• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical model and experimental investigation optically triggered hollowcathode discharge formation

    2021-03-01 08:09:50WeijieHUO霍衛(wèi)杰JingHU胡靜XiaotongCAO曹曉彤LingQIN秦嶺andWanshengZHAO趙萬(wàn)生
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:胡靜秦嶺

    Weijie HUO(霍衛(wèi)杰) ,Jing HU(胡靜),Xiaotong CAO(曹曉彤),Ling QIN(秦嶺)and Wansheng ZHAO (趙萬(wàn)生)

    State key laboratory of Mechanical System and Vibration, Mechanical Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

    Abstract In order to investigate the process of optically triggered discharge formation, a model of ion space-charge formation based on classical plane electrodes and revised for a characteristic hollow-cathode discharge(HCD)configuration is proposed in this paper.The primary modified factor in our model is the penetrating electric-field parameter,which influences the ionization of trigger electrons and is calculated via particle simulation.Optical-trigger experiments are carried out using different voltages and under different seed-electron conditions, provided by two different photocathodes, Cu and Mg.The ion-accumulation rates calculated by our model are compared to the discharge-formation time, which is deduced from optical-trigger experiments.The results demonstrate that the process of positive space-charge formation is dominant in the HCD formation process or trigger delay, which is highly dependent on the seeding-electron density and applied voltage, and can therefore be quantitatively described by our model.Additionally, electron-beam generation is investigated by optically triggered HCD experiments on Mg- and Cu-photocathode-based devices.The results show that a more efficient trigger device is capable of generating an electron beam with higher amplitude and density.

    Keywords: hollow-cathode discharge (HCD), trigger delay, optical trigger

    1.Introduction

    Pseudospark discharge, first discovered in 1979, is operated in the low-pressure region on the left-hand branch of Paschen’s curve,which is characterized by a discharge current in the kiloampere region and high-energy electron-beam generation within tens of nanoseconds [1, 2].In pseudosparkdischarge devices, single electrons cannot initiate the discharge in the main gap, therefore triggered ‘seed electrons’from a hollow cathode are required for discharge ignition[3-5].The time duration between the application of a trigger pulse and the initiation of pseudospark discharge is defined as the trigger delay or discharge-formation time [6].

    The discharge-formation process is divided into three stages [7]: (1) the plasma virtual anode gradually forms near the anode, (2) movement of the plasma virtual anode, (3) the ionization process within the hollow-cathode cavity as the anode potential becomes close to the cathode.The second and third stages are discussed in detail in the related literature[8-13].However, there is a lack of discussion about opticaltrigger-motivated virtual-anode formation and the subsequent discharge-formation processes.

    To investigate the relationship between trigger delay and the virtual-anode-formation process, a modified model for positive-ion space-charge formation is proposed, and then a series of optically triggered pseudospark-discharge experiments is presented.The triggered hollow-cathode discharge (HCD) formation time is compared with the growth rate of positive-ion density,which is decided by seed electrons and applied voltage etc.Furthermore,the influence of the optical trigger on beam generation is also discussed.This work is organized as follows:in sections 1.1 and 1.2,as part of the introduction, the modeling of positive spacecharge formation and calculation of the HCD parameterk(V,t)are presented;in section 2,the pseudospark-discharge experimental setup and the optical-trigger device are presented; in section 3.1, the experimental results for the triggered HCD and a comparison with our model are presented and discussed; in section 3.2, electron-beam characteristics are investigated with various optical-trigger parameters.The conclusions are finally summarized in section 4.

    1.1.Model description

    Equation (1), below, describes an ion-accumulation process,on the assumption that the positive ionic distribution, ρi, is varied with time but independent of the spatial location during the early period of the pre-breakdown stage [14].

    wherej(t) is the electron-current density, which is simply defined by Child-Langmuir current att= 0; σi(V) is the average cross-section for the ionization of gas atoms by electrons under applied voltageV;nis the atomic density,andT0is the average travelling time of the ions [14].

    However, equation (1) describes the model of a typical parallel-plane discharge-gap configuration and it does not account for the influence of ‘seed electrons’.As shown in[15], the total ionization cross-section in the hollow-cathode region is one order of magnitude higher than that of the main gap during the pre-breakdown phase.The cathode’s aperture and the hollow-cathode configuration lead to the formation of a reducedE/Nregion(E/Nrepresents a reduced electric field,whereEis an electric field andNis the density of neutral particles) in the hollow cathode and promote substantial ionization events here, due to potential lines penetrating into the cathode region.Thus the classical parallel-plane model presented in equation (1) requires suitable modifications to take account of the HCD configuration.

    Since the mean free path of the electrons is much greater than the gap spaced, the electrons pass through the main gap almost without collision [16].Therefore, the electron currentj(t) is formed by the initial seed-electron currentj0(t)through ionization multiplication in the hollowcathode region, which can be described by a multiplication coefficientk(V,N,t) under certain geometric conditions.Therefore, compared with equation (1), the model resulting from the inclusion of the hollow-cathode effect is as follows:

    In the model described by equation (2), the initial seedelectron currentj0(t) mainly originates from the trigger process, which is the photoelectron current under this optically triggered discharge condition:

    In equation (3), λ0is the minimum wavelength of the xenon flash lamp’s output in the following experiments,λ1is the cut-off wavelength of the photoelectric effect for a given material,t1is the duration of the flash light’s illumination,lis the attenuation coefficient of light,E(e,λ)is the spectral irradiance of the flash lamp,E0(λ) is the energy of a photon whose wavelength is λ,QEis the quantum efficiency for a specified material.

    To simplify the discussion, for a fixed pressure and geometric structure,k(N,V,t) (ork(V,t)) is determined by the penetrating electric-field distribution inside the hollow-cathode region.In addition,the generated ion density at each location is only dependent on the time before the formation of the virtual anode, equation (2) can be simplified to the following form:

    1.2.Modeling and calculation of the HCD parameter k(V, t)

    In the HCD model presented via equation(4),the effect of the hollow-cathode configuration is represented by the multiplication coefficientk(V,t) determined by the penetrating electric field.In this work, a particle-in-cell (PIC) simulation via XOOPIC is presented to study the influence of applied voltage on the penetrating electric-field distribution, as illustrated in figure 1.The HCD device and the PIC calculationdomain model are illustrated in figures 1(a)and(b),which are the same as the experimental setup in section 2.The gas used is Ar and the gas pressure is 50.6 mTorr in the simulation,while the other simulation parameters including the cell size,time step,initial density for tracked particles,particle weight,and secondary coefficient are the same as those used in [15]and are shown in table 1.Figures 1(c)and(d)are the electronphase plots and potential distributions at 4 kV and 10 kV,illustrating that the potential lines penetrate more deeply and widely inside the hollow-cathode region under higher applied voltages.Therefore, a bigger intense ionization region is formed in the hollow-cathode region and dependent on the applied voltage.

    The electric-field penetration coefficientk(V,t) is the electric-field-related penetration depth, which determines the efficient ionization region inside the hollow cathode.According to [17], the electron ionization cross-section reaches its maximum value when its energy is 2ξiz(31.6 eV for Ar) and the electrons around the 31.6 V potential region generate the highest-ionization events, thusk(V,t) is defined as the ratio of the 31.6 V potential line’s depth on the symmetric axis versus the length of the hollow cathode.Values ofk(V,t) versus various applied voltages ranging from 4 kV to 12 kV at different times are illustrated in figure 1(e),confirming the presence of an approximately linear dependency betweenk(V,t) and the voltage applied before the plasma caused by the strong positive space charge forms in the main gap.

    Figure 1.Numerical simulation results for a penetrating electric field in a hollow cathode.(a) Structure of a pseudospark-discharge device,(b)PIC model of the electrodes,(c)potential distribution when the applied voltage is 4 kV,(d)potential distribution when the applied voltage is 10 kV, (e) the penetrating electric-field depth versus different applied voltages at different times.

    Table 1.The simulation parameters used for the PIC simulations.

    2.Experimental setup

    Figure 2.Experimental setup for an optically triggered pseudospark discharge.

    The experimental setup including the pseudospark-discharge device, optical trigger, and electron-beam drift region is illustrated in figure 2.The single-gap pseudospark-discharge chamber consists of a cylindrical hollow cathode and a grounded anode insulated by Teflon.The anode and cathode each have a 20 mm diameter and a 3 mm on-axis hole for electron-beam extraction.The length of the cathode cavity is 20 mm and the thickness of the hollow-cathode cavity and the anode electrode is 3 mm.The material used for all the electrodes is Cu.

    The optical-trigger source in the experiments is a xenon flash lamp (MXS1.5U-00) with a 5 W power input and a maximum emission frequency of 252 Hz.The output wavelength range of the flash lamp is 180mm to 2000 nm.To control the light-output intensity of the flash lamp, the discharge voltage of the flash lamp can be changed from 400 V to 600 V.In our experiments, the xenon flash lamp is triggered by an external trigger pulse from 0 V to 5 V in amplitude and with a 10 μs pulse width.The optical signal irradiates the cathode inner wall through a sapphire ultraviolet-transparent glass flange to generate seed electrons and trigger the discharge.

    Through the use of a pure Cu hollow cathode and Mg foil covering the inside walls of the hollow cathode, the same photoemission areas are obtained to generate different amounts of seed photoelectrons, as decided by theQE.The work function of Mg is 3.66 eV and that of Cu is 4.5 eV[17,18].The influence of different amounts of seed electrons,j0, on the trigger delay is experimentally investigated in this paper, for two different photocathode materials, Mg and Cu.The hollow cathode is connected to a high-voltage DC power supply (AU-60N5-L (220)) through a 20 MΩ charging resistor.Two 2000 pF ceramic capacitors are connected symmetrically between the anode and cathode for energy storage.A high-voltage probe (North Star PVM-5) is connected to the cathode to measure the voltage breakdown waveform.The discharge current is measured by a fastresponse Rogowski coil.The electron-beam current is measured by 0.423 Ω Faraday cup [19, 20] located 10 mm downstream from the anode hole in the electron-beam drift space.Data are acquired by a high-speed oscilloscope with a 1 GS s?1sampling rate, at a bandwidth of 500 MHz.

    The experiments on the formation of optically triggered pseudospark discharges and the generation of HCD-based electron beams are performed in argon gas.

    Figure 3.Typical waveforms of trigger pulse and onset of discharge.

    Figure 4.The HCD formation times of different photocathodes versus varying voltages at a pressure P = 50.6 mTorr.

    3.Experimental results and discussion

    3.1.Trigger delay

    The typical waveforms of the optical-trigger pulse and the onset of HCD are presented in figure 3.In this section, the time interval between the optical-trigger pulse and the onset of HCD is treated as the HCD formation time or trigger delay.The influences of the applied voltage and seeding-electron density,j0, on discharge-formation time are studied experimentally.Each data point presented in the plots is the mean value of five continuous measurements.The time intervals for Cu and Mg photocathodes and four breakdown voltages ranging from 4 kV to 7 kV are investigated and plotted in figure 4, for which the pressure is 50.6 mTorr.As illustrated in figure 4, compared with the Cu cathode, the Mg cathode brings about a higher initial current density,j0, and thus a faster HCD formation time for the same voltage and pressure conditions.For the lowest voltage applied (4 kV), the HCD formation time of the Cu-cathode device is 44.2 μs, which is 4.6 times the 9.5 μs obtained with the Mg-cathode device.At the highest operational voltage of 7 kV, the HCD formation time of a Cu-cathode device is 15.6 μs,which is 3.4 times that of the 4.6 μs obtained using the Mg-cathode device.

    In addition, in both Cu- and Mg-photocathode devices,the HCD formation process is faster with an increased breakdown voltage at the same pressure orN,as illustrated in figure 4.In the Mg-cathode device, the HCD formation time is decreased from 9.5 μs to 4.6 μs when the breakdown voltage is increased from 4 kV to 7 kV.In the Cu-cathode device,the HCD formation time is decreased from 44.2 μs to 15.6 μs when the breakdown voltage is increased from 4 kV to 7 kV.

    According to our model in section 1, the remaining positive-ion(ρi)distribution depends on the growth rate of the ions generated due to ionization,dρi_g,(or the right-hand side of equation (4)):

    where?k V t,( ) is the averagedk(V,t), which is linearly dependent on the applied voltageV, oraccording to the PIC simulation results presented in section 1.The average ionization cross-section, σi(V), is calculated through the same method as that shown in [14].

    To evaluate the influence of applied voltage on the ionaccumulation process, the non-dimensional ion-density growth rateρdViin arbitrary units, which is the ratio between the growth rate of ion density for other applied voltages and the growth rate of ion density for an applied voltage of 4 kV is calculated, and plotted in figure 5.

    According to equation (5), the photoelectron current determined,ρdVi, is calculated by:

    whereViis another applied voltage,V0is 4 kV,and theQEis assumed to be linearly dependent on the applied voltageVfor the same photocathode, as shown in [21, 22];E(e,λi)are the discretized spectral irradiance values of the optical-trigger source,E0(λi) is the energy of photon at the wavelength λi,andt1is the pulse duration of the trigger light.

    In addition to the ion-density growth ratethe righthand y-coordinate of figure 5 represents the non-dimensional change rate of the discharge-formation velocityin arbitrary units obtained from the experimental results of the Mg and Cu-photocathode-trigger delays.

    where delayViis the measured delay time for another applied voltage,and delayV0is the measured delay time for an applied voltage of 4 kV.

    Figure 5.Calculated ion-density growth rates compared with the non-dimensional change rate of discharge-formation velocity(1/delay) from the experimental results.

    Figure 5 shows that an increased voltage promotes ion accumulation and a higher 1 /d elaya.u,and therefore a faster discharge-formation process is established using the same HCD pressure and geometric conditions.Additionally, as illustrated in figure 5, the slopes of the induced 1 /d elaya.uin the experimental data obtained from both the Mg and Cu photocathodes show a similar tendency to the ion-density growth ratesd,(determined by the photoelectron current)versus changes in the applied voltage.Compared with the Cu device, 1 / d elaya.ufor theMg photocathode is closer to the determined photoelectron current,dρVi.The results of 1 /d elaya.uobtained from the experimental delaydρ Viof the ion-growth model (as determined by photoelectric current)demonstrate that the ion-accumulation process(as determined by photoelectron emission),or virtual-anode formation,is the dominant factor in the discharge-formation process.

    From the experimental results as shown in figure 4, the discharge-formation time of the Mg-photocathode-based HCD device is shorter than that of the Cu photocathode under the same conditions, which is consistent with our model that prdicts that the increased photoelectrons orj0provided by the lower-QEmaterial, Mg, result in faster ion-formation rate.

    3.2.Electron beam

    In this section, electron-beam generation is investigated for HCD devices based on two photocathode materials, Cu and Mg.The typical electron-beam current waveform obtained from a Mg-photocathode HCD at a 16 kV breakdown voltage is illustrated in figure 6.A hollow-cathode-phase electron beam with high energy but a low current density[23-25]and a conductive-phase electron beam with low energy and a high electron-beam current [26, 27] are identified in figure 6.

    The electron-beam current pulses obtained from the Mgand Cu-photocathode-based HCD devices are illustrated in figure 7, under the same breakdown voltage of 17 kV and a pressure of 40.5 mTorr.As shown in figure 7, the Mg-photocathode device with a higher initial photoelectron current,j0, is capable of generating a higher electron density or a 146.4 A beam current,which is 1.27 times that of the 115.2 A beam current obtained from the Cu-cathode device.Meanwhile, the electron beam’s current-pulse duration is slightly different for various cathode materials, varying from the Cucathode device’s 587 ns to the Mg-cathode device’s 690 ns.

    Figure 6.Typical electron-beam current waveforms for two independent phases.

    Figure 7.The electron-beam current waveforms of pure Cu and Mg cathodes.

    The peak values of the electron-beam currents obtained from Cu- and Mg-photocathode-based HCD devices are plotted in figure 8.As shown in figure 8, the peak current is increased from 57.4 A to 68.4 A, comparing the electron beam generated by the Cu-HCD device with the Mg-HCD device at 6 kV.At a 10 kV breakdown voltage, the peak electron-beam current obtained from the Mg-HCD device is 1.3 times that obtained from the Cu-HCD device.

    Figure 8.The peak values of electron-beam currents generated by two different photocathodes under the same external conditions.

    The results presented in figures 7 and 8 demonstrate that the Mg-photocathode-based HCD device generates a higher electron-beam current, while the beam pulse duration is slightly increased at the same time.As a low work-function material, the Mg photocathode is capable of generating more seed electrons under the same optical-trigger conditions.As a result, the gas-ionization and plasma-formation processes are promoted in both the hollow cathode and the main gap for the Mg-photocathode-based HCD device.However, as presented in the above sections, the triggering photoelectrons and subsequent ionization processes mainly promote the formation of a virtual anode and the main discharge process,but following the trigger processes, the subsequent photoemission that is due to the low work function of the material in the hollow cathode does not cause more low-energy electron generation.Therefore, the efficient optical-trigger device based on the photoelectric effect of the lower work-function material is capable of improving the amplitude of the electron-beam current but slightly impacts the electron-pulse duration,which is favorable for applications based on multiple energetic electron beams.

    4.Conclusions

    HCD is characterized by its high current and very fast breakdown, which are highly dependent on its hollow-cathode configuration.Multiple works and studies of HCD are mainly focused on the influence of the hollow-cathode structure on high-efficiency discharge and multiple energetic electron-beam generation.Regarding the condition of a sufficient electron current for triggering, the hollow cathode served as a hollow anode with respect to the trigger to analyze discharge-formation processes in the pre-breakdown stage[28].In order to further study the triggered-discharge-formation process, microsecond-time-scale optical-trigger experiments with insufficient seed electrons are introduced.In this paper,a model based on the classical plane-parallel model but modified for the hollow-cathode-influenced positive space-charge formation process is presented.The HCD spacecharge formation model is validated by the results obtained from optical-trigger experiments using two cathode materials,Cu and Mg, with different discharge voltages.In addition,electron-beam generation is also investigated by optically triggered HCD experiments for Mg- and Cu-photocathodebased devices.The conclusions can be summarized as follows:

    (1) In an HCD device, the discharge-formation process is mostly relevant to the positive space-charge formation process,which is influenced by the penetrating electricfield distribution in the hollow cathode.Therefore, the trigger delay is mainly quantitatively dependent on the positive space-charge formation rate or the gas-iondensity growth rate, which is determined by the penetrating electric-field depth described by our model.

    (2) Both the theoretical model and the experimental results demonstrate that in the positive space-charge formation and movement process, the effect of initial seedingelectron density is dominant, which is described quantitatively by our model.In an optically triggered HCD, the ion-density growth rate is increased by an increasing applied voltage and a higher seed-electron density is obtained from a lower work-function material, resulting in a short delay.

    (3) The electron-beam measurement results demonstrate that a more efficient trigger device is capable of generating an electron beam with higher amplitude and density.However, the trigger electrons mainly promote initial high-energy electron formation.As a result, the collision loss and low-energy electron generation are not influenced by the trigger efficiency,therefore the electron-beam duration does not vary by much, which also matches our model description.

    ORCID iDs

    Weijie HUO (霍衛(wèi)杰) https://orcid.org/0000-0002-1533-2986

    猜你喜歡
    胡靜秦嶺
    守護(hù)大秦嶺
    人類(lèi)能否通過(guò)科技來(lái)理解動(dòng)物的“語(yǔ)言”
    澳大利亞的“矛”即將回家
    Kylie Jenner關(guān)于產(chǎn)后如何遠(yuǎn)離PPD的建議
    2023年春節(jié),旅游業(yè)強(qiáng)勁復(fù)蘇
    暑期秦嶺游
    洞穿秦嶺
    Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
    賈平凹:從秦嶺到秦嶺
    好忙好忙的秦嶺
    有码 亚洲区| 久久久久久久久久久免费av| 国产毛片a区久久久久| h日本视频在线播放| 高清午夜精品一区二区三区| 国产成人精品久久久久久| 日本免费一区二区三区高清不卡| 纵有疾风起免费观看全集完整版 | 1024手机看黄色片| 国产片特级美女逼逼视频| 欧美xxxx性猛交bbbb| 国产v大片淫在线免费观看| 国产又色又爽无遮挡免| 22中文网久久字幕| 一级毛片电影观看 | 黄色一级大片看看| 久久久久精品久久久久真实原创| 天堂√8在线中文| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 久久精品国产99精品国产亚洲性色| 人妻系列 视频| 大香蕉97超碰在线| 亚洲内射少妇av| 综合色av麻豆| 99久久无色码亚洲精品果冻| 日本三级黄在线观看| 特级一级黄色大片| 精品久久久久久久久亚洲| 免费大片18禁| 特大巨黑吊av在线直播| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 边亲边吃奶的免费视频| 久久久久久大精品| 国产69精品久久久久777片| 日韩欧美在线乱码| 久久热精品热| 欧美性猛交╳xxx乱大交人| 三级毛片av免费| av专区在线播放| 国产熟女欧美一区二区| 国产老妇女一区| 日韩亚洲欧美综合| 欧美色视频一区免费| 久久人人爽人人片av| 亚洲av不卡在线观看| 老女人水多毛片| 成人午夜精彩视频在线观看| 特级一级黄色大片| 日本免费在线观看一区| 亚洲精品日韩在线中文字幕| 91av网一区二区| 在线免费观看的www视频| 综合色av麻豆| 性色avwww在线观看| 亚洲欧美一区二区三区国产| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 免费av观看视频| 国产精品一区二区在线观看99 | 嘟嘟电影网在线观看| 国产大屁股一区二区在线视频| 久久精品国产鲁丝片午夜精品| 国产精品电影一区二区三区| 亚洲国产精品合色在线| 精品国产一区二区三区久久久樱花 | 国产真实乱freesex| 中文字幕制服av| 久久久精品大字幕| 亚洲在久久综合| 高清午夜精品一区二区三区| 国产极品天堂在线| 亚洲伊人久久精品综合 | 色视频www国产| 老师上课跳d突然被开到最大视频| 国产在线男女| 国产精品一区二区在线观看99 | 国产精品.久久久| 日本免费一区二区三区高清不卡| 黄片wwwwww| 男女边吃奶边做爰视频| 少妇裸体淫交视频免费看高清| 99久国产av精品国产电影| 男人狂女人下面高潮的视频| 国产综合懂色| 国产午夜精品论理片| 亚洲国产高清在线一区二区三| 日产精品乱码卡一卡2卡三| 精品一区二区免费观看| 男女国产视频网站| 六月丁香七月| 99热6这里只有精品| 欧美成人午夜免费资源| 亚洲人成网站在线观看播放| 三级男女做爰猛烈吃奶摸视频| 亚洲av中文av极速乱| 色综合亚洲欧美另类图片| 我要搜黄色片| 欧美丝袜亚洲另类| 精品国内亚洲2022精品成人| 亚洲国产精品国产精品| 欧美高清成人免费视频www| 欧美区成人在线视频| 自拍偷自拍亚洲精品老妇| 高清日韩中文字幕在线| 国产高清有码在线观看视频| 久久久久久国产a免费观看| videossex国产| 韩国高清视频一区二区三区| 老女人水多毛片| 国产黄片美女视频| 国产精品无大码| 亚洲精品国产成人久久av| 一级毛片我不卡| 久久久国产成人精品二区| 亚洲在线观看片| 国产伦一二天堂av在线观看| 男的添女的下面高潮视频| 国产成人免费观看mmmm| 最近视频中文字幕2019在线8| 在现免费观看毛片| 欧美成人免费av一区二区三区| 亚洲人成网站在线观看播放| 欧美日韩一区二区视频在线观看视频在线 | 久久亚洲精品不卡| 久久精品综合一区二区三区| 日韩高清综合在线| 亚洲欧美精品综合久久99| 国产探花在线观看一区二区| 国产精品1区2区在线观看.| 国产精品福利在线免费观看| 日韩三级伦理在线观看| av在线播放精品| 成人性生交大片免费视频hd| 中文字幕免费在线视频6| 小蜜桃在线观看免费完整版高清| av天堂中文字幕网| 国产在视频线精品| 青春草国产在线视频| 亚洲丝袜综合中文字幕| .国产精品久久| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区三区| 综合色丁香网| 简卡轻食公司| 午夜久久久久精精品| 亚洲无线观看免费| 国产高潮美女av| 亚洲国产精品专区欧美| 综合色丁香网| 中文字幕精品亚洲无线码一区| 中文在线观看免费www的网站| 亚洲国产日韩欧美精品在线观看| 日本黄色视频三级网站网址| www日本黄色视频网| 亚洲最大成人av| 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 大香蕉久久网| 国产精品福利在线免费观看| 床上黄色一级片| 成人无遮挡网站| 亚洲欧美精品综合久久99| 在线播放无遮挡| 国产免费一级a男人的天堂| 热99在线观看视频| 一级二级三级毛片免费看| 国产真实乱freesex| 真实男女啪啪啪动态图| 国产精品一区二区三区四区免费观看| 网址你懂的国产日韩在线| 欧美一区二区精品小视频在线| 国产成人免费观看mmmm| 99国产精品一区二区蜜桃av| 国产亚洲一区二区精品| 18+在线观看网站| 欧美一区二区精品小视频在线| 色吧在线观看| 欧美性猛交╳xxx乱大交人| 亚洲国产精品成人久久小说| 久久精品国产亚洲av天美| 亚洲在久久综合| 两个人的视频大全免费| 亚洲综合色惰| 91久久精品国产一区二区成人| 天美传媒精品一区二区| 18禁在线播放成人免费| 老司机影院成人| 男人狂女人下面高潮的视频| 国产日韩欧美在线精品| 久久久久免费精品人妻一区二区| 成人毛片a级毛片在线播放| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 啦啦啦啦在线视频资源| 99热精品在线国产| 看十八女毛片水多多多| 亚洲精品久久久久久婷婷小说 | 亚洲婷婷狠狠爱综合网| 高清毛片免费看| 看十八女毛片水多多多| 成人国产麻豆网| 免费搜索国产男女视频| 高清毛片免费看| 免费av不卡在线播放| 久久久久久久久大av| 亚洲国产最新在线播放| 级片在线观看| 九九在线视频观看精品| 少妇人妻一区二区三区视频| 激情 狠狠 欧美| 国产人妻一区二区三区在| 一本久久精品| a级毛色黄片| 国产成人午夜福利电影在线观看| 久久久久久九九精品二区国产| 亚洲自偷自拍三级| 久久久精品94久久精品| 欧美激情在线99| 久久久久网色| 午夜精品国产一区二区电影 | 国国产精品蜜臀av免费| 在线免费十八禁| 免费观看精品视频网站| 成人毛片60女人毛片免费| 日韩欧美三级三区| 午夜福利视频1000在线观看| 中文在线观看免费www的网站| 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄 | 真实男女啪啪啪动态图| 国产成人精品久久久久久| АⅤ资源中文在线天堂| 亚洲欧美中文字幕日韩二区| 国产精品电影一区二区三区| 男的添女的下面高潮视频| 九九热线精品视视频播放| 成人av在线播放网站| 国产成人a区在线观看| 亚洲中文字幕日韩| 搡女人真爽免费视频火全软件| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 成年版毛片免费区| 九九在线视频观看精品| 日韩三级伦理在线观看| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 中文字幕精品亚洲无线码一区| 日日摸夜夜添夜夜添av毛片| av免费观看日本| 少妇猛男粗大的猛烈进出视频 | 偷拍熟女少妇极品色| 美女被艹到高潮喷水动态| 国产一级毛片七仙女欲春2| 中文精品一卡2卡3卡4更新| 国产精品一区www在线观看| 亚洲av中文字字幕乱码综合| 国产女主播在线喷水免费视频网站 | 我的老师免费观看完整版| 九色成人免费人妻av| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添av毛片| 97人妻精品一区二区三区麻豆| 深爱激情五月婷婷| 又爽又黄无遮挡网站| 国产精品国产高清国产av| 草草在线视频免费看| 亚洲欧美清纯卡通| 99热精品在线国产| 亚洲精品日韩在线中文字幕| 免费观看人在逋| av线在线观看网站| 日本免费在线观看一区| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 熟妇人妻久久中文字幕3abv| 欧美bdsm另类| 日韩高清综合在线| a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 91在线精品国自产拍蜜月| 亚洲国产精品久久男人天堂| 日本黄色视频三级网站网址| 精品久久国产蜜桃| 成人二区视频| 欧美最新免费一区二区三区| av又黄又爽大尺度在线免费看 | 国产亚洲精品av在线| 日韩精品有码人妻一区| 99久久精品国产国产毛片| 老女人水多毛片| 久久久久久九九精品二区国产| 中国国产av一级| 国产一级毛片在线| 全区人妻精品视频| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 国语自产精品视频在线第100页| 免费av毛片视频| 欧美色视频一区免费| 看黄色毛片网站| 午夜日本视频在线| 超碰av人人做人人爽久久| 亚洲久久久久久中文字幕| av.在线天堂| 97在线视频观看| 蜜桃亚洲精品一区二区三区| 国产高清不卡午夜福利| 国产一区亚洲一区在线观看| 99热全是精品| h日本视频在线播放| 又粗又硬又长又爽又黄的视频| 韩国av在线不卡| 国产毛片a区久久久久| 国产精品国产三级国产av玫瑰| 亚洲人与动物交配视频| 内射极品少妇av片p| 最新中文字幕久久久久| 2021少妇久久久久久久久久久| 国产在线男女| 精品久久久久久久久亚洲| 亚洲高清免费不卡视频| 成人综合一区亚洲| 日本与韩国留学比较| 国产精品久久久久久av不卡| 天堂网av新在线| 汤姆久久久久久久影院中文字幕 | av又黄又爽大尺度在线免费看 | 亚洲欧美日韩东京热| 高清日韩中文字幕在线| 热99re8久久精品国产| 国产精品一区二区三区四区免费观看| 亚洲18禁久久av| 成人鲁丝片一二三区免费| 国产老妇女一区| 97在线视频观看| 午夜福利成人在线免费观看| 三级国产精品欧美在线观看| 国产精品女同一区二区软件| 别揉我奶头 嗯啊视频| 国产一级毛片七仙女欲春2| 亚洲av电影在线观看一区二区三区 | 午夜久久久久精精品| 岛国毛片在线播放| 亚洲乱码一区二区免费版| 国产av不卡久久| 美女内射精品一级片tv| 国产亚洲一区二区精品| 欧美97在线视频| av.在线天堂| 在线观看一区二区三区| 高清av免费在线| 一区二区三区乱码不卡18| 免费看av在线观看网站| 国产伦精品一区二区三区四那| 三级男女做爰猛烈吃奶摸视频| 久久国产乱子免费精品| 综合色av麻豆| 国产真实乱freesex| 老女人水多毛片| 亚洲色图av天堂| 国产一区二区三区av在线| 国产亚洲最大av| 午夜精品在线福利| 久久精品国产鲁丝片午夜精品| 国产探花极品一区二区| 中文字幕av成人在线电影| 国产私拍福利视频在线观看| 69av精品久久久久久| 国产单亲对白刺激| 亚洲中文字幕日韩| 18禁在线播放成人免费| 尤物成人国产欧美一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人综合色| 日韩视频在线欧美| 久久国产乱子免费精品| 毛片女人毛片| 麻豆成人av视频| 中文精品一卡2卡3卡4更新| 人妻系列 视频| 日韩国内少妇激情av| 最近最新中文字幕免费大全7| 免费在线观看成人毛片| 国产精品一区二区在线观看99 | 午夜福利在线观看吧| 少妇的逼水好多| 国产伦精品一区二区三区视频9| 国产精品美女特级片免费视频播放器| 少妇高潮的动态图| 91久久精品国产一区二区三区| 亚洲不卡免费看| 又粗又爽又猛毛片免费看| 18禁在线无遮挡免费观看视频| 欧美变态另类bdsm刘玥| 精品久久久久久电影网 | 神马国产精品三级电影在线观看| 毛片一级片免费看久久久久| 免费一级毛片在线播放高清视频| 成人国产麻豆网| 中文字幕精品亚洲无线码一区| av福利片在线观看| 舔av片在线| 国产高清三级在线| 91aial.com中文字幕在线观看| 午夜福利视频1000在线观看| 搞女人的毛片| 长腿黑丝高跟| 成年av动漫网址| 又粗又爽又猛毛片免费看| av国产久精品久网站免费入址| 国产亚洲精品av在线| 亚洲精品色激情综合| 国产精品蜜桃在线观看| 国产女主播在线喷水免费视频网站 | 久久精品国产自在天天线| 一级黄片播放器| 中文亚洲av片在线观看爽| 免费大片18禁| 亚洲三级黄色毛片| 亚洲欧洲国产日韩| 一级黄片播放器| 欧美日韩一区二区视频在线观看视频在线 | 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| 国产三级在线视频| 国产精华一区二区三区| 黄色配什么色好看| 男人舔女人下体高潮全视频| av在线播放精品| 亚洲精品一区蜜桃| 夫妻性生交免费视频一级片| 日韩制服骚丝袜av| 午夜老司机福利剧场| 观看免费一级毛片| 天堂中文最新版在线下载 | 国产一区二区在线观看日韩| 一夜夜www| 亚洲精品一区蜜桃| 国产午夜福利久久久久久| 亚洲欧洲日产国产| 久久99热6这里只有精品| 国产精品乱码一区二三区的特点| 久久久a久久爽久久v久久| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 国产精品一区二区三区四区免费观看| 18禁在线播放成人免费| a级一级毛片免费在线观看| 黑人高潮一二区| 色尼玛亚洲综合影院| 色噜噜av男人的天堂激情| 少妇熟女欧美另类| 国产高潮美女av| 久久国内精品自在自线图片| 国产精品一区二区三区四区免费观看| 乱人视频在线观看| 国产精品野战在线观看| 亚洲精品色激情综合| 国产在线一区二区三区精 | videossex国产| 国产精品.久久久| 一区二区三区四区激情视频| 亚洲性久久影院| 久久久久久久午夜电影| 联通29元200g的流量卡| 久久久久久久久久黄片| 国产乱人偷精品视频| 男人舔女人下体高潮全视频| 成人二区视频| 亚洲精品,欧美精品| 国产麻豆成人av免费视频| 国内精品美女久久久久久| 国模一区二区三区四区视频| 国产精品国产高清国产av| 69人妻影院| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 国国产精品蜜臀av免费| 精品国内亚洲2022精品成人| 久久久久久久久久黄片| 国产在视频线在精品| 久久亚洲精品不卡| 国产精品蜜桃在线观看| 精品人妻视频免费看| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕 | 一二三四中文在线观看免费高清| 欧美激情国产日韩精品一区| 有码 亚洲区| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久| 亚洲天堂国产精品一区在线| 久久久成人免费电影| 亚洲不卡免费看| 久久亚洲精品不卡| 国产91av在线免费观看| 黄片wwwwww| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 亚洲一区高清亚洲精品| 国产三级在线视频| 国产精品一二三区在线看| 国产精品国产三级专区第一集| 三级毛片av免费| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 纵有疾风起免费观看全集完整版 | av在线播放精品| 大香蕉久久网| 免费搜索国产男女视频| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 国产精品乱码一区二三区的特点| 天美传媒精品一区二区| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 视频中文字幕在线观看| 国产免费男女视频| 日韩成人av中文字幕在线观看| 久久久久久久久久成人| 国产一区有黄有色的免费视频 | 久久99蜜桃精品久久| 国产亚洲一区二区精品| av播播在线观看一区| 男人狂女人下面高潮的视频| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| 伊人久久精品亚洲午夜| 一级毛片久久久久久久久女| 国产综合懂色| 久久久久精品久久久久真实原创| 国产v大片淫在线免费观看| 看非洲黑人一级黄片| 高清毛片免费看| 亚洲av.av天堂| 国产成人精品一,二区| 国产国拍精品亚洲av在线观看| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 久久亚洲国产成人精品v| 一级毛片久久久久久久久女| 内射极品少妇av片p| 亚洲av熟女| 国产精品1区2区在线观看.| 欧美xxxx黑人xx丫x性爽| 99视频精品全部免费 在线| 毛片女人毛片| 日本免费一区二区三区高清不卡| 少妇人妻精品综合一区二区| 日本五十路高清| 久久久国产成人精品二区| 久久精品国产自在天天线| 直男gayav资源| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 色综合站精品国产| 日日摸夜夜添夜夜添av毛片| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 一级毛片我不卡| 身体一侧抽搐| 欧美xxxx性猛交bbbb| 中文字幕av成人在线电影| 日本黄色片子视频| 黄片wwwwww| 99热这里只有是精品50| 天堂√8在线中文| kizo精华| 久久6这里有精品| 中文亚洲av片在线观看爽| 麻豆成人午夜福利视频| 日日啪夜夜撸| 女的被弄到高潮叫床怎么办| 草草在线视频免费看| 成人美女网站在线观看视频| 日本wwww免费看| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 女的被弄到高潮叫床怎么办| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| a级毛片免费高清观看在线播放| 国产精品99久久久久久久久| 亚洲五月天丁香| 国内精品美女久久久久久| 国产中年淑女户外野战色| 亚洲成人精品中文字幕电影| 欧美成人午夜免费资源| 黑人高潮一二区| 看黄色毛片网站| 久久精品久久精品一区二区三区| 一级黄色大片毛片| 精品一区二区三区视频在线| av在线观看视频网站免费| 精品久久久久久成人av| 亚洲自偷自拍三级| 97超碰精品成人国产| 女人十人毛片免费观看3o分钟| 最近中文字幕2019免费版| 国产精品久久久久久精品电影小说 | 久久久亚洲精品成人影院| 欧美3d第一页| 99久久精品热视频| 久久精品熟女亚洲av麻豆精品 | 国产精品国产三级国产av玫瑰| 国产激情偷乱视频一区二区|