• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical model and experimental investigation optically triggered hollowcathode discharge formation

    2021-03-01 08:09:50WeijieHUO霍衛(wèi)杰JingHU胡靜XiaotongCAO曹曉彤LingQIN秦嶺andWanshengZHAO趙萬(wàn)生
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:胡靜秦嶺

    Weijie HUO(霍衛(wèi)杰) ,Jing HU(胡靜),Xiaotong CAO(曹曉彤),Ling QIN(秦嶺)and Wansheng ZHAO (趙萬(wàn)生)

    State key laboratory of Mechanical System and Vibration, Mechanical Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

    Abstract In order to investigate the process of optically triggered discharge formation, a model of ion space-charge formation based on classical plane electrodes and revised for a characteristic hollow-cathode discharge(HCD)configuration is proposed in this paper.The primary modified factor in our model is the penetrating electric-field parameter,which influences the ionization of trigger electrons and is calculated via particle simulation.Optical-trigger experiments are carried out using different voltages and under different seed-electron conditions, provided by two different photocathodes, Cu and Mg.The ion-accumulation rates calculated by our model are compared to the discharge-formation time, which is deduced from optical-trigger experiments.The results demonstrate that the process of positive space-charge formation is dominant in the HCD formation process or trigger delay, which is highly dependent on the seeding-electron density and applied voltage, and can therefore be quantitatively described by our model.Additionally, electron-beam generation is investigated by optically triggered HCD experiments on Mg- and Cu-photocathode-based devices.The results show that a more efficient trigger device is capable of generating an electron beam with higher amplitude and density.

    Keywords: hollow-cathode discharge (HCD), trigger delay, optical trigger

    1.Introduction

    Pseudospark discharge, first discovered in 1979, is operated in the low-pressure region on the left-hand branch of Paschen’s curve,which is characterized by a discharge current in the kiloampere region and high-energy electron-beam generation within tens of nanoseconds [1, 2].In pseudosparkdischarge devices, single electrons cannot initiate the discharge in the main gap, therefore triggered ‘seed electrons’from a hollow cathode are required for discharge ignition[3-5].The time duration between the application of a trigger pulse and the initiation of pseudospark discharge is defined as the trigger delay or discharge-formation time [6].

    The discharge-formation process is divided into three stages [7]: (1) the plasma virtual anode gradually forms near the anode, (2) movement of the plasma virtual anode, (3) the ionization process within the hollow-cathode cavity as the anode potential becomes close to the cathode.The second and third stages are discussed in detail in the related literature[8-13].However, there is a lack of discussion about opticaltrigger-motivated virtual-anode formation and the subsequent discharge-formation processes.

    To investigate the relationship between trigger delay and the virtual-anode-formation process, a modified model for positive-ion space-charge formation is proposed, and then a series of optically triggered pseudospark-discharge experiments is presented.The triggered hollow-cathode discharge (HCD) formation time is compared with the growth rate of positive-ion density,which is decided by seed electrons and applied voltage etc.Furthermore,the influence of the optical trigger on beam generation is also discussed.This work is organized as follows:in sections 1.1 and 1.2,as part of the introduction, the modeling of positive spacecharge formation and calculation of the HCD parameterk(V,t)are presented;in section 2,the pseudospark-discharge experimental setup and the optical-trigger device are presented; in section 3.1, the experimental results for the triggered HCD and a comparison with our model are presented and discussed; in section 3.2, electron-beam characteristics are investigated with various optical-trigger parameters.The conclusions are finally summarized in section 4.

    1.1.Model description

    Equation (1), below, describes an ion-accumulation process,on the assumption that the positive ionic distribution, ρi, is varied with time but independent of the spatial location during the early period of the pre-breakdown stage [14].

    wherej(t) is the electron-current density, which is simply defined by Child-Langmuir current att= 0; σi(V) is the average cross-section for the ionization of gas atoms by electrons under applied voltageV;nis the atomic density,andT0is the average travelling time of the ions [14].

    However, equation (1) describes the model of a typical parallel-plane discharge-gap configuration and it does not account for the influence of ‘seed electrons’.As shown in[15], the total ionization cross-section in the hollow-cathode region is one order of magnitude higher than that of the main gap during the pre-breakdown phase.The cathode’s aperture and the hollow-cathode configuration lead to the formation of a reducedE/Nregion(E/Nrepresents a reduced electric field,whereEis an electric field andNis the density of neutral particles) in the hollow cathode and promote substantial ionization events here, due to potential lines penetrating into the cathode region.Thus the classical parallel-plane model presented in equation (1) requires suitable modifications to take account of the HCD configuration.

    Since the mean free path of the electrons is much greater than the gap spaced, the electrons pass through the main gap almost without collision [16].Therefore, the electron currentj(t) is formed by the initial seed-electron currentj0(t)through ionization multiplication in the hollowcathode region, which can be described by a multiplication coefficientk(V,N,t) under certain geometric conditions.Therefore, compared with equation (1), the model resulting from the inclusion of the hollow-cathode effect is as follows:

    In the model described by equation (2), the initial seedelectron currentj0(t) mainly originates from the trigger process, which is the photoelectron current under this optically triggered discharge condition:

    In equation (3), λ0is the minimum wavelength of the xenon flash lamp’s output in the following experiments,λ1is the cut-off wavelength of the photoelectric effect for a given material,t1is the duration of the flash light’s illumination,lis the attenuation coefficient of light,E(e,λ)is the spectral irradiance of the flash lamp,E0(λ) is the energy of a photon whose wavelength is λ,QEis the quantum efficiency for a specified material.

    To simplify the discussion, for a fixed pressure and geometric structure,k(N,V,t) (ork(V,t)) is determined by the penetrating electric-field distribution inside the hollow-cathode region.In addition,the generated ion density at each location is only dependent on the time before the formation of the virtual anode, equation (2) can be simplified to the following form:

    1.2.Modeling and calculation of the HCD parameter k(V, t)

    In the HCD model presented via equation(4),the effect of the hollow-cathode configuration is represented by the multiplication coefficientk(V,t) determined by the penetrating electric field.In this work, a particle-in-cell (PIC) simulation via XOOPIC is presented to study the influence of applied voltage on the penetrating electric-field distribution, as illustrated in figure 1.The HCD device and the PIC calculationdomain model are illustrated in figures 1(a)and(b),which are the same as the experimental setup in section 2.The gas used is Ar and the gas pressure is 50.6 mTorr in the simulation,while the other simulation parameters including the cell size,time step,initial density for tracked particles,particle weight,and secondary coefficient are the same as those used in [15]and are shown in table 1.Figures 1(c)and(d)are the electronphase plots and potential distributions at 4 kV and 10 kV,illustrating that the potential lines penetrate more deeply and widely inside the hollow-cathode region under higher applied voltages.Therefore, a bigger intense ionization region is formed in the hollow-cathode region and dependent on the applied voltage.

    The electric-field penetration coefficientk(V,t) is the electric-field-related penetration depth, which determines the efficient ionization region inside the hollow cathode.According to [17], the electron ionization cross-section reaches its maximum value when its energy is 2ξiz(31.6 eV for Ar) and the electrons around the 31.6 V potential region generate the highest-ionization events, thusk(V,t) is defined as the ratio of the 31.6 V potential line’s depth on the symmetric axis versus the length of the hollow cathode.Values ofk(V,t) versus various applied voltages ranging from 4 kV to 12 kV at different times are illustrated in figure 1(e),confirming the presence of an approximately linear dependency betweenk(V,t) and the voltage applied before the plasma caused by the strong positive space charge forms in the main gap.

    Figure 1.Numerical simulation results for a penetrating electric field in a hollow cathode.(a) Structure of a pseudospark-discharge device,(b)PIC model of the electrodes,(c)potential distribution when the applied voltage is 4 kV,(d)potential distribution when the applied voltage is 10 kV, (e) the penetrating electric-field depth versus different applied voltages at different times.

    Table 1.The simulation parameters used for the PIC simulations.

    2.Experimental setup

    Figure 2.Experimental setup for an optically triggered pseudospark discharge.

    The experimental setup including the pseudospark-discharge device, optical trigger, and electron-beam drift region is illustrated in figure 2.The single-gap pseudospark-discharge chamber consists of a cylindrical hollow cathode and a grounded anode insulated by Teflon.The anode and cathode each have a 20 mm diameter and a 3 mm on-axis hole for electron-beam extraction.The length of the cathode cavity is 20 mm and the thickness of the hollow-cathode cavity and the anode electrode is 3 mm.The material used for all the electrodes is Cu.

    The optical-trigger source in the experiments is a xenon flash lamp (MXS1.5U-00) with a 5 W power input and a maximum emission frequency of 252 Hz.The output wavelength range of the flash lamp is 180mm to 2000 nm.To control the light-output intensity of the flash lamp, the discharge voltage of the flash lamp can be changed from 400 V to 600 V.In our experiments, the xenon flash lamp is triggered by an external trigger pulse from 0 V to 5 V in amplitude and with a 10 μs pulse width.The optical signal irradiates the cathode inner wall through a sapphire ultraviolet-transparent glass flange to generate seed electrons and trigger the discharge.

    Through the use of a pure Cu hollow cathode and Mg foil covering the inside walls of the hollow cathode, the same photoemission areas are obtained to generate different amounts of seed photoelectrons, as decided by theQE.The work function of Mg is 3.66 eV and that of Cu is 4.5 eV[17,18].The influence of different amounts of seed electrons,j0, on the trigger delay is experimentally investigated in this paper, for two different photocathode materials, Mg and Cu.The hollow cathode is connected to a high-voltage DC power supply (AU-60N5-L (220)) through a 20 MΩ charging resistor.Two 2000 pF ceramic capacitors are connected symmetrically between the anode and cathode for energy storage.A high-voltage probe (North Star PVM-5) is connected to the cathode to measure the voltage breakdown waveform.The discharge current is measured by a fastresponse Rogowski coil.The electron-beam current is measured by 0.423 Ω Faraday cup [19, 20] located 10 mm downstream from the anode hole in the electron-beam drift space.Data are acquired by a high-speed oscilloscope with a 1 GS s?1sampling rate, at a bandwidth of 500 MHz.

    The experiments on the formation of optically triggered pseudospark discharges and the generation of HCD-based electron beams are performed in argon gas.

    Figure 3.Typical waveforms of trigger pulse and onset of discharge.

    Figure 4.The HCD formation times of different photocathodes versus varying voltages at a pressure P = 50.6 mTorr.

    3.Experimental results and discussion

    3.1.Trigger delay

    The typical waveforms of the optical-trigger pulse and the onset of HCD are presented in figure 3.In this section, the time interval between the optical-trigger pulse and the onset of HCD is treated as the HCD formation time or trigger delay.The influences of the applied voltage and seeding-electron density,j0, on discharge-formation time are studied experimentally.Each data point presented in the plots is the mean value of five continuous measurements.The time intervals for Cu and Mg photocathodes and four breakdown voltages ranging from 4 kV to 7 kV are investigated and plotted in figure 4, for which the pressure is 50.6 mTorr.As illustrated in figure 4, compared with the Cu cathode, the Mg cathode brings about a higher initial current density,j0, and thus a faster HCD formation time for the same voltage and pressure conditions.For the lowest voltage applied (4 kV), the HCD formation time of the Cu-cathode device is 44.2 μs, which is 4.6 times the 9.5 μs obtained with the Mg-cathode device.At the highest operational voltage of 7 kV, the HCD formation time of a Cu-cathode device is 15.6 μs,which is 3.4 times that of the 4.6 μs obtained using the Mg-cathode device.

    In addition, in both Cu- and Mg-photocathode devices,the HCD formation process is faster with an increased breakdown voltage at the same pressure orN,as illustrated in figure 4.In the Mg-cathode device, the HCD formation time is decreased from 9.5 μs to 4.6 μs when the breakdown voltage is increased from 4 kV to 7 kV.In the Cu-cathode device,the HCD formation time is decreased from 44.2 μs to 15.6 μs when the breakdown voltage is increased from 4 kV to 7 kV.

    According to our model in section 1, the remaining positive-ion(ρi)distribution depends on the growth rate of the ions generated due to ionization,dρi_g,(or the right-hand side of equation (4)):

    where?k V t,( ) is the averagedk(V,t), which is linearly dependent on the applied voltageV, oraccording to the PIC simulation results presented in section 1.The average ionization cross-section, σi(V), is calculated through the same method as that shown in [14].

    To evaluate the influence of applied voltage on the ionaccumulation process, the non-dimensional ion-density growth rateρdViin arbitrary units, which is the ratio between the growth rate of ion density for other applied voltages and the growth rate of ion density for an applied voltage of 4 kV is calculated, and plotted in figure 5.

    According to equation (5), the photoelectron current determined,ρdVi, is calculated by:

    whereViis another applied voltage,V0is 4 kV,and theQEis assumed to be linearly dependent on the applied voltageVfor the same photocathode, as shown in [21, 22];E(e,λi)are the discretized spectral irradiance values of the optical-trigger source,E0(λi) is the energy of photon at the wavelength λi,andt1is the pulse duration of the trigger light.

    In addition to the ion-density growth ratethe righthand y-coordinate of figure 5 represents the non-dimensional change rate of the discharge-formation velocityin arbitrary units obtained from the experimental results of the Mg and Cu-photocathode-trigger delays.

    where delayViis the measured delay time for another applied voltage,and delayV0is the measured delay time for an applied voltage of 4 kV.

    Figure 5.Calculated ion-density growth rates compared with the non-dimensional change rate of discharge-formation velocity(1/delay) from the experimental results.

    Figure 5 shows that an increased voltage promotes ion accumulation and a higher 1 /d elaya.u,and therefore a faster discharge-formation process is established using the same HCD pressure and geometric conditions.Additionally, as illustrated in figure 5, the slopes of the induced 1 /d elaya.uin the experimental data obtained from both the Mg and Cu photocathodes show a similar tendency to the ion-density growth ratesd,(determined by the photoelectron current)versus changes in the applied voltage.Compared with the Cu device, 1 / d elaya.ufor theMg photocathode is closer to the determined photoelectron current,dρVi.The results of 1 /d elaya.uobtained from the experimental delaydρ Viof the ion-growth model (as determined by photoelectric current)demonstrate that the ion-accumulation process(as determined by photoelectron emission),or virtual-anode formation,is the dominant factor in the discharge-formation process.

    From the experimental results as shown in figure 4, the discharge-formation time of the Mg-photocathode-based HCD device is shorter than that of the Cu photocathode under the same conditions, which is consistent with our model that prdicts that the increased photoelectrons orj0provided by the lower-QEmaterial, Mg, result in faster ion-formation rate.

    3.2.Electron beam

    In this section, electron-beam generation is investigated for HCD devices based on two photocathode materials, Cu and Mg.The typical electron-beam current waveform obtained from a Mg-photocathode HCD at a 16 kV breakdown voltage is illustrated in figure 6.A hollow-cathode-phase electron beam with high energy but a low current density[23-25]and a conductive-phase electron beam with low energy and a high electron-beam current [26, 27] are identified in figure 6.

    The electron-beam current pulses obtained from the Mgand Cu-photocathode-based HCD devices are illustrated in figure 7, under the same breakdown voltage of 17 kV and a pressure of 40.5 mTorr.As shown in figure 7, the Mg-photocathode device with a higher initial photoelectron current,j0, is capable of generating a higher electron density or a 146.4 A beam current,which is 1.27 times that of the 115.2 A beam current obtained from the Cu-cathode device.Meanwhile, the electron beam’s current-pulse duration is slightly different for various cathode materials, varying from the Cucathode device’s 587 ns to the Mg-cathode device’s 690 ns.

    Figure 6.Typical electron-beam current waveforms for two independent phases.

    Figure 7.The electron-beam current waveforms of pure Cu and Mg cathodes.

    The peak values of the electron-beam currents obtained from Cu- and Mg-photocathode-based HCD devices are plotted in figure 8.As shown in figure 8, the peak current is increased from 57.4 A to 68.4 A, comparing the electron beam generated by the Cu-HCD device with the Mg-HCD device at 6 kV.At a 10 kV breakdown voltage, the peak electron-beam current obtained from the Mg-HCD device is 1.3 times that obtained from the Cu-HCD device.

    Figure 8.The peak values of electron-beam currents generated by two different photocathodes under the same external conditions.

    The results presented in figures 7 and 8 demonstrate that the Mg-photocathode-based HCD device generates a higher electron-beam current, while the beam pulse duration is slightly increased at the same time.As a low work-function material, the Mg photocathode is capable of generating more seed electrons under the same optical-trigger conditions.As a result, the gas-ionization and plasma-formation processes are promoted in both the hollow cathode and the main gap for the Mg-photocathode-based HCD device.However, as presented in the above sections, the triggering photoelectrons and subsequent ionization processes mainly promote the formation of a virtual anode and the main discharge process,but following the trigger processes, the subsequent photoemission that is due to the low work function of the material in the hollow cathode does not cause more low-energy electron generation.Therefore, the efficient optical-trigger device based on the photoelectric effect of the lower work-function material is capable of improving the amplitude of the electron-beam current but slightly impacts the electron-pulse duration,which is favorable for applications based on multiple energetic electron beams.

    4.Conclusions

    HCD is characterized by its high current and very fast breakdown, which are highly dependent on its hollow-cathode configuration.Multiple works and studies of HCD are mainly focused on the influence of the hollow-cathode structure on high-efficiency discharge and multiple energetic electron-beam generation.Regarding the condition of a sufficient electron current for triggering, the hollow cathode served as a hollow anode with respect to the trigger to analyze discharge-formation processes in the pre-breakdown stage[28].In order to further study the triggered-discharge-formation process, microsecond-time-scale optical-trigger experiments with insufficient seed electrons are introduced.In this paper,a model based on the classical plane-parallel model but modified for the hollow-cathode-influenced positive space-charge formation process is presented.The HCD spacecharge formation model is validated by the results obtained from optical-trigger experiments using two cathode materials,Cu and Mg, with different discharge voltages.In addition,electron-beam generation is also investigated by optically triggered HCD experiments for Mg- and Cu-photocathodebased devices.The conclusions can be summarized as follows:

    (1) In an HCD device, the discharge-formation process is mostly relevant to the positive space-charge formation process,which is influenced by the penetrating electricfield distribution in the hollow cathode.Therefore, the trigger delay is mainly quantitatively dependent on the positive space-charge formation rate or the gas-iondensity growth rate, which is determined by the penetrating electric-field depth described by our model.

    (2) Both the theoretical model and the experimental results demonstrate that in the positive space-charge formation and movement process, the effect of initial seedingelectron density is dominant, which is described quantitatively by our model.In an optically triggered HCD, the ion-density growth rate is increased by an increasing applied voltage and a higher seed-electron density is obtained from a lower work-function material, resulting in a short delay.

    (3) The electron-beam measurement results demonstrate that a more efficient trigger device is capable of generating an electron beam with higher amplitude and density.However, the trigger electrons mainly promote initial high-energy electron formation.As a result, the collision loss and low-energy electron generation are not influenced by the trigger efficiency,therefore the electron-beam duration does not vary by much, which also matches our model description.

    ORCID iDs

    Weijie HUO (霍衛(wèi)杰) https://orcid.org/0000-0002-1533-2986

    猜你喜歡
    胡靜秦嶺
    守護(hù)大秦嶺
    人類(lèi)能否通過(guò)科技來(lái)理解動(dòng)物的“語(yǔ)言”
    澳大利亞的“矛”即將回家
    Kylie Jenner關(guān)于產(chǎn)后如何遠(yuǎn)離PPD的建議
    2023年春節(jié),旅游業(yè)強(qiáng)勁復(fù)蘇
    暑期秦嶺游
    洞穿秦嶺
    Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
    賈平凹:從秦嶺到秦嶺
    好忙好忙的秦嶺
    在线 av 中文字幕| 欧美一级a爱片免费观看看| 国产精品国产av在线观看| 亚洲人成77777在线视频| 超色免费av| 亚洲精品乱久久久久久| 国模一区二区三区四区视频| 热re99久久精品国产66热6| 亚洲欧美色中文字幕在线| 国产免费现黄频在线看| 国产一区二区在线观看日韩| av国产精品久久久久影院| 久久精品国产亚洲网站| 一区二区日韩欧美中文字幕 | 久久毛片免费看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 日本午夜av视频| 中国国产av一级| 国产老妇伦熟女老妇高清| 国产亚洲精品第一综合不卡 | 草草在线视频免费看| 天美传媒精品一区二区| 丝袜在线中文字幕| 岛国毛片在线播放| 少妇人妻 视频| 亚洲欧美日韩卡通动漫| 亚洲国产成人一精品久久久| 亚洲欧美成人精品一区二区| 日韩av在线免费看完整版不卡| av免费观看日本| 亚洲精品日韩av片在线观看| 婷婷色综合大香蕉| 在线观看国产h片| 狂野欧美白嫩少妇大欣赏| 精品一区二区三卡| 亚洲精品亚洲一区二区| 成人18禁高潮啪啪吃奶动态图 | 最近中文字幕2019免费版| 久久久久精品久久久久真实原创| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 亚洲欧美精品自产自拍| 九色亚洲精品在线播放| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 美女国产视频在线观看| 日本欧美国产在线视频| 国产av一区二区精品久久| 午夜福利网站1000一区二区三区| 国产一区亚洲一区在线观看| 黄色视频在线播放观看不卡| av线在线观看网站| 色5月婷婷丁香| 肉色欧美久久久久久久蜜桃| 亚洲色图 男人天堂 中文字幕 | 99九九在线精品视频| 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 性色av一级| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 免费av中文字幕在线| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 大陆偷拍与自拍| 午夜福利,免费看| 国产精品久久久久久av不卡| av一本久久久久| 校园人妻丝袜中文字幕| 国产一区二区在线观看日韩| 最新中文字幕久久久久| 亚洲美女视频黄频| 午夜日本视频在线| 天天影视国产精品| 欧美一级a爱片免费观看看| 欧美激情极品国产一区二区三区 | 国产av一区二区精品久久| 少妇被粗大的猛进出69影院 | 久久久国产欧美日韩av| 国产高清不卡午夜福利| 国产一区二区在线观看日韩| av天堂久久9| 五月天丁香电影| 亚洲av综合色区一区| 国产成人精品一,二区| a级片在线免费高清观看视频| 久热这里只有精品99| 久久久国产欧美日韩av| 热99久久久久精品小说推荐| 成年女人在线观看亚洲视频| 国产日韩欧美在线精品| 亚洲成人一二三区av| 久久精品国产亚洲av天美| 国产日韩欧美在线精品| 国产探花极品一区二区| 免费观看av网站的网址| 蜜臀久久99精品久久宅男| 成人国产av品久久久| 亚洲精品国产av成人精品| 老女人水多毛片| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 久久热精品热| 啦啦啦中文免费视频观看日本| 成年人午夜在线观看视频| 人妻系列 视频| 久久久久久久国产电影| 国产乱人偷精品视频| 日日摸夜夜添夜夜添av毛片| 男女免费视频国产| 免费高清在线观看视频在线观看| 免费观看a级毛片全部| 九色成人免费人妻av| 少妇人妻久久综合中文| 亚洲av电影在线观看一区二区三区| a 毛片基地| 熟女av电影| 汤姆久久久久久久影院中文字幕| 极品人妻少妇av视频| 自拍欧美九色日韩亚洲蝌蚪91| 九色成人免费人妻av| 国产成人免费无遮挡视频| 免费观看无遮挡的男女| 亚洲av综合色区一区| 久久这里有精品视频免费| 亚洲精品亚洲一区二区| 免费观看无遮挡的男女| h视频一区二区三区| 视频在线观看一区二区三区| 久久99热这里只频精品6学生| 自线自在国产av| 国产探花极品一区二区| a级毛片在线看网站| 午夜av观看不卡| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美清纯卡通| 亚洲在久久综合| av播播在线观看一区| 日日撸夜夜添| 国产一区亚洲一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 桃花免费在线播放| 免费观看a级毛片全部| 国产精品秋霞免费鲁丝片| 中国三级夫妇交换| 有码 亚洲区| 日本av手机在线免费观看| 亚洲欧美一区二区三区国产| 国产精品一区二区在线观看99| 色吧在线观看| 午夜激情福利司机影院| 免费看光身美女| 最黄视频免费看| 91精品伊人久久大香线蕉| 天堂俺去俺来也www色官网| 一个人免费看片子| 亚洲中文av在线| 国产精品.久久久| 天天操日日干夜夜撸| 又大又黄又爽视频免费| 简卡轻食公司| 夫妻性生交免费视频一级片| 成人国产麻豆网| 国产日韩一区二区三区精品不卡 | 一本大道久久a久久精品| 91精品国产九色| 亚洲第一av免费看| tube8黄色片| 人妻少妇偷人精品九色| 91精品国产九色| 乱码一卡2卡4卡精品| 午夜影院在线不卡| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 少妇丰满av| 中文字幕最新亚洲高清| 成年人午夜在线观看视频| 日韩一区二区视频免费看| 亚洲熟女精品中文字幕| 在现免费观看毛片| 亚洲成色77777| 夫妻午夜视频| 亚洲少妇的诱惑av| 亚洲精品视频女| 啦啦啦视频在线资源免费观看| 久久久久久久亚洲中文字幕| 免费观看a级毛片全部| 亚洲四区av| 熟女av电影| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 菩萨蛮人人尽说江南好唐韦庄| 51国产日韩欧美| 日韩,欧美,国产一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 如何舔出高潮| 在线看a的网站| 免费观看性生交大片5| 国产色爽女视频免费观看| 国产有黄有色有爽视频| 观看av在线不卡| 97在线视频观看| 青春草亚洲视频在线观看| 午夜福利视频精品| 在线观看www视频免费| 夫妻性生交免费视频一级片| 久久综合国产亚洲精品| 精品人妻在线不人妻| 欧美日韩视频精品一区| a级毛片免费高清观看在线播放| 男男h啪啪无遮挡| 亚洲欧美一区二区三区国产| tube8黄色片| 久久久久久久久久久免费av| 亚洲精品乱码久久久久久按摩| 亚洲欧美成人综合另类久久久| 久久青草综合色| 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 蜜桃在线观看..| 精品久久久久久电影网| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频| 中文天堂在线官网| 国产男人的电影天堂91| 国产老妇伦熟女老妇高清| 日韩电影二区| 亚洲第一区二区三区不卡| 少妇被粗大猛烈的视频| 亚洲情色 制服丝袜| 国产精品国产三级国产专区5o| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图 | 久久99精品国语久久久| 日韩亚洲欧美综合| 精品国产露脸久久av麻豆| 综合色丁香网| 97超碰精品成人国产| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| 91aial.com中文字幕在线观看| av女优亚洲男人天堂| av有码第一页| 99九九线精品视频在线观看视频| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 中文字幕亚洲精品专区| 母亲3免费完整高清在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 久久久久精品性色| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品99久久久久久久久| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 最近最新中文字幕免费大全7| 一边摸一边做爽爽视频免费| 两个人免费观看高清视频| 在线看a的网站| 欧美精品国产亚洲| 精品一区二区三区视频在线| 日韩熟女老妇一区二区性免费视频| 国产视频首页在线观看| 97在线人人人人妻| 日韩伦理黄色片| 狂野欧美白嫩少妇大欣赏| 欧美日韩一区二区视频在线观看视频在线| 久久午夜福利片| 亚洲国产精品999| 777米奇影视久久| 黑人巨大精品欧美一区二区蜜桃 | 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 十分钟在线观看高清视频www| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 精品人妻熟女av久视频| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 国产免费视频播放在线视频| 岛国毛片在线播放| 国产av国产精品国产| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 国产精品久久久久久精品古装| 久久久亚洲精品成人影院| av电影中文网址| 黄色配什么色好看| 黄色怎么调成土黄色| 热99久久久久精品小说推荐| 精品一区在线观看国产| videos熟女内射| 久久精品国产自在天天线| 麻豆精品久久久久久蜜桃| 高清黄色对白视频在线免费看| 嫩草影院入口| 午夜福利,免费看| 各种免费的搞黄视频| 成年人午夜在线观看视频| 秋霞伦理黄片| 日韩av在线免费看完整版不卡| av天堂久久9| 久久精品熟女亚洲av麻豆精品| 成人国产麻豆网| 人妻人人澡人人爽人人| videos熟女内射| 国产成人精品在线电影| 精品国产乱码久久久久久小说| 国产黄片视频在线免费观看| 99热这里只有精品一区| 欧美激情国产日韩精品一区| av免费观看日本| 国语对白做爰xxxⅹ性视频网站| 亚洲,欧美,日韩| 又粗又硬又长又爽又黄的视频| 一个人免费看片子| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 18在线观看网站| 少妇猛男粗大的猛烈进出视频| 国产深夜福利视频在线观看| 国产成人精品在线电影| 色哟哟·www| 欧美成人午夜免费资源| 国产伦精品一区二区三区视频9| 纯流量卡能插随身wifi吗| 亚洲精品日韩av片在线观看| 欧美日韩亚洲高清精品| 久久久久精品久久久久真实原创| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 亚洲国产精品国产精品| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品专区欧美| 日本91视频免费播放| 看非洲黑人一级黄片| 飞空精品影院首页| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 日韩不卡一区二区三区视频在线| 精品亚洲乱码少妇综合久久| 一区在线观看完整版| 久久国内精品自在自线图片| 免费看av在线观看网站| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| 伦理电影免费视频| 女性被躁到高潮视频| 美女中出高潮动态图| 亚洲精品自拍成人| 亚洲精品av麻豆狂野| 一级爰片在线观看| 色5月婷婷丁香| 91精品三级在线观看| 国产国语露脸激情在线看| av电影中文网址| 一级毛片aaaaaa免费看小| 亚洲精品久久久久久婷婷小说| 亚洲精品av麻豆狂野| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 观看美女的网站| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 亚洲国产av新网站| 晚上一个人看的免费电影| 欧美精品人与动牲交sv欧美| 91精品伊人久久大香线蕉| 久久av网站| 2018国产大陆天天弄谢| 久久久a久久爽久久v久久| 99热国产这里只有精品6| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看| 青青草视频在线视频观看| 免费少妇av软件| 99久久中文字幕三级久久日本| 亚洲国产成人一精品久久久| 亚洲熟女精品中文字幕| 丝袜脚勾引网站| 亚洲第一区二区三区不卡| 一区二区三区乱码不卡18| 少妇高潮的动态图| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 一级a做视频免费观看| 成人综合一区亚洲| 国产成人91sexporn| 国产精品蜜桃在线观看| 亚洲欧美精品自产自拍| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 天天操日日干夜夜撸| 中文字幕精品免费在线观看视频 | 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久久久久婷婷小说| 在线观看www视频免费| 日本av免费视频播放| 亚洲国产成人一精品久久久| 桃花免费在线播放| 在线观看免费视频网站a站| 91久久精品国产一区二区三区| 熟女av电影| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 亚洲av欧美aⅴ国产| 少妇熟女欧美另类| av福利片在线| 国产色爽女视频免费观看| 精品久久久久久久久av| 亚洲性久久影院| 亚洲国产精品一区三区| 日韩熟女老妇一区二区性免费视频| 能在线免费看毛片的网站| 亚洲第一区二区三区不卡| 简卡轻食公司| 欧美日韩在线观看h| 99热这里只有精品一区| 国产欧美另类精品又又久久亚洲欧美| av视频免费观看在线观看| 天堂8中文在线网| 国产精品.久久久| 国产在视频线精品| 男女边摸边吃奶| 国产无遮挡羞羞视频在线观看| 日韩精品有码人妻一区| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到 | 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 婷婷色综合www| 亚洲欧美精品自产自拍| 国产精品国产三级国产专区5o| 婷婷色综合大香蕉| 少妇精品久久久久久久| 亚洲av福利一区| 成人免费观看视频高清| 最近手机中文字幕大全| 亚洲av国产av综合av卡| 女的被弄到高潮叫床怎么办| 一本—道久久a久久精品蜜桃钙片| 中文天堂在线官网| 亚洲欧美中文字幕日韩二区| 街头女战士在线观看网站| 18禁动态无遮挡网站| 久久精品国产自在天天线| 高清在线视频一区二区三区| 男女边吃奶边做爰视频| 成年人免费黄色播放视频| 日韩欧美精品免费久久| av网站免费在线观看视频| 久久精品久久久久久久性| 草草在线视频免费看| 国产免费又黄又爽又色| 多毛熟女@视频| 99国产精品免费福利视频| 亚洲成人手机| 大话2 男鬼变身卡| 在线观看www视频免费| 亚洲av成人精品一二三区| 午夜影院在线不卡| 黑人欧美特级aaaaaa片| 亚洲经典国产精华液单| 中文乱码字字幕精品一区二区三区| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美 | 如何舔出高潮| 狠狠精品人妻久久久久久综合| 人妻夜夜爽99麻豆av| 好男人视频免费观看在线| 亚洲,欧美,日韩| 91久久精品国产一区二区三区| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕免费大全7| 精品亚洲乱码少妇综合久久| 黑人猛操日本美女一级片| 免费看光身美女| 婷婷色综合www| 国产黄色免费在线视频| 久久精品国产a三级三级三级| 国产亚洲欧美精品永久| 日韩,欧美,国产一区二区三区| 高清欧美精品videossex| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 日本黄色日本黄色录像| 插阴视频在线观看视频| 男女啪啪激烈高潮av片| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 午夜福利,免费看| 最后的刺客免费高清国语| 午夜日本视频在线| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| 国产探花极品一区二区| 一本一本综合久久| 91国产中文字幕| 乱码一卡2卡4卡精品| 中文字幕最新亚洲高清| 大陆偷拍与自拍| 少妇熟女欧美另类| 国产成人免费观看mmmm| 国产成人午夜福利电影在线观看| 少妇猛男粗大的猛烈进出视频| 成人毛片a级毛片在线播放| 18禁动态无遮挡网站| 久久人人爽人人爽人人片va| 国产欧美亚洲国产| 美女国产高潮福利片在线看| 亚洲精品日韩av片在线观看| 国产色婷婷99| 高清不卡的av网站| 在线看a的网站| 飞空精品影院首页| 2018国产大陆天天弄谢| 精品酒店卫生间| 黄色视频在线播放观看不卡| 国产国语露脸激情在线看| 精品人妻在线不人妻| 男男h啪啪无遮挡| 日韩一本色道免费dvd| 丝瓜视频免费看黄片| 一级a做视频免费观看| 国产精品.久久久| 国产黄色视频一区二区在线观看| 亚洲av成人精品一二三区| 少妇被粗大的猛进出69影院 | 亚洲精品av麻豆狂野| 欧美精品一区二区大全| 自线自在国产av| 丰满乱子伦码专区| 国产av精品麻豆| 99热全是精品| 18禁裸乳无遮挡动漫免费视频| 熟女av电影| 免费观看的影片在线观看| 国产 一区精品| 日韩电影二区| 嫩草影院入口| 久久99精品国语久久久| 国产高清三级在线| 观看美女的网站| 午夜福利网站1000一区二区三区| 精品99又大又爽又粗少妇毛片| 欧美国产精品一级二级三级| 成人亚洲欧美一区二区av| 久久99热6这里只有精品| 精品久久蜜臀av无| 黄色一级大片看看| 人妻少妇偷人精品九色| 精品一区二区免费观看| 97超碰精品成人国产| 高清欧美精品videossex| 日本午夜av视频| 久久这里有精品视频免费| 王馨瑶露胸无遮挡在线观看| 国产精品偷伦视频观看了| 国产成人精品一,二区| 综合色丁香网| 亚洲av欧美aⅴ国产| 亚洲精品一区蜜桃| 制服人妻中文乱码| 熟女电影av网| 特大巨黑吊av在线直播| 国产片内射在线| 肉色欧美久久久久久久蜜桃| 特大巨黑吊av在线直播| 伦理电影免费视频| 免费观看av网站的网址| 国产欧美日韩一区二区三区在线 | 国产免费现黄频在线看| 建设人人有责人人尽责人人享有的| 十分钟在线观看高清视频www| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影小说| 国产伦精品一区二区三区视频9| 日韩成人伦理影院| 国产老妇伦熟女老妇高清| 亚洲国产av新网站| 久久久久久久久久成人| 精品一区二区三区视频在线| 亚洲国产av影院在线观看| 日韩在线高清观看一区二区三区| 99久国产av精品国产电影| 人人妻人人澡人人看| 国产伦理片在线播放av一区| 亚洲av免费高清在线观看| 少妇人妻 视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩伦理黄色片| 亚洲精品一二三| 大香蕉97超碰在线| 亚洲欧洲国产日韩| 在线播放无遮挡| 亚洲国产色片| av免费在线看不卡| 免费看光身美女|