• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nitrogen-tailored quasiparticle energy gaps of polyynes

    2022-12-28 09:52:00KanZhang張侃JilingLi李繼玲PeitaoLiu劉培濤GuoweiYang楊國(guó)偉andLeiShi石磊
    Chinese Physics B 2022年12期
    關(guān)鍵詞:石磊

    Kan Zhang(張侃) Jiling Li(李繼玲) Peitao Liu(劉培濤)Guowei Yang(楊國(guó)偉) and Lei Shi(石磊)

    1State Key Laboratory of Optoelectronic Materials and Technologies,Nanotechnology Research Center,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices,School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 510275,China

    2Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords: polyyne,nitrogen-doping,quasiparticle energy gap,GW calculations

    1. Introduction

    Polyyne composed of alternative single-triple bonds has been extensively studied on its conductivities as a widegap semiconductor varied with the length,[1–5]ending chemical groups,[6–8]and atomic structures (linear, bent, and cyclo).[9–13]The conjugated triple bonds cause delocalization of valence electrons filling intoπ-orbitals, thus introducing energy gap near the Fermi level.[14]The energy gap is determined by the value of bond length alternation (BLA) of the polyyne, which is the bond length difference between single and triple bonds because of Peierls distortion.[15]Experimental and theoretical studies suggested that both the length of a polyyne and the ending groups enable to change the BLA,thus influence the properties of the polyyne.

    Usually, substitution doping with heteroatoms is often used to regulate the electronic property of carbon materials.For example,heteroatoms including B and N have been introduced into carbon nanotubes or graphene to modify both the conduction band minimum and valence band maximum, resulting in improved electronic properties.[16–23]Isoelectronic doping was proposed to modify the energy gap of graphdiyne,a material with sp-and sp2hybridizations.[24,25]However,how the substitution doping influences the properties of the polyyne remains unexplored.

    It is well established that calculations based on Hartree–Fock functional overestimate the quasiparticle energy gap of the polyyne,[26]while density functional theory(DFT)calculations underestimate the quasiparticle energy gap.[27]In contrast, theGWmethod[28–32](GandWrepresent the Green’s function and the screened Coulomb interaction, respectively)provides a good approximation for the self-energy of a manybody system of electrons, and therefore, has been proved as a reliable method for obtaining more accurate quasiparticle energies for a variety of systems.[33–37]For the polyyne,previously, two methods,i.e., the B3LYP hybrid functional based on Coulomb-attenuating method (CAM) and the diffusion quantum Monte Carlo method (DMC), have been acknowledged to predict results of quasiparticle energy. Thus,an energy gap of 6.52 eV for a hydrogen-capped polyyne with 10 carbon atoms and an energy gap of 3.61 eV for a carbyne (an infinitely long polyyne) were obtained by employing CAM-B3LYP[27]and DMC,[37]respectively. Here,we applied theGWmethod to calculate the quasiparticle energy gaps of the polyyne and the carbyne. The obtained gaps for hydrogen-capped polyyne with 10 carbon atoms and carbyne are 6.75 eV and 3.53 eV,respectively,which are consistent with the predicted values.[27,37]Then we applied theGWmethod to predict the quasiparticle energy gaps of N-doped polyynes considering different substituted positions of the N atom into a polyyne with different length. Compared to the pristine polyyne, the quasiparticle energy gap strongly varies with the substituted position. Moreover,the polyyne changes into an n-type semiconductor with the nitrogen substitution.Our work provides an efficient route to tune the electronic properties of polyyne and especially substituting the secondnearest-neighboring carbon atom allows to achieve the lowest energy gap close to visible region,which could be applicable in applications of optical devices in future.

    2. Computational method

    Quasiparticle energy gaps of pristine and N-doped polyynes were calculated by theGWmethod. The structural models were constructed for polyyne with different lengths,as shown in Fig. 1. To ensure only one molecule in one cell and no cross-linking between molecules,an H-caped(undoped and N-doped) polyyne molecule was placed along thezaxis(OC, O as the original point) in a hexagonal cell. The relaxation was performed by using the PBEsol functional,[38]the interaction between ions and electrons was described by the projector-augmented wave(PAW)method[39]as implemented in the Viennaab-initiosimulation package (VASP)[40,41]and the cut-off energy was set to 450 eV. Note that for polyyne molecule, a sufficient vacuum length of 10 ?A was used to keep the molecule an isolated object excluding any spurious image interactions. The density functional theory(DFT)electronic structure calculations were carried out by using Quantum ESPRESSO.[42,43]Only gamma point was used. Quasiparticle energies were calculated by using the BerkeleyGWcode.[32,44]Then by using the Wannier90 suit,[45–47]the projections of C/N s and p orbitals were calculated and wannier interpolated quasiparticle band structures including the quasiparticle energy gap were finally calculated (HOMO–LUMO gap for polyyne molecule and energy gap for polyyne molecule-stacked bulk materials, HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital).

    Fig. 1. Computational models in (a) top view, (b) side view of primitive cell of polyyne[12] and (c) C2→N-polyyne[12] where OA, OB, and OC correspond to the lengths of lattice parameters a,b,and c,respectively. C,H,and N atoms are in gray,white,and blue,respectively.

    3. Results and discussion

    Since the value of BLA determines the HOMO–LUMO gap of polyyne, we calculated the bond lengths of single and triple bonds for polyynes containing 10–20 carbon atoms(labeled as polyyne[n],wherenis the number of carbon atoms in a polyyne)and corresponding N-doped polyynes[n]at different positions (labeled as Cm→N-polyyne[n], wheremis the counting number of the carbon atom except hydrogen atom from the end of a polyyne as illustrated in Fig.1). As shown in Fig. 2(a) (full results can be found in Fig. S1 in supporting information), we can clearly see that the bond lengths of both single and triple bonds are not evenly distributed in a polyyne. Generally, the bond length is shorter in the middle of the polyyne. Also, when the polyyne is longer, the bond length difference between the bond at the end and the bond in the middle gets larger,suggesting a length-dependent property.In addition, the average BLA increases as the length of the polyyne decreases,because the p electron delocalizes fromσbond toπbond,resulting in a larger electronic energy gap.[14]The introduction of nitrogen atom in a polyyne greatly modulates the length of the carbon–carbon bond close to the nitrogen(Fig.2(b)),thus modifying the properties of the polyyne.Similar results were found when the nitrogen atom locates at different positions of a polyyne (Fig. 2(c)). Therefore, it is with great interest to see how the nitrogen at different position affects the quasiparticle energy gap.

    The orbitals were calculated by using the obtained bond lengths of the polyynes. As shown in Fig.3,from the orbitals of polyyne[14],it is clearly seen that a conjugatedπbond system exists through the chain. The orbitals of single and triple bonds are orthogonal. With nitrogen doping, for the C2→Npolyyne[14]the orbitals are greatly modified. The doping position in the polyyne determines how much the orbitals can be altered, indicating an N-position-dependent property. The same is found for the C2→N-polyyne[12].

    Fig. 2. Bond lengths of (a) polyyne[n], (b) C2→N-polyyne[n], and (c) Cm →N-polyyne[14]. n=12, 14, 16, 18, 20 from left to right and blue dots show lengths of C–N bonds.

    Fig.3. Orbitals of polyyne[14]and Cm→N-polyyne[14]. Orbitals of polyyne[12]and C2→N-polyyne[12](bottom right). Positive and negative orbital wave functions are marked in blue and yellow,respectively.

    Our calculated quasiparticle energy gaps of polyyne[n]confirm the length-dependent property(Figs.4 and 5),which is consistent with previous results.[48–50]The LUMOs of the polyyne[n] only slightly move down when the polyyne gets longer,whereas the HOMO is much closer to the Fermi level(Fig.4(a)),resulting in a reduced HOMO–LUMO gap. Compared to the undoped polyyne, when doped with nitrogen at the second position (C2→N-polyyne[n]), two main obvious consequences have been observed. One is that the HOMO–LUMO gap decreases remarkably, manifested by the downshifted LUMO and the upshifted HOMO (Figs. 4 and 5(a)).The other is that the Fermi level is getting close to the downshifted LUMO(according to Figs.5(b)and 5(c),more p electron states are provided due to the N-doping), presenting a behavior of n-type semiconductor.[51,52]In contrast, substitutions at the other positions only slightly move the LUMO down.Therefore,the conductivity of polyyne can be improved by the nitrogen doping, and the substitution position is crucial to obtain the optimal effect. This reveals that the experimental research could focus more on the synthesis of C2→Npolyyne[n]among all the Cm→N-polyyne[n]. However,since the C2→N-polyyne[14] have the lowest LUMO and highest HOMO,suggesting the most instability of the molecule,which makes it more challenging to be synthesized.

    The HOMO–LUMO gaps of polyyne[n]and corresponding Cm→Npolyyne[n],n=12–20,are summarized in Fig.5.Again, the HOMO–LUMO gap changes greatly with the nitrogen position in a polyyne. Especially when the second carbon is substituted with a nitrogen,i.e.,the C2→N-polyyne[n],the reduction of the HOMO–LUMO gaps is more pronounced.When thenis large enough, the HOMO–LUMO gap of C2→N-polyyne[n]tends to saturate at a value of below 2 eV,which is close to the value obtained for the carbyne inside carbon nanotubes.[49,53]In addition,when the doping position moves from the end to the middle of the polyyne,the gap tends to saturate at a constant value,which can even be greater than that of undoped polyyne(Fig.5(a)).Our findings not only suggest a new strategy to engineer the quasiparticle energy gap of a polyyne via doping the polyyne with nitrogen at selective positions,but also reveal a way to increase the electric conductivity via nitrogen doping like most of the carbon materials,[54,55]which would benefit its application as a semiconductor.

    Fig. 4. HOMOs and LUMOs of (a) polyyne[n], (b) C2→N-polyyne[n](n=12,14,16,18,20 from left to right),and(c)Cm→N-polyyne[14].

    Polyynes are usually synthesized and kept in solvent due to its particular synthesis process and instability. Recently,stacked polyynes in a form of small crystal has been prepared,which suggests that the stacked polyynes can be stable after drying.[56]When the polyyne molecules are stacked into bulk materials, it is also expected that the properties of the stacked polyynes would change,as inspired from the changed property of two-dimensional materials compared to that of their bulk three-dimensional counterparts,e.g., graphene versus graphite.[57,58]To view the difference on electronic properties between stacked polyynes and single polyyne molecule,the interactions among molecules should be considered in the calculation. Our calculations show that the quasiparticle energy gap of stacked polyynes decreases as compared to that of the polyyne molecules(Fig.S2),suggesting another modulated way to further reduce the energy gap of a polyyne except nitrogen doping,which requires specific study in future.

    4. Conclusion

    In summary, we theoretically studied how the nitrogen substitution doping tailors the quasiparticle energy gaps of the polyyne molecules with different lengths. We find that the Ndoping enables to greatly change the gap of the polyyne and the gap highly depends on the doping position in the polyyne.Substituting the second C atom (counting from the end of a polyyne except hydrogen atom) by N atom reduces the gap most due to the significantly decreased BLA,whereas the Ndoping in the middle of a polyyne only slightly varies the gap.Our study reveals an effective route to tune the electronic properties of polyyne via N-doping,which would benefit the future applications of the polyyne as an n-type semiconductor. In addition, we suggest that stacking the polyyne molecule could also tailor the quasiparticle energy gap, which deserves further investigations in future.

    See supplementary material for the complete bond lengths and quasiparticle energy gaps of single non-doped/Ndoped polyynes.

    Acknowledgements

    We thank Dr. Zhuhua Zhang for helpful discussion.Project supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011227),the National Natural Science Foundation of China (Grant No. 51902353), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22lgqb03), and the Fund from the State Key Laboratory of Optoelectronic Materials and Technologies (Grant No.OEMT-2022-ZRC-01).

    猜你喜歡
    石磊
    “巨嬰”老公總讓我收拾爛攤子,忍無(wú)可忍我決定分居
    婦女生活(2025年2期)2025-02-20 00:00:00
    Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
    Inverse synthetic aperture radar range profile compensation of plasma-sheathenveloped reentry object
    Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    Energy dissipation and power deposition of electromagnetic waves in the plasma sheath
    闕 題
    親愛的,你現(xiàn)在可以求婚了
    伴侶(2019年11期)2019-08-09 08:47:31
    Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties?
    昔日創(chuàng)客的美麗蝶變
    美女黄网站色视频| 国产精品免费一区二区三区在线| 赤兔流量卡办理| 晚上一个人看的免费电影| 亚洲久久久久久中文字幕| 午夜视频国产福利| 麻豆成人av视频| 成人高潮视频无遮挡免费网站| 精品久久久久久久人妻蜜臀av| 国产日韩欧美在线精品| 校园春色视频在线观看| 夜夜夜夜夜久久久久| 又爽又黄无遮挡网站| 亚洲三级黄色毛片| 悠悠久久av| 色吧在线观看| 亚洲婷婷狠狠爱综合网| 精品久久久久久久久久久久久| av在线亚洲专区| 男女啪啪激烈高潮av片| 亚洲无线在线观看| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 成人亚洲欧美一区二区av| 久久99精品国语久久久| 我要搜黄色片| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| av在线播放精品| 成年免费大片在线观看| 久久久久久久久久成人| 日本色播在线视频| 91久久精品国产一区二区成人| 美女高潮的动态| 亚洲国产日韩欧美精品在线观看| 国产三级在线视频| 亚洲av第一区精品v没综合| 国产精品一二三区在线看| 天堂av国产一区二区熟女人妻| 国产一级毛片七仙女欲春2| 我的女老师完整版在线观看| 99久国产av精品国产电影| 中文在线观看免费www的网站| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 精品国产三级普通话版| 精品一区二区三区视频在线| 免费大片18禁| 最近中文字幕高清免费大全6| 青青草视频在线视频观看| 久久久久久久午夜电影| 乱人视频在线观看| 日韩av在线大香蕉| 日韩高清综合在线| 国产日本99.免费观看| 欧美3d第一页| 国产精品久久久久久精品电影小说 | 一边摸一边抽搐一进一小说| 亚洲国产精品国产精品| av天堂中文字幕网| 日韩欧美一区二区三区在线观看| 亚洲欧美清纯卡通| av在线老鸭窝| 悠悠久久av| 九色成人免费人妻av| 亚洲欧美日韩高清专用| 联通29元200g的流量卡| 久久久午夜欧美精品| 久久精品综合一区二区三区| 国产精品伦人一区二区| 国产成人freesex在线| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| 国产在线精品亚洲第一网站| 国内精品美女久久久久久| 国产一区亚洲一区在线观看| 久久午夜亚洲精品久久| 天堂网av新在线| 日本黄大片高清| 亚洲国产欧洲综合997久久,| 秋霞在线观看毛片| 伊人久久精品亚洲午夜| 中文欧美无线码| 欧美性猛交╳xxx乱大交人| 麻豆乱淫一区二区| 亚洲最大成人中文| 久久久成人免费电影| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久末码| 天天躁夜夜躁狠狠久久av| 国产免费男女视频| 国产精品一区二区三区四区免费观看| 麻豆久久精品国产亚洲av| 国产 一区精品| 国产一区亚洲一区在线观看| 亚洲国产精品成人综合色| 亚洲七黄色美女视频| 国产精品久久久久久亚洲av鲁大| 在线观看一区二区三区| 长腿黑丝高跟| 久久人人爽人人爽人人片va| 日韩三级伦理在线观看| 国产精品三级大全| 亚洲av第一区精品v没综合| 亚洲最大成人手机在线| 久久人人爽人人片av| 久久精品国产鲁丝片午夜精品| 日韩国内少妇激情av| ponron亚洲| 国产精品无大码| 国产午夜精品久久久久久一区二区三区| 在线天堂最新版资源| 亚洲精品乱码久久久久久按摩| 看非洲黑人一级黄片| 免费不卡的大黄色大毛片视频在线观看 | av视频在线观看入口| 亚洲va在线va天堂va国产| 国产精品美女特级片免费视频播放器| 别揉我奶头 嗯啊视频| 久久这里有精品视频免费| 亚洲欧美日韩东京热| 国产精品久久久久久久电影| 国产av在哪里看| 男女做爰动态图高潮gif福利片| 国产精品一区二区三区四区久久| 天天躁日日操中文字幕| 亚洲人与动物交配视频| 亚洲人成网站在线播| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区蜜桃av| av在线老鸭窝| 国产亚洲av嫩草精品影院| 日本免费a在线| 国产精华一区二区三区| 在线免费十八禁| 99热6这里只有精品| 亚洲真实伦在线观看| 91午夜精品亚洲一区二区三区| 伊人久久精品亚洲午夜| 免费看a级黄色片| 一级毛片电影观看 | 欧美性猛交黑人性爽| 国产美女午夜福利| 国产在线男女| 午夜福利高清视频| 精品久久国产蜜桃| 一进一出抽搐动态| 在线播放无遮挡| 黄片无遮挡物在线观看| 免费看美女性在线毛片视频| 美女高潮的动态| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| 91久久精品国产一区二区三区| 午夜福利视频1000在线观看| 亚洲欧洲国产日韩| 99久久无色码亚洲精品果冻| 欧美成人免费av一区二区三区| 91精品一卡2卡3卡4卡| 午夜免费男女啪啪视频观看| 又粗又爽又猛毛片免费看| 亚洲无线在线观看| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 国模一区二区三区四区视频| 99久久人妻综合| 国产精品国产高清国产av| 精品一区二区免费观看| av卡一久久| 99久久成人亚洲精品观看| 中文资源天堂在线| 日韩人妻高清精品专区| 亚洲熟妇中文字幕五十中出| 日韩高清综合在线| 丝袜喷水一区| av天堂中文字幕网| 国产私拍福利视频在线观看| 国产一区二区三区在线臀色熟女| 国产精品一区二区性色av| 日韩欧美三级三区| 国产精品一区www在线观看| 免费一级毛片在线播放高清视频| 不卡一级毛片| 久久这里只有精品中国| 久久99热这里只有精品18| 不卡视频在线观看欧美| 国产精品.久久久| 在线观看免费视频日本深夜| 精品久久久久久久久久免费视频| 在线播放无遮挡| 国产黄片美女视频| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 亚洲在线自拍视频| 网址你懂的国产日韩在线| 亚洲18禁久久av| 热99re8久久精品国产| 黄色配什么色好看| 亚洲精品日韩av片在线观看| 99九九线精品视频在线观看视频| 麻豆乱淫一区二区| 尾随美女入室| 97人妻精品一区二区三区麻豆| 亚洲精品国产成人久久av| 日韩亚洲欧美综合| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| 国产精品精品国产色婷婷| 给我免费播放毛片高清在线观看| 给我免费播放毛片高清在线观看| 99在线视频只有这里精品首页| 午夜福利高清视频| 又粗又爽又猛毛片免费看| 亚洲成人久久性| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久精品电影| 精品午夜福利在线看| 亚洲欧洲日产国产| 性插视频无遮挡在线免费观看| 亚洲国产精品国产精品| 亚洲电影在线观看av| 日产精品乱码卡一卡2卡三| 国产高清有码在线观看视频| 亚洲在线观看片| 只有这里有精品99| 国产精品久久久久久av不卡| 少妇熟女欧美另类| 国产探花极品一区二区| 看非洲黑人一级黄片| 好男人视频免费观看在线| 免费在线观看成人毛片| 天堂网av新在线| 精品一区二区三区人妻视频| av又黄又爽大尺度在线免费看 | 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 亚洲欧美成人综合另类久久久 | 日本熟妇午夜| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 99热6这里只有精品| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在 | 18禁在线播放成人免费| 久久精品国产亚洲网站| 看黄色毛片网站| 亚洲欧洲国产日韩| 欧美3d第一页| 日本免费一区二区三区高清不卡| 天天一区二区日本电影三级| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 两个人的视频大全免费| 男人的好看免费观看在线视频| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 丝袜喷水一区| 2021天堂中文幕一二区在线观| 国产精品嫩草影院av在线观看| 国产探花极品一区二区| 国产精品日韩av在线免费观看| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 嘟嘟电影网在线观看| 午夜福利高清视频| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 嫩草影院新地址| 久久这里有精品视频免费| 免费av毛片视频| 免费看日本二区| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 亚洲中文字幕日韩| 精品久久久久久久末码| 白带黄色成豆腐渣| 岛国在线免费视频观看| 免费看光身美女| 国产视频首页在线观看| 国产激情偷乱视频一区二区| 亚洲熟妇中文字幕五十中出| 乱码一卡2卡4卡精品| av国产免费在线观看| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 日本一本二区三区精品| 亚洲一级一片aⅴ在线观看| 老司机福利观看| 只有这里有精品99| 日韩一区二区三区影片| 日日啪夜夜撸| 一级黄片播放器| 两个人的视频大全免费| 好男人在线观看高清免费视频| 波野结衣二区三区在线| 免费搜索国产男女视频| 九草在线视频观看| а√天堂www在线а√下载| 91精品一卡2卡3卡4卡| 亚洲内射少妇av| 国产亚洲av片在线观看秒播厂 | 特级一级黄色大片| 久久综合国产亚洲精品| 麻豆成人av视频| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 变态另类丝袜制服| 国产精品电影一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国语自产精品视频在线第100页| 五月玫瑰六月丁香| 韩国av在线不卡| 欧美激情在线99| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 日韩人妻高清精品专区| 九草在线视频观看| 日韩人妻高清精品专区| 精品久久国产蜜桃| 成人二区视频| 一级毛片aaaaaa免费看小| 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| 国产大屁股一区二区在线视频| 亚洲成人久久性| 亚洲18禁久久av| 久久草成人影院| 高清午夜精品一区二区三区 | 亚洲精品456在线播放app| 亚洲人成网站在线播放欧美日韩| 精品免费久久久久久久清纯| 国产成人freesex在线| 青青草视频在线视频观看| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 国产成人a区在线观看| 免费电影在线观看免费观看| 精品久久久久久久久久免费视频| 精品一区二区免费观看| 久久久a久久爽久久v久久| 久久精品国产清高在天天线| 中文在线观看免费www的网站| 久久这里只有精品中国| 亚洲人成网站在线播| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影| 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 国产三级中文精品| 日本撒尿小便嘘嘘汇集6| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| 国产三级中文精品| 亚洲一区高清亚洲精品| 看非洲黑人一级黄片| 午夜福利成人在线免费观看| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| av国产免费在线观看| 亚洲精品456在线播放app| 最好的美女福利视频网| 一级av片app| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类| 国产av在哪里看| 夜夜夜夜夜久久久久| 男人舔奶头视频| 在线免费观看不下载黄p国产| 日本免费一区二区三区高清不卡| 人妻少妇偷人精品九色| 日本五十路高清| 久久精品久久久久久久性| 日本与韩国留学比较| 亚洲一区高清亚洲精品| 少妇丰满av| 99久国产av精品| 色噜噜av男人的天堂激情| 99热这里只有精品一区| 日日撸夜夜添| 亚洲三级黄色毛片| 久久久久久大精品| 伦精品一区二区三区| 一个人免费在线观看电影| 少妇熟女aⅴ在线视频| 亚洲aⅴ乱码一区二区在线播放| 色综合色国产| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 国产黄色视频一区二区在线观看 | 久久久久久国产a免费观看| 国产伦精品一区二区三区四那| 色综合站精品国产| 特级一级黄色大片| 六月丁香七月| 不卡一级毛片| 一进一出抽搐动态| 深夜a级毛片| 国产精品蜜桃在线观看 | 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 国产成人91sexporn| 观看免费一级毛片| 麻豆国产97在线/欧美| 中文字幕av在线有码专区| 一级二级三级毛片免费看| 成人永久免费在线观看视频| 毛片一级片免费看久久久久| 中文亚洲av片在线观看爽| 国产老妇伦熟女老妇高清| 日韩av不卡免费在线播放| a级毛色黄片| 成人三级黄色视频| 国产av一区在线观看免费| 日韩三级伦理在线观看| 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 少妇的逼水好多| 日韩欧美国产在线观看| 91久久精品电影网| 亚洲七黄色美女视频| 午夜免费男女啪啪视频观看| 天堂√8在线中文| 亚洲美女搞黄在线观看| 99久久久亚洲精品蜜臀av| 欧美成人a在线观看| 国产免费男女视频| 国产精品三级大全| 精品久久久久久久久久免费视频| 亚洲欧美成人综合另类久久久 | 亚洲国产精品成人久久小说 | 日本撒尿小便嘘嘘汇集6| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 日韩欧美在线乱码| 亚洲天堂国产精品一区在线| av又黄又爽大尺度在线免费看 | 久久久久国产网址| 亚洲高清免费不卡视频| 精品一区二区三区人妻视频| 麻豆精品久久久久久蜜桃| 大型黄色视频在线免费观看| 久久久国产成人免费| ponron亚洲| 欧美3d第一页| 国产精品一及| 国产成人午夜福利电影在线观看| av视频在线观看入口| 九九在线视频观看精品| 国产成人aa在线观看| 少妇人妻一区二区三区视频| 乱码一卡2卡4卡精品| 亚洲国产欧美人成| 九草在线视频观看| 久久午夜亚洲精品久久| 日产精品乱码卡一卡2卡三| 欧美另类亚洲清纯唯美| 国产男人的电影天堂91| 中文资源天堂在线| 一区二区三区免费毛片| 大型黄色视频在线免费观看| 久久人人爽人人爽人人片va| 国产亚洲av嫩草精品影院| 三级经典国产精品| 国产一区二区三区在线臀色熟女| 黄色欧美视频在线观看| 美女黄网站色视频| 高清毛片免费看| 男女下面进入的视频免费午夜| 91精品国产九色| 五月伊人婷婷丁香| 午夜激情欧美在线| av.在线天堂| 插阴视频在线观看视频| 日本成人三级电影网站| 欧美一区二区亚洲| 欧美变态另类bdsm刘玥| 国产精品一区二区三区四区久久| 久久人妻av系列| 97超碰精品成人国产| 国产成人91sexporn| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 久久久久网色| 亚洲一区二区三区色噜噜| 最近手机中文字幕大全| 成年版毛片免费区| 丝袜美腿在线中文| 在线观看免费视频日本深夜| 最近手机中文字幕大全| av在线蜜桃| 久99久视频精品免费| 22中文网久久字幕| 久久人人爽人人片av| 中文欧美无线码| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站| 长腿黑丝高跟| 国产大屁股一区二区在线视频| 亚洲一级一片aⅴ在线观看| 十八禁国产超污无遮挡网站| 亚洲一级一片aⅴ在线观看| 免费人成在线观看视频色| 亚洲最大成人av| 麻豆成人av视频| 国产黄色小视频在线观看| 色5月婷婷丁香| 18禁在线播放成人免费| 色5月婷婷丁香| 免费无遮挡裸体视频| 亚洲自偷自拍三级| 国产又黄又爽又无遮挡在线| 午夜a级毛片| 精品99又大又爽又粗少妇毛片| 18禁黄网站禁片免费观看直播| 国产精品伦人一区二区| 久久国产乱子免费精品| 嘟嘟电影网在线观看| 黄片wwwwww| 成年av动漫网址| 男女做爰动态图高潮gif福利片| 高清在线视频一区二区三区 | 夫妻性生交免费视频一级片| 乱系列少妇在线播放| avwww免费| 久久久精品大字幕| а√天堂www在线а√下载| 精品一区二区三区人妻视频| 中文字幕制服av| 九色成人免费人妻av| 国产毛片a区久久久久| 亚洲欧美中文字幕日韩二区| 男女下面进入的视频免费午夜| 国产av麻豆久久久久久久| 丝袜美腿在线中文| 天天躁夜夜躁狠狠久久av| 日本在线视频免费播放| 国产精品爽爽va在线观看网站| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频1000在线观看| 亚洲欧美精品自产自拍| 熟女人妻精品中文字幕| 波多野结衣高清无吗| 欧美丝袜亚洲另类| 国产亚洲5aaaaa淫片| 99久国产av精品| 日产精品乱码卡一卡2卡三| 日本一二三区视频观看| 国产午夜精品论理片| 精品一区二区免费观看| 亚洲人与动物交配视频| 国产精品国产高清国产av| 亚洲av成人av| 国产精品久久电影中文字幕| 夫妻性生交免费视频一级片| 一级二级三级毛片免费看| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲| 国产麻豆成人av免费视频| 日本黄色视频三级网站网址| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 久久精品影院6| av黄色大香蕉| 精品一区二区免费观看| 日韩视频在线欧美| 国产精品精品国产色婷婷| 国产精品一区二区三区四区免费观看| 亚洲va在线va天堂va国产| 男的添女的下面高潮视频| 日本黄色片子视频| 亚洲欧美成人综合另类久久久 | 成人欧美大片| 国产精品女同一区二区软件| 婷婷亚洲欧美| 久久久久网色| 久久99热这里只有精品18| 国产成人一区二区在线| av女优亚洲男人天堂| 99久久精品热视频| 亚洲无线观看免费| 好男人在线观看高清免费视频| 色噜噜av男人的天堂激情| 国产成人午夜福利电影在线观看| 亚洲图色成人| 久久久精品欧美日韩精品| 国产一级毛片七仙女欲春2| 99热这里只有精品一区| 国产精品精品国产色婷婷| 人妻夜夜爽99麻豆av| 国内久久婷婷六月综合欲色啪| 免费看美女性在线毛片视频| 边亲边吃奶的免费视频| 久久久久久久久久久丰满| 日本免费a在线| 日韩人妻高清精品专区| 国产 一区 欧美 日韩| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 国产日韩欧美在线精品| av卡一久久| 国产一区二区三区av在线 | 乱人视频在线观看| 永久网站在线|