• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse synthetic aperture radar range profile compensation of plasma-sheathenveloped reentry object

    2022-08-01 11:34:50YaocongXIE謝曜聰XiaopingLI李小平FangfangSHEN沈方芳BowenBAI白博文LeiSHI石磊andXuyangCHEN陳旭陽
    Plasma Science and Technology 2022年7期
    關鍵詞:李小平石磊博文

    Yaocong XIE(謝曜聰),Xiaoping LI(李小平),Fangfang SHEN(沈方芳),Bowen BAI(白博文),Lei SHI(石磊)and Xuyang CHEN(陳旭陽)

    School of Aerospace Science and Technology,Xidian University,Xi’an 710071,People’s Republic of China

    Abstract The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.

    Keywords:plasma sheath,inverse synthetic aperture radar imaging,defocus,coupled velocity,reentry object

    1.Introduction

    Inverse synthetic aperture radar(ISAR)imaging is an effective technique by which images of moving targets in the range-Doppler domain can be obtained[1,2].Two-dimensional high-resolution images of the reentry object can be obtained by ISAR imaging for subsequent operations of target recognition,which is of great significance to the safe recovery of spacecraft.When a reentry spacecraft enters into the Earth’s near-space atmosphere,the effect of the generated aerodynamic heat can form a plasma sheath covering the surface of the reentry object[3–5],absorbing,attenuating and reflecting electromagnetic(EM)waves[6–8].

    For the ISAR imaging of high-speed targets,research on the compensation method of the moving-in-pulse duration(MPD)has attracted much attention.Fenget alproposed an effective algorithm based on Radon transform for the range profile of a hypersonic target,through which the range profile aberration and ISAR image blurring can be compensated[9].Tianet alstudied the integrated cubic phase function and estimated the second-order phase coefficient to compensate for the high-speed movement on ISAR images[10].However,these studies mainly focused on the influence of the target’s high velocity on ISAR defocusing and ignored the problem of the generated plasma sheath enveloping the target during the flight.

    In addition to the above problem,most of the related studies focused on the influence of the plasma sheath imposed on radar detection.Yuanet alanalyzed the relationship between the plasma parameters and the reflection that is a combination of the power reflected from the plasma interface.They derived that the reflections of the incident wave power depended on the thickness of plasma for different incident wave frequencies and various plasma parameters[11].Dinget aldiscovered that the velocity of the plasma sheath had an effect on the one-dimensional range profile,which caused a false target and even detection failures[12].In their approach,the reentry object was treated as a single scattering point rather than multiple scattering points,which is a prerequisite for high-resolution ISAR imaging.Zhanget alproposed a wideband radar scattering center model of a plasma-sheathcovered reentry target,in which the reflection characteristics and velocity of the plasma sheath are considered[13].Despite the fact that their research proposed a basic model,they did not conduct a profound analysis of the problems caused by the plasma sheath.Xuet alpresented the MPD model for hypersonic targets and evaluated the performances of pulse compression under the stop-and-go and MPD models by theoretical analysis and simulations[14].However,the effect of plasma was not considered in their study.

    Unfortunately,few studies concerning the ISAR defocusing of the reentry object can be found so far.This work analyzes the reflection characteristics of the plasma sheath to obtain the radar echo model of the plasma-sheath-enveloped reentry object.It is found that in the areas with high electron density,the EM wave cannot penetrate through the plasma sheath,and the radar scattering points are distributed at a certain depth in the plasma sheath.These scattering points are affected by the flow field of the plasma sheath,exhibiting coupled velocities.The coupled velocities will further introduce linear frequency modulation(LFM)in the pulse compression results,causing displacement and energy diffusion in the one-dimension range profile.Because the coupled velocities of scattering points differ in the plasma sheath,certain regions of the ISAR image will be distorted and defocused to some extent in the range dimension.By estimating the coupled velocity,we propose a compensation method to correct the range dimension aberration.The simulation results and two measurement metrics have verified the effectiveness of our proposed method.

    The remainder of this paper is organized as follows.Section 2 introduces the reflection coefficient of the plasma sheath and the reflection depths with different electron densities.Section 3 deduces the echo model of the plasma sheath and discusses the formation mechanism of displacement and energy diffusion in the range dimension.Section 4 proposes the compensation method.Section 5 simulates the results of ISAR imaging using the compensation method,and evaluates the improvement effect.Section 6 summarizes the conclusions of this paper.

    2.Reflection coefficient and reflection depth of plasma sheath

    The plasma is an ionized medium that can absorb,attenuate and reflect EM waves.Functioning as the most important parameter of plasma,the reflection characteristics of plasma primarily correlate with the electron density[15].Currently,the most commonly used method to analyze the parameters of the plasma sheath is numerical simulation of computational fluid dynamics(CFD)[16,17].In this work,we adopt the simulation data from the CFD of RAM-C II to establish the blunt cone model[18,19].In the study of the RAM-C II project,the altitude of the reentry object ranges from 20 to 80 km.At high altitude,the air density and temperature are lower,so the plasma has lower electron density,and can be penetrated by the EM wave.At low altitude,the air density and temperature are higher,so the plasma has a higher electron density that is difficult for the EM wave to penetrate through.In this study,we choose the reentry object with different velocities at the altitude of 50 km,which is an intermediate transition state.The reentry object at 50 km altitude has the plasma characteristics of both low electron density and high electron density when the velocity is changed.For the application scenario of analyzing the displacement and energy diffusion caused by the coupled velocity of the plasma sheath,50 km is a typical value.

    Figure 1(a)shows the electron density distributions of the plasma sheath enveloping the surface of a blunt cone reentry object with 15 Mach velocity and 50 km altitude.It can be seen that the electron density varies by several orders of magnitude at different positions and depths of the plasma sheath,ranging from 1 × 1017to 1 × 1020m-3.Furthermore,along the surface of the reentry object,the closer to the stagnation point,the higher the electron density.Along the vertical direction of the surface,a higher electron density appears closer to the surface.According to the research of the RAM-C II project,a non-uniform plasma sheath can be generally stratified into a model of evenly distributed plasma with multiple layers,and the multiple-layered model of plasma has been adopted in several related studies[12,13,20].Figure 1(b)is a schematic diagram showing the uniform plasma sheath withNlayers at the local part of the spacecraft surface.

    Figure 1.Electron density distribution(a)and stratification model(b)of the plasma sheath.

    Figure 2.Schematic diagram of transmission line method.

    Figure 3.Amplitude of reflection coefficient with different depths where the peak electron density varies from 1 × 1017to 1 × 10 20 m-3.

    Figure 4.Relative velocity distribution and schematic diagram of the coupled velocities of scattering points.

    Figure 5.Flowchart of the compensation method.

    The propagation characteristics of EM waves in the plasma sheath are similar to those of EM waves in a lossy microwave transmission line,and can be written as a cascade of impedance of different characteristic waves.The reflection coefficient of the stratified plasma sheath can be calculated by the transmission line method(TLM)[21,22].A schematic diagram of the TLM is presented in figure 2.With respect to thenth layer plasma,we have

    whereknandZnare the propagation constant and the effective impedance of the plasma,fis the frequency of the incident wave,μ0is the vacuum permeability,andneis the complex permittivity of thenth layer.necan be expressed as

    whereeis the unit charge,meis the electron mass,0eis the vacuum permittivity,Veis the collision frequency correlating with the temperature and pressure of the plasma,andNe,nis the electron density of thenth layer.

    Supposing thatnθis the incident angle of thenth layer,the transmission matrix of thenth layer plasma sheath can be expressed as

    When EM waves penetrate through the plasma sheath,the reflection comes from both the plasma sheath and the reentry object surface.For ease of calculation,we presuppose that the surface is made of metal.Then the reflection coefficient of the plasma-sheath-enveloped surface can be obtained using the following equation:

    When the frequency of the incident EM waves is lower than the plasma frequency,the EM waves will be attenuated and cannot penetrate through the plasma[13].Considering that the electron density distribution of the plasma has a double-Gaussian layered structure on the surface of the highspeed target[20],the outer layer electron densities of the plasma are low,so the EM wave can penetrate through them.As the incident depth increases,the inner layer electron densities become higher.When the plasma frequency of thenth layer is greater than the incident wave frequency,the incident depth of the EM wave cannot increase at the position of thenth layer,and the position of thenth layer is the incident depth of the EM wave.When the thickness of thenth layer is low,the actual incident depth can be deeper.

    Through analyzing the electron density distribution of the plasma sheath on the surface of a blunt cone reentry object and calculating the reflection coefficient,we conclude that the radar wave cannot penetrate through the high-electron-density area of the plasma sheath and can be totally reflected at a certain depth.For areas with low electron density,the radar wave can penetrate through the plasma sheath and be reflected by the surface of the reentry object.

    3.Echo model of plasma sheath and mechanism of ISAR defocus

    Under the influence of the viscous resistance of the air and reentry object surface,the flow field of plasma has relative flow with the surface.The flow field at different depths has different flow velocities,and the velocity exhibits the characteristics of spatial three-dimensional gradient distribution,where the different colors shown in figure 4(a)denote the relative velocity between the plasma sheath and the blunt cone reentry object with 15 Mach velocity and 50 km altitude.The closer to the surface of the reentry object,the lower the relative velocity.

    Supposing the relative velocity of thekth scattering point at a certain depth in the plasma sheath isu k,and the moving velocity of the reentry object isv,then the moving velocity of thekth scattering point can be written as

    After performing inverse Fourier transform,the onedimensional range profile of the plasma sheath echoes can be expressed as

    4.Compensation method in range dimension

    The coupled velocity of the scattering points is the main cause of pulse compression mismatching.Because of the coupled velocity,the linear term is changed and the quadratic term in the pulse compression result cannot be eliminated in equation(17)when processing the matched filtering,which further causes displacement and energy diffusion in the range dimension of the ISAR image.Therefore,it is necessary to reconstruct a modified matched filter to correct the linear term and to eliminate the quadratic term.The modified matched filter can be expressed as

    Then,by conducting pulse compression to equation(15)using the modified matched filter,we obtain

    After performing inverse Fourier transform,the onedimensional range profile of the plasma sheath echoes processed can be expressed as

    Step 4.Perform FRFT with respect to the pulse compression data to obtain the result in the frequency domain,from which the rotation angle and the frequency-domain data corresponding to the maximum peak are extracted.Obtain the coupling velocity of the strongest scattering point by its linear frequency modulation.The one-dimensional range profile of the strongest scattering point in the time domain can be filtered by inverse FRFT transform.In this way,every scattering point can be filtered,and the compensated onedimensional range profile can be obtained respectively.Then translational motion compensation(TMC)is used to realize envelope alignment and phase focus[24],and we can obtain the focused ISAR image by using the range-Doppler(RD)imaging algorithm[25,26].

    The flowchart of the compensation method is shown in figure 5.

    5.Simulation

    In order to evaluate the improvement effect of our proposed method,we simulate the displacement and energy diffusion in the one-dimensional range profile using both the traditionally matched filtering and the modified matched filtering methods.Using the CFD’s flow-field simulation data of the RAM-C II,we simulate the defocus phenomenon and the results of the compensation method in the one-dimensional range profile and in the two-dimensional ISAR image,respectively.The effectiveness of the proposed method is verified by the peak signal-to-noise ratio(PSNR)and structural simulation index method(SSIM).

    5.1.Simulation results of displacement and energy diffusion at different velocities

    In general,the velocity of the reentry object ranges from 10 to 30 Mach.Considering the relative velocity between the plasma sheath and the reentry object,the coupled velocity of the plasma sheath is less than or equal to that of the reentry object.Supposing that the altitude of the object is 50 km,the carrier frequency is 10 GHz,and the velocity of reentry object is 25 Mach,the displacement and energy diffusion with different bandwidths and pulse widths can be calculated by equations(19)and(21).The results are shown in figure 6.The increase in bandwidth will weaken the displacement in range dimension,and the increase in pulse width will exacerbate the displacement and energy diffusion.

    In order to simulate the effect of our proposed method,the pulse width is set at 100 μs and the bandwidth is set at 1 GHz,which are the typical parameters for an ISAR system.We calculate the displacement and energy diffusion at different coupled velocities using both the traditional and the modified pulse compression processing methods.The simulation results are shown in figure 7.We select three coupled velocity estimation errors(CVEEs),which are 1%,5% and 10%,respectively,to calculate the improvement under different conditions.The error of estimated echo delay has been considered.Figure 7(a)shows the displacement caused by the coupled velocity.The higher the coupled velocity,the greater the displacement.The proposed method significantly reduces the displacement in the one-dimensional range profile,outperforming the effect of the traditional method.The increase in CVEE slightly enlarges the displacement.In figure 7(b),the proposed method almost eliminates the effect of energy diffusion,whereas the result of the traditional method exhibits apparent energy diffusion.The deterioration caused by CVEE does not exceed the resolution cell.

    Figure 6.Displacement and energy diffusion with different bandwidths and pulse widths.

    Figure 7.Displacement and energy diffusion at different coupled velocities using the traditional and the proposed method.

    The displacement and energy diffusion of the scattering point in the range dimension caused by the plasma sheath can be calculated using equations(19)and(21).We can obtain the range resolution by the bandwidth.Combining with the analysis results in figure 7,the correction error caused by CVEE can be obtained,which are converted to the number of range cells.For a 15 Mach target,the displacement number is one range cell.For a 20 Mach target,the displacement is two range cells,and for a 25 Mach target,it is six range cells.The energy diffusion is less than one range cell for these three different velocities.

    5.2.Simulation results of the compensation method for onedimensional range profile

    We select three scattering points with typical coupled velocities to conduct the simulation and to verify the effectiveness of our proposed compensation method.The distance between the scattering points in range dimension is 2.5 m.The modulation type of the radar signal is LFM.The pulse width is 100 μs,the bandwidth is 1 GHz,and the signal-to-noise ratio(SNR)of the echo is ?15 dB.Figure 8 shows the onedimensional range profiles of three scattering points,which are obtained using the traditional method and the compensation method,respectively.The black line in figure 8 represents the reference one-dimensional range profile of the three scattering points without considering the plasma.The blue line represents the one-dimensional range profile of the three scattering points in plasma.The coupled velocities of the three scattering points are set as 5,15 and 25 Mach,respectively,which are within the velocity range of the reentry object[5].Figure 8(a)demonstrates the result obtained using the traditional method,which is calculated using equation(17).The three scattering points have the problem of displacement and energy diffusion in the one-dimensional range profile,to which higher coupled velocity implies greater displacement and diffusion.Figures 8(b)–(d)represent the results using the compensation method with the three estimated velocities.It can be observed that each estimated velocity can compensate for the scattering points of the corresponding velocity to the reference position after eliminating its energy diffusion.Figure 8(e)shows the filtered and merged results of the focused scattering points,in which the displacement and energy diffusion of these scattering points are corrected.Figures 8(e)and(f)show the focused results when the SNR is ?20 dB and ?25 dB.It can be found that our compensation method performs well in low-SNR scenarios.

    5.3.Simulation results of the compensation method for ISAR imaging

    In this subsection,we analyze the simulation results of ISAR imaging,which are obtained using the compensation method.The pulse repetition frequency is 1 kHz and the SNR of the echo is ?20 dB.We select nine regions on the surface of the blunt cone model from the CFD’s flow-field simulation data from RAM-C II,which is shown in figure 9.These nine regions include the stagnation point,the middle part and the tail of the reentry object.

    We simulate the flight state of the reentry object in three typical scenarios,in which the velocities of the object are set as 15,20 and 25 Mach,respectively.The flight altitude is set as 50 km and the observing angle of the radar is 15°.The amplitudeAkand the phase shiftkφcaused by the plasma can be calculated by equations(6)and(7).The peak electron densityNe,the coupled velocityand other parameters originate from the CFD flow-field simulation data of RAM-C II[18,19].According to the amplitudes of the reflection coefficient at different depths,the depth of the scattering point can be obtained by finding the position of maximum amplitude along the thickness direction.The plasma flow-field data covering the nine regions of the surface are listed in tables 1–3,respectively.The fluctuation range of electron density is usually several orders of magnitude,and the variation range is much greater than the collision frequency.Although both the electron density and collision frequency are closely correlated with the plasma characteristics,the characteristic difference caused by the wider variation range of electron density is much greater than that caused by the collision frequency.The use of fixed collision frequency does not affect the final analysis results.For ease of calculation,we adopt a fixed collision frequency of 1 GHz as the parameter of plasma.

    As can be seen from the data in the tables,when the velocities of the reentry object are 15 and 20 Mach,the electron density at the tail of the object is lower,and the radar wave can penetrate through the plasma sheath.The scattering points of these regions are distributed on the surface of the object,and their coupled velocities are identical to the velocity of the reentry object,as shown by the 4th to 7th regions in table 1 and by the 5th to 6th regions in table 2.

    Figure 10(a)shows the normal ISAR image of the reentry object as the reference image.Figures 10(b)–(d)are the ISAR images of the plasma-sheath-enveloped reentry object with the velocities of 15,20 and 25 Mach,respectively,which are obtained using the traditional processing methods.The radar wave penetrates through the plasma sheath at the tail of the object with velocities of 15 and 20 Mach.Therefore,the most serious displacement occurs at the tail of the object due to the maximum coupled velocity,as shown in figures 10(b)and(c).Meanwhile,for the regions where EM waves cannot penetrate,the displacement of scattering points is weak,because their coupled velocities are lower than the velocity of the reentry object.This suggests that the higher the coupled velocity,the more serious the displacement.

    Figure 8.One-dimensional range profiles of three scattering points corrected using the compensation method.

    Figure 9.Schematic diagram of the reentry object.

    Table 1.Parameters of plasma sheath covering the nine regions with velocity of 15 Mach.

    Table 2.Parameters of plasma sheath covering the nine regions with velocity of 20 Mach.

    Table 3.Parameters of plasma sheath covering the nine regions with velocity of 25 Mach.

    We use FRFT to obtain the evaluated chirp rateμ?kto calculate the estimated velocity ?vk.The results are shown in table 4.

    Figures 11(a)–(c)show the results of ISAR images processed by the compensation method with the velocities of 15,20 and 25 Mach,respectively.The problems of displacement and energy diffusion of the scattering points are effectively corrected.The compensation of displacement corrects the image distortion,and the energy focusing improves the SNR.The ISAR images of the reentry object at the three velocities are well focused.

    Figure 10.The obtained ISAR images of the reentry object by traditional method.

    Figure 11.ISAR images of reentry object processed by the compensation method.

    In order to evaluate the improvement on ISAR imaging,the PSNR and the SSIM[27]are used to represent the improvement effect of the proposed method.The values of PSNR and the SSIM results are listed in table 5,suggesting that the quality of ISAR imaging is significantly improved.

    Table 4.Results of parameter estimation by FRFT.

    6.Conclusions

    Table 5.Evaluation results of ISAR image using traditional method and proposed method.

    With respect to plasma-sheath-enveloped reentry objects,this paper analyzes the scattering characteristics and the coupled velocities of the scattering points in the plasma sheath,from which the radar echo model of the plasma sheath is obtained.The coupled velocity will introduce LFM into pulse compression results,causing the displacement and energy diffusion,which further results in ISAR image defocus in the range dimension.By estimating the LFM parameters using FRFT,we can calculate the coupled velocity of the scattering points inversely.Based on the estimated coupled velocities,we propose a compensation method by reconstructing a modified matched filter to correct the displacement and energy diffusion in the onedimensional range profile.The simulation results have validated the effectiveness of our proposed method,laying the theoretical foundation for the ISAR imaging of plasmasheath-covered reentry objects.

    Although this work analyzes the influence of the plasma sheath in the range dimension of ISAR images,the influence of the azimuth dimension is not considered.This will be the focus of our future research.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(No.61971330).

    ORCID iDs

    猜你喜歡
    李小平石磊博文
    Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
    Wideband radar cross-section reduction using plasma-based checkerboard metasurface
    Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
    第一次掙錢
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    Research on the method of dual-frequency microwave diagnosis of plasma for solving phase integer ambiguity
    Effects of pulsed magnetic field on density reduction of high flow velocity plasma sheath
    柳公權戒驕成名
    誰和誰好
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    av免费观看日本| 国产乱来视频区| 又爽又黄a免费视频| 久久亚洲国产成人精品v| 欧美三级亚洲精品| 色综合亚洲欧美另类图片| 啦啦啦中文免费视频观看日本| 亚洲国产精品成人久久小说| 成年女人在线观看亚洲视频 | 亚洲欧美日韩东京热| av专区在线播放| 精品午夜福利在线看| 日韩中字成人| 精华霜和精华液先用哪个| 亚洲精品乱码久久久久久按摩| 免费看a级黄色片| 国产不卡一卡二| www.色视频.com| 亚洲av成人av| 有码 亚洲区| 中国国产av一级| av在线播放精品| 久久久久九九精品影院| 亚洲欧美一区二区三区国产| 人人妻人人看人人澡| 日韩欧美 国产精品| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 国产成人精品一,二区| 精品不卡国产一区二区三区| 久久久久久伊人网av| 久久午夜福利片| 久久久久久久国产电影| 国产成人精品福利久久| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 一二三四中文在线观看免费高清| 干丝袜人妻中文字幕| 97超碰精品成人国产| 边亲边吃奶的免费视频| 久久精品综合一区二区三区| 国产人妻一区二区三区在| 午夜精品一区二区三区免费看| 日本免费在线观看一区| 九色成人免费人妻av| 在线观看免费高清a一片| 美女xxoo啪啪120秒动态图| 搞女人的毛片| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| av在线蜜桃| 亚洲真实伦在线观看| 草草在线视频免费看| 久久久精品欧美日韩精品| 久久精品久久精品一区二区三区| 26uuu在线亚洲综合色| 青春草视频在线免费观看| 国产老妇伦熟女老妇高清| 一本久久精品| 亚洲精品影视一区二区三区av| 插阴视频在线观看视频| 亚洲四区av| 乱系列少妇在线播放| 一级黄片播放器| 日日啪夜夜爽| 日韩成人伦理影院| 九九在线视频观看精品| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 91在线精品国自产拍蜜月| 精品欧美国产一区二区三| 女人被狂操c到高潮| 国产精品麻豆人妻色哟哟久久 | 日韩不卡一区二区三区视频在线| 国产av不卡久久| 日韩av在线大香蕉| 麻豆成人午夜福利视频| 男女那种视频在线观看| 日韩一本色道免费dvd| 国产精品爽爽va在线观看网站| 非洲黑人性xxxx精品又粗又长| 少妇的逼水好多| 亚洲真实伦在线观看| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 久久热精品热| 69人妻影院| 中文字幕免费在线视频6| 亚洲色图av天堂| 搡女人真爽免费视频火全软件| 国产精品久久久久久av不卡| 观看免费一级毛片| 婷婷色麻豆天堂久久| 18禁在线播放成人免费| 日本三级黄在线观看| 国产老妇女一区| 亚洲自偷自拍三级| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 亚洲伊人久久精品综合| 国产精品一区www在线观看| 中文字幕av在线有码专区| 国产极品天堂在线| 啦啦啦中文免费视频观看日本| 蜜桃久久精品国产亚洲av| 国产精品一区二区在线观看99 | 欧美3d第一页| 美女脱内裤让男人舔精品视频| 亚州av有码| 精品一区二区三区视频在线| 久久久久久久久中文| 国产黄色免费在线视频| 欧美成人a在线观看| 又爽又黄a免费视频| 身体一侧抽搐| 精品一区在线观看国产| 成人鲁丝片一二三区免费| 成人高潮视频无遮挡免费网站| 成人国产麻豆网| 一级毛片我不卡| 国产探花在线观看一区二区| 日韩中字成人| 国产淫片久久久久久久久| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 一级毛片我不卡| 秋霞伦理黄片| 精品久久久久久久久亚洲| 午夜福利在线观看吧| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 免费观看无遮挡的男女| 观看免费一级毛片| 国产一区二区三区av在线| 久久韩国三级中文字幕| 国产色爽女视频免费观看| 91久久精品电影网| 久久6这里有精品| 天堂影院成人在线观看| 神马国产精品三级电影在线观看| 午夜福利在线观看吧| 国产色婷婷99| 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 国精品久久久久久国模美| 亚洲精品一区蜜桃| av网站免费在线观看视频 | 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 禁无遮挡网站| 国产精品99久久久久久久久| xxx大片免费视频| 亚洲精品第二区| 日韩,欧美,国产一区二区三区| 久久99热这里只有精品18| 在线 av 中文字幕| 久久久久久久久久久免费av| 少妇的逼好多水| 男人狂女人下面高潮的视频| 人妻夜夜爽99麻豆av| 免费大片18禁| 日韩电影二区| 精品一区二区免费观看| 国产亚洲一区二区精品| 国产一级毛片七仙女欲春2| 青春草亚洲视频在线观看| 久久久久久久国产电影| av.在线天堂| 国产精品人妻久久久影院| 午夜激情福利司机影院| 久久久久国产网址| 国产精品日韩av在线免费观看| 国产一级毛片在线| 精品一区二区三区人妻视频| 日本免费a在线| 亚洲国产精品国产精品| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 日韩成人伦理影院| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 久久久久网色| 晚上一个人看的免费电影| 极品少妇高潮喷水抽搐| 伦精品一区二区三区| 国产乱人视频| 高清av免费在线| 精品欧美国产一区二区三| 日本一本二区三区精品| 欧美日韩一区二区视频在线观看视频在线 | 在现免费观看毛片| 国产免费又黄又爽又色| 成年女人看的毛片在线观看| 亚洲一级一片aⅴ在线观看| 一区二区三区乱码不卡18| 老师上课跳d突然被开到最大视频| 波野结衣二区三区在线| 久久久久精品久久久久真实原创| av在线播放精品| 欧美极品一区二区三区四区| 日韩av在线大香蕉| 亚洲一区高清亚洲精品| 成年女人看的毛片在线观看| 欧美zozozo另类| 免费少妇av软件| 国产精品无大码| 亚洲精品国产av成人精品| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 乱系列少妇在线播放| 成年版毛片免费区| 欧美一区二区亚洲| 欧美潮喷喷水| 国产精品一及| 国产精品蜜桃在线观看| 日韩精品青青久久久久久| 大片免费播放器 马上看| 午夜视频国产福利| 国产欧美另类精品又又久久亚洲欧美| 男人狂女人下面高潮的视频| 婷婷色麻豆天堂久久| 亚洲va在线va天堂va国产| 在线播放无遮挡| 国产精品久久久久久精品电影| 麻豆乱淫一区二区| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人| 久久久精品免费免费高清| 男女下面进入的视频免费午夜| 亚洲国产色片| 一级毛片黄色毛片免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 成人午夜精彩视频在线观看| 丰满人妻一区二区三区视频av| 啦啦啦啦在线视频资源| ponron亚洲| videossex国产| 日日摸夜夜添夜夜添av毛片| 国产精品三级大全| av在线老鸭窝| 国产精品久久久久久精品电影| 啦啦啦啦在线视频资源| 国产黄色免费在线视频| 国产亚洲精品久久久com| 国产伦一二天堂av在线观看| 亚洲欧洲日产国产| 日韩视频在线欧美| 日韩欧美三级三区| 国产在线一区二区三区精| 国产三级在线视频| 国产黄色视频一区二区在线观看| 精品熟女少妇av免费看| 欧美xxxx黑人xx丫x性爽| 中文资源天堂在线| 亚洲精品国产成人久久av| 国产亚洲av片在线观看秒播厂 | 国产v大片淫在线免费观看| 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 国产亚洲av片在线观看秒播厂 | 99热全是精品| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 中文乱码字字幕精品一区二区三区 | 亚洲精品乱久久久久久| 亚洲av电影在线观看一区二区三区 | 婷婷色av中文字幕| 日日摸夜夜添夜夜添av毛片| 中文欧美无线码| 国产精品爽爽va在线观看网站| 欧美3d第一页| 99久久九九国产精品国产免费| 亚洲怡红院男人天堂| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性xxxx在线观看| 亚洲成人一二三区av| 成年版毛片免费区| 亚州av有码| 国产黄色视频一区二区在线观看| 国产精品99久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 一本一本综合久久| 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 国产成人aa在线观看| 国产成人精品久久久久久| 午夜福利在线观看吧| 久久鲁丝午夜福利片| 狂野欧美激情性xxxx在线观看| 中文字幕久久专区| 国产亚洲91精品色在线| 中文字幕久久专区| 高清av免费在线| av在线老鸭窝| 黑人高潮一二区| 狂野欧美白嫩少妇大欣赏| 大香蕉久久网| 三级国产精品欧美在线观看| 亚洲精品日韩在线中文字幕| 国产国拍精品亚洲av在线观看| 国产老妇伦熟女老妇高清| 九九在线视频观看精品| 在线免费观看的www视频| 成人二区视频| 偷拍熟女少妇极品色| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡 | 性插视频无遮挡在线免费观看| 少妇的逼水好多| 少妇被粗大猛烈的视频| 国产精品一区www在线观看| 少妇熟女aⅴ在线视频| 最近最新中文字幕免费大全7| 久久久久网色| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 日本欧美国产在线视频| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 色5月婷婷丁香| 高清日韩中文字幕在线| 99热这里只有是精品在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧美在线一区| 在线 av 中文字幕| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 国产亚洲一区二区精品| 黄色日韩在线| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 久久久久久久亚洲中文字幕| 亚洲真实伦在线观看| 美女内射精品一级片tv| 成人综合一区亚洲| 国产三级在线视频| 精品久久久精品久久久| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 成年人午夜在线观看视频 | 蜜臀久久99精品久久宅男| 大片免费播放器 马上看| 国产精品人妻久久久久久| 中文欧美无线码| xxx大片免费视频| 在线观看免费高清a一片| 中文资源天堂在线| 日韩欧美三级三区| 久久久久久久大尺度免费视频| 中文天堂在线官网| 久久精品久久精品一区二区三区| 一级毛片aaaaaa免费看小| 亚洲伊人久久精品综合| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 偷拍熟女少妇极品色| 免费少妇av软件| 免费播放大片免费观看视频在线观看| 欧美xxxx性猛交bbbb| 80岁老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 丰满乱子伦码专区| 久久久久久久久久久丰满| 精品人妻视频免费看| 日韩亚洲欧美综合| 人人妻人人澡人人爽人人夜夜 | 青春草亚洲视频在线观看| 99久久人妻综合| 国产精品无大码| 最后的刺客免费高清国语| 国产又色又爽无遮挡免| 久久久久精品久久久久真实原创| 久99久视频精品免费| 大陆偷拍与自拍| 亚洲av男天堂| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花 | 国产精品福利在线免费观看| 亚洲欧美清纯卡通| 久久久久久久久久成人| 高清av免费在线| 亚洲精品乱码久久久v下载方式| 亚洲av国产av综合av卡| 免费观看的影片在线观看| 特级一级黄色大片| 五月玫瑰六月丁香| 婷婷色av中文字幕| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| 乱码一卡2卡4卡精品| 中文欧美无线码| 免费黄色在线免费观看| 国产有黄有色有爽视频| 91在线精品国自产拍蜜月| 18+在线观看网站| 国产 亚洲一区二区三区 | 在现免费观看毛片| 看十八女毛片水多多多| 淫秽高清视频在线观看| 老女人水多毛片| 男女边摸边吃奶| av卡一久久| av在线亚洲专区| 男女边吃奶边做爰视频| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 国产乱来视频区| 午夜福利网站1000一区二区三区| 好男人视频免费观看在线| 搞女人的毛片| 激情五月婷婷亚洲| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 永久免费av网站大全| 日韩欧美精品免费久久| 国内精品一区二区在线观看| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| av免费在线看不卡| 亚洲丝袜综合中文字幕| 少妇裸体淫交视频免费看高清| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 男人舔奶头视频| 婷婷色av中文字幕| 亚洲av男天堂| 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 国产高清不卡午夜福利| 午夜爱爱视频在线播放| 亚洲熟女精品中文字幕| av黄色大香蕉| 一边亲一边摸免费视频| 国产伦理片在线播放av一区| 六月丁香七月| 成人毛片a级毛片在线播放| 建设人人有责人人尽责人人享有的 | 中文字幕亚洲精品专区| 最近最新中文字幕免费大全7| 成人欧美大片| 综合色丁香网| 国产高清不卡午夜福利| 午夜福利成人在线免费观看| 久久99蜜桃精品久久| 亚洲av电影不卡..在线观看| 爱豆传媒免费全集在线观看| 国产在视频线在精品| 免费不卡的大黄色大毛片视频在线观看 | 97人妻精品一区二区三区麻豆| 亚洲av在线观看美女高潮| 国产精品国产三级国产av玫瑰| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| av在线亚洲专区| 国产精品久久久久久av不卡| 纵有疾风起免费观看全集完整版 | 国产熟女欧美一区二区| 国产美女午夜福利| av在线观看视频网站免费| 99热这里只有精品一区| 国产一区二区在线观看日韩| 99久国产av精品| 久久国产乱子免费精品| 久久久久性生活片| 永久免费av网站大全| 日本一二三区视频观看| 老司机影院毛片| 久久6这里有精品| 亚洲最大成人中文| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 国产一区二区亚洲精品在线观看| 成年女人在线观看亚洲视频 | 舔av片在线| 亚洲精品一二三| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 亚洲国产欧美人成| 久久久精品免费免费高清| 久久久精品94久久精品| 精品久久久久久久人妻蜜臀av| 有码 亚洲区| av专区在线播放| 亚洲精品国产成人久久av| 女人久久www免费人成看片| 好男人在线观看高清免费视频| 亚洲欧美精品专区久久| 最近最新中文字幕大全电影3| 日韩强制内射视频| 老司机影院毛片| 午夜激情欧美在线| 久久99热这里只有精品18| 亚洲av中文字字幕乱码综合| 91精品伊人久久大香线蕉| 国产女主播在线喷水免费视频网站 | 99视频精品全部免费 在线| 水蜜桃什么品种好| 久久精品夜夜夜夜夜久久蜜豆| 日韩电影二区| 一二三四中文在线观看免费高清| 男的添女的下面高潮视频| 中文字幕亚洲精品专区| 床上黄色一级片| 欧美激情久久久久久爽电影| 在线免费十八禁| 欧美bdsm另类| 国产伦精品一区二区三区四那| 免费观看无遮挡的男女| 国产精品综合久久久久久久免费| 国产91av在线免费观看| 床上黄色一级片| 黄色一级大片看看| 亚洲成人久久爱视频| 精品国产三级普通话版| 久久这里有精品视频免费| 卡戴珊不雅视频在线播放| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 一级片'在线观看视频| 看免费成人av毛片| 国产精品久久久久久精品电影小说 | 亚洲在久久综合| 高清欧美精品videossex| 只有这里有精品99| av在线老鸭窝| 亚洲精品久久午夜乱码| 国产女主播在线喷水免费视频网站 | 久久久亚洲精品成人影院| 精品99又大又爽又粗少妇毛片| 国产亚洲午夜精品一区二区久久 | 久久久成人免费电影| 国产在线男女| 日韩欧美精品免费久久| 亚洲欧美精品专区久久| 午夜精品一区二区三区免费看| 两个人视频免费观看高清| 男的添女的下面高潮视频| 欧美成人午夜免费资源| 国产精品日韩av在线免费观看| 黄色日韩在线| 国产精品一二三区在线看| av免费在线看不卡| 亚洲在久久综合| 麻豆成人午夜福利视频| 亚洲欧美成人综合另类久久久| 天堂av国产一区二区熟女人妻| 美女内射精品一级片tv| 久久99精品国语久久久| 一级爰片在线观看| 日日干狠狠操夜夜爽| 精品人妻偷拍中文字幕| 极品少妇高潮喷水抽搐| 视频中文字幕在线观看| 身体一侧抽搐| 亚洲美女搞黄在线观看| 亚洲av电影在线观看一区二区三区 | 日韩av不卡免费在线播放| 日本三级黄在线观看| 国产精品精品国产色婷婷| 永久网站在线| 99热这里只有精品一区| 舔av片在线| 大话2 男鬼变身卡| 欧美高清性xxxxhd video| 我要看日韩黄色一级片| 亚洲国产高清在线一区二区三| 极品教师在线视频| 久久久精品94久久精品| 夜夜看夜夜爽夜夜摸| 女的被弄到高潮叫床怎么办| 色哟哟·www| 欧美最新免费一区二区三区| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 亚洲色图av天堂| 国产视频内射| 亚洲av福利一区| 一个人看的www免费观看视频| 久久99热6这里只有精品| 久久人人爽人人爽人人片va| 国产精品一区二区在线观看99 | 久久久久久九九精品二区国产| 国产乱人偷精品视频| 校园人妻丝袜中文字幕| 日韩av不卡免费在线播放| 丝袜喷水一区| 一二三四中文在线观看免费高清| 免费高清在线观看视频在线观看| 国产色婷婷99| 一区二区三区免费毛片| 亚洲欧美精品专区久久| av专区在线播放| 亚洲精品国产av成人精品| 国产不卡一卡二| 尾随美女入室| 能在线免费观看的黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 |