• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear gyrokinetic simulations of reversed shear Alfvén eigenmodes and ion temperature gradient modes in DIII-D tokamak

    2021-03-01 08:09:42HongyuWANG王虹宇PengfeiLIU劉鵬飛ZhihongLIN林志宏andWenluZHANG張文祿
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:鵬飛

    Hongyu WANG(王虹宇),Pengfei LIU(劉鵬飛),Zhihong LIN(林志宏) and Wenlu ZHANG (張文祿)

    1 Fusion Simulation Center, Peking University, Beijing 100871, People’s Republic of China

    2 Department of Physics and Astronomy, University of California, Irvine, CA 92697, United States of America

    3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

    Abstract Global linear gyrokinetic simulations using realistic DIII-D tokamak geometry and plasma profiles find co-existence of unstable reversed shear Alfvén eigenmodes (RSAE) with low toroidal mode number n and electromagnetic ion temperature gradient (ITG) instabilities with higher toroidal mode number n.For intermediate n = [10, 12], RSAE and ITG co-exist and overlap weakly in the radial domain with similar growth rates but different real frequencies.Both RSAE and ITG growth rates decrease less than 5% when compressible magnetic perturbations are neglected in the simulations.The ITG growth rates increase less than 7%when fast ions are not included in the simulations.Finally, the effects of trapped electrons on the RSAE are negligible.

    Keywords:fast ions,gyrokinetic simulation,reversed shear Alfvén eigenmodes,microturbulence

    1.Introduction

    Energetic particle(EP)confinement is a key physical issue for burning plasma experiment in ITER[1,2]since ignition relies on self-heating by energetic fusion products[3],i.e.α-particles.The EP population in current tokamaks can be produced by auxiliary heating such as neutral beam injection [4] and radio frequency heating[5].EP pressure gradients can readily excite mesoscale EP instabilities such as the Alfvén eigenmodes(AE)[6], which can drive large EP transport, degrade overall plasmas confinement, and threaten the machines’ integrity [7].Because EP constitutes a significant fraction of the plasma energy density, EP could influence thermal particle dynamics including the microturbulence [8, 9] responsible for turbulent transport of thermal particles and the macroscopic magnetohydrodynamic (MHD) modes potentially leading to disastrous disruptions [10].In return, microturbulence and MHD modes can affect EP confinement [11, 12].

    Thanks to recent progress in developing comprehensive EP simulation codes and understanding basic EP physics,gyrokinetic turbulence simulation has been successfully established as a necessary paradigm shift for studying EP confinement [13-16].Integrated simulation incorporating multiple physical processes and disparate temporal-spatial scales becomes available now to address new challenges in the EP physics such as the coupling of EP-driven AE turbulence with thermal particles-driven microturbulence and macroscopic MHD modes.The fully self-consistent gyrokinetic turbulence simulation needs to treat both EP and thermal particles on the same footing to address the kinetic effects of thermal particles and the cross-scale couplings between microturbulence, EP turbulence, and MHD modes.

    Toward such an integrated simulation of EP coupling with thermal particles, we have initiated comprehensive simulations of turbulent transport by low frequency electromagnetic instabilities (including AE and microturbulence) in a reversed shear geometry of DIII-D tokamak with fast ions[17]by using the gyrokinetic toroidal code(GTC)[18].GTC has been extensively verified and validated for global simulations of AE [13-16, 19] and microturbulence [11, 18,20-22].As the first step in the integrated simulations of EP,we study the linear properties of these electromagnetic instabilities, which could provide a foundation for the next step of nonlinear simulations of multiple physical processes.

    In this paper, linear global GTC simulations using realistic DIII-D magnetic geometry and plasma profiles with kinetic electrons, thermal ions and fast ions find co-existence of unstable reversed shear Alfvén eigenmodes (RSAE) with low toroidal mode number <n10 and ion temperature gradient (ITG) instabilities with higher toroidal mode numbern>12.For intermediate toroidal modesn=[10,12],RSAE and ITG eigenmodes overlap weakly in the radial domain with similar growth rates but different real frequencies.The RSAE polarization is very close to ideal Alfvénic state,while the ITG polarization is closer to electrostatic but with significant magnetic perturbations.

    Our simulations represent the first gyrokinetic study for the effects of compressible magnetic perturbations δB||on the RSAE in this DIII-D experiment.GTC simulations with δB||have been verified for ITG, collisionless trapped electron mode, and kinetic ballooning mode [23, 24].Although many gyrokinetic codes have the capability for including δB||in the simulations of microturbulence, most of gyrokinetic simulations of RSAE neglect δB||[9, 13, 16, 25-27].On the other hand,most of hybrid MHD-gyrokinetic codes do not separate parallel and perpendicular magnetic perturbations [13, 16,28-30].Therefore, the effects of δB||on RSAE are not well understood.The δB||can be important for low frequency instabilities since it cancels out the stabilizing ‘drift-reversal’effects of the guiding center ?Bdrifts associated with the perpendicular diamagnetic current in finite-β plasmas [31].Gyrokinetic flux-tube simulations using GS2 code [32] for ITG in a simples-α geometry find that the ITG growth rate decreases by a factor of 3 when δB||is neglected in the simulations.However, global GTC simulations using similar geometry and plasma β find that the ITG growth rate decreases less than 5% when δB||is neglected in the simulations [24].In the current GTC simulations using realistic DIII-D magnetic geometry and plasma profiles, both RSAE and ITG growth rates decrease less than 5% when δB||is neglected in the simulations.Furthermore, GTC simulations find that the effects of trapped electrons on the RSAE are negligible.

    Our simulations also clarify the effects of fast ions on the ITG in this DIII-D experiment.It is well-known that the adiabatic responses of electrons and fast ions can have stabilizing effects on the ITG due to the finite-β stabilization[33]and that fast ion drift-bounce and precessional resonances[6,34,35]can stabilize or destabilize low frequency drift-Alfvén instabilities,depending on specific plasma parameters.In the current GTC simulations using realistic DIII-D magnetic geometry and plasma profiles,the ITG growth rate increases less than 7% when fast ions are not included in the simulations.Finally, GTC simulations find that the ITG eigenmodes become stable if electrons are assumed to be adiabatic, i.e.by neglecting kinetic effects of trapped electrons.

    The rest of the paper is organized as follows.In section 2,GTC electromagnetic simulation model with compressible magnetic perturbations δB||is described.The simulation results are discussed in section 3.The conclusions are provided in section 4.

    2.Gyrokinetic electromagnetic simulation model

    By means of parallel symplectic gyrocenter model [36], the nonlinear gyrokinetic equation used in GTC to study low frequency mode could be written as [24, 37],

    In order to reduce the particle noise in simulations,δf-method [38] is used for thermal ions and fast ions, by decomposing the distribution functionαfof species α into an equilibrium partαf0and a perturbed partδαf, i.e.The equilibrium part is defined by:

    The perturbed part is solved by using a particle weight variablewhich satisfies:

    Particle densityαnand parallel velocity‖αuare moments of distribution functions in velocity space:

    where

    The electron dynamics is described by the fluid-kinetic hybrid model[37],which separates the electron response into a dominant adiabatic part and a higher order nonadiabatic part due to the small electron ion mass ratio,i.e.The equilibrium distributionfe0is defined by equation(4).The adiabatic partis defined as:

    where,

    ψ,θ,ζare, respectively, poloidal flux, poloidal angle, and toroidal angle in magnetic coordinates,andis the magnetic field line label.The Clebsch representation for the toroidal magnetic field isin which the magnetic flux perturbationδψis calculated by assumingEffective scalar potential is

    The nonadiabatic partδheis solved by using an electron weightwhich satisfies:

    The perturbed electron density is calculated by the continuity equation:

    where

    The electron pressure is defined as:

    and the electron parallel flow is calculated from the Ampere’s law:

    These electron equations are closed by the gyrokinetic Poisson’s equation, perpendicular Ampere’s law, and Ohm’s law forδφ,δB∣∣andδA∣∣, respectively,

    3.Simulation results

    In this section,we use the GTC model described in section 2 to simulate low frequency electromagnetic instabilities in the DIII-D tokamak shot #159243 att= 805 ms [17].GTC simulations use the same magnetic geometry and plasma profiles of DIII-D as those in a verification and validation benchmark of RSAE [16].The density and temperature profiles for the electrons,thermal ions,and fast ions are shown in figure 1(a).For simplicity, Maxwellian distribution function is assumed for both fast ions and thermal particles in this work (effects of slowing-down distribution function will be studied in the future work).This is a reversed shear discharge with the minimum safety factor of qmin=2.94at the poloidal flux functionψ = 0.24ψX(ψXis the poloidal flux function at the magnetic separatrix) as shown in figure 1(b).Some key plasma parameters are as follows:major radius R0=1.72 m,on axis electron temperature Te=1.69 keV,density ne=3.29 ×1019m-3,magnetic field B0=1.99 T,and total beta 0.9%.Atψ = 0.68ψX,the characteristic lengths of density and temperature gradients areandwithand the minor radiusris defined as the distance from magnetic axis on the outer mid-plane.The boundaries of the radial simulation domain areandfor the ITG simulations,andfor the RSAE simulations.The simulation time step size is1.24 × 105s?1.For linear simulations,we use 250 radial grid points, 1500 poloidal grid points, 32 parallel grid points, and 100 particles per cell each for electrons, thermal ions and fast ions.

    The fast ion density and temperature gradients have been shown [16] to drive an unstable RSAE near qmin.The strong temperature gradients of thermal ions and electrons are expected to excite the ITG instabilities.To study these instabilities,we have performed a series of linear simulations,each with a single toroidal mode numbern.We have found unstable toroidal modes forn>2.The branches of these modes can be identified by the frequencies and polarizations.The real frequencies and growth rates for these unstable modes are shown in figure 2(a).Forn= [3, 9], the instabilities are dominated by the RSAE driven by the fast ions.Forn≥10, the instabilities are dominated by the ITG excited by the thermal ions and electrons.A sub-dominant RSAE can also be identified forn= [10, 12], where the RSAE growth rates are smaller than the ITG growth rates.Both RSAE and ITG propagate in the ion diamagnetic direction (i.e.negative real frequencies).The RSAE real frequency increases with the toroidal mode numbernuntiln= 8, where it reaches a plateau.The RSAE real frequencies are much larger than the growth rates,indicating a resonant excitation by the fast ions.The most unstable RSAE withn= 4 (which corresponds to kθρf=0.51) has a growth rate ofγ4= 3.24 × 104s-1and real frequencyThe ITG growth rates are comparable to the real frequencies for all thenmodes,indicating mostly non-resonant instabilities due to the strong temperature gradients of the thermal ions and electrons.The most unstable ITG withn= 20 (which corresponds tohas a growth rate ofand real frequency104s-1, i.e.γ20~ ω20.The RSAE and ITG growth rates decrease for highernmodes due to the finite Larmor radius effects of the fast ions and thermal ions, respectively.

    Figure 1.Equilibrium plasma profiles of DIII-D shot#159243 at 805 ms.(a) Radial profiles of densities (dashed lines, normalized to the electron on axis value n0 = 3.29 × 1019 m?3)and temperatures(solid lines,normalized to the electron on-axis value Te0 = 1.69 keV)for the electron(red),thermal ion(blue),and fast ion(black).Fast ion density is multiplied by 10 and temperature divided by 10.(b) Radial profile of safety factor q with qmin = 2.94 at poloidal flux functionψ = 0.24 ψX .Data are taken from [16].

    Figure 2.Dispersion relation and polarization: toroidal mode number n dependence of (a) growth ratesγ (dashed lines) and frequencies f =ω /2π (solid lines)for RSAE(blue)and ITG(red), and(b)ratio of volume-averaged δ B‖ /δB ⊥ (blue solid line)and φe ff /δφ(red dashed line).Black cycles and black squares are, respectively, frequencies and growth rates from simulations without δB‖.

    Besides the fact that the RSAEs have much higher frequencies than the ITGs,they have different polarizations.The RSAE polarization is Alfvénic, where the inductive parallel electric fields are nearly canceled out by the electrostatic parallel electric fields, i.e.On the other hand, the ITG polarization is electrostatic, where the net parallel electric fields are dominated by the electrostatic components, i.e.φeff~δφ.The ratio of effective potential over electrostatic potentialis shown in figure 2(b).For toroidal modesn= [3, 9], the ratiowhich indicates that unstable RSAE is indeed Alfvénic.The ratioincreases for larger toroidal mode numbern.Forn> 12, the ratiowhich indicates that ITG instability is closer to electrostatic but with significant electromagnetic perturbations.

    The generation and effects of compressible magnetic perturbations have been studied.The ratio of perturbed parallel magnetic field over perturbed perpendicular magnetic fieldis shown in figure 2(b).For the ITG,15%, indicating that∣∣δBis not significantly generated by the ITG withβ= 0.9%.The ratioslightly increases for RSAE with smallernwithforn= 3 and 4,indicating that the effects of∣∣δBis more strongly generated by the RSAE.Overall, the effects of∣∣δBare not important for both RSAE and ITG since the growth rates only decrease less than 5% and the frequencies barely change when∣∣δBis removed in the simulation ofn= 4 andn= 20 modes, as shown in figure 2(a).We have also studied the effects of fast ions on the ITG and found that the growth rate and frequency of then= 20 ITG increase by less than 7%when the fast ions are not included in the simulations.

    We have also studied the effects of trapped electrons on the RSAE and found that then= 4 RSAE growth rate decreases by less than 1% when trapped electrons are not included in the simulations.On the other hand, GTC simulations find that the ITG mode in this DIII-D discharge becomes stable if electrons are adiabatic, i.e.when kinetic effects of trapped electrons are neglected.

    The eigenmode structures for toroidal mode numbersn= 4 andn= 10 are compared in figure 3.The perturbed electrostatic potentialδφand parallel vector potential‖δAfor then= 4 RSAE in figures 3(a)and(b)are localized near theqminflux surface with a narrow radial width.The RSAE structure is weakly ballooning and the radial symmetry is broken, i.e.forming triangular shapes due to the non-perturbative effects of fast ions [13, 15, 16, 41].The phase shift betweenδφand‖δAis close to /π2 as expected for the shear Alfvén wave.The structures of the perturbed electrostatic potentialδφand parallel vector potential‖δAfor then= 10 mode in figures 3(c) and (d) are much more complicated due to the co-existence of RSAE and ITG with similar growth rates.In addition to the RSAE mode still visible around the flux surface withqmin,the ITG modes appear in both positive shear (outer) and negative shear (inner) regions [42].The growth rates of these three modes are similar, however, the frequencies are quite different: the RSAE frequency is much larger than that of the ITG in the outer region(positive shear),as shown in figure 2(a).The ITG in the inner region(negative shear)has the smallest frequency,which is much smaller than the growth rate.Compared to then= 4 RSAE, the weakern= 10 RSAE has a stronger ballooning structure.The ITG modes are also strong ballooning.The phase shift betweenδφand‖δAis close to /π2 for both RSAE and ITG eigenmodes.These linear RSAE and ITG eigenmodes overlap weakly in the radial domain.In the future study, we will study the nonlinear interactions of these RSAE and ITG eigenmodes.The spatial overlap of these modes could be even stronger due to turbulence spreading in radial domain [43].

    Figure 3.Poloidal mode structures of(a)perturbed electrostatic potentialδφ and(b)parallel vector potential ‖δA of RSAE with n = 4,and(c)perturbed electrostatic potential and (d) parallel vector potential of ITG with n = 10.Red and yellow represent positive values, while blue and cyan represent negative values.

    4.Conclusions

    In summary,global GTC linear simulations using realistic DIIID tokamak geometry and plasma profiles with kinetic electrons,thermal ions, and fast ions find co-existence of unstable RSAE with low toroidal mode numbernand ITG instabilities with higher toroidal mode numbern.For intermediate toroidal modesn= [10, 12], RSAE and ITG eigenmodes overlap in the radial domain with similar growth rate but different real frequencies.The RSAE polarization is very close to ideal Alfvénic state,while the ITG polarization is closer to electrostatic but with significant magnetic perturbations.

    Our simulations represent the first gyrokinetic simulation for the effects of compressible magnetic perturbations∣∣δBon the RSAE.In the current GTC simulations using realistic DIII-D magnetic geometry and plasma profiles, both RSAE and ITG growth rates decrease less than 5% when∣∣δBis neglected in the simulations.The effects of trapped electrons on the RSAE are negligible.Furthermore, ITG growth rates increase less than 7% when fast ions are not included in the simulations.Finally,GTC simulations find that the ITG in this DIII-D discharge become stable if electrons are adiabatic,i.e.by neglecting kinetic effects of trapped electrons.

    The survey and understanding of the linear properties of these electromagnetic instabilities described in this paper provide a foundation for the next step of fully self-consistent gyrokinetic turbulence simulations treating both fast ions and thermal particles on the same footing to address the kinetic effects of thermal particles and the cross-scale coupling between microturbulence and mesoscale EP turbulence.

    Acknowledgments

    The authors would like to thank S Taimourzadeh and W W Heidbrink for providing the DIII-D equilibrium data (as published in [16]).We acknowledge technical support by the GTC team.This work was supported by the China National Magnetic Confinement Fusion Science Program (Grant No.2018YFE0304100), the US Department of Energy, Office of Science,Office of Advanced Scientific Computing Research and Office of Fusion Energy Sciences, and the Scientific Discovery through Advanced Computing(SciDAC)program under Award No.DE-SC0018270 (SciDAC ISEP Center), and the China Scholarship Council (Grant No.201806010067).This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (DOE Contract No.DEAC05-00OR22725)and the National Energy Research Scientific Computing Center(DOE Contract No.DE-AC02-05CH11231).

    猜你喜歡
    鵬飛
    樊應(yīng)舉
    漫畫(huà)
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    漫畫(huà)
    粗看“段”,細(xì)看“端”
    漫畫(huà)
    亚洲成人一二三区av| 久久久国产一区二区| 19禁男女啪啪无遮挡网站| 一级毛片我不卡| 日韩大片免费观看网站| 你懂的网址亚洲精品在线观看| 精品亚洲成a人片在线观看| 一级毛片我不卡| 亚洲欧洲日产国产| 欧美亚洲 丝袜 人妻 在线| 欧美黑人精品巨大| 亚洲精品中文字幕在线视频| 久久国产亚洲av麻豆专区| 香蕉国产在线看| 电影成人av| 国产精品av久久久久免费| 成人午夜精彩视频在线观看| 亚洲国产毛片av蜜桃av| 免费看av在线观看网站| 国产免费一区二区三区四区乱码| 男女边摸边吃奶| 国产高清不卡午夜福利| 国产一卡二卡三卡精品 | 亚洲国产成人一精品久久久| 女性被躁到高潮视频| 国产精品熟女久久久久浪| 两个人看的免费小视频| 午夜免费鲁丝| 亚洲 欧美一区二区三区| 高清av免费在线| 最新在线观看一区二区三区 | 亚洲精品aⅴ在线观看| 亚洲一码二码三码区别大吗| 欧美变态另类bdsm刘玥| 我要看黄色一级片免费的| 亚洲国产欧美网| av电影中文网址| 男人爽女人下面视频在线观看| 国产 精品1| 妹子高潮喷水视频| 韩国精品一区二区三区| 美女中出高潮动态图| 久久久国产精品麻豆| 欧美日韩视频精品一区| av国产精品久久久久影院| 日韩中文字幕欧美一区二区 | 电影成人av| 一级片'在线观看视频| av卡一久久| 最近2019中文字幕mv第一页| 热99久久久久精品小说推荐| 大香蕉久久成人网| 精品少妇久久久久久888优播| 一级a爱视频在线免费观看| 搡老岳熟女国产| 在线天堂中文资源库| 人成视频在线观看免费观看| 夫妻午夜视频| 一边摸一边做爽爽视频免费| 亚洲欧美成人精品一区二区| 亚洲av中文av极速乱| 熟女少妇亚洲综合色aaa.| 精品久久久精品久久久| 女人高潮潮喷娇喘18禁视频| 国产熟女欧美一区二区| 亚洲av福利一区| 亚洲欧美清纯卡通| 国产野战对白在线观看| 伊人亚洲综合成人网| 色综合欧美亚洲国产小说| 亚洲国产欧美网| 日韩制服丝袜自拍偷拍| 叶爱在线成人免费视频播放| 爱豆传媒免费全集在线观看| 国产 精品1| 秋霞伦理黄片| 交换朋友夫妻互换小说| 国产精品免费大片| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 国产极品粉嫩免费观看在线| 亚洲国产最新在线播放| 男人添女人高潮全过程视频| 亚洲精品视频女| 国产精品欧美亚洲77777| 五月天丁香电影| 三上悠亚av全集在线观看| 捣出白浆h1v1| 国产麻豆69| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 国产淫语在线视频| 一级,二级,三级黄色视频| 一级片'在线观看视频| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| 91国产中文字幕| 精品少妇久久久久久888优播| 国产精品久久久久久久久免| 亚洲成人av在线免费| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 国产淫语在线视频| 中文欧美无线码| 天美传媒精品一区二区| 丁香六月天网| 国产福利在线免费观看视频| 精品第一国产精品| 乱人伦中国视频| 国产熟女欧美一区二区| 国产人伦9x9x在线观看| 国产精品一二三区在线看| 一本一本久久a久久精品综合妖精| 欧美精品一区二区免费开放| 国产免费一区二区三区四区乱码| 午夜福利乱码中文字幕| 在线观看免费午夜福利视频| 高清欧美精品videossex| 欧美在线黄色| 大香蕉久久成人网| 亚洲国产最新在线播放| 美女午夜性视频免费| 人成视频在线观看免费观看| 欧美久久黑人一区二区| 男女午夜视频在线观看| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 99久久人妻综合| 欧美日韩亚洲综合一区二区三区_| 各种免费的搞黄视频| 亚洲精品日本国产第一区| 久久婷婷青草| 国产精品一国产av| 亚洲精品国产av成人精品| 国产xxxxx性猛交| 婷婷色麻豆天堂久久| 91老司机精品| av在线app专区| 在线看a的网站| 中国国产av一级| 丝袜在线中文字幕| 永久免费av网站大全| 男女国产视频网站| 纯流量卡能插随身wifi吗| 老司机影院毛片| 国产一区亚洲一区在线观看| 99热全是精品| 色94色欧美一区二区| 成人手机av| 香蕉丝袜av| 国产成人精品久久久久久| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 波野结衣二区三区在线| 亚洲av男天堂| 亚洲熟女毛片儿| 精品人妻熟女毛片av久久网站| 国产精品久久久久久人妻精品电影 | 亚洲五月色婷婷综合| 国产精品三级大全| 看免费成人av毛片| avwww免费| 国产午夜精品一二区理论片| 久久久国产精品麻豆| 日韩av在线免费看完整版不卡| 美女大奶头黄色视频| 欧美精品人与动牲交sv欧美| 国产成人精品久久二区二区91 | 岛国毛片在线播放| 人妻 亚洲 视频| 成年动漫av网址| 国产精品二区激情视频| av.在线天堂| av片东京热男人的天堂| 狂野欧美激情性xxxx| 亚洲综合色网址| 成人三级做爰电影| 精品一区二区三区四区五区乱码 | 欧美久久黑人一区二区| av卡一久久| 亚洲精品国产av成人精品| 亚洲精品在线美女| 久久久精品区二区三区| 久久人人爽人人片av| 18禁动态无遮挡网站| 亚洲国产毛片av蜜桃av| 午夜福利乱码中文字幕| 1024香蕉在线观看| 19禁男女啪啪无遮挡网站| 国产一区二区激情短视频 | av有码第一页| 国产野战对白在线观看| 亚洲少妇的诱惑av| 国产精品国产三级国产专区5o| 亚洲三区欧美一区| 超碰成人久久| 亚洲四区av| 亚洲婷婷狠狠爱综合网| 日日摸夜夜添夜夜爱| 一级黄片播放器| 18禁动态无遮挡网站| 性色av一级| 性色av一级| 老汉色∧v一级毛片| 三上悠亚av全集在线观看| 欧美成人精品欧美一级黄| 新久久久久国产一级毛片| 午夜影院在线不卡| 丁香六月天网| 亚洲欧美色中文字幕在线| 国产淫语在线视频| 日韩视频在线欧美| 十八禁高潮呻吟视频| 久久久国产欧美日韩av| 国产av码专区亚洲av| 精品国产乱码久久久久久男人| 人成视频在线观看免费观看| 国产精品亚洲av一区麻豆 | xxx大片免费视频| 国产激情久久老熟女| 观看美女的网站| 亚洲综合色网址| 亚洲欧洲国产日韩| √禁漫天堂资源中文www| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区久久| 日韩免费高清中文字幕av| 韩国av在线不卡| 亚洲国产精品国产精品| 赤兔流量卡办理| 亚洲精品美女久久av网站| 久久精品国产亚洲av高清一级| 亚洲成色77777| 在线观看免费日韩欧美大片| 亚洲,一卡二卡三卡| 老司机靠b影院| 高清视频免费观看一区二区| av免费观看日本| 久久久久人妻精品一区果冻| 在线免费观看不下载黄p国产| 尾随美女入室| 少妇人妻 视频| 精品国产国语对白av| 在线亚洲精品国产二区图片欧美| 十八禁网站网址无遮挡| 久久性视频一级片| 精品一区二区三区av网在线观看 | 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| 日本vs欧美在线观看视频| 国产免费一区二区三区四区乱码| 免费观看人在逋| 国产精品一国产av| 日本av手机在线免费观看| av女优亚洲男人天堂| 新久久久久国产一级毛片| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久久性| 国产一区二区激情短视频 | 一本久久精品| 免费少妇av软件| 视频区图区小说| 久久青草综合色| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 性少妇av在线| 女人爽到高潮嗷嗷叫在线视频| 一本一本久久a久久精品综合妖精| 成人手机av| 一区二区三区四区激情视频| 一个人免费看片子| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 午夜免费观看性视频| 国产精品久久久久久人妻精品电影 | 制服人妻中文乱码| 国产爽快片一区二区三区| 国产免费现黄频在线看| 精品一区二区三区av网在线观看 | 亚洲欧洲日产国产| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| 国产国语露脸激情在线看| 一本大道久久a久久精品| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| 国产深夜福利视频在线观看| 捣出白浆h1v1| 色吧在线观看| 欧美人与性动交α欧美精品济南到| 宅男免费午夜| 国产精品国产av在线观看| 亚洲,欧美,日韩| 国产探花极品一区二区| 高清黄色对白视频在线免费看| 色网站视频免费| 大香蕉久久成人网| 国产视频首页在线观看| 妹子高潮喷水视频| 午夜激情av网站| 久久久久久久大尺度免费视频| 久久人人97超碰香蕉20202| 在线观看一区二区三区激情| 精品人妻熟女毛片av久久网站| 成人国产麻豆网| 国语对白做爰xxxⅹ性视频网站| 搡老岳熟女国产| 欧美日韩成人在线一区二区| 欧美日韩视频高清一区二区三区二| 亚洲欧美激情在线| 深夜精品福利| 操出白浆在线播放| 成年人午夜在线观看视频| 另类亚洲欧美激情| 色婷婷av一区二区三区视频| 超碰成人久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产一区二区精华液| 国产亚洲av高清不卡| 精品人妻熟女毛片av久久网站| bbb黄色大片| 最近手机中文字幕大全| 午夜免费观看性视频| 中国三级夫妇交换| 国产精品一区二区精品视频观看| 黄色一级大片看看| av网站在线播放免费| 亚洲三区欧美一区| 一级片免费观看大全| xxxhd国产人妻xxx| 国产成人系列免费观看| 超色免费av| 毛片一级片免费看久久久久| 看免费成人av毛片| 国产精品一国产av| 99久久99久久久精品蜜桃| 国产免费又黄又爽又色| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区久久| 成人午夜精彩视频在线观看| 美女扒开内裤让男人捅视频| 亚洲av综合色区一区| 国产精品.久久久| 成年女人毛片免费观看观看9 | 99国产综合亚洲精品| 亚洲av欧美aⅴ国产| 国产精品三级大全| 人人妻,人人澡人人爽秒播 | 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 午夜福利视频精品| 久久亚洲国产成人精品v| 欧美人与性动交α欧美精品济南到| 精品国产超薄肉色丝袜足j| 成人亚洲精品一区在线观看| 国产激情久久老熟女| 悠悠久久av| 中文字幕另类日韩欧美亚洲嫩草| 久久综合国产亚洲精品| 午夜福利一区二区在线看| 69精品国产乱码久久久| 精品少妇久久久久久888优播| 一边亲一边摸免费视频| 久久久久久久大尺度免费视频| 黑丝袜美女国产一区| 精品久久蜜臀av无| 在线观看免费视频网站a站| 精品国产乱码久久久久久小说| 老司机深夜福利视频在线观看 | 日韩成人av中文字幕在线观看| 久久久国产欧美日韩av| 欧美日韩成人在线一区二区| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| 国产男女内射视频| 欧美 日韩 精品 国产| 一本一本久久a久久精品综合妖精| 免费不卡黄色视频| a级毛片黄视频| 精品人妻一区二区三区麻豆| 久久精品亚洲av国产电影网| 午夜91福利影院| 日韩制服丝袜自拍偷拍| 国产一区二区激情短视频 | 最新在线观看一区二区三区 | 美女福利国产在线| 精品国产国语对白av| 亚洲国产欧美日韩在线播放| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久| 自线自在国产av| 婷婷色麻豆天堂久久| 一级毛片我不卡| 黑人巨大精品欧美一区二区蜜桃| 国产免费现黄频在线看| 日韩不卡一区二区三区视频在线| 一区二区三区四区激情视频| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| 精品国产乱码久久久久久小说| 亚洲欧洲精品一区二区精品久久久 | 一级片免费观看大全| 多毛熟女@视频| 丰满少妇做爰视频| 美女视频免费永久观看网站| 1024香蕉在线观看| 丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 国产在视频线精品| 18禁动态无遮挡网站| 成人免费观看视频高清| 日韩伦理黄色片| 久久韩国三级中文字幕| 精品一品国产午夜福利视频| 国产精品 国内视频| 亚洲情色 制服丝袜| 精品一区二区三卡| 交换朋友夫妻互换小说| 国产片内射在线| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频 | 日本wwww免费看| 国产精品免费视频内射| 女人久久www免费人成看片| 成人三级做爰电影| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕免费大全7| 丰满饥渴人妻一区二区三| av.在线天堂| 亚洲精品av麻豆狂野| 成年动漫av网址| 国产精品一国产av| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 一区二区av电影网| 久久99热这里只频精品6学生| 亚洲精品国产av成人精品| 伊人久久国产一区二区| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 久久精品国产综合久久久| 日韩视频在线欧美| 99精国产麻豆久久婷婷| 国产精品亚洲av一区麻豆 | 97在线人人人人妻| av免费观看日本| 天天躁日日躁夜夜躁夜夜| 80岁老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| netflix在线观看网站| 免费黄网站久久成人精品| 国产av精品麻豆| 亚洲av福利一区| 亚洲精品第二区| 不卡视频在线观看欧美| 18在线观看网站| 日本av手机在线免费观看| 嫩草影视91久久| 国产男女超爽视频在线观看| 精品一区二区免费观看| 国产精品人妻久久久影院| 国产片特级美女逼逼视频| 亚洲,欧美精品.| 香蕉国产在线看| www.熟女人妻精品国产| 另类精品久久| 精品少妇黑人巨大在线播放| bbb黄色大片| 国产精品久久久久成人av| 亚洲精品一区蜜桃| 国产片特级美女逼逼视频| 亚洲成国产人片在线观看| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 久热爱精品视频在线9| 国产xxxxx性猛交| 精品酒店卫生间| 中文字幕色久视频| 亚洲婷婷狠狠爱综合网| 精品一区二区三卡| 亚洲精品视频女| 国产熟女午夜一区二区三区| 亚洲伊人久久精品综合| 国产精品久久久久成人av| 999久久久国产精品视频| 国产野战对白在线观看| 国产伦人伦偷精品视频| 国产免费一区二区三区四区乱码| 国产成人午夜福利电影在线观看| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 999精品在线视频| 国产毛片在线视频| 久久久精品国产亚洲av高清涩受| 超碰成人久久| 久热这里只有精品99| 免费高清在线观看视频在线观看| 久久国产亚洲av麻豆专区| 老熟女久久久| 看免费成人av毛片| 亚洲av男天堂| 国产免费一区二区三区四区乱码| 久久精品国产a三级三级三级| 不卡视频在线观看欧美| 一区二区av电影网| av在线播放精品| 亚洲欧美精品综合一区二区三区| 十八禁网站网址无遮挡| 少妇的丰满在线观看| 黄色视频在线播放观看不卡| 老鸭窝网址在线观看| 综合色丁香网| 伊人久久大香线蕉亚洲五| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 国产精品久久久久成人av| 欧美97在线视频| 日韩av在线免费看完整版不卡| 中文字幕最新亚洲高清| 日韩中文字幕欧美一区二区 | 老司机在亚洲福利影院| 在线观看一区二区三区激情| 搡老乐熟女国产| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o | 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 国产精品国产三级国产专区5o| 久久99一区二区三区| av卡一久久| 久久久久精品人妻al黑| 久久人人爽av亚洲精品天堂| 99国产精品免费福利视频| 国产成人av激情在线播放| 午夜影院在线不卡| 少妇的丰满在线观看| 日本欧美视频一区| 欧美中文综合在线视频| 国产色婷婷99| 夫妻午夜视频| kizo精华| 天美传媒精品一区二区| 国产精品一区二区在线观看99| 2021少妇久久久久久久久久久| 国产精品 国内视频| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| 午夜精品国产一区二区电影| 又大又爽又粗| 麻豆乱淫一区二区| 精品国产乱码久久久久久小说| 亚洲图色成人| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻一区二区三区麻豆| 大码成人一级视频| 国产乱来视频区| 国产精品一国产av| 亚洲自偷自拍图片 自拍| www.av在线官网国产| 七月丁香在线播放| 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 在现免费观看毛片| 国产成人精品福利久久| 国产高清国产精品国产三级| 午夜福利一区二区在线看| 国产精品亚洲av一区麻豆 | 肉色欧美久久久久久久蜜桃| 久久综合国产亚洲精品| 一区二区日韩欧美中文字幕| 最新在线观看一区二区三区 | 免费观看av网站的网址| xxx大片免费视频| 免费av中文字幕在线| 午夜91福利影院| www.av在线官网国产| 99九九在线精品视频| 永久免费av网站大全| 麻豆乱淫一区二区| 国产欧美日韩综合在线一区二区| 亚洲图色成人| 一本色道久久久久久精品综合| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 国产精品秋霞免费鲁丝片| 久久久久久人妻| 日本wwww免费看| 一区福利在线观看| 天美传媒精品一区二区| 99国产综合亚洲精品| 国产精品免费视频内射| 欧美日韩一级在线毛片| 新久久久久国产一级毛片| 久久久国产一区二区| 亚洲视频免费观看视频| 午夜福利视频精品| 天天操日日干夜夜撸| 另类精品久久| 亚洲免费av在线视频| 国产又色又爽无遮挡免| 精品一区在线观看国产| 欧美黄色片欧美黄色片| 毛片一级片免费看久久久久| 亚洲精品aⅴ在线观看| 老汉色∧v一级毛片| 国产97色在线日韩免费| 国产一卡二卡三卡精品 | 欧美中文综合在线视频|