• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly efficient γ-ray generation by 10 PWclass lasers irradiating heavy-ion plasmas

    2022-08-01 11:35:12MiTIAN田密andZiyuCHEN陳自宇
    Plasma Science and Technology 2022年7期

    Mi TIAN(田密)and Ziyu CHEN(陳自宇),2,?

    1 Key Laboratory of High Energy Density Physics and Technology(MoE),College of Physics,Sichuan University,Chengdu 610064,People's Republic of China

    2 National Key Laboratory of Shock Wave and Detonation Physics,Mianyang 621999,People's Republic of China

    Abstract 10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabright γ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we report highly efficient γ-ray generation in the parameter regime of 10 PW-class lasers at an intensity level of 1023 W cm–2 interaction with heavy-ion plasmas which have large-scale preplasmas.The laser-to-γ-ray(>1 MeV)energy conversion efficiency reaches close to 60%with an above 1014 γ-photons/pulse.The average γ-photon energy is about 14 MeV with the highest photon energy exceeding 1 GeV.The high-energy γ-photons are mainly directed in the forward direction.We also find that plane target geometry is efficient enough for high power γ-ray radiation,which is beneficial for easing the difficulty of complex target manufacturing and alignment in experiments.

    Keywords:laser plasma interactions,γ-ray source,particle-in-cell simulations

    1.Introduction

    High power γ-rays with photon energy >1 MeV are indispensable tools for a wide range of applications.For example,in high-energy-density experiments,γ-ray flash radiography is a critical technique for investigating the inner structure and dynamic response of thick dense materials under extreme impact or explosion conditions[1–3].Conventional powerful γ-ray source facilities,such as the DARHT[4]at Los Alamos National Laboratory,generate an intense beam of electrons through a large linear accelerator.The high-energy electrons then hit a high-Zconverter target to produce γ-rays via Bremsstrahlung radiation.The radiography spatial resolution is mainly limited by the source size at the millimeter or submillimeter scale.

    The advent of high-power laser technology leads to novel accelerator schemes and light sources[5].Ultrashort and ultraintense laser-driven sources have the advantages of short duration(~fs scale),small source size(~μm scale),compact,and easy synchronization.Relativistic lasers with an intensity>1018W cm–2can accelerate electrons to 8 GeV energies in about 20 cm long plasmas based on laser wakefield acceleration(LWFA)[6].The LWFA process can also be utilized to generate a γ-ray pulse.With 100 TW-class lasers,experiments have demonstrated the generation of γ-rays with 107photons/pulse between 1 and 7 MeV by resonant betatron oscillations of accelerated electrons in the rear of the laser pulse[7].Numeric simulations show the possibility of generating 1012γ-ray photons/shot above 1 MeV with energy conversion efficiency >10% by multi-PW lasers from a twostage LWFA[8].The method based on the hosing evolution of the LWFA bubble is also proposed[9].To enhance the electron energies in the center-of-mass frame and thus the radiated photon energies,the scheme of relativistic electron bunch from LWFA collision with a counter-propagating laser is employed to produce high-energy γ-rays,i.e.the so-called all-optical inverse Compton scattering γ-ray source[10–16].Photons with energy above 30 MeV have been obtained experimentally[17].Another way to generate γ-rays using electrons from LWFA is via Bremsstrahlung radiation with high-Zconverters[18–21].Due to a low density in the underdense plasmas and a small amount of accelerated highenergy electrons,the above-mentioned LWFA-based γ-ray generation methods suffer from a relatively low energy conversion efficiency.

    In recent years,ultra-high-power laser facilities,such as the Shanghai super-intense ultrafast laser facility(i.e.SULF)[22,23],can reach the level of 10 PW,while even higherpower 100 PW laser facilities are proposed and under construction[24,25].The 10–100 PW lasers can deliver a peak intensity above 1023W cm–2,with the corresponding normalized laser amplitudea0=eE0/meω0c~102for laser wavelength λ=1 μm,wherecis the speed of light in vacuum,eandmeare the electron charge and mass,E0and ω0are laser field amplitude and angular frequency,respectively.Since the electron quiver energy in the laser field γe~a0,the characteristic energy of photons emitted by ultrarelativistic electrons via the synchrotron-like nonlinear Thomson scattering mechanism,scaling asis thus in the γ-ray range.Besides,the critical plasma densitybecomes much higher in this case due to the relativistic correction,which means the plasma density and amount of energetic electrons participating in the γ-ray emission under the action of the ultraintense laser are much larger than those in the underdense plasma case of LWFA.In addition,in this intensity regime,effects such as radiation reaction[26,27]and other quantum electrodynamics(QED)processes[28],can further enhance the γ-ray emission by changing the electron dynamics,laser absorption,and energy partition,etc.Therefore,10–100 PW laser interactions with the bulk of overcritical plasmas represent a new regime that has great potential to develop powerful γ-ray sources.

    Several groups have numerically studied high power γray flash generation in 10 PW-class laser and solid-plasmas interactions in the QED regime.Most of the results rely on two-dimensional(2D)particle-in-cell(PIC)simulations implemented with relevant QED processes,i.e.discontinuous synchrotron emission,radiation reaction,and Breit–Wheeler pair production[29].Bradyet alreported conversion efficiency~1% with an average γ photon energy of 1 MeV at laser intensity of 1022W cm–2and~14% with 32 MeV at 8×1023W cm–2using uniform CH2plastic targets,while the efficiencies for 30 fs and 500 fs lasers are about the same[30].Ridgerset alobtained a conversion efficiency of~35% with an average photon energy of 16 MeV using Al targets at a laser intensity of 8×1023W cm–2[31].Nakamuraet alfound a conversion efficiency of~32%for a 10 PW laser interacting with D plasmas at an optimal density scale length of 2.5 μm[32].Lezhninet alalso identified preplasma length as a parameter of key importance to γ-ray generation.A conversion efficiency of~37% can be obtained with 10 PW lasers at an optimal corona length approximately equal to the laser pulse length[33].Starket alachieved a conversion efficiency of~15%at a reduced laser intensity of 5×1022W cm–2with the help of a foam and plastic relativistically transparent channel target that produces a high quasistatic magnetic field of 0.4 MT[34].Jiet alalso reported γ-photon enhancement in a micro-tube hollow channel target by boosting the laser intensity from 5×1022to 4.3×1023W cm–2inside the channel[35].Zhuet alfound that the conversion efficiency can be enhanced from 5%to 10%at 4.4×1022W cm–2with H plasmas by using a target configuration of gold cone confinement[36].

    In this work,we report highly efficient γ-ray generation from 10 PW-class laser-driven overcritical plasmas with a laser-to-γ-ray(>1 MeV)conversion efficiency close to 60%from 2D simulations.This is achieved by using heavy-ion plasmas with large-scale preplasmas.The radiation mechanism is nonlinear Thomson or multi-photon Compton scattering.We also study how the ion charge-to-mass ratio,laser power,electron density,and target configuration influence the γ-ray generation efficiency.

    2.Simulation setup

    We carry out a series of 2D PIC simulations using the fully relativistic PIC code EPOCH[37]including relevant QED effects.Ay-polarized Gaussian pulse is normally incident from the left boundary(atx=0)and propagates along thexaxis.The laser has a wavelength of λ=1 μm,pulse width of τ0=30 fs,and spot radius ofr0=2.5λ.The laser peak power is 20 PW,corresponding to a peak intensity of 1.0×1023W cm–2.The initial plasma is composed of a uniform plasma slab and a preplasma corona localized at the front of the slab.In the parallel direction(x-direction),the preplasma density changes from 0.1ncto the maximum density ofnmaxexponentially with a preplasma length ofL=45λ.The plasma slab has a thickness of 5 μm.According to the results by Lezhninet alin reference[33],this plasma length configuration is optimal for a 30 fs,20 PW laser pulse to produce γrays.The initial plasma density is homogeneous in the transverse direction(ydirection).The initial plasma is located at 5λ ≤x≤55λ and-25λ ≤y≤25λ.The initial ion density

    isnmax=10ncfor heavy-ion plasmas whilenmax=40ncfor H plasmas.In the code,we set different charge and mass parameters of the ion particles to distinguish different ion species.The simulation box size isx×y=75λ×60λ and the grid step is Δx×Δy=λ/40×λ/40.Each cell is filled with 10 macro-particles in the region of the initial plasma.The total simulation time is 340 fs.The total energy error is less than 5% in all simulations.This acceptable energy error may be caused by numerical resolution,photon energy cutoff,and particles moving out of the simulation box.In the simulations,the minimum photon energy of 1 MeV is set for the tracked γ photons.Photons emitted with energy below this cutoff still cause electron recoil but are not tracked.This helps to save computational resources and the ignored lower energy photons only account for a small number of the total energy.

    3.Results and discussion

    We first take a look at the characteristics of the γ-ray emissions from C6+-plasma targets.Figure 1(a)shows the energy spectrum of the γ-photons,exhibiting a synchrotron-like spectral feature.The highest photon energy exceeds 1 GeV and the average photon energy is about 14 MeV.Figures 1(b)shows the spatial distribution of γ-photon number density att=280 fs when most of the γ-photons have left the target.The spot size of the γ-rays is less than 10 μm,one to two orders of magnitude smaller than that of linac-based γ-ray sources.Figures 1(c)–(e)show the angular distribution of γphotons att=280 fs for different photon energy ranges.Most of the γ-photons are directed in the forward direction of laser propagation.The higher-energy γ-photons have better directivity.Such a directed γ-ray beam with a small source size and ultrashort duration is desirable for high spatial-temporal resolution detection of the structure and dynamics of dense materials.

    Figure 1.Characteristics of the emitted γ-ray photons from C6+-plasma targets.(a)Energy spectrum of γ-rays.(b)Spatial distribution of γ-ray number density.(c)–(e)Angular distribution of γ-rays with photon energy(c)eγ <10 MeV,(d)10 MeV <eγ <100 MeV,and(e)100 MeV <eγ <1000 MeV.The time is t=280 fs when most of the γ-photons have left the target.

    Figure 2.Energy fraction evolution of particles(electrons,ions,positrons,and γ-photons)and fields in the simulations for different target materials:(a)H+-plasmas,(b)C6+-plasmas,and(c)Al13+-plasmas.

    Figure 3.Effects of target materials on γ-ray emission.Spatial distribution of(a)–(d)γ-photon number density,(e)–(h)electron number density,and(i)–(l)self-generated magnetic field at t=240 fs when the maximum photon conversion fraction is reached.The columns from left to right correspond to H+,C6+,Al13+,and Fe6+ plasmas,respectively.

    Figures 2(a)–(b)show the energy evolution of fields and particles throughout the simulations for the H+and C6+plasmas,respectively.For both cases,the laser field energy is almost absorbed completely by the plasmas and converted to other particles,leaving less than 10%in the plasmas mainly in the form of quasistatic magnetic and electric fields.For the case of 20 PW laser irradiating H+plasmas(figure 2(a)),the maximum energy fraction to γ-photons(>1 MeV)is close to 40%,which reproduces the results reported by Lezhninet al[33]and shows the reliability of our simulations.This high efficiency is mainly attributed to the large-scale preplasma configuration as identified in reference[33].At the same time,ions(i.e.protons)are efficiently accelerated and acquire the largest fraction of energy.The energy fraction to positrons is nearly zero,showing this parameter regime(a0much less than 1000)is not suitable for pair production,in agreement with previous results[27,33].

    Figure 4.The γ-ray conversion efficiency for C6+-plasma target as a function of(a)driving laser power and(b)initial electron density.The electron density ranges from 60nc to 240nc,corresponding to the initial ion density ranging from 10nc to 40nc.

    In comparison,for the case of heavy-ion C6+-plasmas,the maximum energy fraction to ions is greatly reduced.While,remarkably,the energy fraction to γ-photons further boosts to about 55%,making up the largest fraction of energy.This would produce γ-ray energy as high as 330 J for a 30 fs,20 PW laser,while the energy of 3.3 kJ and power of 11 PW for a 300 fs,20 PW laser.With an average photon energy of about 14 MeV,the corresponding photon number per pulse reaches 1014and 1015,respectively,demonstrating the great potential of 10 PW-class laser-driven heavy-ion plasmas as an extremely efficient way to generate ultrabright γ-rays.Aside from that,when the target is changed from C6+-plasmas to Al13+-plasmas,the γ-ray efficiency and energy partition are almost the same,as shown in figure 2(c).

    To understand the effects of heavy ions on γ-ray generation,we plot the spatial distribution of γ-photon density,electron density,and self-generated magnetic field for different plasma targets att=240 fs when the maximum photon conversion fraction is reached.We first compare the cases of H+-,C6+-,and Al13+-plasmas.From figures 3(a)–(c),we see that the regions of high number density of emergent γ-photons increase for heavy-ion plasmas,which is in accordance with the areas of high electron density and strong selfgenerated magnetic field shown in figures 3(e)–(g)and figures 3(i)–(k),respectively.At such high laser intensities,the ponderomotive effect on ions is significant.The ponderomotive force of particles with chargeqand massmcan be expressed as

    the ponderomotive force induced accelerationThen the ions with a smaller charge-to-mass ratio are more difficult to be scattered and vacated.As the electrons would follow the positions of the ions and move around them,we see that the plasma channels for C6+- and Al13+-plasmas get smaller.At the same time,more electrons are confined in the channels compared to the case of H+-plasmas,where they are in the region around the ions as well as the laser fields(figures 3(e)–(g)).Aside from that,strong self-generated magnetic field are formed in the channels(figures 3(i)–(k)).Therefore,heavy-ion plasmas lead to denser electron bunches confined around the laser electromagnetic field which simultaneously experience strong acceleration by the self-generated magnetic field in the channel.As a result,γ-ray emission via the nonlinear Thomson or multi-photon Compton scattering mechanism is enhanced for heavier-ion plasmas.In addition,the effects of radiation reaction trapping of electrons which emit highenergy γ-photons intensively would further increase the electron density inside the channel and enhance the γ-emission process in return.This explains the enhancement in conversion efficiency of γ-emission for heavy-ion C6+- and Al13+-plasmas compared to H+-plasmas.Since C6+- and Al13+-ions have nearly the same charge-to-mass ratio,they lead to similar energy partition and evolution.We also consider Fe6+-plasmas with fixed ionization states.This is unphysical,but only for the purpose of checking the case of a smaller charge-to-mass ratio of ions.The results are shown in the fourth column of figure 3.We can observe the smaller channel,denser electron bunches,and stronger self-generated magnetic field more clearly.In this case,the γ-ray conversion efficiency is enhanced to about 65%.This result further confirms the aforementioned physical picture that a smaller ion charge-to-mass ratio is preferred for a higher γ-ray conversion rate.For targets with heavier ions,such as tungsten and gold,the charge-to-mass ratio of ions may be smaller than 0.5 due to the increased proportion of neutrons and potentially un-ionized inner shells because of the extremely strong atomic potential.The resultant γ-ray conversion efficiency may be expected to increase.Figure 4(a)shows the γ-ray conversion efficiency as a function of laser peak power,which grows steeply with laser power increasing from 10 to 20 PW and then saturates(close to 60%)gradually with further increasing laser power up to 50 PW.The trend is in good agreement with previous studies[33].10 PW laser is not optimal because of the relatively low laser intensity of 5.0×1022W cm-2.This is consistent with most of the previous studies[30,32,34]which show that an appreciable fraction of laser energy converting to γ photons through synchrotron emission occurs at laser intensity above 1023W cm-2.For even higher-power lasers,more charged particles would be pushed aside by the light pressure which would limit the γ-ray conversion.To balance laser cost and γ-ray efficiency,20 PW peak power would be a better option.Nevertheless,higher-power lasers can produce more powerful γ-rays with respect to photon numbers per shot.Figure 4(b)shows the conversion efficiency for C6+plasmas with different initial ion densities(ranging from 10ncto 40nc)and electron densities(ranging from 60ncto 240nc).It is seen that higher plasma density does not lead to enhanced performance of γ-ray conversion.Instead,as demonstrated before,it is the ion charge-to-mass ratio that is of key importance for improving the γ-ray generation efficiency.Here the ion charge-to-mass ratio has a greater impact on the γ-emission enhancement compared with laser peak power and particle density because these laser power and plasma density parameters are still around the optimal conditions for bright γemission.Under these conditions,the lasers form a channel and penetrate the high-density region of the target and deplete most of their energy.So the conversion rate of γ-emission is largely affected by the number of electrons confined around the ions in the channel experiencing the laser fields and selfgenerated fields.

    Previous studies show that a novel target design with a high-density confinement geometry is beneficial for enhancing γ-ray conversion efficiency from H+plasmas at a relatively low laser intensity of about 1022W cm-2[36].Here we compare the conversion efficiency in our parameter regime,i.e.10 PW-class lasers at 1023W cm–2and heavy-ion plasmas with large-scale preplasmas,for a plane C6+-plasma target and a gold-cone confined C6+-plasma target.The Au ion density iscorresponding to a mass density of 19.32 g cm-3.The Au electron density is about 260nc.The cone with a half-angle of θ=14° is located between 5λ ≤x≤45λ with a thickness of 2λ.The right inner opening radius of the cone isR=2.5λ.The other parameters are the same as those in figure 1.We find that the γ-photon energy evolution and conversion efficiency are almost the same as using the plane and gold-cone-confined targets.Figure 5 compares the spatial distribution of γ-photon density,electron density,and magnetic field for both target configurations.The corresponding results look quite similar.The laser field develops a plasma density channel in the plane-plasma target with a shape much like the cone,as a result of relativistic selffocusing effects.As a consequence,the localized region and density of the trapped electrons around the laser field which give the γ-ray emission are quite close for both target cases.Besides,the region and strength of the magnetic field are also similar.Thus the generated γ-rays are nearly the same.This result shows that in our case a simple plane target is efficient enough for γ-ray emission,which is beneficial for easing the difficulty of target manufacturing and alignment in experiments.

    Figure 5.Comparison between target configurations of(a)–(c)a gold-cone confined C6+-plasma target and(d)–(f)plane C6+-plasma target.Columns from left to right correspond to the spatial distribution of γ-photon number density,electron number density,and magnetic field,respectively.

    Previous work by Lezhninet al[33]has compared the difference in γ-ray generation between 2D and 3D PIC simulations with similar laser–plasma parameters as ours.It is found that,for 10 PW laser interaction with H+plasmas,the γ-ray conversion efficiency is close to 40%in 2D simulations,while it only drops to no less than 20% in the 3D case.Here we obtain an efficiency reaching about 60%in 2D simulations.Considering heavy-ion plasmas are more efficient than H+plasmas in γ-ray generation,an efficiency of more than 30% may be estimated in the 3D case.

    4.Conclusions

    In summary,through 2D PIC simulations,we present highly efficient γ-ray generation from 20 PW laser-irradiated overcritical plasmas in the QED regime via the nonlinear Thomson or multi-photon Compton scattering mechanism,achieved by using heavy-ion plasmas with large-scale preplasmas.The ion charge-to-mass ratio is of great importance to the γ-emission enhancement,while the laser peak power and particle density have less influence in the considered parameter regime around the optimal conditions for efficient γ-emission.Besides,we also find that a simple plane target gives similar γ-ray emission with that of a gold-cone-confined plasma target,which is beneficial for easing the difficulty of complex target manufacturing and alignment in experiments.Such ultrabright γ-ray sources with photon numbers reaching 1014–1015photons/pulse and pulse energy at~100 J–kJ level in the MeV–GeV photon energy region open up new opportunities for a broad range of applications.

    Acknowledgments

    This work was supported in part by the National Key Laboratory of Shock Wave and Detonation Physics(No.JCKYS2020212015),National Natural Science Foundation of China(No.12175157),and the Fundamental Research Funds for the Central Universities(No.YJ202025).

    ORCID iDs

    午夜福利高清视频| 天天躁日日操中文字幕| 男人狂女人下面高潮的视频| 9191精品国产免费久久| 国产爱豆传媒在线观看| 变态另类丝袜制服| 麻豆成人午夜福利视频| 啦啦啦观看免费观看视频高清| 伦理电影大哥的女人| 美女大奶头视频| 亚洲国产欧美人成| 久久久久性生活片| 在线播放无遮挡| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 日本一二三区视频观看| 久久伊人香网站| 日韩精品中文字幕看吧| 国产高清激情床上av| 狠狠狠狠99中文字幕| 两人在一起打扑克的视频| 天堂av国产一区二区熟女人妻| 99国产精品一区二区三区| 国产av在哪里看| 综合色av麻豆| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 两个人的视频大全免费| 国产亚洲欧美在线一区二区| 国产成人av教育| 可以在线观看毛片的网站| 又紧又爽又黄一区二区| 久久久久久久久大av| 嫩草影院入口| 久久国产精品人妻蜜桃| 国产精品一区二区性色av| 在线免费观看的www视频| 久久午夜福利片| 中文字幕精品亚洲无线码一区| 很黄的视频免费| 美女被艹到高潮喷水动态| 久久精品91蜜桃| 国产蜜桃级精品一区二区三区| 91在线精品国自产拍蜜月| 国产精品伦人一区二区| 国语自产精品视频在线第100页| 午夜福利欧美成人| 久久久久国内视频| 免费观看精品视频网站| 欧美又色又爽又黄视频| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 亚洲av熟女| 在线天堂最新版资源| 在线a可以看的网站| 国产午夜精品论理片| 国产综合懂色| 国产色婷婷99| 国产精品乱码一区二三区的特点| 欧美区成人在线视频| 国产野战对白在线观看| 丰满人妻一区二区三区视频av| 舔av片在线| 嫁个100分男人电影在线观看| 成年免费大片在线观看| 国产色爽女视频免费观看| 久久久久免费精品人妻一区二区| 国产精品亚洲一级av第二区| 欧美日本亚洲视频在线播放| 97超视频在线观看视频| av视频在线观看入口| 能在线免费观看的黄片| 美女 人体艺术 gogo| 啦啦啦观看免费观看视频高清| 国产高潮美女av| 哪里可以看免费的av片| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 国产精品不卡视频一区二区 | 美女cb高潮喷水在线观看| 男女那种视频在线观看| 日韩人妻高清精品专区| 一级毛片久久久久久久久女| 欧洲精品卡2卡3卡4卡5卡区| 精品不卡国产一区二区三区| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片| 最近最新中文字幕大全电影3| 动漫黄色视频在线观看| 舔av片在线| 国产成人欧美在线观看| 中文亚洲av片在线观看爽| 欧美黑人欧美精品刺激| 成人av在线播放网站| 午夜免费男女啪啪视频观看 | 国产一区二区三区视频了| 99在线人妻在线中文字幕| 日韩有码中文字幕| 少妇熟女aⅴ在线视频| 午夜a级毛片| 免费搜索国产男女视频| 高潮久久久久久久久久久不卡| 一区二区三区高清视频在线| 亚洲av一区综合| 午夜福利成人在线免费观看| 亚洲成人免费电影在线观看| 听说在线观看完整版免费高清| 亚洲成a人片在线一区二区| 久久久久久久久久成人| 成人精品一区二区免费| 成年女人看的毛片在线观看| 国产精品三级大全| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 国产亚洲精品久久久久久毛片| 91麻豆精品激情在线观看国产| 亚洲av免费高清在线观看| 看片在线看免费视频| 亚洲av成人不卡在线观看播放网| 欧美日韩乱码在线| 精品久久久久久久久久久久久| 精品一区二区三区人妻视频| 性色av乱码一区二区三区2| 中文字幕免费在线视频6| 一级黄色大片毛片| 有码 亚洲区| aaaaa片日本免费| 久久久久久久久久成人| 国产伦精品一区二区三区视频9| www.www免费av| 啦啦啦韩国在线观看视频| 波多野结衣高清无吗| 性色av乱码一区二区三区2| 别揉我奶头 嗯啊视频| 国产午夜福利久久久久久| 久久久久久国产a免费观看| 美女高潮的动态| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 性欧美人与动物交配| 免费无遮挡裸体视频| 久久久久久久久久黄片| 三级毛片av免费| 天天一区二区日本电影三级| 十八禁网站免费在线| 美女 人体艺术 gogo| 免费看光身美女| 色综合亚洲欧美另类图片| 亚洲国产色片| 亚洲av五月六月丁香网| 变态另类丝袜制服| 国产久久久一区二区三区| 日本黄大片高清| 欧美性猛交╳xxx乱大交人| 免费黄网站久久成人精品 | 日韩 亚洲 欧美在线| 搞女人的毛片| 长腿黑丝高跟| 99热这里只有精品一区| 此物有八面人人有两片| 久久6这里有精品| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 日韩高清综合在线| 搞女人的毛片| 国产一区二区激情短视频| 欧美丝袜亚洲另类 | 国产蜜桃级精品一区二区三区| 精品一区二区三区视频在线| 成年版毛片免费区| 中文字幕熟女人妻在线| 国产精品一区二区免费欧美| 深夜a级毛片| 男插女下体视频免费在线播放| 成人精品一区二区免费| 国产精品免费一区二区三区在线| 中出人妻视频一区二区| 午夜福利高清视频| a在线观看视频网站| 在线国产一区二区在线| 99热只有精品国产| 校园春色视频在线观看| 又粗又爽又猛毛片免费看| 国产高清有码在线观看视频| 怎么达到女性高潮| 久久这里只有精品中国| 亚洲欧美清纯卡通| 看免费av毛片| 亚洲欧美日韩无卡精品| 最近中文字幕高清免费大全6 | 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 中文字幕高清在线视频| 国产精品免费一区二区三区在线| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在 | 在现免费观看毛片| 国内精品一区二区在线观看| 亚洲av日韩精品久久久久久密| 中文字幕免费在线视频6| 国产高清视频在线播放一区| 狠狠狠狠99中文字幕| 99热精品在线国产| 一进一出好大好爽视频| 99久国产av精品| 亚洲一区二区三区色噜噜| 精品免费久久久久久久清纯| 午夜视频国产福利| 国产伦精品一区二区三区视频9| 三级毛片av免费| 一级黄色大片毛片| 免费看美女性在线毛片视频| 99热精品在线国产| 国产精品免费一区二区三区在线| 人妻久久中文字幕网| 91久久精品电影网| 最后的刺客免费高清国语| 日韩欧美在线乱码| 日本精品一区二区三区蜜桃| 亚洲精品乱码久久久v下载方式| 成人国产一区最新在线观看| 男插女下体视频免费在线播放| 一本综合久久免费| 欧美一区二区国产精品久久精品| 精品一区二区三区av网在线观看| 国产一区二区在线观看日韩| 国产成人av教育| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| 怎么达到女性高潮| 丰满人妻一区二区三区视频av| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| www.www免费av| 国产成+人综合+亚洲专区| 丰满的人妻完整版| 亚洲欧美精品综合久久99| 悠悠久久av| 最近最新免费中文字幕在线| 国内精品一区二区在线观看| 一级毛片久久久久久久久女| 日韩欧美在线乱码| 亚洲精品粉嫩美女一区| 在线播放国产精品三级| 少妇被粗大猛烈的视频| 欧美3d第一页| 国产av在哪里看| 亚洲成av人片免费观看| 在线观看66精品国产| 极品教师在线免费播放| 少妇的逼水好多| 欧美午夜高清在线| 国产精品伦人一区二区| 国产三级在线视频| 三级毛片av免费| 国产 一区 欧美 日韩| av在线观看视频网站免费| 一本一本综合久久| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 亚洲第一欧美日韩一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲欧美清纯卡通| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 99久久99久久久精品蜜桃| 亚洲综合色惰| 日韩欧美在线二视频| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 午夜福利在线观看免费完整高清在 | 老女人水多毛片| 亚洲美女黄片视频| 美女 人体艺术 gogo| 亚洲精品在线美女| 亚洲欧美清纯卡通| 在线天堂最新版资源| 69av精品久久久久久| 韩国av一区二区三区四区| 久久精品影院6| 午夜久久久久精精品| 日韩中字成人| 又爽又黄无遮挡网站| 日韩欧美 国产精品| 嫩草影院入口| 亚洲经典国产精华液单 | 日本成人三级电影网站| 国产高清有码在线观看视频| 特级一级黄色大片| 免费看美女性在线毛片视频| 亚洲中文日韩欧美视频| 国产三级黄色录像| 可以在线观看毛片的网站| 亚洲,欧美精品.| 欧美极品一区二区三区四区| 婷婷色综合大香蕉| 国产v大片淫在线免费观看| 婷婷精品国产亚洲av在线| 一级作爱视频免费观看| 免费在线观看影片大全网站| 一本一本综合久久| av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 老熟妇乱子伦视频在线观看| 久久久久久久精品吃奶| 黄色配什么色好看| 岛国在线免费视频观看| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 亚洲成av人片在线播放无| 亚洲熟妇熟女久久| 亚洲三级黄色毛片| 亚州av有码| aaaaa片日本免费| av天堂中文字幕网| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| 美女xxoo啪啪120秒动态图 | 偷拍熟女少妇极品色| 国产精品野战在线观看| 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 琪琪午夜伦伦电影理论片6080| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 免费高清视频大片| 亚洲av成人精品一区久久| 免费av毛片视频| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 国产精品久久久久久久久免 | 99精品久久久久人妻精品| 欧美日韩黄片免| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 伦理电影大哥的女人| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清| 99久久99久久久精品蜜桃| 国产精品三级大全| 国产精品人妻久久久久久| 日本精品一区二区三区蜜桃| 脱女人内裤的视频| 精品久久久久久久久av| 成人精品一区二区免费| 99国产综合亚洲精品| 亚洲无线观看免费| 日韩欧美免费精品| 人妻制服诱惑在线中文字幕| 99国产精品一区二区蜜桃av| 少妇高潮的动态图| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 成人国产综合亚洲| 亚洲国产精品成人综合色| 在线十欧美十亚洲十日本专区| 日韩欧美免费精品| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 免费搜索国产男女视频| 99视频精品全部免费 在线| 最近最新免费中文字幕在线| 亚洲 欧美 日韩 在线 免费| 青草久久国产| 动漫黄色视频在线观看| 毛片女人毛片| 免费在线观看影片大全网站| 少妇人妻精品综合一区二区 | 在线观看午夜福利视频| 国产极品精品免费视频能看的| 给我免费播放毛片高清在线观看| 身体一侧抽搐| 热99re8久久精品国产| 欧美又色又爽又黄视频| 免费看日本二区| 久久国产乱子伦精品免费另类| 久久久久性生活片| 免费在线观看影片大全网站| 精品无人区乱码1区二区| 免费看a级黄色片| 两人在一起打扑克的视频| 久久国产乱子伦精品免费另类| 亚洲第一欧美日韩一区二区三区| 婷婷六月久久综合丁香| 国产成人a区在线观看| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 天堂√8在线中文| 国产伦精品一区二区三区四那| 国产三级黄色录像| 一本综合久久免费| 女人十人毛片免费观看3o分钟| 欧美日韩国产亚洲二区| 69av精品久久久久久| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 身体一侧抽搐| 久久久久性生活片| 日韩中字成人| 国产 一区 欧美 日韩| 天堂动漫精品| 色综合婷婷激情| 在线观看美女被高潮喷水网站 | 乱人视频在线观看| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 午夜老司机福利剧场| 亚洲精品在线美女| 欧美色视频一区免费| 日本成人三级电影网站| 别揉我奶头~嗯~啊~动态视频| 一进一出抽搐gif免费好疼| av女优亚洲男人天堂| 成人国产一区最新在线观看| 国产精品久久久久久久久免 | 久久草成人影院| av欧美777| 中文字幕人妻熟人妻熟丝袜美| 亚洲18禁久久av| 赤兔流量卡办理| 欧美日韩乱码在线| 小说图片视频综合网站| 国产人妻一区二区三区在| 国产男靠女视频免费网站| 精品日产1卡2卡| 国产免费男女视频| 搡老妇女老女人老熟妇| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 亚洲乱码一区二区免费版| 久久99热6这里只有精品| av国产免费在线观看| 在线播放国产精品三级| 丰满人妻一区二区三区视频av| 啦啦啦韩国在线观看视频| 国产精品自产拍在线观看55亚洲| 亚洲最大成人中文| 亚洲五月婷婷丁香| 神马国产精品三级电影在线观看| 色综合欧美亚洲国产小说| 国产精品一及| 久久久久久久久中文| 91在线精品国自产拍蜜月| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 丁香欧美五月| av在线老鸭窝| 听说在线观看完整版免费高清| 成人国产综合亚洲| 国产精品嫩草影院av在线观看 | 最新中文字幕久久久久| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 757午夜福利合集在线观看| 一边摸一边抽搐一进一小说| 久久热精品热| 特大巨黑吊av在线直播| 免费电影在线观看免费观看| 人人妻人人看人人澡| 久久久久久久精品吃奶| 国产精品一区二区性色av| 久久久久性生活片| 国产蜜桃级精品一区二区三区| 精品国内亚洲2022精品成人| 午夜亚洲福利在线播放| 一区二区三区激情视频| 99热这里只有是精品在线观看 | 天堂av国产一区二区熟女人妻| 性色av乱码一区二区三区2| 国产老妇女一区| 熟女人妻精品中文字幕| 欧美bdsm另类| 人妻丰满熟妇av一区二区三区| 美女xxoo啪啪120秒动态图 | 真人一进一出gif抽搐免费| av中文乱码字幕在线| 日韩欧美在线二视频| 99在线人妻在线中文字幕| 久久久久久久久久成人| 久久性视频一级片| 免费看a级黄色片| 高清在线国产一区| 九九热线精品视视频播放| 又黄又爽又免费观看的视频| 欧美色视频一区免费| 精品久久久久久,| 国产aⅴ精品一区二区三区波| 90打野战视频偷拍视频| 国语自产精品视频在线第100页| 久久久国产成人免费| 午夜福利18| 乱码一卡2卡4卡精品| 国产精品爽爽va在线观看网站| 亚洲色图av天堂| 成人性生交大片免费视频hd| 少妇被粗大猛烈的视频| 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 日韩欧美 国产精品| 亚洲欧美精品综合久久99| 日本精品一区二区三区蜜桃| 欧美绝顶高潮抽搐喷水| 男人和女人高潮做爰伦理| 精品人妻视频免费看| 国内久久婷婷六月综合欲色啪| 女生性感内裤真人,穿戴方法视频| 国内精品一区二区在线观看| 午夜精品久久久久久毛片777| 婷婷色综合大香蕉| 日日夜夜操网爽| 国产高清有码在线观看视频| 一区二区三区高清视频在线| 精品99又大又爽又粗少妇毛片 | 午夜激情欧美在线| 久久精品国产亚洲av香蕉五月| 免费观看精品视频网站| 99国产精品一区二区蜜桃av| 日韩免费av在线播放| 老司机福利观看| 亚洲内射少妇av| 少妇高潮的动态图| 亚洲人与动物交配视频| 国产伦精品一区二区三区视频9| 成人精品一区二区免费| 97热精品久久久久久| 午夜免费成人在线视频| 亚洲天堂国产精品一区在线| 超碰av人人做人人爽久久| 欧美最新免费一区二区三区 | 动漫黄色视频在线观看| 亚洲精品456在线播放app | 毛片一级片免费看久久久久 | 五月伊人婷婷丁香| 欧美潮喷喷水| 亚洲精品影视一区二区三区av| 日韩精品青青久久久久久| 国产精品永久免费网站| 99热只有精品国产| 亚洲最大成人中文| 精品一区二区三区视频在线| 亚洲片人在线观看| 色综合婷婷激情| 99riav亚洲国产免费| 悠悠久久av| 成人亚洲精品av一区二区| 久久久久久国产a免费观看| 亚洲专区国产一区二区| 夜夜夜夜夜久久久久| 欧美黑人欧美精品刺激| 亚洲最大成人中文| 18禁黄网站禁片午夜丰满| 他把我摸到了高潮在线观看| 一本综合久久免费| 久9热在线精品视频| 少妇被粗大猛烈的视频| 亚洲中文日韩欧美视频| 嫁个100分男人电影在线观看| 精品人妻视频免费看| 国产精品电影一区二区三区| 中亚洲国语对白在线视频| av天堂在线播放| 亚洲在线自拍视频| 欧美在线一区亚洲| 神马国产精品三级电影在线观看| 观看免费一级毛片| 性色av乱码一区二区三区2| 一区二区三区高清视频在线| 亚洲第一电影网av| 国内毛片毛片毛片毛片毛片| 两个人的视频大全免费| 色尼玛亚洲综合影院| 一级毛片久久久久久久久女| 99久久久亚洲精品蜜臀av| 国内久久婷婷六月综合欲色啪| 欧美一区二区亚洲| 亚洲中文字幕一区二区三区有码在线看| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久av| 国产老妇女一区| 老司机午夜福利在线观看视频| 亚洲国产欧美人成| 九九在线视频观看精品| 国产精品伦人一区二区| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品久久久久久毛片| 如何舔出高潮| 国产精品爽爽va在线观看网站| 国产极品精品免费视频能看的| 女人被狂操c到高潮| 有码 亚洲区| 中文亚洲av片在线观看爽| 老司机福利观看| 舔av片在线| 悠悠久久av| 精品人妻一区二区三区麻豆 | 草草在线视频免费看| 欧美日本视频| 久久久色成人| 色综合亚洲欧美另类图片|