• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nitrogen-tailored quasiparticle energy gaps of polyynes

    2022-12-28 09:52:00KanZhang張侃JilingLi李繼玲PeitaoLiu劉培濤GuoweiYang楊國(guó)偉andLeiShi石磊
    Chinese Physics B 2022年12期
    關(guān)鍵詞:石磊

    Kan Zhang(張侃) Jiling Li(李繼玲) Peitao Liu(劉培濤)Guowei Yang(楊國(guó)偉) and Lei Shi(石磊)

    1State Key Laboratory of Optoelectronic Materials and Technologies,Nanotechnology Research Center,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices,School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 510275,China

    2Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords: polyyne,nitrogen-doping,quasiparticle energy gap,GW calculations

    1. Introduction

    Polyyne composed of alternative single-triple bonds has been extensively studied on its conductivities as a widegap semiconductor varied with the length,[1–5]ending chemical groups,[6–8]and atomic structures (linear, bent, and cyclo).[9–13]The conjugated triple bonds cause delocalization of valence electrons filling intoπ-orbitals, thus introducing energy gap near the Fermi level.[14]The energy gap is determined by the value of bond length alternation (BLA) of the polyyne, which is the bond length difference between single and triple bonds because of Peierls distortion.[15]Experimental and theoretical studies suggested that both the length of a polyyne and the ending groups enable to change the BLA,thus influence the properties of the polyyne.

    Usually, substitution doping with heteroatoms is often used to regulate the electronic property of carbon materials.For example,heteroatoms including B and N have been introduced into carbon nanotubes or graphene to modify both the conduction band minimum and valence band maximum, resulting in improved electronic properties.[16–23]Isoelectronic doping was proposed to modify the energy gap of graphdiyne,a material with sp-and sp2hybridizations.[24,25]However,how the substitution doping influences the properties of the polyyne remains unexplored.

    It is well established that calculations based on Hartree–Fock functional overestimate the quasiparticle energy gap of the polyyne,[26]while density functional theory(DFT)calculations underestimate the quasiparticle energy gap.[27]In contrast, theGWmethod[28–32](GandWrepresent the Green’s function and the screened Coulomb interaction, respectively)provides a good approximation for the self-energy of a manybody system of electrons, and therefore, has been proved as a reliable method for obtaining more accurate quasiparticle energies for a variety of systems.[33–37]For the polyyne,previously, two methods,i.e., the B3LYP hybrid functional based on Coulomb-attenuating method (CAM) and the diffusion quantum Monte Carlo method (DMC), have been acknowledged to predict results of quasiparticle energy. Thus,an energy gap of 6.52 eV for a hydrogen-capped polyyne with 10 carbon atoms and an energy gap of 3.61 eV for a carbyne (an infinitely long polyyne) were obtained by employing CAM-B3LYP[27]and DMC,[37]respectively. Here,we applied theGWmethod to calculate the quasiparticle energy gaps of the polyyne and the carbyne. The obtained gaps for hydrogen-capped polyyne with 10 carbon atoms and carbyne are 6.75 eV and 3.53 eV,respectively,which are consistent with the predicted values.[27,37]Then we applied theGWmethod to predict the quasiparticle energy gaps of N-doped polyynes considering different substituted positions of the N atom into a polyyne with different length. Compared to the pristine polyyne, the quasiparticle energy gap strongly varies with the substituted position. Moreover,the polyyne changes into an n-type semiconductor with the nitrogen substitution.Our work provides an efficient route to tune the electronic properties of polyyne and especially substituting the secondnearest-neighboring carbon atom allows to achieve the lowest energy gap close to visible region,which could be applicable in applications of optical devices in future.

    2. Computational method

    Quasiparticle energy gaps of pristine and N-doped polyynes were calculated by theGWmethod. The structural models were constructed for polyyne with different lengths,as shown in Fig. 1. To ensure only one molecule in one cell and no cross-linking between molecules,an H-caped(undoped and N-doped) polyyne molecule was placed along thezaxis(OC, O as the original point) in a hexagonal cell. The relaxation was performed by using the PBEsol functional,[38]the interaction between ions and electrons was described by the projector-augmented wave(PAW)method[39]as implemented in the Viennaab-initiosimulation package (VASP)[40,41]and the cut-off energy was set to 450 eV. Note that for polyyne molecule, a sufficient vacuum length of 10 ?A was used to keep the molecule an isolated object excluding any spurious image interactions. The density functional theory(DFT)electronic structure calculations were carried out by using Quantum ESPRESSO.[42,43]Only gamma point was used. Quasiparticle energies were calculated by using the BerkeleyGWcode.[32,44]Then by using the Wannier90 suit,[45–47]the projections of C/N s and p orbitals were calculated and wannier interpolated quasiparticle band structures including the quasiparticle energy gap were finally calculated (HOMO–LUMO gap for polyyne molecule and energy gap for polyyne molecule-stacked bulk materials, HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital).

    Fig. 1. Computational models in (a) top view, (b) side view of primitive cell of polyyne[12] and (c) C2→N-polyyne[12] where OA, OB, and OC correspond to the lengths of lattice parameters a,b,and c,respectively. C,H,and N atoms are in gray,white,and blue,respectively.

    3. Results and discussion

    Since the value of BLA determines the HOMO–LUMO gap of polyyne, we calculated the bond lengths of single and triple bonds for polyynes containing 10–20 carbon atoms(labeled as polyyne[n],wherenis the number of carbon atoms in a polyyne)and corresponding N-doped polyynes[n]at different positions (labeled as Cm→N-polyyne[n], wheremis the counting number of the carbon atom except hydrogen atom from the end of a polyyne as illustrated in Fig.1). As shown in Fig. 2(a) (full results can be found in Fig. S1 in supporting information), we can clearly see that the bond lengths of both single and triple bonds are not evenly distributed in a polyyne. Generally, the bond length is shorter in the middle of the polyyne. Also, when the polyyne is longer, the bond length difference between the bond at the end and the bond in the middle gets larger,suggesting a length-dependent property.In addition, the average BLA increases as the length of the polyyne decreases,because the p electron delocalizes fromσbond toπbond,resulting in a larger electronic energy gap.[14]The introduction of nitrogen atom in a polyyne greatly modulates the length of the carbon–carbon bond close to the nitrogen(Fig.2(b)),thus modifying the properties of the polyyne.Similar results were found when the nitrogen atom locates at different positions of a polyyne (Fig. 2(c)). Therefore, it is with great interest to see how the nitrogen at different position affects the quasiparticle energy gap.

    The orbitals were calculated by using the obtained bond lengths of the polyynes. As shown in Fig.3,from the orbitals of polyyne[14],it is clearly seen that a conjugatedπbond system exists through the chain. The orbitals of single and triple bonds are orthogonal. With nitrogen doping, for the C2→Npolyyne[14]the orbitals are greatly modified. The doping position in the polyyne determines how much the orbitals can be altered, indicating an N-position-dependent property. The same is found for the C2→N-polyyne[12].

    Fig. 2. Bond lengths of (a) polyyne[n], (b) C2→N-polyyne[n], and (c) Cm →N-polyyne[14]. n=12, 14, 16, 18, 20 from left to right and blue dots show lengths of C–N bonds.

    Fig.3. Orbitals of polyyne[14]and Cm→N-polyyne[14]. Orbitals of polyyne[12]and C2→N-polyyne[12](bottom right). Positive and negative orbital wave functions are marked in blue and yellow,respectively.

    Our calculated quasiparticle energy gaps of polyyne[n]confirm the length-dependent property(Figs.4 and 5),which is consistent with previous results.[48–50]The LUMOs of the polyyne[n] only slightly move down when the polyyne gets longer,whereas the HOMO is much closer to the Fermi level(Fig.4(a)),resulting in a reduced HOMO–LUMO gap. Compared to the undoped polyyne, when doped with nitrogen at the second position (C2→N-polyyne[n]), two main obvious consequences have been observed. One is that the HOMO–LUMO gap decreases remarkably, manifested by the downshifted LUMO and the upshifted HOMO (Figs. 4 and 5(a)).The other is that the Fermi level is getting close to the downshifted LUMO(according to Figs.5(b)and 5(c),more p electron states are provided due to the N-doping), presenting a behavior of n-type semiconductor.[51,52]In contrast, substitutions at the other positions only slightly move the LUMO down.Therefore,the conductivity of polyyne can be improved by the nitrogen doping, and the substitution position is crucial to obtain the optimal effect. This reveals that the experimental research could focus more on the synthesis of C2→Npolyyne[n]among all the Cm→N-polyyne[n]. However,since the C2→N-polyyne[14] have the lowest LUMO and highest HOMO,suggesting the most instability of the molecule,which makes it more challenging to be synthesized.

    The HOMO–LUMO gaps of polyyne[n]and corresponding Cm→Npolyyne[n],n=12–20,are summarized in Fig.5.Again, the HOMO–LUMO gap changes greatly with the nitrogen position in a polyyne. Especially when the second carbon is substituted with a nitrogen,i.e.,the C2→N-polyyne[n],the reduction of the HOMO–LUMO gaps is more pronounced.When thenis large enough, the HOMO–LUMO gap of C2→N-polyyne[n]tends to saturate at a value of below 2 eV,which is close to the value obtained for the carbyne inside carbon nanotubes.[49,53]In addition,when the doping position moves from the end to the middle of the polyyne,the gap tends to saturate at a constant value,which can even be greater than that of undoped polyyne(Fig.5(a)).Our findings not only suggest a new strategy to engineer the quasiparticle energy gap of a polyyne via doping the polyyne with nitrogen at selective positions,but also reveal a way to increase the electric conductivity via nitrogen doping like most of the carbon materials,[54,55]which would benefit its application as a semiconductor.

    Fig. 4. HOMOs and LUMOs of (a) polyyne[n], (b) C2→N-polyyne[n](n=12,14,16,18,20 from left to right),and(c)Cm→N-polyyne[14].

    Polyynes are usually synthesized and kept in solvent due to its particular synthesis process and instability. Recently,stacked polyynes in a form of small crystal has been prepared,which suggests that the stacked polyynes can be stable after drying.[56]When the polyyne molecules are stacked into bulk materials, it is also expected that the properties of the stacked polyynes would change,as inspired from the changed property of two-dimensional materials compared to that of their bulk three-dimensional counterparts,e.g., graphene versus graphite.[57,58]To view the difference on electronic properties between stacked polyynes and single polyyne molecule,the interactions among molecules should be considered in the calculation. Our calculations show that the quasiparticle energy gap of stacked polyynes decreases as compared to that of the polyyne molecules(Fig.S2),suggesting another modulated way to further reduce the energy gap of a polyyne except nitrogen doping,which requires specific study in future.

    4. Conclusion

    In summary, we theoretically studied how the nitrogen substitution doping tailors the quasiparticle energy gaps of the polyyne molecules with different lengths. We find that the Ndoping enables to greatly change the gap of the polyyne and the gap highly depends on the doping position in the polyyne.Substituting the second C atom (counting from the end of a polyyne except hydrogen atom) by N atom reduces the gap most due to the significantly decreased BLA,whereas the Ndoping in the middle of a polyyne only slightly varies the gap.Our study reveals an effective route to tune the electronic properties of polyyne via N-doping,which would benefit the future applications of the polyyne as an n-type semiconductor. In addition, we suggest that stacking the polyyne molecule could also tailor the quasiparticle energy gap, which deserves further investigations in future.

    See supplementary material for the complete bond lengths and quasiparticle energy gaps of single non-doped/Ndoped polyynes.

    Acknowledgements

    We thank Dr. Zhuhua Zhang for helpful discussion.Project supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011227),the National Natural Science Foundation of China (Grant No. 51902353), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22lgqb03), and the Fund from the State Key Laboratory of Optoelectronic Materials and Technologies (Grant No.OEMT-2022-ZRC-01).

    猜你喜歡
    石磊
    “巨嬰”老公總讓我收拾爛攤子,忍無(wú)可忍我決定分居
    婦女生活(2025年2期)2025-02-20 00:00:00
    Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
    Inverse synthetic aperture radar range profile compensation of plasma-sheathenveloped reentry object
    Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    Energy dissipation and power deposition of electromagnetic waves in the plasma sheath
    闕 題
    親愛的,你現(xiàn)在可以求婚了
    伴侶(2019年11期)2019-08-09 08:47:31
    Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties?
    昔日創(chuàng)客的美麗蝶變
    国产黄片美女视频| 日本熟妇午夜| 成人综合一区亚洲| 日韩 亚洲 欧美在线| 久久韩国三级中文字幕| 毛片一级片免费看久久久久| 一个人免费在线观看电影| 国产精品日韩av在线免费观看| 国产伦精品一区二区三区视频9| 午夜福利在线在线| 亚洲欧美日韩无卡精品| 在线天堂最新版资源| 一个人看视频在线观看www免费| 免费一级毛片在线播放高清视频| 乱码一卡2卡4卡精品| 老师上课跳d突然被开到最大视频| 最近最新中文字幕大全电影3| 免费看av在线观看网站| 秋霞在线观看毛片| 免费看日本二区| 色视频www国产| 成年免费大片在线观看| 午夜爱爱视频在线播放| 亚洲人与动物交配视频| 99久国产av精品国产电影| 国内精品宾馆在线| 成年免费大片在线观看| 欧美成人免费av一区二区三区| 午夜精品国产一区二区电影 | 五月玫瑰六月丁香| 国产私拍福利视频在线观看| 国产亚洲91精品色在线| 国产精品精品国产色婷婷| 99久久中文字幕三级久久日本| 色综合亚洲欧美另类图片| 久久精品国产自在天天线| 看非洲黑人一级黄片| av免费在线看不卡| 欧美一区二区国产精品久久精品| 久久久精品欧美日韩精品| 舔av片在线| 日韩亚洲欧美综合| 免费看av在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇伦熟女老妇高清| 禁无遮挡网站| 亚洲国产色片| 日韩 亚洲 欧美在线| 最近2019中文字幕mv第一页| 内地一区二区视频在线| 高清在线视频一区二区三区 | 国产国拍精品亚洲av在线观看| 99在线人妻在线中文字幕| 久久久久久大精品| 丝袜美腿在线中文| 亚洲av第一区精品v没综合| 亚洲精品影视一区二区三区av| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久视频播放| 欧美成人一区二区免费高清观看| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 青春草国产在线视频 | 亚洲av成人精品一区久久| 国产午夜精品一二区理论片| 中文资源天堂在线| 少妇熟女aⅴ在线视频| 国产精品一区二区在线观看99 | 亚洲国产欧美人成| 国产成人精品婷婷| 国产一区二区激情短视频| 美女xxoo啪啪120秒动态图| 在线观看美女被高潮喷水网站| 欧美性猛交黑人性爽| 综合色丁香网| 99国产精品一区二区蜜桃av| 18禁裸乳无遮挡免费网站照片| 国产精品嫩草影院av在线观看| 男人和女人高潮做爰伦理| 精品一区二区三区视频在线| 热99re8久久精品国产| 桃色一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久久久久| 日本一本二区三区精品| 日韩一区二区视频免费看| 精品国内亚洲2022精品成人| 成人一区二区视频在线观看| 亚洲在久久综合| 欧美日韩综合久久久久久| 男的添女的下面高潮视频| 婷婷色综合大香蕉| 欧美精品国产亚洲| av在线天堂中文字幕| 日韩成人av中文字幕在线观看| 丝袜美腿在线中文| 18禁在线无遮挡免费观看视频| 可以在线观看的亚洲视频| 国产亚洲欧美98| 欧美高清性xxxxhd video| 中文字幕久久专区| 欧美高清成人免费视频www| 99久久九九国产精品国产免费| 国产精品久久久久久久电影| 欧美一区二区精品小视频在线| 日本与韩国留学比较| 亚洲av男天堂| 色哟哟·www| 亚洲国产精品成人综合色| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清专用| 欧美xxxx性猛交bbbb| a级毛色黄片| 直男gayav资源| 成人美女网站在线观看视频| 人人妻人人看人人澡| 少妇高潮的动态图| 人妻夜夜爽99麻豆av| 亚洲国产精品sss在线观看| 美女大奶头视频| 高清日韩中文字幕在线| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av成人精品| 51国产日韩欧美| 老司机福利观看| 日韩视频在线欧美| 亚洲最大成人中文| 亚洲激情五月婷婷啪啪| 高清日韩中文字幕在线| 淫秽高清视频在线观看| 国模一区二区三区四区视频| 国产精品一二三区在线看| 国产成人a∨麻豆精品| 青春草亚洲视频在线观看| 高清毛片免费观看视频网站| 久久99热6这里只有精品| 成人美女网站在线观看视频| 黄色配什么色好看| 成人毛片a级毛片在线播放| 日本与韩国留学比较| 亚洲av.av天堂| 狠狠狠狠99中文字幕| 麻豆国产av国片精品| 校园春色视频在线观看| 久久久久久久久久成人| 我的老师免费观看完整版| 美女国产视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲18禁久久av| 超碰av人人做人人爽久久| 国产视频首页在线观看| 99在线视频只有这里精品首页| 午夜福利成人在线免费观看| 国产av麻豆久久久久久久| 天天一区二区日本电影三级| 欧美日韩一区二区视频在线观看视频在线 | 嘟嘟电影网在线观看| 老司机影院成人| 如何舔出高潮| 国产午夜精品一二区理论片| 你懂的网址亚洲精品在线观看 | 日本黄大片高清| 最新中文字幕久久久久| 最近视频中文字幕2019在线8| 免费观看的影片在线观看| 蜜桃久久精品国产亚洲av| 久久久久免费精品人妻一区二区| 欧美日韩一区二区视频在线观看视频在线 | 人妻少妇偷人精品九色| 亚洲不卡免费看| 欧美一级a爱片免费观看看| 国产成人freesex在线| 在线观看av片永久免费下载| avwww免费| 久久久久久久午夜电影| av在线播放精品| 亚洲国产色片| 老师上课跳d突然被开到最大视频| 日韩国内少妇激情av| 亚洲精品久久久久久婷婷小说 | 2022亚洲国产成人精品| 91麻豆精品激情在线观看国产| 亚洲无线在线观看| 午夜福利视频1000在线观看| 婷婷色av中文字幕| 成人综合一区亚洲| 成人亚洲欧美一区二区av| 亚洲成人中文字幕在线播放| 久久久久久国产a免费观看| 欧美成人一区二区免费高清观看| 我要搜黄色片| 能在线免费观看的黄片| 99在线视频只有这里精品首页| 99久久人妻综合| 99热这里只有是精品在线观看| 一级二级三级毛片免费看| 久久久色成人| 亚洲第一电影网av| 国产黄片美女视频| 一区福利在线观看| 国产精品久久久久久av不卡| 国产美女午夜福利| 亚洲天堂国产精品一区在线| 久久久久国产网址| 亚洲精品成人久久久久久| 舔av片在线| 欧美xxxx性猛交bbbb| 男女那种视频在线观看| 岛国毛片在线播放| 美女大奶头视频| 国产精品女同一区二区软件| 欧美xxxx性猛交bbbb| av专区在线播放| 亚洲电影在线观看av| 亚洲av.av天堂| 日韩欧美精品免费久久| 欧美成人精品欧美一级黄| 赤兔流量卡办理| 精品一区二区三区人妻视频| 美女黄网站色视频| 亚洲精品影视一区二区三区av| 欧美色欧美亚洲另类二区| 国产精品电影一区二区三区| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| 一级毛片久久久久久久久女| 日韩一区二区三区影片| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 99在线人妻在线中文字幕| 老司机影院成人| 精品久久久久久久久久免费视频| 三级经典国产精品| 婷婷色综合大香蕉| 综合色丁香网| 99热这里只有精品一区| 国产单亲对白刺激| 国产精品人妻久久久久久| 久久久久久九九精品二区国产| 美女国产视频在线观看| 国产黄色小视频在线观看| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 一进一出抽搐gif免费好疼| 亚洲精品色激情综合| 噜噜噜噜噜久久久久久91| 午夜福利视频1000在线观看| 日韩大尺度精品在线看网址| 高清午夜精品一区二区三区 | 波多野结衣高清作品| 亚洲第一区二区三区不卡| 蜜臀久久99精品久久宅男| 嫩草影院精品99| 精品人妻熟女av久视频| 一级毛片aaaaaa免费看小| 全区人妻精品视频| 我的女老师完整版在线观看| 午夜老司机福利剧场| 国产精品蜜桃在线观看 | 精品人妻视频免费看| 两个人视频免费观看高清| 校园春色视频在线观看| 精品少妇黑人巨大在线播放 | 美女大奶头视频| 国产成年人精品一区二区| 久久99蜜桃精品久久| av.在线天堂| 国产午夜福利久久久久久| 欧美人与善性xxx| 天堂网av新在线| 午夜福利成人在线免费观看| 午夜福利在线观看吧| 亚洲aⅴ乱码一区二区在线播放| 日本在线视频免费播放| 亚洲最大成人中文| 亚洲真实伦在线观看| 久久久久久大精品| 久久精品国产亚洲网站| 免费人成在线观看视频色| 女同久久另类99精品国产91| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久久久久久久久| 日韩成人伦理影院| 亚洲精品乱码久久久久久按摩| 床上黄色一级片| 美女高潮的动态| 不卡视频在线观看欧美| 亚洲精品日韩av片在线观看| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| 国产伦精品一区二区三区四那| 日本五十路高清| 日本av手机在线免费观看| 日本黄色片子视频| 麻豆成人av视频| 久久国产乱子免费精品| 亚洲av熟女| 欧美成人精品欧美一级黄| 麻豆成人av视频| 精华霜和精华液先用哪个| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| av福利片在线观看| 国产亚洲91精品色在线| 午夜爱爱视频在线播放| 国产成人一区二区在线| 久久婷婷人人爽人人干人人爱| 毛片一级片免费看久久久久| 日韩欧美国产在线观看| 欧美精品一区二区大全| 国国产精品蜜臀av免费| 久久久久性生活片| 亚洲最大成人中文| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 日韩成人伦理影院| 美女大奶头视频| 亚洲五月天丁香| 久久人妻av系列| 色哟哟哟哟哟哟| 亚洲无线在线观看| 老司机福利观看| 不卡一级毛片| 一级二级三级毛片免费看| 久久精品国产亚洲av天美| 99久久九九国产精品国产免费| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 搞女人的毛片| 丰满的人妻完整版| 成人av在线播放网站| 亚洲无线观看免费| 亚洲欧美成人综合另类久久久 | 美女高潮的动态| 久久精品91蜜桃| 国产一区二区三区在线臀色熟女| 啦啦啦啦在线视频资源| 久久久久久久久久久免费av| 99在线人妻在线中文字幕| 99久国产av精品| 身体一侧抽搐| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站 | 久久精品国产自在天天线| 亚洲av免费高清在线观看| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 18禁在线无遮挡免费观看视频| 亚洲在线自拍视频| 国内精品美女久久久久久| av国产免费在线观看| 岛国在线免费视频观看| 丝袜喷水一区| 男女啪啪激烈高潮av片| 毛片一级片免费看久久久久| 日韩欧美在线乱码| 26uuu在线亚洲综合色| 成人性生交大片免费视频hd| 免费av观看视频| 精品一区二区免费观看| 国产片特级美女逼逼视频| 国产成人freesex在线| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 性色avwww在线观看| 久久久色成人| 国产成人freesex在线| 美女脱内裤让男人舔精品视频 | 国产精品av视频在线免费观看| 久久久久网色| 九草在线视频观看| 天堂中文最新版在线下载 | 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 又粗又爽又猛毛片免费看| 日本与韩国留学比较| 亚洲欧美中文字幕日韩二区| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 搡老妇女老女人老熟妇| 亚洲国产精品久久男人天堂| 国产三级在线视频| 18禁裸乳无遮挡免费网站照片| 亚洲无线观看免费| 国产成年人精品一区二区| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 我的女老师完整版在线观看| a级毛片免费高清观看在线播放| 综合色丁香网| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 日韩欧美精品免费久久| 少妇的逼水好多| 国产蜜桃级精品一区二区三区| 色视频www国产| 精品一区二区三区人妻视频| 69av精品久久久久久| 久久久欧美国产精品| 亚洲av.av天堂| 婷婷色av中文字幕| 国产精品综合久久久久久久免费| 亚洲七黄色美女视频| 美女被艹到高潮喷水动态| 午夜a级毛片| 国产中年淑女户外野战色| 精品熟女少妇av免费看| 一区二区三区四区激情视频 | 亚洲国产精品sss在线观看| 久久午夜亚洲精品久久| 内射极品少妇av片p| 亚洲av成人av| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 午夜福利在线观看吧| 伦精品一区二区三区| 亚洲18禁久久av| 嘟嘟电影网在线观看| 男女啪啪激烈高潮av片| 欧美成人一区二区免费高清观看| 久久久欧美国产精品| 久久久久久久久久黄片| 欧美色欧美亚洲另类二区| 国产极品精品免费视频能看的| 国产精品精品国产色婷婷| av在线老鸭窝| 在线观看一区二区三区| 国产精华一区二区三区| 亚洲色图av天堂| 欧美一区二区亚洲| 男女那种视频在线观看| 男女下面进入的视频免费午夜| 亚洲成a人片在线一区二区| 成年女人看的毛片在线观看| 69av精品久久久久久| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 女的被弄到高潮叫床怎么办| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 色哟哟哟哟哟哟| 18禁在线无遮挡免费观看视频| 免费看光身美女| 爱豆传媒免费全集在线观看| 欧美另类亚洲清纯唯美| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 狂野欧美激情性xxxx在线观看| 波多野结衣巨乳人妻| 99久久精品热视频| 嘟嘟电影网在线观看| av在线观看视频网站免费| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 精品熟女少妇av免费看| av国产免费在线观看| 99热全是精品| 亚洲成人av在线免费| 日日摸夜夜添夜夜爱| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 中文字幕制服av| 欧美日韩在线观看h| 美女 人体艺术 gogo| 国产一级毛片七仙女欲春2| 免费搜索国产男女视频| 国产伦在线观看视频一区| 久久久久久大精品| 中文字幕久久专区| 国产精品久久久久久精品电影| 色视频www国产| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人久久小说 | 中文字幕熟女人妻在线| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 人人妻人人澡欧美一区二区| 国产老妇伦熟女老妇高清| 精品不卡国产一区二区三区| 欧美zozozo另类| 国产精品人妻久久久久久| 国产成人福利小说| 老女人水多毛片| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 国产亚洲5aaaaa淫片| 久久精品夜色国产| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 大香蕉久久网| 国产黄片视频在线免费观看| 在线播放无遮挡| 噜噜噜噜噜久久久久久91| 国产精品电影一区二区三区| 日韩三级伦理在线观看| 国产大屁股一区二区在线视频| 国产精品久久久久久精品电影| 亚洲图色成人| 国产高清激情床上av| 亚洲美女搞黄在线观看| 国产精品无大码| 成人鲁丝片一二三区免费| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 亚洲精品乱码久久久久久按摩| 国产真实乱freesex| 国产成人精品久久久久久| 久久九九热精品免费| 国产熟女欧美一区二区| 精品久久久久久久末码| 亚洲国产精品合色在线| 嫩草影院新地址| 婷婷亚洲欧美| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱 | 成人欧美大片| 国产精品一区二区三区四区久久| 日韩 亚洲 欧美在线| 亚洲中文字幕一区二区三区有码在线看| 久久九九热精品免费| 中国美白少妇内射xxxbb| 天美传媒精品一区二区| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| а√天堂www在线а√下载| 日韩国内少妇激情av| 亚洲欧美日韩卡通动漫| 成年版毛片免费区| 最近中文字幕高清免费大全6| 国产午夜精品论理片| 免费看美女性在线毛片视频| 91精品一卡2卡3卡4卡| 中国国产av一级| 在线播放无遮挡| 久久综合国产亚洲精品| 久久久久久久久久成人| 观看美女的网站| 久久精品国产亚洲av涩爱 | 伦精品一区二区三区| 观看美女的网站| 国产精品乱码一区二三区的特点| 午夜亚洲福利在线播放| 看免费成人av毛片| 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 一边摸一边抽搐一进一小说| 夜夜看夜夜爽夜夜摸| 一本一本综合久久| 欧美精品一区二区大全| 非洲黑人性xxxx精品又粗又长| 91aial.com中文字幕在线观看| 成人二区视频| 日本色播在线视频| 99久国产av精品| 久久99蜜桃精品久久| 又爽又黄无遮挡网站| 久久人人精品亚洲av| 久久久国产成人免费| 国产老妇女一区| 能在线免费看毛片的网站| 天天一区二区日本电影三级| 九色成人免费人妻av| 日韩一区二区视频免费看| 中国国产av一级| 日韩国内少妇激情av| 亚洲av熟女| 人体艺术视频欧美日本| 久久久久网色| 大型黄色视频在线免费观看| 少妇人妻精品综合一区二区 | 日本av手机在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜 | 亚洲在久久综合| 亚洲高清免费不卡视频| 国产精品久久久久久久电影| 成人性生交大片免费视频hd| 久久99精品国语久久久| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 国产成人a区在线观看| 久久久精品94久久精品| 色5月婷婷丁香| 免费人成视频x8x8入口观看| 九九在线视频观看精品| 简卡轻食公司| 蜜臀久久99精品久久宅男| 亚洲av不卡在线观看| 亚洲av.av天堂| 中文字幕久久专区| 99九九线精品视频在线观看视频| 人妻制服诱惑在线中文字幕| 最后的刺客免费高清国语| 一进一出抽搐gif免费好疼| 麻豆av噜噜一区二区三区| 午夜a级毛片| 国产高清三级在线| 狂野欧美激情性xxxx在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲高清免费不卡视频| 国产极品精品免费视频能看的| 可以在线观看的亚洲视频| 91aial.com中文字幕在线观看| 人妻久久中文字幕网| 五月玫瑰六月丁香| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av|