• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy dissipation and power deposition of electromagnetic waves in the plasma sheath

    2021-03-01 08:09:58JiahuiZHANG張珈琿XinJI吉欣KeyuanYANG楊克元LeiSHI石磊andQingxiaWANG王青霞
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:石磊

    Jiahui ZHANG(張珈琿),Xin JI(吉欣),Keyuan YANG(楊克元),Lei SHI(石磊) and Qingxia WANG (王青霞)

    1 School of Aerospace Science and Technology, Xidian University, Xi’an 710071, People’s Republic of China

    2 China Academy of Space Technology, Xi’an 710100, People’s Republic of China

    Abstract Energy dissipation and power deposition of electromagnetic waves(EMW)in the reentry plasma sheath provide an opportunity to investigate ‘communication blackout’ phenomena.Based on a finite element method (FEM) simulation, we analyze variation of EMW energy dissipation and power deposition profiles dependent on the wave polarization, wave incident angle, plasma density profile and electron collision frequency.Cutoff and resonance of EMW in the plasma sheath are crucial in explaining the regulation of energy dissipation and power deposition.

    Keywords: electromagnetic wave, power deposition, plasma sheath

    1.Introduction

    A plasma sheath comes into being when a vehicle flies with hypersonic velocity.This is caused by the dissociation and ionization of the air molecules originating from the hightemperature shock wave heating of the air [1].The plasma sheath surrounds the hypersonic vehicle and acts as a dispersion medium for the electromagnetic waves (EMW) used for communication or radar detection [2, 3].In communication technology, the plasma sheath becomes a barrier for EMW and ‘communication blackout’ phenomena occur because of the reflection and absorption of EMW in the presence of the plasma sheath.In radar detection, the plasma sheath absorbs substantial energy from the EMW and reduces the efficiency of radar detection.Therefore, the concept of plasma stealth was developed and discussed[4].With respect to communication blackout research, the reflection of EMW caused by the plasma sheath and the corresponding conditions have been widely discussed [5].Blackout mitigation is of great importance and a few mechanisms have been developed to address this issue.Mechanisms such as aerodynamic shape modification[6],electrophilic fluid injection,surface catalysis effects[7]and E × B drift[8-10]mitigate the plasma sheath by reducing the electron plasma density.While other mechanisms keep the plasma sheath invariant, for example,wave frequency modification[11],laser communication[12],magnetic windows [13], resonant transmission [14], electron acoustic wave transmission [15] and three-wave interactions[16]comply with the plasma sheath and mitigate blackout by exploring and utilizing the EMW propagation characteristics in the plasma.However, EMW energy dissipation caused by the plasma sheath has not been focused on and the power deposition within the plasma sheath is ambiguous.This was the original motivation for this paper.On one hand, research of EMW energy dissipation in the plasma sheath can supply new insights into communication blackout.On the other hand, EMW energy dissipation regulations can be used to explain the phenomena relevant to the radar detection of a hypersonic vehicle enveloped by the plasma sheath.

    The simulation of EMW propagation is important in understanding the interaction between EMW and plasmas.USIM is a plasma simulation software based on magnetofluid theory and it is widely used in simulating EMW in the plasma sheath [17-19].The finite-difference time-domain method(FDTD)can give the EMW field evolution with time across the plasma sheath [20-22].The commercial code Ansoft and CST are convenient to simulate the communication antenna surrounded by the plasma sheath[23].However,additional plasma physical effects cannot be captured easily in the simulation.As an important supplement,COMSOL Multiphysics software can be used to analyze the physical effects,such as EMW cutoff and resonance in the plasma.Previously, we used COMSOL to analyze EMW field distributions[24]and the spatial dispersion effect[25]in a nonuniform plasma sheath.In this work,we will apply COMSOL to research EMW energy dissipation and power deposition in a nonuniform plasma sheath.

    The arrangement of this paper is as follows: the plane wave simulations are given in section 2.The full wave simulations based on realistic plasma sheath parameters are shown in section 3.Conclusions are drawn in section 4.

    2.Plane wave simulations

    2.1.Model and wave equations

    The EMW equation is solved in the frequency domain based on the finite element method.We assume that the variables of electromagnetic fields oscillate with eiωt, then the EMW equation in terms of the electric field can be given as:

    where the relative permittivity of the air or plasma is defied by εr′ and the wave number in the air is defied byk0.The relative permittivity of plasma is:

    where the angular frequency of the EMW is defined by ω,electron collision frequency is defied by νe, the plasma angular frequency is defined as

    neis the electron density,eis the electron charge, ε0is the permittivity of air andmeis the mass of the electron.

    Figure 1 shows the 2D model used to simulate the plane EMW across the reentry nonuniform plasma sheath caused by hypersonic flows.The plasma sheath is inserted into the air region.The electron density is assumed nonuniform inydirection and uniform inxdirection.The symmetry electron density distribution in the plasma region is given as:

    whereNis the maximum electron density aty=y0andLis the decay constant of the electron density.The electron collision frequency νeis treated as a constant in the plasma sheath.The permittivity of the plasma sheath can be imported by equation (2).The plane wave source is placed in the bottom air region and the wave vector k is set to be in thexoyplane.The input power of the EMW is 1 W.Periodic boundary conditions, which are consistent with the plane wave source, are assigned to the left and right boundaries.The relevant parameters are listed in table 1.

    Figure 1.Plane wave simulation model for EMW across the reentry nonuniform plasma sheath.The plane wave excitation is placed in the bottom air region.The wave vector k is set to be in the xoy plane.Periodic boundary conditions are assigned to the left and right boundaries.Perfect matched layers are applied to mimic the infinite boundary conditions for EMW.

    Table 1.The parameters in the simulation.

    Perfect matched layers (PMLs) are used to simulate the infinite boundary conditions for EMW.The property of the PML is the same as the air.We apply a polynomial stretching function in theydirection, which is defined by:where ξ is the dimensionless coordinate which varies from 0 to 1 over the PML,sis a scaling factor andpis a curvature parameter.The complex displacement for stretching in a single direction isis the original thickness of the PML and λ is a typical wavelength.To retain perfect absorption for plane waves incident at an angle α relative to the boundary normal,it is necessary to compensate for the longer wavelength seen by the PML in the stretching direction by setting the scaling factor:

    The curvature parameterpis equal to the default value 1.The quality of the PML is insensitive to the thicknessLPMLwhile eight mesh elements across the PML(in theydirection)must be satisfied.The grid dependency and validation of the simulation model have been discussed in detail in reference [24].

    Figure 2.The frequency response of the absorption coefficient CA with incidence angle(a)θ = 0°,(b)θ = 20°,(c)θ = 40°and(d)θ = 60°.The solid line denotes CA belonging to EMW with s polarization and the dashed line denotes CA belonging to EWMs with p polarization.The electron peak density is 5 × 1017 m?3,the decay constant of electron density L is 0.002 m and the collision frequency νe is 0.1 GHz.The other parameters are listed in table 1.

    In the beginning of this section, the basic parameters in this work need to be drawn.The range of electron density in the realistic plasma sheath is around 1015-1019m?3.So the moderate electron peak density, 5 × 1017m?3, is adopted in our simulation model.The range of EMW frequency is chosen as 1-20 GHz to cover the main communication frequency band.The input power of EMW is 1 W.The decay constantLin equation (4) can be used to adjust the electron density profile.

    For simplicity,the electron plasma frequency is defined as:

    This equation is relevant to EMW cutoff and resonance in the plasma.In the case of 1D nonuniform plasma, the cutoff frequency for EMW with vertical incidence in the local plasma region is given as:

    If taking EMW with oblique incidence into account,the more general form can be deduced:

    where θ is the incident angle of the EMW.The EMW resonance phenomenon in the plasma has been discussed in reference [24] and can be summarized as a sentence:p polarization EMW with oblique incidence can resonate with electron plasma when the condition off=fpeis satisfied in some local plasma regions.The preliminary knowledge here will be helpful to explain the characteristics of EMW power deposition in the plasma sheath.

    2.2.Dependence on incidence angle

    The frequency response of the absorption coefficientCAwith different incident angle is shown in figure 2.In each incident angles condition, the s polarization (Ex=Ey= 0,Ez≠ 0)case can be compared with the p polarization (Ex≠ 0,Ey≠ 0,Ez= 0) case.For the s polarization case, the wave frequency corresponding to the absorption maximum shifts with the incident angle.This phenomenon is closely related to the cutoff frequency of EMW in the nonuniform plasma sheath, which is defined in equation (8b).The cutoff frequency depends on the incident angle of EMW and the absorption coefficientCAalso maximizes near the frequency Max(fpe/cosθ).For the case of EMW with normal incidence in figure 2(a), the curve ofCAwith p polarization coincides with the one with s polarization.Nevertheless,for the case of an EMW with an oblique incidence angle, the curves ofCAwith p polarization deviate from the results with s polarization in the frequency band ranging from Min(fpe)to Max(fpe).The discrepancy originates from the resonance between EMW and Langmuir oscillation.The resonance can only take place for p polarization EMW with oblique incidence angle when Min(fpe) <f< Max(fpe).The absorption coefficientCAin this frequency band will be enhanced because of the resonance.The details of the resonance between EMW and Langmuir oscillation can be found in reference [24].The characteristic frequency values, Min(fpe), Max(fpe),Min(fpe/cosθ)and Max(fpe/cosθ)for various incident angles are listed in table 2.

    Figure 3.The power deposition profiles belonging to EMW with s polarization.(a) f = 4 GHz in the first column, (b) f = 6 GHz in the second column,(c)f = 8 GHz in the third column and(d)f = 10 GHz in the fourth column.The blue line in the first row denotes θ = 0°,the red line in the second row denotes θ = 20°,the green line in the third row denotes θ=40°,the cyan line in the fourth row denotes θ = 60°.The cutoff position of EMW near the input boundary is marked by the black dashed line if it exists in the plasma sheath.

    Table 2.The characteristic frequency values for various incident angles.

    The power deposition profiles of EMW with s polarization are shown in figure 3.Subplots in the same column have the same wave frequency and the subplots in the same row have the same incident angle.According to the relationship between the wave frequency and the cutoff frequency of plasma sheath, the power deposition profiles fall into three categories:

    f< Min(fpe/cosθ), Min(fpe/cosθ) <f< Max(fpe/cosθ) andf> Max(fpe/cosθ).Whenf< Min(fpe/cosθ), EMW are evanescent all over the plasma sheath and the power deposition concentrates near the left boundary of the plasma sheath (green line in the first column, cyan lines in the first and second columns).Iff> Max(fpe/cosθ),the power deposition can cover the whole plasma sheath and maximize near its center(blue lines in the third and fourth columns, red lines in the third and fourth columns,green line in the fourth column).The power deposition can permeate the plasma sheath inside a certain depth when Min(fpe/cosθ) <f< Max(fpe/cosθ).The penetration depth of power deposition is proportional to the depth of the first critical cutoff position of EMW.The first cutoff position of EMW near the input boundary is marked by the black dashed line(blue lines in the first and second columns,red lines in the first and second columns,green lines in the second and third columns,cyan lines in the third and fourth columns).It should be noted that the volume integration of the power deposition results in the absorption coefficientCA.

    Figure 4 shows the power deposition profiles of EMW with p polarization.Subplots in the same column have the same wave frequency and the subplots in the same row have the same incident angle.EMW with p polarization and oblique incident angle can resonate with electron plasma when the condition of Min(fpe) <f< Max(fpe) is satisfied.The absorption coefficient is much larger than the one with s polarization in the frequency range of Min(fpe) <f<Max(fpe) in figure 2.In this case, the power deposition concentrates on the left resonance position (red lines in the first and second columns, green lines in first and second columns, cyan lines in the first and second columns).Furthermore, the amplitude of the power deposition peak is sensitive to the incident angle of EMW and this is consistent with the absorption coefficient in figure 2.The power deposition rules without the resonance are no different from the case of s polarization EMW.

    Figure 4.The power deposition profiles belonging to EMW with p polarization.(a) f = 4 GHz in the first column, (b) f = 6 GHz in the second column,(c)f = 8 GHz in the third column and(d)f = 10 GHz in the fourth column.The blue line in the first row denotes θ = 0°,the red line in the second row denotes θ = 20°, the green line in the third row denotes θ = 40°, the cyan line in the fourth rowdenotes θ = 60°.

    2.3.Dependence on density profiles

    The electron density profiles can be adjusted by modifying the decay constant of electron densityLwhile the peak density remains the same.The symmetry electron density profiles with differentLare shown in figure 5.The smaller the decay constantLis, the steeper the density profile is, and the lower the edge electron density is.The frequency response of the absorption coefficientCAwith different decay constantLis shown in figure 6.The EMW incident angle is chosen to be 20° because a relative small incident angle is suitable for the realistic application scenario.In this case, the cutoff frequency Max(fpe/cosθ) of the plasma sheath is very close to Max(fpe).For s polarization EMW,the absorption coefficientCAmaximizes near the frequency of Max(fpe/cosθ).The peak amplitude ofCAincreases and the absorption bandwidth gets narrow when the decay constantLincreases.For p polarization EMW, the variation of the peak amplitude is not as large as it is for s polarization EMW.However, the bandwidth ofCAdecreases significantly withLincreasing.This is determined by the condition of EMW resonance with electron plasma, Min(fpe) <f< Max(fpe).The largerLresults in the larger Min(fpe) of the plasma sheath, which is the boundary of the absorption bandwidth.The characteristic frequency values, Min(fpe), Max(fpe), Min(fpe/cosθ) and Max(fpe/cosθ) for various decay constantsLare listed in table 3.

    Figure 5.The electron density profiles with different decay constants.

    Figure 6.The frequency response of the absorption coefficient CA with decay constant(a)L = 0.001 m,(b)L = 0.002 m,(c)L = 0.003 m and(d)L = 0.004 m.The solid line denotes CA belonging to EMW with s polarization and the dashed line denotes CA belonging to EWMs with p polarization.The incident angle of the EMW is 20°, the electron peak density is 5 × 1017 m?3 and the collision frequency νe is 0.1 GHz.The other parameters are listed in table 1.

    Table 3.The characteristic frequency values for various decay constants L.

    2.4.Dependence on peak electron density

    The peak electron number density is also the key factor to influence the energy dissipation of EMW.Figure 7 shows the frequency response of the absorption coefficientCAfor various peak electron densities.In all these cases,the absorption bands for p polarization are wider than those for s polarization.Furthermore, the absorption bands shift from the lowfrequency region to the high-frequency region when the peak electron number density increases.This phenomenon can be explained by the fact that the peak electron density determines Max(fpe) and Min(fpe) of the plasma sheath, as well as the cutoff and resonance condition of the EMW.The characteristic frequency values,Min(fpe),Max(fpe),Min(fpe/cosθ)and Max(fpe/cosθ) for various peak electron densities are listed in table 4.

    2.5.Dependence on electron collision frequency

    The electron collision frequency is another important parameter which influences the energy dissipation of EMW in the plasma sheath.The frequency response of the absorption coefficientCAwith various electron collision frequencies νeis shown in figure 8.Increasing the electron collision frequency νenot only enhances the amplitude peak ofCA, but also enlarges the frequency bandwidth of the absorption coefficient.It should also be noted that the discrepancy between s and p polarization tends to vanish when νeincreases.

    3.Full wave simulations

    3.1.Model

    Previously, we have obtained the EMW energy dissipation and power deposition regulations in the reentry plasma sheath based on plane wave model.In this section, we will proceed to the full wave simulation based on a 2D plasma model to mimic the realistic reentry plasma sheath.The full wave simulation model is shown in figure 9.The simulation region is surrounded by PMLs.In the simulation region, the plasma sheath is inserted into the air region.The electron density is assumed nonuniform inxandydirection as:

    Figure 7.The frequency response of the absorption coefficient CA with peak electron density(a)N = 1 × 1017 m?3,(b)N = 5 × 1017 m?3,(c) N = 1 × 1018 m?3 and (d) N = 5 × 1018 m?3.The solid line denotes CA belonging to EMW with s polarization and the dashed line denotes CA belonging to EWM with p polarization.The incident angle of the EMW is 20°,the decay constant of electron density L is 0.002 m, and the collision frequency νe is 0.1 GHz.The other parameters are listed in table 1.

    Table 4.The characteristic frequency values for various peak electron density.

    The profiles ofN(y)shown in figure 10 are fitted based on the reentry hypersonic fluid simulation results[26].The variation of the electron density in thexdirection is defined byLx.According to the characteristic of collision frequency distribution[26],the collision frequency is defined as uniform inydirection and nonuniform in thexdirection:

    The characteristic parameters of the plasma sheath with different altitudes are shown in table 5.The wave port is placed in the bottom air region and the main wave vector k is set to be normal to the plasma sheath boundary.The EMW input power is 1 W.

    3.2.Dependence on the altitude of the reentry vehicle

    The frequency responses of the absorption coefficientCAfor different altitudes of the reentry vehicle are shown in figure 11.High energy dissipation occurs at the altitude of 40 km and 60 km when the wave frequency is close to the plasma frequency.At the altitude of 40 km,the collision frequency is so large that the difference between s and p polarization is not obvious.Though the collision frequency at the altitude of 20 km is the largest, the energy dissipation is still very low.The reason is that the wave frequency is much larger than the plasma frequency and most wave energy gets through the plasma sheath.The energy dissipation at the altitude of 80 km is low because of the low collision frequency.In this case,most wave energy has been reflected.

    Figure 8.The frequency response of the absorption coefficient CA with collision frequency (a) νe = 0.05 GHz, (b) νe = 0.1 GHz, (c)νe = 0.5 GHz and (d) νe = 1 GHz.The solid line denotes CA belonging to EMW with s polarization and the dashed line denotes CA belonging to EWM with p polarization.The incident angle of the EMW is 20°, the electron peak density is 5 × 1017 m?3 and the decay constant of electron density L is 0.002 m.The other parameters are listed in table 1.

    Figure 9.Full wave simulation model for EMW across the reentry nonuniform plasma sheath.The wave port is placed in the bottom air region and the main wave vector k is set to be normal to the plasma sheath boundary.PMLs are applied to mimic the infinite boundary conditions for EMW.

    The power deposition distributions at the altitude of 40 km are shown in figure 12.The difference of the power deposition between s and p polarization is rather small for all the three frequencies.This is consistent with the conclusion deduced from figure 11.As for the power deposition at the altitude of 60 km in figure 13, the power deposition distributions with s and p polarization are different forf=5 GHz andf= 12 GHz.The light fringe in figures 13(d) and (e)caused by resonance between EMW and plasma can be observed.The light fringe vanishes in figure 13(f)because the wave frequencyf= 15 GHz has exceeded the maximum of the plasma frequency and the resonance condition is not satisfied.

    Figure 10.The electron density profiles with different altitudes of the reentry vehicle.

    Figure 11.The frequency response of the absorption coefficient for(a)high energy dissipation with altitude of 40 km and 60 km,and(b)low energy dissipation with altitudes of 20 km and 80 km.The solid line denotes CA belonging to EMW with s polarization and the dashed line denotes CA belonging to EWM with p polarization.

    Figure 12.EMW power deposition in the plasma sheath at the altitude of 40 km.(a)f = 5 GHz,(b)f = 12 GHz and(c)f = 15 GHz with s polarization.(d) f = 5 GHz, (e) f = 12 GHz and (f) f = 15 GHz with p polarization.

    4.Conclusions

    In this paper, we analyze the regulation of EMW energy dissipation and power deposition in the plasma sheath based on plane wave and full wave simulation models.The main conclusions deduced from the plane wave simulations can be summarized as follows:

    Figure 13.EMW power deposition in the plasma sheath at the altitude of 60 km.(a)f = 5 GHz,(b)f = 12 GHz and(c)f = 15 GHz with s polarization.(d) f = 5 GHz, (e) f = 12 GHz and (f) f = 15 GHz with p polarization.

    Table 5.The characteristic parameters of the plasma sheath with different altitudes.

    (1) The power deposition profiles with s polarization fall into three categories:f< Min(fpe/cosθ),Min(fpe/cosθ) <f< Max(fpe/cosθ) andf> Max(fpe/cosθ).Whenf< Min(fpe/cosθ), EMW are evanescent all over the plasma sheath and the power deposition concentrates near the plasma sheath boundary.Iff> Max(fpe/cosθ),the power deposition can cover the whole plasma sheath and maximize near the center of the plasma sheath.The power deposition can permeate the plasma sheath inside a certain depth when Min(fpe/cosθ) <f< Max(fpe/cosθ).

    (2) The power deposition profiles with p polarization and oblique incident angle concentrate on the first resonance position when the resonance between EMW and electron plasma oscillation takes place in the frequency range of Min(fpe) <f< Max(fpe).When the electron collision frequency increases, the resonance absorption peak of the power deposition profile decreases and broadens.The power deposition rules without resonance are similar to the case of s polarization EMW.

    (3) The volume integration of the power deposition results in the absorption coefficient.The characteristics of frequency response of the absorption coefficient are different for s and p polarization EMW.For the s polarization case, the absorption coefficient maximizes near the frequency of Max(fpe/cosθ).The absorption frequency bandwidth becomes narrower with the electron density gradient decreasing.However, increasing the electron collision frequency not only enhances the amplitude peak ofCA, but also enlarges the frequency bandwidth of the absorption coefficient.

    (4) For the p polarization case,the absorption coefficient in the frequency band where Min(fpe) <f< Max(fpe)will be much larger than that for s polarization case because of the EMW resonance with electron plasma oscillation.Variation of the plasma density profile or peak density can influence Min(fpe)or Max(fpe)as well as the bandwidth of the absorption coefficient.The effect of the collision frequency on the absorption coefficient for p polarization is similar to s polarization.In addition, the discrepancy between s and p polarization tends to vanish when collision frequency increases.

    The regulations above concluded from plane wave simulations can be used to explain the phenomena in the full wave simulations based on the realistic plasma sheath parameters at different altitudes of the reentry vehicle.High energy dissipation occurs at the altitudes of 40 km and 60 km when the wave frequency is close to the plasma frequency.

    The resonance of p polarization EMW in the plasma sheath can be distinguished from s polarization at the altitude of 60 km.The results in this paper can be useful in explaining the phenomena relevant to the radar detection of a hypersonic vehicle surrounded by a plasma sheath.

    Acknowledgments

    This research was partly funded by National Natural Science Foundation of China(Nos.61627901 and 61871302)and the Shaanxi National Natural Science Foundation under Grant No.2019JZ-15.

    猜你喜歡
    石磊
    “巨嬰”老公總讓我收拾爛攤子,忍無可忍我決定分居
    婦女生活(2025年2期)2025-02-20 00:00:00
    Nitrogen-tailored quasiparticle energy gaps of polyynes
    Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
    Inverse synthetic aperture radar range profile compensation of plasma-sheathenveloped reentry object
    Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    闕 題
    親愛的,你現(xiàn)在可以求婚了
    伴侶(2019年11期)2019-08-09 08:47:31
    Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties?
    昔日創(chuàng)客的美麗蝶變
    日韩欧美国产在线观看| 国产精品1区2区在线观看.| 国产亚洲精品久久久久久毛片| 免费在线观看视频国产中文字幕亚洲| 757午夜福利合集在线观看| 全区人妻精品视频| 美女免费视频网站| 亚洲真实伦在线观看| 国产不卡一卡二| 少妇熟女aⅴ在线视频| 日日爽夜夜爽网站| xxxwww97欧美| 性色av乱码一区二区三区2| 五月伊人婷婷丁香| 国产精品,欧美在线| 亚洲欧美一区二区三区黑人| 中文字幕精品亚洲无线码一区| 怎么达到女性高潮| 国产亚洲精品综合一区在线观看 | 国产伦人伦偷精品视频| 免费在线观看亚洲国产| 精品欧美一区二区三区在线| 精品久久久久久久久久久久久| 日日夜夜操网爽| 中文亚洲av片在线观看爽| 在线视频色国产色| 久久国产乱子伦精品免费另类| 国产又黄又爽又无遮挡在线| 国产69精品久久久久777片 | 很黄的视频免费| 熟女少妇亚洲综合色aaa.| 久久国产精品人妻蜜桃| 国产精品电影一区二区三区| 亚洲国产欧美网| 一级黄色大片毛片| 国产精品免费视频内射| 悠悠久久av| 婷婷精品国产亚洲av在线| 中文字幕人成人乱码亚洲影| 香蕉丝袜av| 夜夜夜夜夜久久久久| 成人精品一区二区免费| 国产爱豆传媒在线观看 | 中文资源天堂在线| 天天躁夜夜躁狠狠躁躁| 琪琪午夜伦伦电影理论片6080| 国产熟女午夜一区二区三区| 精品国产乱子伦一区二区三区| 妹子高潮喷水视频| 99热只有精品国产| 俺也久久电影网| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| av欧美777| 亚洲国产精品合色在线| 成人三级黄色视频| 搡老妇女老女人老熟妇| 欧美一级毛片孕妇| 亚洲国产精品合色在线| 国产又色又爽无遮挡免费看| 51午夜福利影视在线观看| 国产单亲对白刺激| 免费在线观看视频国产中文字幕亚洲| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 欧美一级毛片孕妇| 特级一级黄色大片| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 日韩欧美在线二视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜一区二区| 日韩av在线大香蕉| 在线播放国产精品三级| 亚洲中文字幕日韩| 天堂动漫精品| 欧美日韩福利视频一区二区| 天堂av国产一区二区熟女人妻 | 久久性视频一级片| 国内精品久久久久精免费| 999久久久精品免费观看国产| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇熟女久久| 色综合站精品国产| av视频在线观看入口| 高清毛片免费观看视频网站| 一本大道久久a久久精品| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 免费看日本二区| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 亚洲全国av大片| 美女高潮喷水抽搐中文字幕| 一级作爱视频免费观看| 国产1区2区3区精品| www.自偷自拍.com| 国产亚洲精品久久久久5区| 91麻豆av在线| 国产精品99久久99久久久不卡| 亚洲片人在线观看| 午夜免费激情av| 免费观看精品视频网站| 18禁观看日本| 舔av片在线| 可以免费在线观看a视频的电影网站| 在线十欧美十亚洲十日本专区| 国产不卡一卡二| 国模一区二区三区四区视频 | 精品一区二区三区视频在线观看免费| 日韩三级视频一区二区三区| 精品一区二区三区四区五区乱码| 国产伦一二天堂av在线观看| 午夜福利欧美成人| 国产精品久久视频播放| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 两个人免费观看高清视频| 老汉色∧v一级毛片| 国产成人欧美在线观看| 亚洲第一电影网av| 人人妻人人看人人澡| 老司机在亚洲福利影院| 久久欧美精品欧美久久欧美| 国产91精品成人一区二区三区| 十八禁人妻一区二区| 两个人看的免费小视频| 三级男女做爰猛烈吃奶摸视频| 丁香欧美五月| 亚洲精品久久国产高清桃花| 一级毛片女人18水好多| 欧美日本亚洲视频在线播放| 母亲3免费完整高清在线观看| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 免费电影在线观看免费观看| 亚洲真实伦在线观看| 国产精品综合久久久久久久免费| av中文乱码字幕在线| 丰满的人妻完整版| 日韩欧美免费精品| av福利片在线| 精品午夜福利视频在线观看一区| 免费观看精品视频网站| 999精品在线视频| 精品久久久久久久毛片微露脸| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 欧美一区二区国产精品久久精品 | 国产精品国产高清国产av| 午夜免费观看网址| 非洲黑人性xxxx精品又粗又长| 欧美 亚洲 国产 日韩一| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 国产免费男女视频| 久久中文看片网| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 岛国视频午夜一区免费看| 热99re8久久精品国产| 日本熟妇午夜| 亚洲成人国产一区在线观看| 国产麻豆成人av免费视频| 国产伦一二天堂av在线观看| 欧美午夜高清在线| 精品无人区乱码1区二区| 曰老女人黄片| 亚洲精品粉嫩美女一区| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久成人av| 一区二区三区高清视频在线| 亚洲欧美一区二区三区黑人| 午夜免费激情av| 男男h啪啪无遮挡| 美女午夜性视频免费| 男人的好看免费观看在线视频 | 久久精品国产亚洲av高清一级| 午夜久久久久精精品| 亚洲 国产 在线| 国产成人精品久久二区二区91| 高潮久久久久久久久久久不卡| 亚洲成人精品中文字幕电影| 久久久久九九精品影院| 女人爽到高潮嗷嗷叫在线视频| 两个人免费观看高清视频| 国产精品美女特级片免费视频播放器 | 欧美另类亚洲清纯唯美| www日本在线高清视频| 色噜噜av男人的天堂激情| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 成人18禁高潮啪啪吃奶动态图| 国产熟女xx| 日本黄大片高清| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 伦理电影免费视频| 国产男靠女视频免费网站| 免费看十八禁软件| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 成在线人永久免费视频| 九色国产91popny在线| 亚洲乱码一区二区免费版| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 亚洲精品美女久久久久99蜜臀| 久久久国产成人精品二区| 国产一级毛片七仙女欲春2| 亚洲av第一区精品v没综合| 50天的宝宝边吃奶边哭怎么回事| 97人妻精品一区二区三区麻豆| 亚洲成av人片免费观看| 亚洲国产精品合色在线| 亚洲国产欧美人成| 国产av一区在线观看免费| 成人国产一区最新在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 香蕉av资源在线| 老司机午夜十八禁免费视频| 中文亚洲av片在线观看爽| 在线观看美女被高潮喷水网站 | 亚洲美女视频黄频| x7x7x7水蜜桃| 夜夜看夜夜爽夜夜摸| 一夜夜www| 精品久久久久久久久久免费视频| 亚洲国产看品久久| 午夜激情福利司机影院| 国产精品亚洲一级av第二区| 国内毛片毛片毛片毛片毛片| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 成年免费大片在线观看| 亚洲中文字幕一区二区三区有码在线看 | 一个人观看的视频www高清免费观看 | 狂野欧美激情性xxxx| 免费无遮挡裸体视频| 国产精品一及| 色精品久久人妻99蜜桃| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| а√天堂www在线а√下载| 婷婷丁香在线五月| 757午夜福利合集在线观看| 色综合亚洲欧美另类图片| 母亲3免费完整高清在线观看| 亚洲欧美激情综合另类| 久久亚洲真实| 欧美丝袜亚洲另类 | 黄片大片在线免费观看| 亚洲av第一区精品v没综合| 国产97色在线日韩免费| 国产伦一二天堂av在线观看| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| 女人被狂操c到高潮| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 十八禁人妻一区二区| 国产99久久九九免费精品| 国内揄拍国产精品人妻在线| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 午夜免费激情av| 国产精品国产高清国产av| 国产精品自产拍在线观看55亚洲| 国产激情欧美一区二区| 国产精品免费一区二区三区在线| 成熟少妇高潮喷水视频| 男女午夜视频在线观看| 精品欧美国产一区二区三| 精品福利观看| 一个人免费在线观看电影 | 欧美日韩精品网址| 国产伦人伦偷精品视频| 亚洲av片天天在线观看| 国产黄a三级三级三级人| 一本精品99久久精品77| 国产主播在线观看一区二区| 久久草成人影院| 午夜免费成人在线视频| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 丝袜人妻中文字幕| 老司机深夜福利视频在线观看| 久久精品国产清高在天天线| 麻豆成人午夜福利视频| 韩国av一区二区三区四区| 欧美在线黄色| 嫁个100分男人电影在线观看| 欧美一级a爱片免费观看看 | 午夜福利在线观看吧| 天天添夜夜摸| 黄色丝袜av网址大全| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片午夜丰满| 超碰成人久久| 亚洲,欧美精品.| 久久香蕉激情| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 日韩欧美在线二视频| 国产一区二区三区视频了| 五月伊人婷婷丁香| 99国产综合亚洲精品| 亚洲av美国av| 俺也久久电影网| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| 亚洲欧美一区二区三区黑人| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 国产亚洲欧美98| 久久久久亚洲av毛片大全| 99精品久久久久人妻精品| 亚洲电影在线观看av| 又大又爽又粗| 国产精品免费视频内射| 亚洲精华国产精华精| 亚洲一区中文字幕在线| а√天堂www在线а√下载| 国产免费男女视频| 制服丝袜大香蕉在线| 欧美日韩国产亚洲二区| 久久人妻福利社区极品人妻图片| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 久久精品国产综合久久久| a级毛片a级免费在线| 麻豆一二三区av精品| 哪里可以看免费的av片| 精品国产乱子伦一区二区三区| 深夜精品福利| 欧美大码av| 两个人免费观看高清视频| 午夜成年电影在线免费观看| 99久久精品热视频| 可以免费在线观看a视频的电影网站| 女同久久另类99精品国产91| 人成视频在线观看免费观看| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 亚洲avbb在线观看| 午夜a级毛片| 国产精品久久电影中文字幕| 久久99热这里只有精品18| 亚洲国产中文字幕在线视频| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 午夜a级毛片| 法律面前人人平等表现在哪些方面| 日本 av在线| 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 国产aⅴ精品一区二区三区波| 他把我摸到了高潮在线观看| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 成人一区二区视频在线观看| 九九热线精品视视频播放| 亚洲av片天天在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美乱色亚洲激情| 久久精品国产亚洲av高清一级| 在线十欧美十亚洲十日本专区| 日本a在线网址| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看 | 国产成人av教育| 国产精品影院久久| 欧美中文日本在线观看视频| 国产不卡一卡二| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av香蕉五月| 国产激情久久老熟女| 男女做爰动态图高潮gif福利片| 国产高清videossex| 免费电影在线观看免费观看| 啦啦啦观看免费观看视频高清| 老汉色av国产亚洲站长工具| 日日摸夜夜添夜夜添小说| 国产精品日韩av在线免费观看| 看片在线看免费视频| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区| 亚洲国产精品成人综合色| 欧美日韩精品网址| 高清毛片免费观看视频网站| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 国产成人欧美在线观看| 国产高清激情床上av| 黄色丝袜av网址大全| 亚洲男人天堂网一区| 日韩大尺度精品在线看网址| 露出奶头的视频| 好看av亚洲va欧美ⅴa在| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看 | 欧美性长视频在线观看| 免费av毛片视频| 亚洲成人国产一区在线观看| 一级作爱视频免费观看| 国产精品免费视频内射| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 国产伦在线观看视频一区| 国产欧美日韩精品亚洲av| 亚洲avbb在线观看| 国产野战对白在线观看| 黄色片一级片一级黄色片| 白带黄色成豆腐渣| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 看免费av毛片| 他把我摸到了高潮在线观看| 国产亚洲欧美98| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看 | 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 18禁美女被吸乳视频| 一夜夜www| 88av欧美| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 精品免费久久久久久久清纯| 女人爽到高潮嗷嗷叫在线视频| 国产三级黄色录像| 欧美一级a爱片免费观看看 | 99国产精品99久久久久| 久久人妻福利社区极品人妻图片| 亚洲av五月六月丁香网| 成人手机av| 日本免费一区二区三区高清不卡| 欧美黄色淫秽网站| 精品国产美女av久久久久小说| 日韩大尺度精品在线看网址| 黄色视频不卡| 国产99久久九九免费精品| 亚洲精品在线观看二区| 亚洲av美国av| 91麻豆av在线| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 身体一侧抽搐| 久久久久久久精品吃奶| 欧美乱色亚洲激情| 亚洲人成77777在线视频| 看免费av毛片| 每晚都被弄得嗷嗷叫到高潮| 国产区一区二久久| 他把我摸到了高潮在线观看| 99国产精品99久久久久| 日韩av在线大香蕉| 老司机靠b影院| 欧美黄色淫秽网站| 国产私拍福利视频在线观看| 国产成人精品久久二区二区免费| 亚洲国产精品成人综合色| 国产一级毛片七仙女欲春2| 久久久久性生活片| avwww免费| 高潮久久久久久久久久久不卡| 亚洲性夜色夜夜综合| 国产精品国产高清国产av| 禁无遮挡网站| 久久久国产欧美日韩av| 精品久久久久久久久久久久久| 国产一区二区在线av高清观看| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 18禁观看日本| 国产精品久久电影中文字幕| 国产黄a三级三级三级人| 国产成人精品久久二区二区免费| 色综合站精品国产| 国产av麻豆久久久久久久| 在线国产一区二区在线| 黄色女人牲交| 欧美黄色淫秽网站| 久久久国产欧美日韩av| 欧美色欧美亚洲另类二区| 日韩精品青青久久久久久| 久久久国产成人免费| 国产成人精品无人区| 成人精品一区二区免费| 最近视频中文字幕2019在线8| 99热这里只有是精品50| 国产免费av片在线观看野外av| 亚洲av电影不卡..在线观看| 日本五十路高清| 很黄的视频免费| 99国产极品粉嫩在线观看| 午夜老司机福利片| 日韩欧美国产一区二区入口| 精品无人区乱码1区二区| 每晚都被弄得嗷嗷叫到高潮| 在线观看日韩欧美| 天天躁夜夜躁狠狠躁躁| 亚洲一区高清亚洲精品| 精品乱码久久久久久99久播| 久久精品亚洲精品国产色婷小说| 国产亚洲av嫩草精品影院| 日韩成人在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 一二三四社区在线视频社区8| 啦啦啦韩国在线观看视频| 哪里可以看免费的av片| 成人欧美大片| 国内毛片毛片毛片毛片毛片| 亚洲成人免费电影在线观看| 国产精品亚洲av一区麻豆| 亚洲欧美日韩高清专用| 婷婷精品国产亚洲av在线| 日本在线视频免费播放| 精品久久久久久久毛片微露脸| 国产精品98久久久久久宅男小说| 午夜老司机福利片| 日本 av在线| 日本一本二区三区精品| 一二三四社区在线视频社区8| 日本撒尿小便嘘嘘汇集6| 一级毛片女人18水好多| 国产精品一及| 日本三级黄在线观看| 五月伊人婷婷丁香| 欧美极品一区二区三区四区| 欧美在线黄色| 亚洲天堂国产精品一区在线| 欧美黄色片欧美黄色片| 99国产精品99久久久久| 搡老妇女老女人老熟妇| 黄色成人免费大全| 制服诱惑二区| 婷婷精品国产亚洲av在线| 亚洲精品国产一区二区精华液| 久久天堂一区二区三区四区| 国产av一区在线观看免费| 久久99热这里只有精品18| 欧美一级a爱片免费观看看 | av福利片在线| 欧美三级亚洲精品| 国产成人精品无人区| 精品福利观看| 亚洲狠狠婷婷综合久久图片| 看片在线看免费视频| 老汉色av国产亚洲站长工具| 成人欧美大片| 国产三级黄色录像| 看黄色毛片网站| 丝袜美腿诱惑在线| 日韩国内少妇激情av| 最近最新中文字幕大全免费视频| 小说图片视频综合网站| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 午夜a级毛片| 欧美久久黑人一区二区| 日韩欧美三级三区| 日本 欧美在线| 久久久久国内视频| av免费在线观看网站| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| a在线观看视频网站| 亚洲一区中文字幕在线| 伊人久久大香线蕉亚洲五| 国产精华一区二区三区| 国产一区二区三区视频了| 狂野欧美白嫩少妇大欣赏| 一本大道久久a久久精品| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 欧美zozozo另类| 国产精品国产高清国产av| 久久久国产成人免费| 国产激情偷乱视频一区二区| av视频在线观看入口| 亚洲一区二区三区色噜噜| 桃色一区二区三区在线观看| 国产精品香港三级国产av潘金莲| www.精华液| 国产黄a三级三级三级人| svipshipincom国产片| 妹子高潮喷水视频| 国产成人精品久久二区二区91| 久久婷婷成人综合色麻豆| 特大巨黑吊av在线直播| 十八禁网站免费在线| 国产亚洲精品一区二区www|