• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nitrogen-tailored quasiparticle energy gaps of polyynes

    2022-12-28 09:52:00KanZhang張侃JilingLi李繼玲PeitaoLiu劉培濤GuoweiYang楊國(guó)偉andLeiShi石磊
    Chinese Physics B 2022年12期
    關(guān)鍵詞:石磊

    Kan Zhang(張侃) Jiling Li(李繼玲) Peitao Liu(劉培濤)Guowei Yang(楊國(guó)偉) and Lei Shi(石磊)

    1State Key Laboratory of Optoelectronic Materials and Technologies,Nanotechnology Research Center,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices,School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 510275,China

    2Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords: polyyne,nitrogen-doping,quasiparticle energy gap,GW calculations

    1. Introduction

    Polyyne composed of alternative single-triple bonds has been extensively studied on its conductivities as a widegap semiconductor varied with the length,[1–5]ending chemical groups,[6–8]and atomic structures (linear, bent, and cyclo).[9–13]The conjugated triple bonds cause delocalization of valence electrons filling intoπ-orbitals, thus introducing energy gap near the Fermi level.[14]The energy gap is determined by the value of bond length alternation (BLA) of the polyyne, which is the bond length difference between single and triple bonds because of Peierls distortion.[15]Experimental and theoretical studies suggested that both the length of a polyyne and the ending groups enable to change the BLA,thus influence the properties of the polyyne.

    Usually, substitution doping with heteroatoms is often used to regulate the electronic property of carbon materials.For example,heteroatoms including B and N have been introduced into carbon nanotubes or graphene to modify both the conduction band minimum and valence band maximum, resulting in improved electronic properties.[16–23]Isoelectronic doping was proposed to modify the energy gap of graphdiyne,a material with sp-and sp2hybridizations.[24,25]However,how the substitution doping influences the properties of the polyyne remains unexplored.

    It is well established that calculations based on Hartree–Fock functional overestimate the quasiparticle energy gap of the polyyne,[26]while density functional theory(DFT)calculations underestimate the quasiparticle energy gap.[27]In contrast, theGWmethod[28–32](GandWrepresent the Green’s function and the screened Coulomb interaction, respectively)provides a good approximation for the self-energy of a manybody system of electrons, and therefore, has been proved as a reliable method for obtaining more accurate quasiparticle energies for a variety of systems.[33–37]For the polyyne,previously, two methods,i.e., the B3LYP hybrid functional based on Coulomb-attenuating method (CAM) and the diffusion quantum Monte Carlo method (DMC), have been acknowledged to predict results of quasiparticle energy. Thus,an energy gap of 6.52 eV for a hydrogen-capped polyyne with 10 carbon atoms and an energy gap of 3.61 eV for a carbyne (an infinitely long polyyne) were obtained by employing CAM-B3LYP[27]and DMC,[37]respectively. Here,we applied theGWmethod to calculate the quasiparticle energy gaps of the polyyne and the carbyne. The obtained gaps for hydrogen-capped polyyne with 10 carbon atoms and carbyne are 6.75 eV and 3.53 eV,respectively,which are consistent with the predicted values.[27,37]Then we applied theGWmethod to predict the quasiparticle energy gaps of N-doped polyynes considering different substituted positions of the N atom into a polyyne with different length. Compared to the pristine polyyne, the quasiparticle energy gap strongly varies with the substituted position. Moreover,the polyyne changes into an n-type semiconductor with the nitrogen substitution.Our work provides an efficient route to tune the electronic properties of polyyne and especially substituting the secondnearest-neighboring carbon atom allows to achieve the lowest energy gap close to visible region,which could be applicable in applications of optical devices in future.

    2. Computational method

    Quasiparticle energy gaps of pristine and N-doped polyynes were calculated by theGWmethod. The structural models were constructed for polyyne with different lengths,as shown in Fig. 1. To ensure only one molecule in one cell and no cross-linking between molecules,an H-caped(undoped and N-doped) polyyne molecule was placed along thezaxis(OC, O as the original point) in a hexagonal cell. The relaxation was performed by using the PBEsol functional,[38]the interaction between ions and electrons was described by the projector-augmented wave(PAW)method[39]as implemented in the Viennaab-initiosimulation package (VASP)[40,41]and the cut-off energy was set to 450 eV. Note that for polyyne molecule, a sufficient vacuum length of 10 ?A was used to keep the molecule an isolated object excluding any spurious image interactions. The density functional theory(DFT)electronic structure calculations were carried out by using Quantum ESPRESSO.[42,43]Only gamma point was used. Quasiparticle energies were calculated by using the BerkeleyGWcode.[32,44]Then by using the Wannier90 suit,[45–47]the projections of C/N s and p orbitals were calculated and wannier interpolated quasiparticle band structures including the quasiparticle energy gap were finally calculated (HOMO–LUMO gap for polyyne molecule and energy gap for polyyne molecule-stacked bulk materials, HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital).

    Fig. 1. Computational models in (a) top view, (b) side view of primitive cell of polyyne[12] and (c) C2→N-polyyne[12] where OA, OB, and OC correspond to the lengths of lattice parameters a,b,and c,respectively. C,H,and N atoms are in gray,white,and blue,respectively.

    3. Results and discussion

    Since the value of BLA determines the HOMO–LUMO gap of polyyne, we calculated the bond lengths of single and triple bonds for polyynes containing 10–20 carbon atoms(labeled as polyyne[n],wherenis the number of carbon atoms in a polyyne)and corresponding N-doped polyynes[n]at different positions (labeled as Cm→N-polyyne[n], wheremis the counting number of the carbon atom except hydrogen atom from the end of a polyyne as illustrated in Fig.1). As shown in Fig. 2(a) (full results can be found in Fig. S1 in supporting information), we can clearly see that the bond lengths of both single and triple bonds are not evenly distributed in a polyyne. Generally, the bond length is shorter in the middle of the polyyne. Also, when the polyyne is longer, the bond length difference between the bond at the end and the bond in the middle gets larger,suggesting a length-dependent property.In addition, the average BLA increases as the length of the polyyne decreases,because the p electron delocalizes fromσbond toπbond,resulting in a larger electronic energy gap.[14]The introduction of nitrogen atom in a polyyne greatly modulates the length of the carbon–carbon bond close to the nitrogen(Fig.2(b)),thus modifying the properties of the polyyne.Similar results were found when the nitrogen atom locates at different positions of a polyyne (Fig. 2(c)). Therefore, it is with great interest to see how the nitrogen at different position affects the quasiparticle energy gap.

    The orbitals were calculated by using the obtained bond lengths of the polyynes. As shown in Fig.3,from the orbitals of polyyne[14],it is clearly seen that a conjugatedπbond system exists through the chain. The orbitals of single and triple bonds are orthogonal. With nitrogen doping, for the C2→Npolyyne[14]the orbitals are greatly modified. The doping position in the polyyne determines how much the orbitals can be altered, indicating an N-position-dependent property. The same is found for the C2→N-polyyne[12].

    Fig. 2. Bond lengths of (a) polyyne[n], (b) C2→N-polyyne[n], and (c) Cm →N-polyyne[14]. n=12, 14, 16, 18, 20 from left to right and blue dots show lengths of C–N bonds.

    Fig.3. Orbitals of polyyne[14]and Cm→N-polyyne[14]. Orbitals of polyyne[12]and C2→N-polyyne[12](bottom right). Positive and negative orbital wave functions are marked in blue and yellow,respectively.

    Our calculated quasiparticle energy gaps of polyyne[n]confirm the length-dependent property(Figs.4 and 5),which is consistent with previous results.[48–50]The LUMOs of the polyyne[n] only slightly move down when the polyyne gets longer,whereas the HOMO is much closer to the Fermi level(Fig.4(a)),resulting in a reduced HOMO–LUMO gap. Compared to the undoped polyyne, when doped with nitrogen at the second position (C2→N-polyyne[n]), two main obvious consequences have been observed. One is that the HOMO–LUMO gap decreases remarkably, manifested by the downshifted LUMO and the upshifted HOMO (Figs. 4 and 5(a)).The other is that the Fermi level is getting close to the downshifted LUMO(according to Figs.5(b)and 5(c),more p electron states are provided due to the N-doping), presenting a behavior of n-type semiconductor.[51,52]In contrast, substitutions at the other positions only slightly move the LUMO down.Therefore,the conductivity of polyyne can be improved by the nitrogen doping, and the substitution position is crucial to obtain the optimal effect. This reveals that the experimental research could focus more on the synthesis of C2→Npolyyne[n]among all the Cm→N-polyyne[n]. However,since the C2→N-polyyne[14] have the lowest LUMO and highest HOMO,suggesting the most instability of the molecule,which makes it more challenging to be synthesized.

    The HOMO–LUMO gaps of polyyne[n]and corresponding Cm→Npolyyne[n],n=12–20,are summarized in Fig.5.Again, the HOMO–LUMO gap changes greatly with the nitrogen position in a polyyne. Especially when the second carbon is substituted with a nitrogen,i.e.,the C2→N-polyyne[n],the reduction of the HOMO–LUMO gaps is more pronounced.When thenis large enough, the HOMO–LUMO gap of C2→N-polyyne[n]tends to saturate at a value of below 2 eV,which is close to the value obtained for the carbyne inside carbon nanotubes.[49,53]In addition,when the doping position moves from the end to the middle of the polyyne,the gap tends to saturate at a constant value,which can even be greater than that of undoped polyyne(Fig.5(a)).Our findings not only suggest a new strategy to engineer the quasiparticle energy gap of a polyyne via doping the polyyne with nitrogen at selective positions,but also reveal a way to increase the electric conductivity via nitrogen doping like most of the carbon materials,[54,55]which would benefit its application as a semiconductor.

    Fig. 4. HOMOs and LUMOs of (a) polyyne[n], (b) C2→N-polyyne[n](n=12,14,16,18,20 from left to right),and(c)Cm→N-polyyne[14].

    Polyynes are usually synthesized and kept in solvent due to its particular synthesis process and instability. Recently,stacked polyynes in a form of small crystal has been prepared,which suggests that the stacked polyynes can be stable after drying.[56]When the polyyne molecules are stacked into bulk materials, it is also expected that the properties of the stacked polyynes would change,as inspired from the changed property of two-dimensional materials compared to that of their bulk three-dimensional counterparts,e.g., graphene versus graphite.[57,58]To view the difference on electronic properties between stacked polyynes and single polyyne molecule,the interactions among molecules should be considered in the calculation. Our calculations show that the quasiparticle energy gap of stacked polyynes decreases as compared to that of the polyyne molecules(Fig.S2),suggesting another modulated way to further reduce the energy gap of a polyyne except nitrogen doping,which requires specific study in future.

    4. Conclusion

    In summary, we theoretically studied how the nitrogen substitution doping tailors the quasiparticle energy gaps of the polyyne molecules with different lengths. We find that the Ndoping enables to greatly change the gap of the polyyne and the gap highly depends on the doping position in the polyyne.Substituting the second C atom (counting from the end of a polyyne except hydrogen atom) by N atom reduces the gap most due to the significantly decreased BLA,whereas the Ndoping in the middle of a polyyne only slightly varies the gap.Our study reveals an effective route to tune the electronic properties of polyyne via N-doping,which would benefit the future applications of the polyyne as an n-type semiconductor. In addition, we suggest that stacking the polyyne molecule could also tailor the quasiparticle energy gap, which deserves further investigations in future.

    See supplementary material for the complete bond lengths and quasiparticle energy gaps of single non-doped/Ndoped polyynes.

    Acknowledgements

    We thank Dr. Zhuhua Zhang for helpful discussion.Project supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011227),the National Natural Science Foundation of China (Grant No. 51902353), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22lgqb03), and the Fund from the State Key Laboratory of Optoelectronic Materials and Technologies (Grant No.OEMT-2022-ZRC-01).

    猜你喜歡
    石磊
    “巨嬰”老公總讓我收拾爛攤子,忍無(wú)可忍我決定分居
    婦女生活(2025年2期)2025-02-20 00:00:00
    Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
    Inverse synthetic aperture radar range profile compensation of plasma-sheathenveloped reentry object
    Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    Energy dissipation and power deposition of electromagnetic waves in the plasma sheath
    闕 題
    親愛的,你現(xiàn)在可以求婚了
    伴侶(2019年11期)2019-08-09 08:47:31
    Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties?
    昔日創(chuàng)客的美麗蝶變
    人妻系列 视频| 三级毛片av免费| 国产亚洲欧美98| 国产 一区 欧美 日韩| 夜夜夜夜夜久久久久| 国产高清不卡午夜福利| 99久久精品一区二区三区| 少妇熟女aⅴ在线视频| 国产乱人视频| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 久久久久久久亚洲中文字幕| 在线观看免费视频日本深夜| 少妇丰满av| 长腿黑丝高跟| 禁无遮挡网站| 真实男女啪啪啪动态图| 国产高清不卡午夜福利| 久久99热这里只有精品18| av在线天堂中文字幕| 久久久久网色| 级片在线观看| 久久亚洲国产成人精品v| 波野结衣二区三区在线| 日韩中字成人| 搡老妇女老女人老熟妇| 少妇人妻精品综合一区二区 | 国产成人午夜福利电影在线观看| 日韩欧美 国产精品| 免费av毛片视频| 在线观看美女被高潮喷水网站| 麻豆国产av国片精品| 欧洲精品卡2卡3卡4卡5卡区| 国内精品一区二区在线观看| 亚洲精品成人久久久久久| 一级毛片电影观看 | av女优亚洲男人天堂| 内地一区二区视频在线| 岛国毛片在线播放| 久久99蜜桃精品久久| 国产精品三级大全| 精品一区二区三区视频在线| 免费观看精品视频网站| 两个人的视频大全免费| 长腿黑丝高跟| 亚洲四区av| 久久精品国产亚洲av天美| 久久亚洲国产成人精品v| ponron亚洲| 日韩制服骚丝袜av| 69av精品久久久久久| 性欧美人与动物交配| 97超碰精品成人国产| 国产精品久久久久久亚洲av鲁大| 国产一区二区激情短视频| 午夜免费激情av| 别揉我奶头 嗯啊视频| 国产免费男女视频| 国产亚洲5aaaaa淫片| 亚洲内射少妇av| 高清毛片免费观看视频网站| 十八禁国产超污无遮挡网站| а√天堂www在线а√下载| 一本久久中文字幕| 成人综合一区亚洲| 久久久久久九九精品二区国产| 深夜精品福利| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| av.在线天堂| 99久久精品热视频| 国模一区二区三区四区视频| 亚洲一区高清亚洲精品| 欧美色视频一区免费| 久久99精品国语久久久| 22中文网久久字幕| 99久久精品热视频| 亚洲欧洲日产国产| 亚洲av一区综合| 午夜福利视频1000在线观看| 国产精品伦人一区二区| 欧美潮喷喷水| 亚洲欧美成人精品一区二区| 不卡视频在线观看欧美| 看免费成人av毛片| 亚洲精品日韩在线中文字幕 | 嫩草影院精品99| 色综合站精品国产| 日本爱情动作片www.在线观看| 日韩成人av中文字幕在线观看| 国产成年人精品一区二区| 日韩制服骚丝袜av| 亚洲18禁久久av| 一级二级三级毛片免费看| 99九九线精品视频在线观看视频| 久久久久九九精品影院| 狠狠狠狠99中文字幕| 国内精品宾馆在线| 国产日本99.免费观看| 男女那种视频在线观看| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 久久精品国产自在天天线| 黑人高潮一二区| 久久精品综合一区二区三区| 国内精品宾馆在线| 直男gayav资源| 久久亚洲国产成人精品v| 九九在线视频观看精品| 亚洲av中文av极速乱| 热99在线观看视频| avwww免费| 波多野结衣高清作品| 嫩草影院新地址| 免费观看的影片在线观看| 干丝袜人妻中文字幕| 观看免费一级毛片| 欧美人与善性xxx| 久久精品91蜜桃| 日本色播在线视频| 国产高清视频在线观看网站| 黄色视频,在线免费观看| 六月丁香七月| 插阴视频在线观看视频| 久久热精品热| 又粗又爽又猛毛片免费看| 悠悠久久av| 五月伊人婷婷丁香| 国产精品日韩av在线免费观看| 免费人成视频x8x8入口观看| 成人性生交大片免费视频hd| 欧美另类亚洲清纯唯美| 看片在线看免费视频| 久久久久久久久久久免费av| 日韩一本色道免费dvd| 国产蜜桃级精品一区二区三区| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| www.av在线官网国产| 国内揄拍国产精品人妻在线| 麻豆国产av国片精品| 久久久欧美国产精品| 免费看a级黄色片| 一个人免费在线观看电影| 国产91av在线免费观看| 国产女主播在线喷水免费视频网站 | 免费黄网站久久成人精品| 老熟妇乱子伦视频在线观看| 又粗又硬又长又爽又黄的视频 | 人体艺术视频欧美日本| 淫秽高清视频在线观看| 亚洲美女搞黄在线观看| 精品人妻偷拍中文字幕| 最近中文字幕高清免费大全6| 老司机福利观看| 波多野结衣巨乳人妻| 我的老师免费观看完整版| 美女国产视频在线观看| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 欧美区成人在线视频| 深夜a级毛片| 91aial.com中文字幕在线观看| 99久久人妻综合| 精品人妻一区二区三区麻豆| 成人美女网站在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 九草在线视频观看| 小说图片视频综合网站| 亚洲精品久久久久久婷婷小说 | 国产一区二区激情短视频| 国产视频内射| 免费av不卡在线播放| 国产人妻一区二区三区在| 亚洲第一电影网av| 国产极品精品免费视频能看的| 床上黄色一级片| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 深夜精品福利| 精品日产1卡2卡| 女同久久另类99精品国产91| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 高清午夜精品一区二区三区 | 久久久欧美国产精品| 欧美日韩在线观看h| 久久韩国三级中文字幕| av黄色大香蕉| 日韩,欧美,国产一区二区三区 | 变态另类丝袜制服| 欧美成人一区二区免费高清观看| 亚洲人与动物交配视频| 色尼玛亚洲综合影院| 久久久久免费精品人妻一区二区| .国产精品久久| 26uuu在线亚洲综合色| 狂野欧美激情性xxxx在线观看| 国产人妻一区二区三区在| 中文在线观看免费www的网站| 国产精品一区二区三区四区免费观看| 亚洲欧美精品专区久久| 男女边吃奶边做爰视频| 在线免费十八禁| 国产精品麻豆人妻色哟哟久久 | 国产亚洲精品久久久com| 精品久久久久久成人av| 午夜精品国产一区二区电影 | 两个人视频免费观看高清| 99热这里只有是精品在线观看| 欧美成人免费av一区二区三区| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 18+在线观看网站| 日日啪夜夜撸| 国产精品一区二区三区四区久久| 欧美在线一区亚洲| 韩国av在线不卡| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| a级毛片免费高清观看在线播放| 麻豆国产av国片精品| 女的被弄到高潮叫床怎么办| 国产午夜精品一二区理论片| 天天躁夜夜躁狠狠久久av| 久久久久久久午夜电影| 国产美女午夜福利| 特级一级黄色大片| 色噜噜av男人的天堂激情| 国产一区二区激情短视频| 性色avwww在线观看| 午夜免费激情av| 黄片wwwwww| 亚州av有码| 日本爱情动作片www.在线观看| 免费在线观看成人毛片| 国产在线男女| 成人毛片a级毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 91午夜精品亚洲一区二区三区| 国产成人福利小说| 在线观看午夜福利视频| 国产av一区在线观看免费| 不卡视频在线观看欧美| 国产精品无大码| 最近中文字幕高清免费大全6| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 熟妇人妻久久中文字幕3abv| 久久精品影院6| 国产精品久久久久久久久免| 欧美三级亚洲精品| 欧美在线一区亚洲| 麻豆成人av视频| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 欧美性猛交黑人性爽| 少妇猛男粗大的猛烈进出视频 | .国产精品久久| 亚洲精品日韩在线中文字幕 | 啦啦啦韩国在线观看视频| 人妻夜夜爽99麻豆av| 国产蜜桃级精品一区二区三区| 观看美女的网站| 麻豆成人午夜福利视频| 亚洲av成人精品一区久久| 成人美女网站在线观看视频| 亚洲天堂国产精品一区在线| 女的被弄到高潮叫床怎么办| 一级av片app| 亚洲av成人精品一区久久| 国产精华一区二区三区| 啦啦啦啦在线视频资源| 日日干狠狠操夜夜爽| 中国美女看黄片| 99热全是精品| 久久人妻av系列| 国产伦理片在线播放av一区 | 插逼视频在线观看| 热99在线观看视频| ponron亚洲| 国产av在哪里看| 简卡轻食公司| 99热6这里只有精品| 成人一区二区视频在线观看| 波野结衣二区三区在线| 精品久久久久久久久亚洲| 不卡一级毛片| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 又粗又硬又长又爽又黄的视频 | 国产精品嫩草影院av在线观看| 99热精品在线国产| 国产精品久久久久久亚洲av鲁大| 偷拍熟女少妇极品色| 成人二区视频| 老熟妇乱子伦视频在线观看| 久久久久久久久大av| 日韩亚洲欧美综合| 欧美潮喷喷水| 亚洲精品乱码久久久久久按摩| 综合色av麻豆| 亚洲精品456在线播放app| 亚洲欧美日韩东京热| 波多野结衣高清作品| 亚洲av电影不卡..在线观看| 在线观看av片永久免费下载| 好男人在线观看高清免费视频| 成年版毛片免费区| 一级二级三级毛片免费看| 99精品在免费线老司机午夜| 免费不卡的大黄色大毛片视频在线观看 | 色哟哟·www| 久久精品国产鲁丝片午夜精品| 国产真实伦视频高清在线观看| 在现免费观看毛片| 日本-黄色视频高清免费观看| 欧美激情在线99| 97超碰精品成人国产| av又黄又爽大尺度在线免费看 | 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 精品99又大又爽又粗少妇毛片| 神马国产精品三级电影在线观看| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 亚洲婷婷狠狠爱综合网| 天天一区二区日本电影三级| 天美传媒精品一区二区| 搞女人的毛片| 欧美性感艳星| 级片在线观看| 高清日韩中文字幕在线| 午夜久久久久精精品| 人人妻人人澡欧美一区二区| 国产精品嫩草影院av在线观看| h日本视频在线播放| 精品久久久久久久久av| 又黄又爽又刺激的免费视频.| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 男女啪啪激烈高潮av片| 亚洲欧美日韩高清专用| 伦理电影大哥的女人| 我要搜黄色片| 91狼人影院| 亚洲国产欧美人成| 亚洲三级黄色毛片| 少妇被粗大猛烈的视频| 嘟嘟电影网在线观看| 最好的美女福利视频网| 日本黄色片子视频| av免费观看日本| 男人狂女人下面高潮的视频| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆| 干丝袜人妻中文字幕| 久久99蜜桃精品久久| 99热全是精品| 蜜臀久久99精品久久宅男| 久久久久性生活片| 深夜a级毛片| 亚洲精品456在线播放app| 美女大奶头视频| 亚洲一区高清亚洲精品| 少妇被粗大猛烈的视频| 亚洲精品乱码久久久v下载方式| 热99在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产伦精品一区二区三区视频9| 亚洲av电影不卡..在线观看| 国产蜜桃级精品一区二区三区| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 国产乱人偷精品视频| 日韩制服骚丝袜av| 99热这里只有是精品50| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 国产一区二区三区在线臀色熟女| 欧美+日韩+精品| 深爱激情五月婷婷| 国产精品一区二区三区四区免费观看| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 国产精品久久久久久av不卡| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 精品熟女少妇av免费看| 在线免费十八禁| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 国产av在哪里看| 欧美色视频一区免费| 免费观看在线日韩| 日韩欧美精品免费久久| 久久99热6这里只有精品| 成人毛片60女人毛片免费| 免费人成视频x8x8入口观看| 少妇高潮的动态图| 一本久久中文字幕| 两个人的视频大全免费| 热99re8久久精品国产| 神马国产精品三级电影在线观看| 久久午夜亚洲精品久久| 国内少妇人妻偷人精品xxx网站| 嫩草影院精品99| 国产色爽女视频免费观看| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 亚洲国产日韩欧美精品在线观看| 亚洲精品粉嫩美女一区| 日韩欧美在线乱码| 床上黄色一级片| 午夜免费男女啪啪视频观看| 久久婷婷人人爽人人干人人爱| 老女人水多毛片| 99久久中文字幕三级久久日本| 99久国产av精品| 男女下面进入的视频免费午夜| 日本撒尿小便嘘嘘汇集6| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 搡女人真爽免费视频火全软件| 99热这里只有精品一区| 尾随美女入室| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品94久久精品| 卡戴珊不雅视频在线播放| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 天天一区二区日本电影三级| 插阴视频在线观看视频| 免费看光身美女| av视频在线观看入口| 联通29元200g的流量卡| 欧美性感艳星| a级一级毛片免费在线观看| or卡值多少钱| 欧美最黄视频在线播放免费| 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 久久综合国产亚洲精品| 看片在线看免费视频| 免费观看人在逋| av专区在线播放| 免费看美女性在线毛片视频| 午夜视频国产福利| 日本av手机在线免费观看| 成人午夜精彩视频在线观看| 26uuu在线亚洲综合色| 老女人水多毛片| 成人三级黄色视频| 高清毛片免费看| av在线观看视频网站免费| 欧美另类亚洲清纯唯美| 亚洲成人精品中文字幕电影| 人妻少妇偷人精品九色| 久久久精品大字幕| 亚洲图色成人| av.在线天堂| 97在线视频观看| 国内久久婷婷六月综合欲色啪| 国产一级毛片七仙女欲春2| av在线天堂中文字幕| 一级毛片aaaaaa免费看小| av天堂在线播放| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 精品一区二区免费观看| 成人av在线播放网站| 永久网站在线| 久久久久久久午夜电影| 老司机福利观看| 插逼视频在线观看| 久久精品影院6| 韩国av在线不卡| 午夜福利高清视频| 嘟嘟电影网在线观看| 22中文网久久字幕| 老司机福利观看| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲av天美| av免费观看日本| 性插视频无遮挡在线免费观看| 国产精品一区二区三区四区免费观看| 听说在线观看完整版免费高清| 三级经典国产精品| 亚洲欧洲日产国产| 国产精品一区二区三区四区免费观看| 在线观看美女被高潮喷水网站| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| h日本视频在线播放| 免费搜索国产男女视频| 99久久精品一区二区三区| 少妇的逼好多水| 日日摸夜夜添夜夜添av毛片| 亚洲最大成人av| 看十八女毛片水多多多| 亚洲高清免费不卡视频| 22中文网久久字幕| 国产黄色视频一区二区在线观看 | 亚洲,欧美,日韩| 嫩草影院精品99| h日本视频在线播放| 欧美zozozo另类| 亚洲欧美精品自产自拍| 好男人在线观看高清免费视频| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 日韩制服骚丝袜av| 国产在视频线在精品| 亚洲精品粉嫩美女一区| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 亚洲无线观看免费| 在线观看午夜福利视频| 婷婷亚洲欧美| 国产黄色视频一区二区在线观看 | 亚洲精品日韩在线中文字幕 | 日日摸夜夜添夜夜添av毛片| 在线观看午夜福利视频| 欧美日韩综合久久久久久| 少妇人妻精品综合一区二区 | 中国美女看黄片| 国产精品1区2区在线观看.| 少妇人妻精品综合一区二区 | 精华霜和精华液先用哪个| 国产亚洲av片在线观看秒播厂 | 女人被狂操c到高潮| 深夜精品福利| 人妻制服诱惑在线中文字幕| 国产老妇伦熟女老妇高清| 三级国产精品欧美在线观看| 99久国产av精品| 欧美日韩在线观看h| 精品久久久噜噜| 亚洲熟妇中文字幕五十中出| 九草在线视频观看| 亚洲五月天丁香| 男女啪啪激烈高潮av片| 一本久久中文字幕| 美女大奶头视频| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产97在线/欧美| 亚洲欧美日韩高清在线视频| 最近中文字幕高清免费大全6| 国产探花极品一区二区| 简卡轻食公司| 亚洲欧美成人综合另类久久久 | 国产日韩欧美在线精品| 国产精品免费一区二区三区在线| 国产免费男女视频| 亚洲av一区综合| 日韩在线高清观看一区二区三区| 2021天堂中文幕一二区在线观| 特大巨黑吊av在线直播| 久久国产乱子免费精品| 婷婷色av中文字幕| 亚洲内射少妇av| 精品久久久噜噜| 卡戴珊不雅视频在线播放| 三级经典国产精品| a级毛色黄片| 三级国产精品欧美在线观看| 免费黄网站久久成人精品| 深夜精品福利| 国产成人午夜福利电影在线观看| 成人无遮挡网站| 免费观看在线日韩| 中文字幕制服av| 婷婷六月久久综合丁香| 成人午夜精彩视频在线观看| 欧美一区二区亚洲| 寂寞人妻少妇视频99o| 国产片特级美女逼逼视频| 国产伦精品一区二区三区视频9| 高清在线视频一区二区三区 | 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 我要看日韩黄色一级片| 免费av观看视频| 亚洲av免费高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美另类亚洲清纯唯美| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 亚洲综合色惰| av在线老鸭窝| 久久欧美精品欧美久久欧美| 亚洲激情五月婷婷啪啪| 岛国在线免费视频观看| 国产精品1区2区在线观看.| av视频在线观看入口| 欧美日韩一区二区视频在线观看视频在线 | 狂野欧美激情性xxxx在线观看|