first order ordinary differential equations.Acta Math Hungar,1996,71(1/2):49-58

    [24]Plastock R.Homeomorphisms between Banach spaces.Trans Amer Math Soc,1974,200:169-183

    [25]Rabier P J,Stuart C A.Boundary value problems for first order systems on the half-line.Topol Methods Nonlinear Anal,2005,25(1):101-133

    [26]Radulescu M,Radulescu S.Global inversion theorems and applications to differential equations.Nonlinear Analysis,TMA,1980,4(4):951-965

    [27]Radulescu M,Radulescu S.An application of Hadamard-Levy theorem to a scalar initial value problem.Proc Amer Math Soc,1989,106(1):139-143

    [28]Radulescu M,Radulescu S.An application of a global inversion theorem to a Dirichlet problem for a second order differential equation.Rev Roumaine Math Pures Appl,1992,37:929-933

    [29]Radulescu M,Radulescu S.Applications of a global inversion theorem to unique solvability of second order Dirichlet problems.An Univ Craiova,Math Comp Sci Ser,2003,30(1):198-203

    [30]Radulescu M,Radulescu S.Global inversion theorems and applications to unique solvability of boundary value theorems for differential equations.Int J Di ff er Equ Appl,2000,1(2):159-166

    [31]Rynne B P,Youngson M A.Linear Functional Analysis.Springer Undergraduate Mathematics Series.Springer,2008

    [32]Tisdell C C.Existence of solutions to first-order periodic boundary value problems.J Math Anal Appl,2006,323:1325-1332

    [33]Trif T.Unique solvability of certain nonlinear boundary value problems via a global inversion theorem of Hadamard-Levy type.Demonstratio Math,2005,38(2):331-340

    [34]Vidossich G.Multiple periodic solutions for first-order ordinary differential equations.J Math Anal Appl,1987,127:459-469

    [35]Li W G.An application of a global inversion theorem to an existence and uniqueness theorem for a class of nonlinear systems of differential equations.Nonlinear Analysis,2009,70:3730-3737

    [36]Yang X.Existence and uniqueness results for periodic solution of nonlinear differential equations.Appl Math Comput,2002,130:213-223

    天天躁狠狠躁夜夜躁狠狠躁| 18禁观看日本| 亚洲色图综合在线观看| 69精品国产乱码久久久| 国产免费福利视频在线观看| 精品视频人人做人人爽| 黑人巨大精品欧美一区二区蜜桃| 丰满饥渴人妻一区二区三| 亚洲一区中文字幕在线| 啦啦啦视频在线资源免费观看| 2022亚洲国产成人精品| 午夜福利网站1000一区二区三区| 午夜福利在线观看免费完整高清在| 精品人妻熟女毛片av久久网站| 成人二区视频| 国产日韩欧美视频二区| 不卡av一区二区三区| 综合色丁香网| 久久99热这里只频精品6学生| 一级毛片 在线播放| 欧美人与性动交α欧美精品济南到 | 天天操日日干夜夜撸| 在线天堂中文资源库| 亚洲第一av免费看| 久久精品国产a三级三级三级| 少妇熟女欧美另类| 国产精品熟女久久久久浪| 少妇猛男粗大的猛烈进出视频| 久久人人爽av亚洲精品天堂| 国产高清国产精品国产三级| 久久ye,这里只有精品| 桃花免费在线播放| 日本wwww免费看| 日本av免费视频播放| 麻豆av在线久日| 这个男人来自地球电影免费观看 | 欧美在线黄色| 国产日韩欧美亚洲二区| 免费黄网站久久成人精品| 一边摸一边做爽爽视频免费| 亚洲国产色片| 女性被躁到高潮视频| 最近手机中文字幕大全| 亚洲国产精品成人久久小说| 水蜜桃什么品种好| 日韩一区二区三区影片| 三级国产精品片| 热re99久久精品国产66热6| a 毛片基地| 国产精品嫩草影院av在线观看| 久久国产亚洲av麻豆专区| av卡一久久| 亚洲国产最新在线播放| av国产久精品久网站免费入址| 热re99久久国产66热| 色播在线永久视频| 日韩免费高清中文字幕av| 日韩 亚洲 欧美在线| 黄色怎么调成土黄色| 亚洲av成人精品一二三区| 性少妇av在线| 超色免费av| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 人成视频在线观看免费观看| 国产福利在线免费观看视频| 一级毛片黄色毛片免费观看视频| 久久久国产精品麻豆| 国产白丝娇喘喷水9色精品| 久久久久精品人妻al黑| 亚洲精品美女久久av网站| 国产欧美亚洲国产| 日本黄色日本黄色录像| 宅男免费午夜| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | kizo精华| 亚洲av福利一区| 少妇猛男粗大的猛烈进出视频| 综合色丁香网| 国产免费一区二区三区四区乱码| 午夜福利视频精品| 我要看黄色一级片免费的| 少妇人妻精品综合一区二区| 国产精品久久久久久精品古装| 乱人伦中国视频| 欧美97在线视频| 午夜福利一区二区在线看| 捣出白浆h1v1| 国产在线视频一区二区| 国产av码专区亚洲av| 黄频高清免费视频| 成人毛片a级毛片在线播放| 男女边摸边吃奶| 最黄视频免费看| 有码 亚洲区| 国产精品女同一区二区软件| 99久久中文字幕三级久久日本| 大码成人一级视频| 国产精品欧美亚洲77777| 国产激情久久老熟女| 精品少妇久久久久久888优播| 9191精品国产免费久久| 亚洲五月色婷婷综合| 99热全是精品| 妹子高潮喷水视频| 国产爽快片一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 一级黄片播放器| 国产精品久久久久久精品古装| 丝瓜视频免费看黄片| 老熟女久久久| 新久久久久国产一级毛片| 极品少妇高潮喷水抽搐| 亚洲国产看品久久| 另类亚洲欧美激情| 日韩欧美一区视频在线观看| 十八禁网站网址无遮挡| 国产免费现黄频在线看| 国产av码专区亚洲av| 伊人亚洲综合成人网| 爱豆传媒免费全集在线观看| 精品久久蜜臀av无| 在线观看三级黄色| 国产精品三级大全| 国产精品三级大全| 午夜日韩欧美国产| 亚洲国产色片| 秋霞在线观看毛片| 国产精品99久久99久久久不卡 | 中文字幕色久视频| 亚洲精品国产一区二区精华液| 精品第一国产精品| 在线观看免费高清a一片| 亚洲欧美中文字幕日韩二区| 在线免费观看不下载黄p国产| 国产片内射在线| 久久久久精品久久久久真实原创| 亚洲综合色网址| 人人妻人人澡人人看| 久久久国产一区二区| 我的亚洲天堂| 人人妻人人添人人爽欧美一区卜| 大码成人一级视频| 久久99热这里只频精品6学生| 久久精品国产综合久久久| 午夜老司机福利剧场| 国产精品嫩草影院av在线观看| 春色校园在线视频观看| 丝袜在线中文字幕| 国产又爽黄色视频| 亚洲,欧美,日韩| 久久精品国产亚洲av高清一级| 欧美精品一区二区免费开放| 亚洲熟女精品中文字幕| 亚洲内射少妇av| 一二三四中文在线观看免费高清| 亚洲欧美清纯卡通| 国产精品久久久久久精品古装| 国产野战对白在线观看| 欧美变态另类bdsm刘玥| 夫妻性生交免费视频一级片| 国产有黄有色有爽视频| 日本色播在线视频| 国产一区亚洲一区在线观看| 国产一区二区 视频在线| 午夜福利影视在线免费观看| 最近2019中文字幕mv第一页| 亚洲伊人色综图| 人妻一区二区av| 亚洲av国产av综合av卡| 日韩中字成人| 性少妇av在线| 夫妻午夜视频| 国产在视频线精品| 性色av一级| 精品国产一区二区三区四区第35| 精品酒店卫生间| 免费人妻精品一区二区三区视频| 国产精品免费大片| 水蜜桃什么品种好| 午夜福利视频在线观看免费| 成年人免费黄色播放视频| 国产av码专区亚洲av| 桃花免费在线播放| 国产日韩一区二区三区精品不卡| 人妻少妇偷人精品九色| 精品人妻一区二区三区麻豆| 黄色配什么色好看| 91国产中文字幕| 两个人看的免费小视频| 亚洲国产最新在线播放| 三级国产精品片| 欧美在线黄色| 国产av码专区亚洲av| 日日撸夜夜添| 亚洲 欧美一区二区三区| 少妇人妻精品综合一区二区| 久久精品熟女亚洲av麻豆精品| 精品国产超薄肉色丝袜足j| 99久久中文字幕三级久久日本| 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 国产又爽黄色视频| 日韩在线高清观看一区二区三区| 国产伦理片在线播放av一区| 99久久人妻综合| 国产成人aa在线观看| 性色av一级| 国产精品国产av在线观看| 你懂的网址亚洲精品在线观看| 免费播放大片免费观看视频在线观看| 亚洲 欧美一区二区三区| 少妇熟女欧美另类| 考比视频在线观看| 国产成人精品久久久久久| 爱豆传媒免费全集在线观看| 99久久精品国产国产毛片| 国产野战对白在线观看| 色网站视频免费| 两性夫妻黄色片| 两个人看的免费小视频| 人妻人人澡人人爽人人| 黑人巨大精品欧美一区二区蜜桃| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 亚洲av成人精品一二三区| 久久久久久久久免费视频了| 韩国av在线不卡| 亚洲三级黄色毛片| 日本-黄色视频高清免费观看| 久久久亚洲精品成人影院| 亚洲欧美成人综合另类久久久| 人人澡人人妻人| 性色av一级| 韩国精品一区二区三区| 日韩在线高清观看一区二区三区| 精品福利永久在线观看| 黄色一级大片看看| 日韩在线高清观看一区二区三区| 欧美日韩成人在线一区二区| 亚洲精品乱久久久久久| 久久韩国三级中文字幕| 超碰成人久久| 黑人猛操日本美女一级片| 久久久久视频综合| 午夜老司机福利剧场| 中文字幕亚洲精品专区| 国产精品一二三区在线看| 1024视频免费在线观看| 麻豆av在线久日| 日韩在线高清观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 女性被躁到高潮视频| 女人被躁到高潮嗷嗷叫费观| 欧美 亚洲 国产 日韩一| 久久毛片免费看一区二区三区| 黄色一级大片看看| 高清黄色对白视频在线免费看| 久久精品久久久久久噜噜老黄| 久久久精品国产亚洲av高清涩受| 高清黄色对白视频在线免费看| 日韩一本色道免费dvd| 伊人亚洲综合成人网| 精品人妻偷拍中文字幕| 亚洲精品日韩在线中文字幕| 成人国产av品久久久| 嫩草影院入口| 中文字幕精品免费在线观看视频| 啦啦啦啦在线视频资源| 国产成人精品一,二区| 久久精品夜色国产| 又粗又硬又长又爽又黄的视频| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 亚洲精品视频女| 国产福利在线免费观看视频| 国产男人的电影天堂91| 亚洲av男天堂| 中文字幕精品免费在线观看视频| 日韩视频在线欧美| 日本欧美视频一区| 边亲边吃奶的免费视频| 久久精品aⅴ一区二区三区四区 | 成年女人毛片免费观看观看9 | 蜜桃国产av成人99| 国产欧美日韩一区二区三区在线| 少妇熟女欧美另类| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美中文字幕日韩二区| 久久97久久精品| 久久精品国产综合久久久| 日韩精品有码人妻一区| av网站在线播放免费| 大香蕉久久成人网| 十分钟在线观看高清视频www| 最新中文字幕久久久久| av网站免费在线观看视频| 国产成人欧美| 在线 av 中文字幕| 一区二区三区乱码不卡18| 精品人妻在线不人妻| 黄色怎么调成土黄色| 亚洲伊人久久精品综合| 亚洲精品自拍成人| 久久久久精品人妻al黑| 在线观看国产h片| 精品国产超薄肉色丝袜足j| 麻豆av在线久日| 一区二区三区四区激情视频| 亚洲av中文av极速乱| 精品国产一区二区三区四区第35| 成人午夜精彩视频在线观看| 亚洲图色成人| 亚洲国产看品久久| 成人毛片a级毛片在线播放| 国产欧美日韩综合在线一区二区| 韩国av在线不卡| 又黄又粗又硬又大视频| 国产极品粉嫩免费观看在线| 精品一区二区三区四区五区乱码 | 日韩欧美一区视频在线观看| 精品国产超薄肉色丝袜足j| 咕卡用的链子| 一级片'在线观看视频| 美女国产高潮福利片在线看| 欧美bdsm另类| 一级毛片电影观看| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 国产一级毛片在线| 午夜福利,免费看| 国产精品一国产av| 国产综合精华液| 成年人午夜在线观看视频| 国产精品欧美亚洲77777| 日日撸夜夜添| 丰满乱子伦码专区| 有码 亚洲区| 国产综合精华液| 欧美国产精品一级二级三级| www日本在线高清视频| 丝袜喷水一区| 一级毛片我不卡| 搡老乐熟女国产| 亚洲欧洲国产日韩| 免费在线观看黄色视频的| 日本av手机在线免费观看| 2021少妇久久久久久久久久久| 国产精品三级大全| 免费在线观看黄色视频的| 一区二区三区乱码不卡18| 丰满饥渴人妻一区二区三| 天天躁夜夜躁狠狠躁躁| 国产精品蜜桃在线观看| 99re6热这里在线精品视频| 国产一区二区在线观看av| 一本—道久久a久久精品蜜桃钙片| 99久国产av精品国产电影| 少妇的逼水好多| 欧美日韩一区二区视频在线观看视频在线| 国产伦理片在线播放av一区| 成人国产麻豆网| av又黄又爽大尺度在线免费看| 有码 亚洲区| 一级a爱视频在线免费观看| 黄片小视频在线播放| 久久这里有精品视频免费| 五月伊人婷婷丁香| 精品国产一区二区三区久久久樱花| 夫妻午夜视频| 久久久久人妻精品一区果冻| 性色av一级| 久久精品人人爽人人爽视色| 国产精品成人在线| 精品人妻偷拍中文字幕| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 18禁动态无遮挡网站| 亚洲伊人久久精品综合| 日本猛色少妇xxxxx猛交久久| 水蜜桃什么品种好| 大香蕉久久网| 波多野结衣一区麻豆| 最近中文字幕2019免费版| 欧美少妇被猛烈插入视频| 最近2019中文字幕mv第一页| 18+在线观看网站| 日产精品乱码卡一卡2卡三| 免费观看在线日韩| 人人妻人人澡人人看| av卡一久久| 五月伊人婷婷丁香| 午夜免费鲁丝| 激情视频va一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲人成77777在线视频| 国产淫语在线视频| 久久久久久人妻| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91精品三级在线观看| 婷婷成人精品国产| 成年动漫av网址| av在线app专区| 91成人精品电影| 一本—道久久a久久精品蜜桃钙片| 中文天堂在线官网| av网站免费在线观看视频| 1024视频免费在线观看| 最近最新中文字幕大全免费视频 | 国产极品粉嫩免费观看在线| 国产精品免费视频内射| 考比视频在线观看| 一区二区三区精品91| 亚洲精品日本国产第一区| 久久久久久久精品精品| 亚洲 欧美一区二区三区| 久久影院123| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 亚洲经典国产精华液单| 成年女人毛片免费观看观看9 | 一本色道久久久久久精品综合| 精品久久久久久电影网| 精品福利永久在线观看| 免费观看a级毛片全部| 麻豆乱淫一区二区| 人妻 亚洲 视频| 欧美人与善性xxx| 免费在线观看黄色视频的| 成人国产av品久久久| 国产欧美亚洲国产| 国产精品一国产av| 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 亚洲国产精品国产精品| 久久精品aⅴ一区二区三区四区 | 亚洲男人天堂网一区| 欧美少妇被猛烈插入视频| 国产精品嫩草影院av在线观看| 亚洲国产成人一精品久久久| 亚洲欧美色中文字幕在线| 国产男女超爽视频在线观看| 成人亚洲精品一区在线观看| 2018国产大陆天天弄谢| 亚洲欧美色中文字幕在线| 日本猛色少妇xxxxx猛交久久| av线在线观看网站| 老司机影院毛片| 老汉色av国产亚洲站长工具| 中文天堂在线官网| 午夜福利网站1000一区二区三区| 日韩av在线免费看完整版不卡| 亚洲国产精品一区二区三区在线| 蜜桃国产av成人99| 另类亚洲欧美激情| 熟妇人妻不卡中文字幕| 狠狠婷婷综合久久久久久88av| 国产黄频视频在线观看| 一级片'在线观看视频| 有码 亚洲区| 国产一区有黄有色的免费视频| 丁香六月天网| 久久久久久久久久久免费av| 在现免费观看毛片| 欧美在线黄色| av免费在线看不卡| 如何舔出高潮| av在线观看视频网站免费| 九色亚洲精品在线播放| 日本-黄色视频高清免费观看| av国产精品久久久久影院| 少妇的逼水好多| 高清av免费在线| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 七月丁香在线播放| 欧美 日韩 精品 国产| av在线观看视频网站免费| 曰老女人黄片| 亚洲伊人色综图| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 丰满乱子伦码专区| 国产亚洲一区二区精品| 国产精品 国内视频| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频| 久久久久久久亚洲中文字幕| 视频区图区小说| 天天躁日日躁夜夜躁夜夜| 建设人人有责人人尽责人人享有的| 国产乱人偷精品视频| 看十八女毛片水多多多| 成人国产av品久久久| 日本欧美国产在线视频| 国产精品香港三级国产av潘金莲 | av在线播放精品| 18禁动态无遮挡网站| 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 9热在线视频观看99| 欧美97在线视频| 亚洲一区二区三区欧美精品| 色哟哟·www| 亚洲欧美一区二区三区国产| 国产欧美亚洲国产| 欧美日韩精品成人综合77777| 成人影院久久| 一边摸一边做爽爽视频免费| 免费大片黄手机在线观看| 精品久久蜜臀av无| 少妇熟女欧美另类| 捣出白浆h1v1| 久久久久视频综合| 亚洲少妇的诱惑av| 一区二区三区精品91| 亚洲av免费高清在线观看| 日韩,欧美,国产一区二区三区| 精品第一国产精品| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 99国产综合亚洲精品| 在线观看三级黄色| 日韩电影二区| 久久av网站| 交换朋友夫妻互换小说| 国产97色在线日韩免费| videos熟女内射| 欧美日韩视频精品一区| 色视频在线一区二区三区| 国产乱来视频区| 日韩熟女老妇一区二区性免费视频| 大片电影免费在线观看免费| 免费黄网站久久成人精品| 欧美激情高清一区二区三区 | 午夜免费男女啪啪视频观看| 国产精品 欧美亚洲| 老熟女久久久| 男的添女的下面高潮视频| 一二三四中文在线观看免费高清| 国产精品香港三级国产av潘金莲 | 国产成人免费观看mmmm| 亚洲国产欧美日韩在线播放| 国产亚洲精品第一综合不卡| 久久免费观看电影| 在线 av 中文字幕| 一区二区三区四区激情视频| 国产淫语在线视频| 男女边吃奶边做爰视频| 久热这里只有精品99| 夫妻午夜视频| 蜜桃在线观看..| 欧美另类一区| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩伦理黄色片| 久久精品国产亚洲av天美| freevideosex欧美| 97在线视频观看| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 一边摸一边做爽爽视频免费| 免费观看在线日韩| 国产精品免费大片| 亚洲伊人色综图| 一区二区三区精品91| 亚洲四区av| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 免费观看性生交大片5| 国产亚洲精品第一综合不卡| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 另类精品久久| 边亲边吃奶的免费视频| 美女福利国产在线| 青春草视频在线免费观看| 亚洲综合色网址| 亚洲欧美一区二区三区国产| 免费在线观看完整版高清| av免费在线看不卡| 婷婷色av中文字幕| 精品国产乱码久久久久久男人| 观看美女的网站| 蜜桃在线观看..| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 国产成人精品福利久久| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 亚洲精品一二三| 777米奇影视久久| 自线自在国产av| freevideosex欧美| 亚洲精品日本国产第一区| 国产av精品麻豆| 久久 成人 亚洲| 尾随美女入室| 国产精品免费大片| 国产免费又黄又爽又色| 99香蕉大伊视频| 亚洲精品第二区| 国产成人精品久久久久久| 亚洲成人手机| 亚洲人成网站在线观看播放| 99热网站在线观看| 免费日韩欧美在线观看| 看免费成人av毛片| 国产精品欧美亚洲77777| 久久久久久久亚洲中文字幕| 亚洲美女黄色视频免费看| 国产精品99久久99久久久不卡 | av国产精品久久久久影院| 性高湖久久久久久久久免费观看|