• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear gyrokinetic simulations of reversed shear Alfvén eigenmodes and ion temperature gradient modes in DIII-D tokamak

    2021-03-01 08:09:42HongyuWANG王虹宇PengfeiLIU劉鵬飛ZhihongLIN林志宏andWenluZHANG張文祿
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:鵬飛

    Hongyu WANG(王虹宇),Pengfei LIU(劉鵬飛),Zhihong LIN(林志宏) and Wenlu ZHANG (張文祿)

    1 Fusion Simulation Center, Peking University, Beijing 100871, People’s Republic of China

    2 Department of Physics and Astronomy, University of California, Irvine, CA 92697, United States of America

    3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

    Abstract Global linear gyrokinetic simulations using realistic DIII-D tokamak geometry and plasma profiles find co-existence of unstable reversed shear Alfvén eigenmodes (RSAE) with low toroidal mode number n and electromagnetic ion temperature gradient (ITG) instabilities with higher toroidal mode number n.For intermediate n = [10, 12], RSAE and ITG co-exist and overlap weakly in the radial domain with similar growth rates but different real frequencies.Both RSAE and ITG growth rates decrease less than 5% when compressible magnetic perturbations are neglected in the simulations.The ITG growth rates increase less than 7%when fast ions are not included in the simulations.Finally, the effects of trapped electrons on the RSAE are negligible.

    Keywords:fast ions,gyrokinetic simulation,reversed shear Alfvén eigenmodes,microturbulence

    1.Introduction

    Energetic particle(EP)confinement is a key physical issue for burning plasma experiment in ITER[1,2]since ignition relies on self-heating by energetic fusion products[3],i.e.α-particles.The EP population in current tokamaks can be produced by auxiliary heating such as neutral beam injection [4] and radio frequency heating[5].EP pressure gradients can readily excite mesoscale EP instabilities such as the Alfvén eigenmodes(AE)[6], which can drive large EP transport, degrade overall plasmas confinement, and threaten the machines’ integrity [7].Because EP constitutes a significant fraction of the plasma energy density, EP could influence thermal particle dynamics including the microturbulence [8, 9] responsible for turbulent transport of thermal particles and the macroscopic magnetohydrodynamic (MHD) modes potentially leading to disastrous disruptions [10].In return, microturbulence and MHD modes can affect EP confinement [11, 12].

    Thanks to recent progress in developing comprehensive EP simulation codes and understanding basic EP physics,gyrokinetic turbulence simulation has been successfully established as a necessary paradigm shift for studying EP confinement [13-16].Integrated simulation incorporating multiple physical processes and disparate temporal-spatial scales becomes available now to address new challenges in the EP physics such as the coupling of EP-driven AE turbulence with thermal particles-driven microturbulence and macroscopic MHD modes.The fully self-consistent gyrokinetic turbulence simulation needs to treat both EP and thermal particles on the same footing to address the kinetic effects of thermal particles and the cross-scale couplings between microturbulence, EP turbulence, and MHD modes.

    Toward such an integrated simulation of EP coupling with thermal particles, we have initiated comprehensive simulations of turbulent transport by low frequency electromagnetic instabilities (including AE and microturbulence) in a reversed shear geometry of DIII-D tokamak with fast ions[17]by using the gyrokinetic toroidal code(GTC)[18].GTC has been extensively verified and validated for global simulations of AE [13-16, 19] and microturbulence [11, 18,20-22].As the first step in the integrated simulations of EP,we study the linear properties of these electromagnetic instabilities, which could provide a foundation for the next step of nonlinear simulations of multiple physical processes.

    In this paper, linear global GTC simulations using realistic DIII-D magnetic geometry and plasma profiles with kinetic electrons, thermal ions and fast ions find co-existence of unstable reversed shear Alfvén eigenmodes (RSAE) with low toroidal mode number <n10 and ion temperature gradient (ITG) instabilities with higher toroidal mode numbern>12.For intermediate toroidal modesn=[10,12],RSAE and ITG eigenmodes overlap weakly in the radial domain with similar growth rates but different real frequencies.The RSAE polarization is very close to ideal Alfvénic state,while the ITG polarization is closer to electrostatic but with significant magnetic perturbations.

    Our simulations represent the first gyrokinetic study for the effects of compressible magnetic perturbations δB||on the RSAE in this DIII-D experiment.GTC simulations with δB||have been verified for ITG, collisionless trapped electron mode, and kinetic ballooning mode [23, 24].Although many gyrokinetic codes have the capability for including δB||in the simulations of microturbulence, most of gyrokinetic simulations of RSAE neglect δB||[9, 13, 16, 25-27].On the other hand,most of hybrid MHD-gyrokinetic codes do not separate parallel and perpendicular magnetic perturbations [13, 16,28-30].Therefore, the effects of δB||on RSAE are not well understood.The δB||can be important for low frequency instabilities since it cancels out the stabilizing ‘drift-reversal’effects of the guiding center ?Bdrifts associated with the perpendicular diamagnetic current in finite-β plasmas [31].Gyrokinetic flux-tube simulations using GS2 code [32] for ITG in a simples-α geometry find that the ITG growth rate decreases by a factor of 3 when δB||is neglected in the simulations.However, global GTC simulations using similar geometry and plasma β find that the ITG growth rate decreases less than 5% when δB||is neglected in the simulations [24].In the current GTC simulations using realistic DIII-D magnetic geometry and plasma profiles, both RSAE and ITG growth rates decrease less than 5% when δB||is neglected in the simulations.Furthermore, GTC simulations find that the effects of trapped electrons on the RSAE are negligible.

    Our simulations also clarify the effects of fast ions on the ITG in this DIII-D experiment.It is well-known that the adiabatic responses of electrons and fast ions can have stabilizing effects on the ITG due to the finite-β stabilization[33]and that fast ion drift-bounce and precessional resonances[6,34,35]can stabilize or destabilize low frequency drift-Alfvén instabilities,depending on specific plasma parameters.In the current GTC simulations using realistic DIII-D magnetic geometry and plasma profiles,the ITG growth rate increases less than 7% when fast ions are not included in the simulations.Finally, GTC simulations find that the ITG eigenmodes become stable if electrons are assumed to be adiabatic, i.e.by neglecting kinetic effects of trapped electrons.

    The rest of the paper is organized as follows.In section 2,GTC electromagnetic simulation model with compressible magnetic perturbations δB||is described.The simulation results are discussed in section 3.The conclusions are provided in section 4.

    2.Gyrokinetic electromagnetic simulation model

    By means of parallel symplectic gyrocenter model [36], the nonlinear gyrokinetic equation used in GTC to study low frequency mode could be written as [24, 37],

    In order to reduce the particle noise in simulations,δf-method [38] is used for thermal ions and fast ions, by decomposing the distribution functionαfof species α into an equilibrium partαf0and a perturbed partδαf, i.e.The equilibrium part is defined by:

    The perturbed part is solved by using a particle weight variablewhich satisfies:

    Particle densityαnand parallel velocity‖αuare moments of distribution functions in velocity space:

    where

    The electron dynamics is described by the fluid-kinetic hybrid model[37],which separates the electron response into a dominant adiabatic part and a higher order nonadiabatic part due to the small electron ion mass ratio,i.e.The equilibrium distributionfe0is defined by equation(4).The adiabatic partis defined as:

    where,

    ψ,θ,ζare, respectively, poloidal flux, poloidal angle, and toroidal angle in magnetic coordinates,andis the magnetic field line label.The Clebsch representation for the toroidal magnetic field isin which the magnetic flux perturbationδψis calculated by assumingEffective scalar potential is

    The nonadiabatic partδheis solved by using an electron weightwhich satisfies:

    The perturbed electron density is calculated by the continuity equation:

    where

    The electron pressure is defined as:

    and the electron parallel flow is calculated from the Ampere’s law:

    These electron equations are closed by the gyrokinetic Poisson’s equation, perpendicular Ampere’s law, and Ohm’s law forδφ,δB∣∣andδA∣∣, respectively,

    3.Simulation results

    In this section,we use the GTC model described in section 2 to simulate low frequency electromagnetic instabilities in the DIII-D tokamak shot #159243 att= 805 ms [17].GTC simulations use the same magnetic geometry and plasma profiles of DIII-D as those in a verification and validation benchmark of RSAE [16].The density and temperature profiles for the electrons,thermal ions,and fast ions are shown in figure 1(a).For simplicity, Maxwellian distribution function is assumed for both fast ions and thermal particles in this work (effects of slowing-down distribution function will be studied in the future work).This is a reversed shear discharge with the minimum safety factor of qmin=2.94at the poloidal flux functionψ = 0.24ψX(ψXis the poloidal flux function at the magnetic separatrix) as shown in figure 1(b).Some key plasma parameters are as follows:major radius R0=1.72 m,on axis electron temperature Te=1.69 keV,density ne=3.29 ×1019m-3,magnetic field B0=1.99 T,and total beta 0.9%.Atψ = 0.68ψX,the characteristic lengths of density and temperature gradients areandwithand the minor radiusris defined as the distance from magnetic axis on the outer mid-plane.The boundaries of the radial simulation domain areandfor the ITG simulations,andfor the RSAE simulations.The simulation time step size is1.24 × 105s?1.For linear simulations,we use 250 radial grid points, 1500 poloidal grid points, 32 parallel grid points, and 100 particles per cell each for electrons, thermal ions and fast ions.

    The fast ion density and temperature gradients have been shown [16] to drive an unstable RSAE near qmin.The strong temperature gradients of thermal ions and electrons are expected to excite the ITG instabilities.To study these instabilities,we have performed a series of linear simulations,each with a single toroidal mode numbern.We have found unstable toroidal modes forn>2.The branches of these modes can be identified by the frequencies and polarizations.The real frequencies and growth rates for these unstable modes are shown in figure 2(a).Forn= [3, 9], the instabilities are dominated by the RSAE driven by the fast ions.Forn≥10, the instabilities are dominated by the ITG excited by the thermal ions and electrons.A sub-dominant RSAE can also be identified forn= [10, 12], where the RSAE growth rates are smaller than the ITG growth rates.Both RSAE and ITG propagate in the ion diamagnetic direction (i.e.negative real frequencies).The RSAE real frequency increases with the toroidal mode numbernuntiln= 8, where it reaches a plateau.The RSAE real frequencies are much larger than the growth rates,indicating a resonant excitation by the fast ions.The most unstable RSAE withn= 4 (which corresponds to kθρf=0.51) has a growth rate ofγ4= 3.24 × 104s-1and real frequencyThe ITG growth rates are comparable to the real frequencies for all thenmodes,indicating mostly non-resonant instabilities due to the strong temperature gradients of the thermal ions and electrons.The most unstable ITG withn= 20 (which corresponds tohas a growth rate ofand real frequency104s-1, i.e.γ20~ ω20.The RSAE and ITG growth rates decrease for highernmodes due to the finite Larmor radius effects of the fast ions and thermal ions, respectively.

    Figure 1.Equilibrium plasma profiles of DIII-D shot#159243 at 805 ms.(a) Radial profiles of densities (dashed lines, normalized to the electron on axis value n0 = 3.29 × 1019 m?3)and temperatures(solid lines,normalized to the electron on-axis value Te0 = 1.69 keV)for the electron(red),thermal ion(blue),and fast ion(black).Fast ion density is multiplied by 10 and temperature divided by 10.(b) Radial profile of safety factor q with qmin = 2.94 at poloidal flux functionψ = 0.24 ψX .Data are taken from [16].

    Figure 2.Dispersion relation and polarization: toroidal mode number n dependence of (a) growth ratesγ (dashed lines) and frequencies f =ω /2π (solid lines)for RSAE(blue)and ITG(red), and(b)ratio of volume-averaged δ B‖ /δB ⊥ (blue solid line)and φe ff /δφ(red dashed line).Black cycles and black squares are, respectively, frequencies and growth rates from simulations without δB‖.

    Besides the fact that the RSAEs have much higher frequencies than the ITGs,they have different polarizations.The RSAE polarization is Alfvénic, where the inductive parallel electric fields are nearly canceled out by the electrostatic parallel electric fields, i.e.On the other hand, the ITG polarization is electrostatic, where the net parallel electric fields are dominated by the electrostatic components, i.e.φeff~δφ.The ratio of effective potential over electrostatic potentialis shown in figure 2(b).For toroidal modesn= [3, 9], the ratiowhich indicates that unstable RSAE is indeed Alfvénic.The ratioincreases for larger toroidal mode numbern.Forn> 12, the ratiowhich indicates that ITG instability is closer to electrostatic but with significant electromagnetic perturbations.

    The generation and effects of compressible magnetic perturbations have been studied.The ratio of perturbed parallel magnetic field over perturbed perpendicular magnetic fieldis shown in figure 2(b).For the ITG,15%, indicating that∣∣δBis not significantly generated by the ITG withβ= 0.9%.The ratioslightly increases for RSAE with smallernwithforn= 3 and 4,indicating that the effects of∣∣δBis more strongly generated by the RSAE.Overall, the effects of∣∣δBare not important for both RSAE and ITG since the growth rates only decrease less than 5% and the frequencies barely change when∣∣δBis removed in the simulation ofn= 4 andn= 20 modes, as shown in figure 2(a).We have also studied the effects of fast ions on the ITG and found that the growth rate and frequency of then= 20 ITG increase by less than 7%when the fast ions are not included in the simulations.

    We have also studied the effects of trapped electrons on the RSAE and found that then= 4 RSAE growth rate decreases by less than 1% when trapped electrons are not included in the simulations.On the other hand, GTC simulations find that the ITG mode in this DIII-D discharge becomes stable if electrons are adiabatic, i.e.when kinetic effects of trapped electrons are neglected.

    The eigenmode structures for toroidal mode numbersn= 4 andn= 10 are compared in figure 3.The perturbed electrostatic potentialδφand parallel vector potential‖δAfor then= 4 RSAE in figures 3(a)and(b)are localized near theqminflux surface with a narrow radial width.The RSAE structure is weakly ballooning and the radial symmetry is broken, i.e.forming triangular shapes due to the non-perturbative effects of fast ions [13, 15, 16, 41].The phase shift betweenδφand‖δAis close to /π2 as expected for the shear Alfvén wave.The structures of the perturbed electrostatic potentialδφand parallel vector potential‖δAfor then= 10 mode in figures 3(c) and (d) are much more complicated due to the co-existence of RSAE and ITG with similar growth rates.In addition to the RSAE mode still visible around the flux surface withqmin,the ITG modes appear in both positive shear (outer) and negative shear (inner) regions [42].The growth rates of these three modes are similar, however, the frequencies are quite different: the RSAE frequency is much larger than that of the ITG in the outer region(positive shear),as shown in figure 2(a).The ITG in the inner region(negative shear)has the smallest frequency,which is much smaller than the growth rate.Compared to then= 4 RSAE, the weakern= 10 RSAE has a stronger ballooning structure.The ITG modes are also strong ballooning.The phase shift betweenδφand‖δAis close to /π2 for both RSAE and ITG eigenmodes.These linear RSAE and ITG eigenmodes overlap weakly in the radial domain.In the future study, we will study the nonlinear interactions of these RSAE and ITG eigenmodes.The spatial overlap of these modes could be even stronger due to turbulence spreading in radial domain [43].

    Figure 3.Poloidal mode structures of(a)perturbed electrostatic potentialδφ and(b)parallel vector potential ‖δA of RSAE with n = 4,and(c)perturbed electrostatic potential and (d) parallel vector potential of ITG with n = 10.Red and yellow represent positive values, while blue and cyan represent negative values.

    4.Conclusions

    In summary,global GTC linear simulations using realistic DIIID tokamak geometry and plasma profiles with kinetic electrons,thermal ions, and fast ions find co-existence of unstable RSAE with low toroidal mode numbernand ITG instabilities with higher toroidal mode numbern.For intermediate toroidal modesn= [10, 12], RSAE and ITG eigenmodes overlap in the radial domain with similar growth rate but different real frequencies.The RSAE polarization is very close to ideal Alfvénic state,while the ITG polarization is closer to electrostatic but with significant magnetic perturbations.

    Our simulations represent the first gyrokinetic simulation for the effects of compressible magnetic perturbations∣∣δBon the RSAE.In the current GTC simulations using realistic DIII-D magnetic geometry and plasma profiles, both RSAE and ITG growth rates decrease less than 5% when∣∣δBis neglected in the simulations.The effects of trapped electrons on the RSAE are negligible.Furthermore, ITG growth rates increase less than 7% when fast ions are not included in the simulations.Finally,GTC simulations find that the ITG in this DIII-D discharge become stable if electrons are adiabatic,i.e.by neglecting kinetic effects of trapped electrons.

    The survey and understanding of the linear properties of these electromagnetic instabilities described in this paper provide a foundation for the next step of fully self-consistent gyrokinetic turbulence simulations treating both fast ions and thermal particles on the same footing to address the kinetic effects of thermal particles and the cross-scale coupling between microturbulence and mesoscale EP turbulence.

    Acknowledgments

    The authors would like to thank S Taimourzadeh and W W Heidbrink for providing the DIII-D equilibrium data (as published in [16]).We acknowledge technical support by the GTC team.This work was supported by the China National Magnetic Confinement Fusion Science Program (Grant No.2018YFE0304100), the US Department of Energy, Office of Science,Office of Advanced Scientific Computing Research and Office of Fusion Energy Sciences, and the Scientific Discovery through Advanced Computing(SciDAC)program under Award No.DE-SC0018270 (SciDAC ISEP Center), and the China Scholarship Council (Grant No.201806010067).This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (DOE Contract No.DEAC05-00OR22725)and the National Energy Research Scientific Computing Center(DOE Contract No.DE-AC02-05CH11231).

    猜你喜歡
    鵬飛
    樊應(yīng)舉
    漫畫(huà)
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    漫畫(huà)
    粗看“段”,細(xì)看“端”
    漫畫(huà)
    黄频高清免费视频| 91aial.com中文字幕在线观看| 日韩欧美一区视频在线观看| 国产成人aa在线观看| 哪个播放器可以免费观看大片| 久久久久国产精品人妻一区二区| 国产精品三级大全| 人人妻人人添人人爽欧美一区卜| 亚洲综合精品二区| 激情视频va一区二区三区| 晚上一个人看的免费电影| 亚洲av在线观看美女高潮| 波多野结衣av一区二区av| 两个人免费观看高清视频| 女人久久www免费人成看片| 亚洲第一av免费看| 亚洲中文av在线| 国产成人精品一,二区| 久久鲁丝午夜福利片| 免费观看av网站的网址| 久久这里只有精品19| 亚洲国产精品一区三区| 9热在线视频观看99| 熟妇人妻不卡中文字幕| 少妇的逼水好多| 国产免费现黄频在线看| 国产精品无大码| 一级毛片电影观看| 少妇熟女欧美另类| 久久精品aⅴ一区二区三区四区 | 丝袜人妻中文字幕| 91久久精品国产一区二区三区| 又黄又粗又硬又大视频| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看| 日韩制服骚丝袜av| 午夜老司机福利剧场| 纯流量卡能插随身wifi吗| 国产又爽黄色视频| 高清视频免费观看一区二区| av在线观看视频网站免费| 亚洲美女视频黄频| 国产男女内射视频| 亚洲国产精品成人久久小说| 一级a爱视频在线免费观看| 欧美精品av麻豆av| 成人国产av品久久久| 亚洲精品国产av成人精品| 亚洲国产精品成人久久小说| 伦理电影免费视频| 91精品三级在线观看| 国产精品一国产av| 欧美日韩精品网址| av网站在线播放免费| 国产熟女欧美一区二区| 精品国产超薄肉色丝袜足j| 亚洲精品日本国产第一区| 久久 成人 亚洲| 久久久精品国产亚洲av高清涩受| 午夜福利在线观看免费完整高清在| 男女午夜视频在线观看| 97精品久久久久久久久久精品| 少妇猛男粗大的猛烈进出视频| av一本久久久久| 五月伊人婷婷丁香| 亚洲精品一二三| 免费黄网站久久成人精品| 男人舔女人的私密视频| 欧美人与性动交α欧美软件| 晚上一个人看的免费电影| 18禁观看日本| 亚洲三区欧美一区| 国产精品免费视频内射| 国产亚洲一区二区精品| 中文字幕精品免费在线观看视频| 亚洲精品日本国产第一区| 国产精品免费视频内射| 精品一区二区三卡| 丰满少妇做爰视频| 日韩三级伦理在线观看| 欧美97在线视频| 久久久久久久国产电影| 香蕉精品网在线| 国产精品女同一区二区软件| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 日韩中文字幕欧美一区二区 | 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 久久久久久久久久人人人人人人| 久久久久人妻精品一区果冻| 90打野战视频偷拍视频| 国产一区二区激情短视频 | 欧美日韩视频高清一区二区三区二| 久久久精品国产亚洲av高清涩受| 国产极品天堂在线| 精品人妻在线不人妻| 黄网站色视频无遮挡免费观看| 亚洲精品一区蜜桃| av视频免费观看在线观看| 丝袜美足系列| 电影成人av| 成人毛片60女人毛片免费| 国产不卡av网站在线观看| 久久久久久免费高清国产稀缺| 国产人伦9x9x在线观看 | 精品国产一区二区三区四区第35| 免费黄色在线免费观看| 成人18禁高潮啪啪吃奶动态图| av片东京热男人的天堂| av.在线天堂| 免费大片黄手机在线观看| 久久久久久久久免费视频了| 制服丝袜香蕉在线| 久久精品熟女亚洲av麻豆精品| 人妻系列 视频| 人人妻人人澡人人看| 日韩欧美精品免费久久| av网站免费在线观看视频| 国产精品免费视频内射| 777久久人妻少妇嫩草av网站| 丰满乱子伦码专区| 亚洲,欧美精品.| 咕卡用的链子| a级毛片黄视频| 一本久久精品| 国产黄频视频在线观看| av电影中文网址| 91午夜精品亚洲一区二区三区| 国产欧美亚洲国产| 91国产中文字幕| 女人高潮潮喷娇喘18禁视频| 美女福利国产在线| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 爱豆传媒免费全集在线观看| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 中文字幕人妻丝袜一区二区 | av天堂久久9| 制服诱惑二区| 久久精品国产自在天天线| 亚洲精品,欧美精品| av网站免费在线观看视频| av视频免费观看在线观看| 国产成人一区二区在线| 国产免费现黄频在线看| 欧美精品人与动牲交sv欧美| 婷婷色麻豆天堂久久| a级毛片在线看网站| 国产精品国产三级专区第一集| 少妇被粗大猛烈的视频| 亚洲国产av影院在线观看| 日韩av不卡免费在线播放| 免费女性裸体啪啪无遮挡网站| 尾随美女入室| 欧美中文综合在线视频| 久久久久久伊人网av| 国产精品女同一区二区软件| 日本av手机在线免费观看| 久久久久久免费高清国产稀缺| 免费在线观看完整版高清| 日韩人妻精品一区2区三区| 少妇的丰满在线观看| 国产精品熟女久久久久浪| av不卡在线播放| 国产成人av激情在线播放| 最近2019中文字幕mv第一页| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产a三级三级三级| 另类精品久久| 最近2019中文字幕mv第一页| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 满18在线观看网站| 国产精品99久久99久久久不卡 | 美女高潮到喷水免费观看| 蜜桃在线观看..| 国产一级毛片在线| 亚洲av在线观看美女高潮| 欧美在线黄色| 韩国av在线不卡| 好男人视频免费观看在线| 制服人妻中文乱码| 一级片'在线观看视频| 久久99蜜桃精品久久| 午夜精品国产一区二区电影| 新久久久久国产一级毛片| 一级爰片在线观看| 9191精品国产免费久久| av在线播放精品| 日本av手机在线免费观看| 一级毛片 在线播放| 欧美精品国产亚洲| 久久97久久精品| 老司机影院成人| 人妻人人澡人人爽人人| 国产老妇伦熟女老妇高清| 欧美 日韩 精品 国产| 老熟女久久久| 国产淫语在线视频| 久久精品国产亚洲av涩爱| 久久久欧美国产精品| 亚洲精品一区蜜桃| 日本欧美视频一区| 国产一区二区三区av在线| a级毛片在线看网站| 欧美日韩视频精品一区| 久久av网站| 亚洲精品美女久久av网站| 大香蕉久久网| 亚洲精品美女久久久久99蜜臀 | 久久精品国产综合久久久| 亚洲精品日本国产第一区| 成人二区视频| 熟女电影av网| 99热国产这里只有精品6| 中国三级夫妇交换| 色婷婷久久久亚洲欧美| 日本vs欧美在线观看视频| 欧美精品一区二区免费开放| 久久99精品国语久久久| 久久ye,这里只有精品| 美女高潮到喷水免费观看| 亚洲一码二码三码区别大吗| av在线观看视频网站免费| 欧美最新免费一区二区三区| 精品亚洲成国产av| 久久久国产精品麻豆| 成年av动漫网址| 亚洲视频免费观看视频| 免费不卡的大黄色大毛片视频在线观看| 久久鲁丝午夜福利片| 国产男女超爽视频在线观看| 国产极品天堂在线| 亚洲精品乱久久久久久| 青青草视频在线视频观看| 久久久a久久爽久久v久久| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 91在线精品国自产拍蜜月| 欧美最新免费一区二区三区| 少妇人妻久久综合中文| 啦啦啦啦在线视频资源| 制服人妻中文乱码| 精品人妻在线不人妻| 国产在线一区二区三区精| 狠狠婷婷综合久久久久久88av| 最新中文字幕久久久久| 久久久久视频综合| 国产1区2区3区精品| 少妇人妻久久综合中文| 极品人妻少妇av视频| 在线精品无人区一区二区三| 亚洲精品久久成人aⅴ小说| 精品国产一区二区三区四区第35| 精品国产国语对白av| 午夜免费鲁丝| 香蕉精品网在线| 国产片内射在线| 美女主播在线视频| 国产精品国产三级国产专区5o| av不卡在线播放| 亚洲精品av麻豆狂野| 久久久久人妻精品一区果冻| 精品少妇久久久久久888优播| 有码 亚洲区| 汤姆久久久久久久影院中文字幕| 国产成人一区二区在线| 80岁老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂| 国产成人精品婷婷| 天堂俺去俺来也www色官网| 久久久久国产精品人妻一区二区| av国产精品久久久久影院| 亚洲一码二码三码区别大吗| 久久久久久久久久久久大奶| 男人添女人高潮全过程视频| 青春草视频在线免费观看| 夫妻性生交免费视频一级片| 99精国产麻豆久久婷婷| 午夜福利网站1000一区二区三区| 亚洲精品,欧美精品| 只有这里有精品99| 制服诱惑二区| 国产精品香港三级国产av潘金莲 | 午夜福利视频在线观看免费| 亚洲国产精品999| 最近最新中文字幕大全免费视频 | 国精品久久久久久国模美| 免费日韩欧美在线观看| 欧美日韩精品网址| tube8黄色片| www.av在线官网国产| 天天躁夜夜躁狠狠久久av| 七月丁香在线播放| 成人国产麻豆网| 啦啦啦在线观看免费高清www| 夫妻午夜视频| 精品国产乱码久久久久久男人| 欧美成人精品欧美一级黄| 少妇 在线观看| 国精品久久久久久国模美| 香蕉精品网在线| 国产成人欧美| 天天躁夜夜躁狠狠躁躁| 男女国产视频网站| 91精品伊人久久大香线蕉| 大片免费播放器 马上看| 亚洲婷婷狠狠爱综合网| 丰满少妇做爰视频| www日本在线高清视频| 麻豆乱淫一区二区| 久久精品久久久久久久性| 精品一区在线观看国产| 欧美精品一区二区免费开放| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 国产一级毛片在线| 国产片特级美女逼逼视频| 欧美av亚洲av综合av国产av | 尾随美女入室| 久久精品人人爽人人爽视色| a级毛片在线看网站| 精品国产乱码久久久久久男人| 美女大奶头黄色视频| 中文精品一卡2卡3卡4更新| 国产成人av激情在线播放| 秋霞伦理黄片| 欧美精品一区二区大全| 亚洲国产欧美在线一区| 热re99久久国产66热| 亚洲天堂av无毛| 在线观看国产h片| 日本爱情动作片www.在线观看| 亚洲五月色婷婷综合| 亚洲精品第二区| 1024香蕉在线观看| 成年女人在线观看亚洲视频| 不卡视频在线观看欧美| av在线观看视频网站免费| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 女人高潮潮喷娇喘18禁视频| 在线天堂最新版资源| av.在线天堂| 叶爱在线成人免费视频播放| 久久av网站| 在线观看免费日韩欧美大片| 精品视频人人做人人爽| 日韩一区二区三区影片| 中文字幕人妻丝袜一区二区 | 精品久久久久久电影网| 久久国产精品大桥未久av| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 亚洲av欧美aⅴ国产| 少妇人妻久久综合中文| 青青草视频在线视频观看| 欧美成人午夜精品| 老司机影院成人| 日韩不卡一区二区三区视频在线| av网站在线播放免费| 一级毛片我不卡| 午夜福利视频精品| 久久久久久久精品精品| 在现免费观看毛片| 蜜桃国产av成人99| 日韩视频在线欧美| 国产免费福利视频在线观看| 国产精品三级大全| 欧美人与性动交α欧美软件| 晚上一个人看的免费电影| 伦精品一区二区三区| av免费观看日本| 亚洲美女黄色视频免费看| 成人毛片60女人毛片免费| 日韩一本色道免费dvd| 少妇人妻 视频| 国产精品女同一区二区软件| 五月天丁香电影| 久久久精品国产亚洲av高清涩受| 菩萨蛮人人尽说江南好唐韦庄| 久久韩国三级中文字幕| 性色avwww在线观看| 亚洲精品国产一区二区精华液| videossex国产| 久久人人97超碰香蕉20202| 免费观看无遮挡的男女| 99热全是精品| 欧美av亚洲av综合av国产av | 午夜福利影视在线免费观看| 久久精品夜色国产| 老女人水多毛片| 国产野战对白在线观看| 日韩制服丝袜自拍偷拍| 香蕉丝袜av| 国产亚洲午夜精品一区二区久久| 亚洲成人一二三区av| 欧美黄色片欧美黄色片| 如日韩欧美国产精品一区二区三区| 大码成人一级视频| 日韩 亚洲 欧美在线| 在线精品无人区一区二区三| 日韩精品有码人妻一区| 久久热在线av| 欧美成人精品欧美一级黄| 久久久国产精品麻豆| 大片电影免费在线观看免费| 久久久久久免费高清国产稀缺| 大话2 男鬼变身卡| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 国产黄频视频在线观看| a 毛片基地| 欧美激情 高清一区二区三区| 亚洲综合精品二区| 国产精品一区二区在线不卡| 国产日韩欧美视频二区| 伊人久久大香线蕉亚洲五| 人妻一区二区av| 天天影视国产精品| 久久精品国产亚洲av高清一级| 日韩,欧美,国产一区二区三区| 自线自在国产av| 91久久精品国产一区二区三区| 在线观看免费日韩欧美大片| 亚洲熟女精品中文字幕| 欧美bdsm另类| 女性生殖器流出的白浆| 在线观看免费日韩欧美大片| 日本wwww免费看| 校园人妻丝袜中文字幕| 久久97久久精品| 天天操日日干夜夜撸| 不卡视频在线观看欧美| 国产精品国产av在线观看| 免费看av在线观看网站| 日韩视频在线欧美| 精品国产露脸久久av麻豆| 如日韩欧美国产精品一区二区三区| 久久久久久久精品精品| 精品少妇一区二区三区视频日本电影 | 国产国语露脸激情在线看| 亚洲成av片中文字幕在线观看 | 一区福利在线观看| 久久久久久久久久久久大奶| 亚洲精品国产色婷婷电影| 热re99久久国产66热| 自线自在国产av| 国产有黄有色有爽视频| 国产精品 欧美亚洲| 国产乱人偷精品视频| 视频在线观看一区二区三区| 欧美日韩av久久| 久久久精品免费免费高清| 亚洲欧美一区二区三区国产| 免费黄色在线免费观看| 午夜精品国产一区二区电影| 日韩,欧美,国产一区二区三区| 亚洲熟女精品中文字幕| 国产日韩一区二区三区精品不卡| 最近手机中文字幕大全| 波多野结衣av一区二区av| 永久网站在线| 亚洲一级一片aⅴ在线观看| av国产精品久久久久影院| 亚洲三区欧美一区| 国产片特级美女逼逼视频| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区久久| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕大全免费视频 | 精品少妇内射三级| 999精品在线视频| 欧美日韩综合久久久久久| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 久久影院123| 99久久综合免费| 国产精品免费视频内射| 91成人精品电影| 亚洲一级一片aⅴ在线观看| 日日爽夜夜爽网站| 免费观看性生交大片5| 蜜桃国产av成人99| 99久久人妻综合| 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 午夜福利视频精品| 三上悠亚av全集在线观看| 人人妻人人添人人爽欧美一区卜| 一级毛片黄色毛片免费观看视频| 中文字幕色久视频| 国产精品久久久久久精品电影小说| 亚洲第一av免费看| 熟女电影av网| 搡女人真爽免费视频火全软件| 亚洲国产欧美网| 男女啪啪激烈高潮av片| 欧美黄色片欧美黄色片| 日本av免费视频播放| 一本大道久久a久久精品| 亚洲三区欧美一区| 青春草视频在线免费观看| 91午夜精品亚洲一区二区三区| 一级毛片电影观看| 久久久久精品久久久久真实原创| 高清av免费在线| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 久久久久国产网址| 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 日韩在线高清观看一区二区三区| 久久亚洲国产成人精品v| 国产熟女午夜一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久久国产欧美日韩av| 一级黄片播放器| 人妻系列 视频| av不卡在线播放| 国产成人精品一,二区| 伊人亚洲综合成人网| 91精品国产国语对白视频| 18禁国产床啪视频网站| 少妇的逼水好多| 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 免费人妻精品一区二区三区视频| 国产综合精华液| 国产一区二区三区综合在线观看| 欧美日韩视频高清一区二区三区二| 捣出白浆h1v1| 免费观看性生交大片5| 九草在线视频观看| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 亚洲少妇的诱惑av| 一级片免费观看大全| 久久久久久久久免费视频了| 999久久久国产精品视频| 永久免费av网站大全| 成人影院久久| 在线观看www视频免费| 免费高清在线观看日韩| 欧美日韩视频精品一区| 精品国产一区二区三区久久久樱花| 2022亚洲国产成人精品| 色播在线永久视频| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站 | 久久 成人 亚洲| 欧美97在线视频| 中文欧美无线码| 男女边吃奶边做爰视频| 香蕉精品网在线| 亚洲av欧美aⅴ国产| 热re99久久国产66热| kizo精华| 桃花免费在线播放| 最近手机中文字幕大全| 欧美+日韩+精品| 少妇人妻 视频| 欧美成人午夜精品| 久久精品国产亚洲av涩爱| 大片电影免费在线观看免费| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 亚洲熟女精品中文字幕| 久久久久精品性色| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 日韩 精品 国产| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 中文天堂在线官网| 美女福利国产在线| 免费看不卡的av| 少妇的丰满在线观看| 如何舔出高潮| 日韩一本色道免费dvd| 久久午夜福利片| 80岁老熟妇乱子伦牲交| 99久久精品国产国产毛片| 在线观看www视频免费| 亚洲三级黄色毛片| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 一个人免费看片子| 国产熟女午夜一区二区三区| 久久人人爽av亚洲精品天堂| 如何舔出高潮| 亚洲成人av在线免费| 亚洲精品aⅴ在线观看| 国产片特级美女逼逼视频| 天天躁夜夜躁狠狠久久av| 国产精品一二三区在线看| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 欧美 日韩 精品 国产| 制服丝袜香蕉在线| 欧美日韩视频高清一区二区三区二| 国产无遮挡羞羞视频在线观看| 久久 成人 亚洲| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 一区二区三区四区激情视频| 久久国产精品大桥未久av|