• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical model and experimental investigation optically triggered hollowcathode discharge formation

    2021-03-01 08:09:50WeijieHUO霍衛(wèi)杰JingHU胡靜XiaotongCAO曹曉彤LingQIN秦嶺andWanshengZHAO趙萬(wàn)生
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:胡靜秦嶺

    Weijie HUO(霍衛(wèi)杰) ,Jing HU(胡靜),Xiaotong CAO(曹曉彤),Ling QIN(秦嶺)and Wansheng ZHAO (趙萬(wàn)生)

    State key laboratory of Mechanical System and Vibration, Mechanical Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

    Abstract In order to investigate the process of optically triggered discharge formation, a model of ion space-charge formation based on classical plane electrodes and revised for a characteristic hollow-cathode discharge(HCD)configuration is proposed in this paper.The primary modified factor in our model is the penetrating electric-field parameter,which influences the ionization of trigger electrons and is calculated via particle simulation.Optical-trigger experiments are carried out using different voltages and under different seed-electron conditions, provided by two different photocathodes, Cu and Mg.The ion-accumulation rates calculated by our model are compared to the discharge-formation time, which is deduced from optical-trigger experiments.The results demonstrate that the process of positive space-charge formation is dominant in the HCD formation process or trigger delay, which is highly dependent on the seeding-electron density and applied voltage, and can therefore be quantitatively described by our model.Additionally, electron-beam generation is investigated by optically triggered HCD experiments on Mg- and Cu-photocathode-based devices.The results show that a more efficient trigger device is capable of generating an electron beam with higher amplitude and density.

    Keywords: hollow-cathode discharge (HCD), trigger delay, optical trigger

    1.Introduction

    Pseudospark discharge, first discovered in 1979, is operated in the low-pressure region on the left-hand branch of Paschen’s curve,which is characterized by a discharge current in the kiloampere region and high-energy electron-beam generation within tens of nanoseconds [1, 2].In pseudosparkdischarge devices, single electrons cannot initiate the discharge in the main gap, therefore triggered ‘seed electrons’from a hollow cathode are required for discharge ignition[3-5].The time duration between the application of a trigger pulse and the initiation of pseudospark discharge is defined as the trigger delay or discharge-formation time [6].

    The discharge-formation process is divided into three stages [7]: (1) the plasma virtual anode gradually forms near the anode, (2) movement of the plasma virtual anode, (3) the ionization process within the hollow-cathode cavity as the anode potential becomes close to the cathode.The second and third stages are discussed in detail in the related literature[8-13].However, there is a lack of discussion about opticaltrigger-motivated virtual-anode formation and the subsequent discharge-formation processes.

    To investigate the relationship between trigger delay and the virtual-anode-formation process, a modified model for positive-ion space-charge formation is proposed, and then a series of optically triggered pseudospark-discharge experiments is presented.The triggered hollow-cathode discharge (HCD) formation time is compared with the growth rate of positive-ion density,which is decided by seed electrons and applied voltage etc.Furthermore,the influence of the optical trigger on beam generation is also discussed.This work is organized as follows:in sections 1.1 and 1.2,as part of the introduction, the modeling of positive spacecharge formation and calculation of the HCD parameterk(V,t)are presented;in section 2,the pseudospark-discharge experimental setup and the optical-trigger device are presented; in section 3.1, the experimental results for the triggered HCD and a comparison with our model are presented and discussed; in section 3.2, electron-beam characteristics are investigated with various optical-trigger parameters.The conclusions are finally summarized in section 4.

    1.1.Model description

    Equation (1), below, describes an ion-accumulation process,on the assumption that the positive ionic distribution, ρi, is varied with time but independent of the spatial location during the early period of the pre-breakdown stage [14].

    wherej(t) is the electron-current density, which is simply defined by Child-Langmuir current att= 0; σi(V) is the average cross-section for the ionization of gas atoms by electrons under applied voltageV;nis the atomic density,andT0is the average travelling time of the ions [14].

    However, equation (1) describes the model of a typical parallel-plane discharge-gap configuration and it does not account for the influence of ‘seed electrons’.As shown in[15], the total ionization cross-section in the hollow-cathode region is one order of magnitude higher than that of the main gap during the pre-breakdown phase.The cathode’s aperture and the hollow-cathode configuration lead to the formation of a reducedE/Nregion(E/Nrepresents a reduced electric field,whereEis an electric field andNis the density of neutral particles) in the hollow cathode and promote substantial ionization events here, due to potential lines penetrating into the cathode region.Thus the classical parallel-plane model presented in equation (1) requires suitable modifications to take account of the HCD configuration.

    Since the mean free path of the electrons is much greater than the gap spaced, the electrons pass through the main gap almost without collision [16].Therefore, the electron currentj(t) is formed by the initial seed-electron currentj0(t)through ionization multiplication in the hollowcathode region, which can be described by a multiplication coefficientk(V,N,t) under certain geometric conditions.Therefore, compared with equation (1), the model resulting from the inclusion of the hollow-cathode effect is as follows:

    In the model described by equation (2), the initial seedelectron currentj0(t) mainly originates from the trigger process, which is the photoelectron current under this optically triggered discharge condition:

    In equation (3), λ0is the minimum wavelength of the xenon flash lamp’s output in the following experiments,λ1is the cut-off wavelength of the photoelectric effect for a given material,t1is the duration of the flash light’s illumination,lis the attenuation coefficient of light,E(e,λ)is the spectral irradiance of the flash lamp,E0(λ) is the energy of a photon whose wavelength is λ,QEis the quantum efficiency for a specified material.

    To simplify the discussion, for a fixed pressure and geometric structure,k(N,V,t) (ork(V,t)) is determined by the penetrating electric-field distribution inside the hollow-cathode region.In addition,the generated ion density at each location is only dependent on the time before the formation of the virtual anode, equation (2) can be simplified to the following form:

    1.2.Modeling and calculation of the HCD parameter k(V, t)

    In the HCD model presented via equation(4),the effect of the hollow-cathode configuration is represented by the multiplication coefficientk(V,t) determined by the penetrating electric field.In this work, a particle-in-cell (PIC) simulation via XOOPIC is presented to study the influence of applied voltage on the penetrating electric-field distribution, as illustrated in figure 1.The HCD device and the PIC calculationdomain model are illustrated in figures 1(a)and(b),which are the same as the experimental setup in section 2.The gas used is Ar and the gas pressure is 50.6 mTorr in the simulation,while the other simulation parameters including the cell size,time step,initial density for tracked particles,particle weight,and secondary coefficient are the same as those used in [15]and are shown in table 1.Figures 1(c)and(d)are the electronphase plots and potential distributions at 4 kV and 10 kV,illustrating that the potential lines penetrate more deeply and widely inside the hollow-cathode region under higher applied voltages.Therefore, a bigger intense ionization region is formed in the hollow-cathode region and dependent on the applied voltage.

    The electric-field penetration coefficientk(V,t) is the electric-field-related penetration depth, which determines the efficient ionization region inside the hollow cathode.According to [17], the electron ionization cross-section reaches its maximum value when its energy is 2ξiz(31.6 eV for Ar) and the electrons around the 31.6 V potential region generate the highest-ionization events, thusk(V,t) is defined as the ratio of the 31.6 V potential line’s depth on the symmetric axis versus the length of the hollow cathode.Values ofk(V,t) versus various applied voltages ranging from 4 kV to 12 kV at different times are illustrated in figure 1(e),confirming the presence of an approximately linear dependency betweenk(V,t) and the voltage applied before the plasma caused by the strong positive space charge forms in the main gap.

    Figure 1.Numerical simulation results for a penetrating electric field in a hollow cathode.(a) Structure of a pseudospark-discharge device,(b)PIC model of the electrodes,(c)potential distribution when the applied voltage is 4 kV,(d)potential distribution when the applied voltage is 10 kV, (e) the penetrating electric-field depth versus different applied voltages at different times.

    Table 1.The simulation parameters used for the PIC simulations.

    2.Experimental setup

    Figure 2.Experimental setup for an optically triggered pseudospark discharge.

    The experimental setup including the pseudospark-discharge device, optical trigger, and electron-beam drift region is illustrated in figure 2.The single-gap pseudospark-discharge chamber consists of a cylindrical hollow cathode and a grounded anode insulated by Teflon.The anode and cathode each have a 20 mm diameter and a 3 mm on-axis hole for electron-beam extraction.The length of the cathode cavity is 20 mm and the thickness of the hollow-cathode cavity and the anode electrode is 3 mm.The material used for all the electrodes is Cu.

    The optical-trigger source in the experiments is a xenon flash lamp (MXS1.5U-00) with a 5 W power input and a maximum emission frequency of 252 Hz.The output wavelength range of the flash lamp is 180mm to 2000 nm.To control the light-output intensity of the flash lamp, the discharge voltage of the flash lamp can be changed from 400 V to 600 V.In our experiments, the xenon flash lamp is triggered by an external trigger pulse from 0 V to 5 V in amplitude and with a 10 μs pulse width.The optical signal irradiates the cathode inner wall through a sapphire ultraviolet-transparent glass flange to generate seed electrons and trigger the discharge.

    Through the use of a pure Cu hollow cathode and Mg foil covering the inside walls of the hollow cathode, the same photoemission areas are obtained to generate different amounts of seed photoelectrons, as decided by theQE.The work function of Mg is 3.66 eV and that of Cu is 4.5 eV[17,18].The influence of different amounts of seed electrons,j0, on the trigger delay is experimentally investigated in this paper, for two different photocathode materials, Mg and Cu.The hollow cathode is connected to a high-voltage DC power supply (AU-60N5-L (220)) through a 20 MΩ charging resistor.Two 2000 pF ceramic capacitors are connected symmetrically between the anode and cathode for energy storage.A high-voltage probe (North Star PVM-5) is connected to the cathode to measure the voltage breakdown waveform.The discharge current is measured by a fastresponse Rogowski coil.The electron-beam current is measured by 0.423 Ω Faraday cup [19, 20] located 10 mm downstream from the anode hole in the electron-beam drift space.Data are acquired by a high-speed oscilloscope with a 1 GS s?1sampling rate, at a bandwidth of 500 MHz.

    The experiments on the formation of optically triggered pseudospark discharges and the generation of HCD-based electron beams are performed in argon gas.

    Figure 3.Typical waveforms of trigger pulse and onset of discharge.

    Figure 4.The HCD formation times of different photocathodes versus varying voltages at a pressure P = 50.6 mTorr.

    3.Experimental results and discussion

    3.1.Trigger delay

    The typical waveforms of the optical-trigger pulse and the onset of HCD are presented in figure 3.In this section, the time interval between the optical-trigger pulse and the onset of HCD is treated as the HCD formation time or trigger delay.The influences of the applied voltage and seeding-electron density,j0, on discharge-formation time are studied experimentally.Each data point presented in the plots is the mean value of five continuous measurements.The time intervals for Cu and Mg photocathodes and four breakdown voltages ranging from 4 kV to 7 kV are investigated and plotted in figure 4, for which the pressure is 50.6 mTorr.As illustrated in figure 4, compared with the Cu cathode, the Mg cathode brings about a higher initial current density,j0, and thus a faster HCD formation time for the same voltage and pressure conditions.For the lowest voltage applied (4 kV), the HCD formation time of the Cu-cathode device is 44.2 μs, which is 4.6 times the 9.5 μs obtained with the Mg-cathode device.At the highest operational voltage of 7 kV, the HCD formation time of a Cu-cathode device is 15.6 μs,which is 3.4 times that of the 4.6 μs obtained using the Mg-cathode device.

    In addition, in both Cu- and Mg-photocathode devices,the HCD formation process is faster with an increased breakdown voltage at the same pressure orN,as illustrated in figure 4.In the Mg-cathode device, the HCD formation time is decreased from 9.5 μs to 4.6 μs when the breakdown voltage is increased from 4 kV to 7 kV.In the Cu-cathode device,the HCD formation time is decreased from 44.2 μs to 15.6 μs when the breakdown voltage is increased from 4 kV to 7 kV.

    According to our model in section 1, the remaining positive-ion(ρi)distribution depends on the growth rate of the ions generated due to ionization,dρi_g,(or the right-hand side of equation (4)):

    where?k V t,( ) is the averagedk(V,t), which is linearly dependent on the applied voltageV, oraccording to the PIC simulation results presented in section 1.The average ionization cross-section, σi(V), is calculated through the same method as that shown in [14].

    To evaluate the influence of applied voltage on the ionaccumulation process, the non-dimensional ion-density growth rateρdViin arbitrary units, which is the ratio between the growth rate of ion density for other applied voltages and the growth rate of ion density for an applied voltage of 4 kV is calculated, and plotted in figure 5.

    According to equation (5), the photoelectron current determined,ρdVi, is calculated by:

    whereViis another applied voltage,V0is 4 kV,and theQEis assumed to be linearly dependent on the applied voltageVfor the same photocathode, as shown in [21, 22];E(e,λi)are the discretized spectral irradiance values of the optical-trigger source,E0(λi) is the energy of photon at the wavelength λi,andt1is the pulse duration of the trigger light.

    In addition to the ion-density growth ratethe righthand y-coordinate of figure 5 represents the non-dimensional change rate of the discharge-formation velocityin arbitrary units obtained from the experimental results of the Mg and Cu-photocathode-trigger delays.

    where delayViis the measured delay time for another applied voltage,and delayV0is the measured delay time for an applied voltage of 4 kV.

    Figure 5.Calculated ion-density growth rates compared with the non-dimensional change rate of discharge-formation velocity(1/delay) from the experimental results.

    Figure 5 shows that an increased voltage promotes ion accumulation and a higher 1 /d elaya.u,and therefore a faster discharge-formation process is established using the same HCD pressure and geometric conditions.Additionally, as illustrated in figure 5, the slopes of the induced 1 /d elaya.uin the experimental data obtained from both the Mg and Cu photocathodes show a similar tendency to the ion-density growth ratesd,(determined by the photoelectron current)versus changes in the applied voltage.Compared with the Cu device, 1 / d elaya.ufor theMg photocathode is closer to the determined photoelectron current,dρVi.The results of 1 /d elaya.uobtained from the experimental delaydρ Viof the ion-growth model (as determined by photoelectric current)demonstrate that the ion-accumulation process(as determined by photoelectron emission),or virtual-anode formation,is the dominant factor in the discharge-formation process.

    From the experimental results as shown in figure 4, the discharge-formation time of the Mg-photocathode-based HCD device is shorter than that of the Cu photocathode under the same conditions, which is consistent with our model that prdicts that the increased photoelectrons orj0provided by the lower-QEmaterial, Mg, result in faster ion-formation rate.

    3.2.Electron beam

    In this section, electron-beam generation is investigated for HCD devices based on two photocathode materials, Cu and Mg.The typical electron-beam current waveform obtained from a Mg-photocathode HCD at a 16 kV breakdown voltage is illustrated in figure 6.A hollow-cathode-phase electron beam with high energy but a low current density[23-25]and a conductive-phase electron beam with low energy and a high electron-beam current [26, 27] are identified in figure 6.

    The electron-beam current pulses obtained from the Mgand Cu-photocathode-based HCD devices are illustrated in figure 7, under the same breakdown voltage of 17 kV and a pressure of 40.5 mTorr.As shown in figure 7, the Mg-photocathode device with a higher initial photoelectron current,j0, is capable of generating a higher electron density or a 146.4 A beam current,which is 1.27 times that of the 115.2 A beam current obtained from the Cu-cathode device.Meanwhile, the electron beam’s current-pulse duration is slightly different for various cathode materials, varying from the Cucathode device’s 587 ns to the Mg-cathode device’s 690 ns.

    Figure 6.Typical electron-beam current waveforms for two independent phases.

    Figure 7.The electron-beam current waveforms of pure Cu and Mg cathodes.

    The peak values of the electron-beam currents obtained from Cu- and Mg-photocathode-based HCD devices are plotted in figure 8.As shown in figure 8, the peak current is increased from 57.4 A to 68.4 A, comparing the electron beam generated by the Cu-HCD device with the Mg-HCD device at 6 kV.At a 10 kV breakdown voltage, the peak electron-beam current obtained from the Mg-HCD device is 1.3 times that obtained from the Cu-HCD device.

    Figure 8.The peak values of electron-beam currents generated by two different photocathodes under the same external conditions.

    The results presented in figures 7 and 8 demonstrate that the Mg-photocathode-based HCD device generates a higher electron-beam current, while the beam pulse duration is slightly increased at the same time.As a low work-function material, the Mg photocathode is capable of generating more seed electrons under the same optical-trigger conditions.As a result, the gas-ionization and plasma-formation processes are promoted in both the hollow cathode and the main gap for the Mg-photocathode-based HCD device.However, as presented in the above sections, the triggering photoelectrons and subsequent ionization processes mainly promote the formation of a virtual anode and the main discharge process,but following the trigger processes, the subsequent photoemission that is due to the low work function of the material in the hollow cathode does not cause more low-energy electron generation.Therefore, the efficient optical-trigger device based on the photoelectric effect of the lower work-function material is capable of improving the amplitude of the electron-beam current but slightly impacts the electron-pulse duration,which is favorable for applications based on multiple energetic electron beams.

    4.Conclusions

    HCD is characterized by its high current and very fast breakdown, which are highly dependent on its hollow-cathode configuration.Multiple works and studies of HCD are mainly focused on the influence of the hollow-cathode structure on high-efficiency discharge and multiple energetic electron-beam generation.Regarding the condition of a sufficient electron current for triggering, the hollow cathode served as a hollow anode with respect to the trigger to analyze discharge-formation processes in the pre-breakdown stage[28].In order to further study the triggered-discharge-formation process, microsecond-time-scale optical-trigger experiments with insufficient seed electrons are introduced.In this paper,a model based on the classical plane-parallel model but modified for the hollow-cathode-influenced positive space-charge formation process is presented.The HCD spacecharge formation model is validated by the results obtained from optical-trigger experiments using two cathode materials,Cu and Mg, with different discharge voltages.In addition,electron-beam generation is also investigated by optically triggered HCD experiments for Mg- and Cu-photocathodebased devices.The conclusions can be summarized as follows:

    (1) In an HCD device, the discharge-formation process is mostly relevant to the positive space-charge formation process,which is influenced by the penetrating electricfield distribution in the hollow cathode.Therefore, the trigger delay is mainly quantitatively dependent on the positive space-charge formation rate or the gas-iondensity growth rate, which is determined by the penetrating electric-field depth described by our model.

    (2) Both the theoretical model and the experimental results demonstrate that in the positive space-charge formation and movement process, the effect of initial seedingelectron density is dominant, which is described quantitatively by our model.In an optically triggered HCD, the ion-density growth rate is increased by an increasing applied voltage and a higher seed-electron density is obtained from a lower work-function material, resulting in a short delay.

    (3) The electron-beam measurement results demonstrate that a more efficient trigger device is capable of generating an electron beam with higher amplitude and density.However, the trigger electrons mainly promote initial high-energy electron formation.As a result, the collision loss and low-energy electron generation are not influenced by the trigger efficiency,therefore the electron-beam duration does not vary by much, which also matches our model description.

    ORCID iDs

    Weijie HUO (霍衛(wèi)杰) https://orcid.org/0000-0002-1533-2986

    猜你喜歡
    胡靜秦嶺
    守護(hù)大秦嶺
    人類(lèi)能否通過(guò)科技來(lái)理解動(dòng)物的“語(yǔ)言”
    澳大利亞的“矛”即將回家
    Kylie Jenner關(guān)于產(chǎn)后如何遠(yuǎn)離PPD的建議
    2023年春節(jié),旅游業(yè)強(qiáng)勁復(fù)蘇
    暑期秦嶺游
    洞穿秦嶺
    Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
    賈平凹:從秦嶺到秦嶺
    好忙好忙的秦嶺
    大型黄色视频在线免费观看| 亚洲av美国av| 大型av网站在线播放| 国产极品粉嫩免费观看在线| 人人澡人人妻人| 免费无遮挡裸体视频| 久久久久亚洲av毛片大全| 18禁黄网站禁片免费观看直播| 国内揄拍国产精品人妻在线 | 99热这里只有精品一区 | 亚洲人成伊人成综合网2020| 久久青草综合色| 亚洲五月色婷婷综合| 亚洲自拍偷在线| 亚洲无线在线观看| 精品无人区乱码1区二区| 国内精品久久久久精免费| 曰老女人黄片| 美女午夜性视频免费| 久久中文字幕人妻熟女| 三级毛片av免费| 久久人妻av系列| 国产精品亚洲美女久久久| 久久伊人香网站| av电影中文网址| 黄色毛片三级朝国网站| 亚洲专区字幕在线| 午夜福利高清视频| 国产免费av片在线观看野外av| 亚洲精品美女久久av网站| 黄频高清免费视频| 国产av又大| 久久精品91无色码中文字幕| 国产v大片淫在线免费观看| 免费在线观看日本一区| 精品高清国产在线一区| 国产午夜福利久久久久久| 午夜免费成人在线视频| 老汉色av国产亚洲站长工具| 亚洲狠狠婷婷综合久久图片| 在线观看免费日韩欧美大片| 久久久久国产一级毛片高清牌| 天堂影院成人在线观看| 精品国产国语对白av| 一二三四在线观看免费中文在| 色哟哟哟哟哟哟| 久久国产乱子伦精品免费另类| 亚洲成人国产一区在线观看| 青草久久国产| 成人一区二区视频在线观看| 亚洲av成人不卡在线观看播放网| 亚洲人成77777在线视频| 女生性感内裤真人,穿戴方法视频| 亚洲精品在线观看二区| 国产99久久九九免费精品| e午夜精品久久久久久久| 久久精品91无色码中文字幕| 听说在线观看完整版免费高清| 身体一侧抽搐| 美国免费a级毛片| 精品熟女少妇八av免费久了| 久久精品夜夜夜夜夜久久蜜豆 | 丝袜美腿诱惑在线| 成人三级黄色视频| 久久香蕉精品热| 黑人操中国人逼视频| 久久久久国产一级毛片高清牌| 又大又爽又粗| 久久久久久大精品| av在线播放免费不卡| 精品国产亚洲在线| 国产熟女xx| 午夜久久久在线观看| 99riav亚洲国产免费| 成人亚洲精品一区在线观看| 美女午夜性视频免费| ponron亚洲| 黄色毛片三级朝国网站| 99在线视频只有这里精品首页| www.999成人在线观看| 亚洲片人在线观看| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 欧美性猛交╳xxx乱大交人| 亚洲国产欧洲综合997久久, | 一个人观看的视频www高清免费观看 | 国产免费av片在线观看野外av| 亚洲中文字幕日韩| 欧美日韩一级在线毛片| 国产伦人伦偷精品视频| 亚洲精品美女久久av网站| 国产欧美日韩精品亚洲av| 在线免费观看的www视频| 自线自在国产av| 美女 人体艺术 gogo| 男女做爰动态图高潮gif福利片| 波多野结衣巨乳人妻| 十分钟在线观看高清视频www| 欧美成人一区二区免费高清观看 | 国产日本99.免费观看| 大型av网站在线播放| 少妇裸体淫交视频免费看高清 | 精品少妇一区二区三区视频日本电影| 国产精品免费视频内射| 成年版毛片免费区| 黄色a级毛片大全视频| 成人手机av| 日韩欧美一区二区三区在线观看| 亚洲精品一区av在线观看| 成人三级黄色视频| 欧美日本视频| 日韩欧美在线二视频| 99热6这里只有精品| 欧美成人性av电影在线观看| 国产欧美日韩一区二区三| 国产不卡一卡二| 国产精品98久久久久久宅男小说| 亚洲在线自拍视频| 国产激情久久老熟女| 很黄的视频免费| 两性夫妻黄色片| av视频在线观看入口| 91成年电影在线观看| 深夜精品福利| 天天一区二区日本电影三级| 国产成人av激情在线播放| 国产单亲对白刺激| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| 99精品久久久久人妻精品| 久久久水蜜桃国产精品网| 午夜免费成人在线视频| 欧美激情久久久久久爽电影| 国产精品久久电影中文字幕| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 亚洲专区中文字幕在线| 黄片播放在线免费| 老司机午夜十八禁免费视频| 国产欧美日韩精品亚洲av| 在线观看www视频免费| 免费观看精品视频网站| 日韩一卡2卡3卡4卡2021年| 日本 欧美在线| 久久精品人妻少妇| aaaaa片日本免费| 国产高清激情床上av| 亚洲国产欧美网| 色av中文字幕| 久久午夜亚洲精品久久| 在线天堂中文资源库| 国产不卡一卡二| 亚洲真实伦在线观看| 亚洲国产欧美日韩在线播放| 欧美激情久久久久久爽电影| 侵犯人妻中文字幕一二三四区| 少妇粗大呻吟视频| 男女午夜视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产在线精品亚洲第一网站| 一本精品99久久精品77| 美女扒开内裤让男人捅视频| 91大片在线观看| 日日夜夜操网爽| 国产1区2区3区精品| 观看免费一级毛片| 欧美zozozo另类| 丝袜美腿诱惑在线| 69av精品久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲人成伊人成综合网2020| 国产精品久久视频播放| 精品国产乱码久久久久久男人| 成人亚洲精品一区在线观看| av在线天堂中文字幕| 成人亚洲精品一区在线观看| a级毛片a级免费在线| 亚洲性夜色夜夜综合| 99国产综合亚洲精品| 少妇裸体淫交视频免费看高清 | av电影中文网址| 色播在线永久视频| 人人澡人人妻人| 国产在线精品亚洲第一网站| 精品久久久久久久久久免费视频| 人人澡人人妻人| 免费在线观看日本一区| 成人欧美大片| 精品国产国语对白av| 香蕉久久夜色| 少妇熟女aⅴ在线视频| 老司机深夜福利视频在线观看| 国产精品乱码一区二三区的特点| 欧美激情久久久久久爽电影| 老熟妇乱子伦视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 黑人操中国人逼视频| 国产成+人综合+亚洲专区| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷精品国产亚洲av| 性欧美人与动物交配| 成在线人永久免费视频| 国产真人三级小视频在线观看| 午夜福利高清视频| 亚洲中文字幕日韩| 亚洲最大成人中文| 老司机福利观看| 日韩有码中文字幕| 制服诱惑二区| 国产午夜精品久久久久久| 亚洲,欧美精品.| 久久人人精品亚洲av| 精品不卡国产一区二区三区| 亚洲欧美精品综合久久99| 很黄的视频免费| 国产av又大| 亚洲人成电影免费在线| 日韩欧美国产在线观看| 老司机深夜福利视频在线观看| 18禁观看日本| 神马国产精品三级电影在线观看 | 黄片播放在线免费| 欧美日韩瑟瑟在线播放| 大型黄色视频在线免费观看| 日韩精品免费视频一区二区三区| 美女高潮到喷水免费观看| 好男人在线观看高清免费视频 | 男人舔女人下体高潮全视频| 欧美激情极品国产一区二区三区| 51午夜福利影视在线观看| 1024手机看黄色片| 欧美国产日韩亚洲一区| 久久国产精品人妻蜜桃| 午夜日韩欧美国产| 一区二区三区高清视频在线| 长腿黑丝高跟| tocl精华| 日本一本二区三区精品| 黑人巨大精品欧美一区二区mp4| 不卡一级毛片| 久久久久久免费高清国产稀缺| 人人妻,人人澡人人爽秒播| 久久婷婷人人爽人人干人人爱| 欧美日韩亚洲综合一区二区三区_| 免费在线观看黄色视频的| 午夜激情福利司机影院| 老司机午夜福利在线观看视频| 欧美一级a爱片免费观看看 | 国产激情偷乱视频一区二区| 侵犯人妻中文字幕一二三四区| 亚洲精品一区av在线观看| 一进一出好大好爽视频| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 免费在线观看成人毛片| 国内久久婷婷六月综合欲色啪| 成人精品一区二区免费| 美女国产高潮福利片在线看| 亚洲中文字幕一区二区三区有码在线看 | 99热只有精品国产| 精品国产乱码久久久久久男人| 十八禁人妻一区二区| e午夜精品久久久久久久| 我的亚洲天堂| 精品国产国语对白av| 亚洲熟女毛片儿| 国产精品久久久久久精品电影 | 欧美乱色亚洲激情| 搞女人的毛片| 国产午夜福利久久久久久| av欧美777| 两个人视频免费观看高清| 国产区一区二久久| 中文字幕av电影在线播放| 午夜福利高清视频| 亚洲国产欧洲综合997久久, | 最新美女视频免费是黄的| 精品福利观看| 午夜福利在线在线| 黑丝袜美女国产一区| 免费在线观看亚洲国产| 伦理电影免费视频| 最新美女视频免费是黄的| 国产精品电影一区二区三区| 中文字幕av电影在线播放| 亚洲中文字幕日韩| 99精品欧美一区二区三区四区| 一区二区三区精品91| 国产高清videossex| 麻豆国产av国片精品| 性欧美人与动物交配| 午夜久久久在线观看| 欧美绝顶高潮抽搐喷水| 男人舔奶头视频| videosex国产| 国产日本99.免费观看| 午夜日韩欧美国产| 久久久久亚洲av毛片大全| 哪里可以看免费的av片| 丝袜人妻中文字幕| 九色国产91popny在线| 国产乱人伦免费视频| 97人妻精品一区二区三区麻豆 | 这个男人来自地球电影免费观看| 久久伊人香网站| 黄色成人免费大全| 午夜免费观看网址| 亚洲av电影在线进入| 99在线人妻在线中文字幕| 国产欧美日韩精品亚洲av| 视频区欧美日本亚洲| 老鸭窝网址在线观看| www.熟女人妻精品国产| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| 此物有八面人人有两片| 国产视频内射| 脱女人内裤的视频| 动漫黄色视频在线观看| 丰满的人妻完整版| 男女视频在线观看网站免费 | 久久久国产成人免费| 国产99久久九九免费精品| 少妇粗大呻吟视频| 黑丝袜美女国产一区| 三级毛片av免费| 可以在线观看毛片的网站| 麻豆成人av在线观看| 国产不卡一卡二| 少妇裸体淫交视频免费看高清 | 亚洲精品色激情综合| 麻豆av在线久日| 精品午夜福利视频在线观看一区| 国产熟女xx| 人人妻,人人澡人人爽秒播| 国产一区二区在线av高清观看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜久久久久精精品| 婷婷亚洲欧美| 亚洲美女黄片视频| 亚洲国产欧美一区二区综合| www.熟女人妻精品国产| 国产一区二区三区视频了| 日韩三级视频一区二区三区| 亚洲国产精品成人综合色| 成年免费大片在线观看| 精品高清国产在线一区| 大型黄色视频在线免费观看| 免费观看人在逋| 精品日产1卡2卡| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| 禁无遮挡网站| 亚洲在线自拍视频| 日韩欧美国产一区二区入口| 日本a在线网址| 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久久5区| 99精品久久久久人妻精品| 国产片内射在线| 中文字幕高清在线视频| 亚洲精品国产区一区二| 欧美性猛交黑人性爽| 亚洲av电影不卡..在线观看| 777久久人妻少妇嫩草av网站| 欧美午夜高清在线| 女警被强在线播放| 国产激情欧美一区二区| 精品福利观看| 免费电影在线观看免费观看| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 国产99白浆流出| 国产精品av久久久久免费| 国产片内射在线| 日本免费一区二区三区高清不卡| 欧美激情高清一区二区三区| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 久久久久九九精品影院| 国产激情欧美一区二区| 欧美日本亚洲视频在线播放| 俄罗斯特黄特色一大片| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区| bbb黄色大片| 99国产精品一区二区三区| 男女下面进入的视频免费午夜 | 满18在线观看网站| 十分钟在线观看高清视频www| 无限看片的www在线观看| 午夜免费观看网址| 久久久久久亚洲精品国产蜜桃av| 亚洲av五月六月丁香网| www.自偷自拍.com| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 麻豆成人av在线观看| 免费高清视频大片| 99久久精品国产亚洲精品| 亚洲国产精品合色在线| 久久久久亚洲av毛片大全| 最近最新中文字幕大全免费视频| 欧洲精品卡2卡3卡4卡5卡区| 白带黄色成豆腐渣| 国产精品久久久人人做人人爽| 中文字幕精品亚洲无线码一区 | 男女午夜视频在线观看| 天天添夜夜摸| 婷婷丁香在线五月| 精品不卡国产一区二区三区| 欧美黑人欧美精品刺激| 十八禁人妻一区二区| 日韩大尺度精品在线看网址| 成人国产一区最新在线观看| 国产精品精品国产色婷婷| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区国产一区二区| 国产主播在线观看一区二区| a在线观看视频网站| 日日夜夜操网爽| 精品久久久久久,| 亚洲国产欧美一区二区综合| 男女那种视频在线观看| 亚洲精品中文字幕在线视频| 欧美性猛交黑人性爽| 老司机午夜福利在线观看视频| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 欧美性长视频在线观看| 国产精品久久久久久精品电影 | 午夜激情av网站| 亚洲成av片中文字幕在线观看| 免费在线观看成人毛片| 欧美国产精品va在线观看不卡| 一进一出好大好爽视频| 麻豆成人午夜福利视频| 又紧又爽又黄一区二区| 国产伦人伦偷精品视频| 高潮久久久久久久久久久不卡| www.www免费av| aaaaa片日本免费| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 99国产精品99久久久久| 亚洲精品色激情综合| 夜夜夜夜夜久久久久| 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 欧美另类亚洲清纯唯美| 国产亚洲精品久久久久久毛片| 亚洲精品国产精品久久久不卡| 少妇的丰满在线观看| 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 啦啦啦韩国在线观看视频| 两个人免费观看高清视频| e午夜精品久久久久久久| 久久久久久免费高清国产稀缺| 欧美日韩乱码在线| 日本一本二区三区精品| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 国产免费男女视频| 深夜精品福利| 成人18禁在线播放| 国产男靠女视频免费网站| 欧美乱妇无乱码| 亚洲欧美精品综合一区二区三区| 极品教师在线免费播放| 免费在线观看日本一区| 他把我摸到了高潮在线观看| 久久久国产成人精品二区| 丝袜在线中文字幕| 人成视频在线观看免费观看| 9191精品国产免费久久| 国产av不卡久久| 怎么达到女性高潮| 久久精品国产清高在天天线| 日韩一卡2卡3卡4卡2021年| 在线观看66精品国产| 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 露出奶头的视频| 精品久久久久久成人av| 亚洲精品在线美女| 国产成人精品无人区| 黄片播放在线免费| 精品国产美女av久久久久小说| 欧美一级毛片孕妇| 男人舔奶头视频| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 久久香蕉国产精品| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 精品欧美国产一区二区三| 欧美精品亚洲一区二区| 日韩欧美免费精品| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 亚洲精品在线美女| 免费人成视频x8x8入口观看| 久久国产亚洲av麻豆专区| 1024香蕉在线观看| www国产在线视频色| 国产av在哪里看| 一级作爱视频免费观看| 少妇 在线观看| 亚洲七黄色美女视频| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 成人亚洲精品av一区二区| 999久久久国产精品视频| 俺也久久电影网| 激情在线观看视频在线高清| 天天添夜夜摸| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 国产精品亚洲av一区麻豆| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 黄色 视频免费看| 制服诱惑二区| 成人特级黄色片久久久久久久| 俺也久久电影网| 亚洲五月色婷婷综合| 日韩av在线大香蕉| 91九色精品人成在线观看| 欧美激情极品国产一区二区三区| 久久热在线av| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 无人区码免费观看不卡| 久久精品人妻少妇| bbb黄色大片| 91字幕亚洲| 黄色片一级片一级黄色片| 丝袜在线中文字幕| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 天天一区二区日本电影三级| 日本a在线网址| www日本在线高清视频| 亚洲一码二码三码区别大吗| 熟妇人妻久久中文字幕3abv| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 亚洲无线在线观看| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 99久久精品国产亚洲精品| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 国产野战对白在线观看| 女人被狂操c到高潮| 在线视频色国产色| 老司机午夜福利在线观看视频| 嫩草影视91久久| 国产精品美女特级片免费视频播放器 | 日本五十路高清| 欧美中文日本在线观看视频| 91成人精品电影| aaaaa片日本免费| 亚洲真实伦在线观看| www国产在线视频色| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 亚洲激情在线av| 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 窝窝影院91人妻| 女性生殖器流出的白浆| 99国产精品99久久久久| 一个人免费在线观看的高清视频| 香蕉久久夜色| 18禁美女被吸乳视频| 韩国av一区二区三区四区| av在线天堂中文字幕| 一本综合久久免费| 日日干狠狠操夜夜爽| 午夜激情av网站| 久久久久国内视频| 成人特级黄色片久久久久久久| 欧美成狂野欧美在线观看| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 波多野结衣高清无吗| 热99re8久久精品国产| 波多野结衣高清无吗| 在线av久久热| 一a级毛片在线观看| 高清在线国产一区| 亚洲av美国av| 99国产精品99久久久久| 精品国产乱码久久久久久男人| 中文字幕精品免费在线观看视频| 午夜亚洲福利在线播放|