• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement-device-independent one-step quantum secure direct communication

    2022-12-28 09:52:34JiaWeiYing應佳偉LanZhou周瀾WeiZhong鐘偉andYuBoSheng盛宇波
    Chinese Physics B 2022年12期
    關鍵詞:鐘偉

    Jia-Wei Ying(應佳偉) Lan Zhou(周瀾) Wei Zhong(鐘偉) and Yu-Bo Sheng(盛宇波)

    1College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: measurement-device-independent, one-step quantum secure direct communication, hyperentanglement Bell state measurement, hyperentanglement-assisted complete polarization Bell state measurement

    1. Introduction

    In the 21st century, the information security has been widely concerned. Quantum communication based on the basic principle of quantum mechanics can provide an absolute security guarantee of the communication. Quantum communication began as the research on quantum key distribution(QKD).[1–3]QKD can distribute secure keys between two distant parties, which was first proposed in 1984.[1]Combined with extra one-time pad and the one-way classical communication, the communication parties can realize the secure communication. During past decades, QKD has made great progress in both theory[4–14]and experiment.[15–23]For example,in the theory aspect,the device-independent(DI)QKD[4]and measurement-device-independent (MDI) QKD can efficiently enhance QKD’s security under practical imperfect experimental condition.[4–9]The twin-field(TF)QKD improves the key rate-transmittance bound from linear to square root.[14]In the experimental aspect, Yinet al.in 2020 built a timephase encoding system to implement the four-intensity decoystate BB84 QKD protocol.[15]In 2021,Chenet al.realized the space-to-ground quantum communication network over 4600 km.[16]Recently, the chip-based QKD[18]and TF-QKD experiment over an 830-km fibre[23]were also reported. Besides QKD, there appears to be some important branches of quantum communication, such as quantum teleportation(QT),[24–28]quantum secret sharing (QSS),[29–33]and quantum secure direct communication.[34–54]QT enables a communication party to send the encoded messages to a remote party without sending the encoded particle itself. In QSS, a dealer can distribute the keys to multiple participants. All the participants can obtain the keys only by cooperation.

    Quantum secure direct communication (QSDC) which will be detailed here is a new quantum secure communication mode. It can directly transmit secure messages between two communication parties without keys. Meanwhile,QSDC can also realize the task of QKD. The first QSDC protocol known as the efficient QSDC protocol was proposed by Long and Liu in 2000.[34]In 2003 and 2004,the typical twostep QSDC protocol based on Einstein–Podolsky–Rosen pairs and the QSDC protocol based on single photons (DL04 protocol) were successively proposed.[35,36]In 2005, Wanget al.proposed the QSDC protocol with high-dimension quantum superdense coding.[37]The DL04 protocol and two-step QSDC protocol were experimentally demonstrated in 2016 and 2017, respectively.[38,39]In recent few years, QSDC has developed rapidly in both theory and experiment.[40–54]In theory,DI-QSDC and MDI-QSDC were put forward,which can largely enhance QSDC’s security under practical experimental condition.[41–44]In 2021,Long and Zhang adopted the masking technology in QSDC to increase its capacity,communication distance,and tolerable error rate greatly.[49]In the experimental aspect, a 15-user QSDC network with any two users being 40 km apart was realized in 2021.[51]Later,researchers achieved the QSDC over a 100-km fiber with time-bin and phase quantum states.[53]

    In 2021, the one-step QSDC[52]based on polarizationspatial-mode-hyperentanglement was proposed, where the communication parties only require to transmit photons in the quantum channel once to construct the hyperentanglement channel. Then, the message sender encodes his messages in the polarization degree of freedom(DOF)and the parties perform the nonlocal complete polarization Bell state measurement (BSM) assisted by the spatial-mode entanglement.[55]The message receiver can read out the encoded messages according to the BSM results. The one-step QSDC can effectively simplify QSDC’s operation and reduce message loss.However, similar to previous QSDC protocols, the one-step QSDC requires perfect and trusted experimental devices. For enhancing its security in practical imperfect experimental condition, in this paper, we propose two MDI one-step QSDC protocols, which can resist all possible attacks from practical imperfect measurement devices. In both MDI one-step QSDC protocols,the communication parties are only responsible for preparing polarization-spatial-mode hyperentanglement and hyper-encoded single photons and for encoding. All the measurement tasks are handed over to the third party. The parties first construct the hyperentanglement channel by the hyperentanglement swapping method. In the first MDI onestep QSDC protocol, we adopt the complete hyperentanglement Bell state measurement (HBSM) with the help of the cross-Kerr nonlinearity,while in the second protocol,we adopt the feasible linear-optical partial HBSM. Then, the message sender encodes his messages in the polarization DOF of his remaining photons and the receiver randomly encodes his photons. As they cannot measure the photons, they should send the encoded photons to the measurement party for the complete polarization BSM assisted by the spatial-mode entanglement. Then,the receiver can finally read out the encoded messages according to the BSM results and his own encodings.Our two MDI one-step QSDC protocols have potential applications in the future quantum secure communication field.

    The structure of this paper is organized as follows. In Section 2, we explain our first MDI one-step QSDC protocol. In Section 3,we briefly explain the second MDI one-step QSDC protocol and analyze the influence from the adoption of linear-optical partial HBSM on its message transmission and security. In Section 4, we analyze the security of our MDI one-step QSDC protocols.In Section 5,we simulate the secret message capacity of the first MDI one-step QSDC protocol.In Section 6,we make some discussion and conclusion.

    2. The MDI one-step QSDC protocol with the nonlinear complete HBSM

    In this section,we explain our MDI one-step QSDC protocol with the complete HBSM.As shown in Fig.1,there are three parties in our protocol. Alice (A) and Bob (B) are the message sender and receiver, respectively. Charlie (C) is an untrusted third party,who can even be controlled by the eavesdropper (Eve). The whole protocol can be described as follows.

    Fig.1. Illustration of the first MDI one-step QSDC protocol. A,B,C stand for Alice, Bob, and Charlie, respectively. The pattern of yellow and blue balls represents the initial hyperentangled state〉prepared by Alice and Bob. The pattern of two blue balls represents the hyper-encoded single photon. The solid and dashed lines represent the initial and the constructed hyperentanglement,respectively.

    Step 1: Alice and Bob both preparen(nis large)identical polarization-spatial-mode hyperentangled photon pairs in|Ψ〉=|ψ+P〉?|ψ+S〉. Alice(Bob)takes one photon from each hyperentangled photon pair to form an ordered photon sequenceSA(SB) and takes the other photons to form the ordered photon sequenceCA(CB).Then,Alice(Bob)preparesmpolarization-spatial-mode hyper-encoded single photons and inserts them randomly into the sequenceCA(CB). In this way,there arenphotons in sequenceSA(SB) andn+mphotons in sequenceCA(CB). The single photons are randomly prepared in the rectilinear basisZP(ZS) and diagonal basisXP(XS)in the polarization(spatial-mode)DOF.ZPandXPcan be described as

    where|H〉and|V〉represent the horizontal and vertical polarization,respectively.ZSandXSin Alice’s and Bob’s locations can be respectively written as

    Step 2: Alice and Bob send the photons in sequencesCAandCBto the third party Charlie. After Charlie receiving the photons,he performs the complete HBSM with the help of the cross-Kerr nonlinearity[56]on each photon pair.

    Step 3:Charlie announces the HBSM result for each photon pair. Alice and Bob announce the positions and quantum states of the hyper-encoded photons. If one photon for the HBSM is the hyper-encoded single photon and the other one is from the hyperentangled photon pair, Alice and Bob will discard the HBSM result and the corresponding photon inSAorSBsequence. If both photons for the HBSM are from the hyperentangled photon pairs,after the HBSM,the corresponding remained photons inSAandSBsequences can construct the hyperentanglement channel with the hyperentanglement swapping. In detail, the whole photon state can be written as

    For example, if the HBSM result is|ψ+P〉?|ψ?S〉CACB, the hyperentangled state between Alice and Bob is|ψ+P〉SASB?|ψ?S〉SASB.The constructed hyperentangled states in sequencesSAandSBare known to all.

    If both photons for the HBSM are hyper-encoded photons,the HBSM results can be used for security checking. As shown in Ref. [7], there are two possible cases. First, if the two single photons are generated with different bases in both DOFs,the HBSM results and the encodings in both DOFs cannot be used for security checking. For example, for the photon pair in|H〉|a′1〉?|+P〉|+S〉B, the whole photon state will evolve to

    It can be found that the HBSM result may obtain all the sixteen hyperentangled Bell states with the same probability and the parties cannot detect whether an error occurs in each DOF.As a result, the parties have to discard the HBSM results and the encodings in both DOFs.

    Table 1. Possible BSM results and corresponding probability in the polarization DOF.

    Table 2. Possible BSM results and the corresponding probability in the spatial-mode DOF.

    Second, if the two single photons are generated with the same basis in a DOF,the BSM results and the encodings in this DOF can be used for security checking. The possible BSM results and the corresponding success probability in the polarization DOF and spatial-mode DOF are listed in Table 1 and Table 2,respectively. For example,for the quantum state|H〉|a′1〉?|+P〉|b′2〉or|H〉|a′1〉?|H〉|b′1〉,the photon state can be written as

    It can be found that when the two photons have the same basis in a DOF, the BSM result in this DOF only has two possible Bell states. If Charlie obtains the other result, the parties can ensure that an error occurs in this DOF.As a result,when the photons have the same basis in a DOF,the BSM result in this DOF can be used for security checking. After the security checking,the parties estimate the bit error rate in both DOFs.If the bit error rate in any DOF exceeds a certain threshold,the photon transmission is unsafe and the parties have to discard the communication. Otherwise,they will ensure that the photon transmission is secure and go to the next step.

    Step 4: Alice performs one of the four unitary operations on the photons inSAsequence to encode her messages in the polarization DOF. The four unitary operations have the form of

    whereU0,U1,U2,andU3represent four classical messages 00,01,10,and 11,respectively. Meanwhile,she randomly selects some photon pairs as the second round of security checking photon pairs and performs random operations on them. In order to prevent message leakage,Bob also randomly performs one of the above four unitary operations on all the photons inSBsequence. We call the encoded photon sequences asMAandMB,respectively.

    Fig. 2. The basic principle of the complete polarization BSM assisted by spatial-mode entanglement. Here, PBS represents the polarization beamsplitter,whichcan totally transmit thephotonin |H〉andtotally reflectthe photon in|V〉.QWPmeansthequarter wave plate, which makes|H〉→(|H〉+|V〉)and|V〉→(|H〉?|V〉). Di(i=1,2,...,8)representsthe singlephotondetector.

    Table 3. The polarization Bell states corresponding to the detector responses with different spatial-mode entangled states.

    Step 5: Alice and Bob send the photons in sequencesMAandMBto Charlie. After receiving the photons, Charlie performs the complete polarization BSM assisted by the spatial entanglement on each photon pair.[2]The basic principle of such BSM is shown in Fig. 2. The polarization Bell states corresponding to the detector responses with different spatialmode entangled states are shown in Table 3. In this way, according to the detector responses,Charlie can completely distinguish four polarization Bell states in Eq.(3).

    Step 6: Charlie announces his BSM results and Alice announces the positions and operations on the security checking photon pairs. For the message transmission photon pairs,Bob can deduce Alice’s coding operation combining the BSM result with his own random operation, thus can finally read out the encoded message. For the security checking photon pairs,Bob can estimate the error rate. If the bit error rate exceeds a certain threshold,the photon transmission is unsafe and the parties have to discard the communication and the transmitted messages. Otherwise,if the bit error rate is lower than the threshold, they ensure that the photon transmission is secure and keep the transmitted messages.

    3. The second MDI one-step QSDC protocol with the linear-optical partial HBSM

    For enhancing the practicability of the MDI one-step QSDC protocol,we propose the second MDI one-step QSDC protocol,which adopts the linear-optical partial HBSM protocol in Ref.[57]in step 2.The linear-optical partial HBSM protocol can distinguish 12 of the 16 hyperentangled Bell states assisted by the time-bin DOF. The distinguishable 12 hyperentangled states are|φ±P〉?|φ±S〉,|ψ±P〉?|ψ±S〉, and|ψ±P〉?|φ±S〉. For the other 4 hyperentangled Bell states|φ±P〉?|ψ±S〉,this HBSM protocol can only distinguish|ψ±S〉but cannot distinguish|φ±P〉.[57]This partial HBSM protocol only requires linear-optical elements, and is feasible with current experimental technology.

    Then,we analyze the influence from adopting the linearoptical partial HBSM protocol on the security and communication efficiency of our MDI one-step QSDC. If the HBSM obtains one of the four hyperentangled states|φ±P〉?|ψ±S〉,the situation that the partial HBSM cannot distinguish|φ±P〉would influence the security checking and the construction of hyperentanglement channel. As shown in Table 1, during the security checking process of step 3,if both parties use the rectilinear basis,|φ±P〉both correspond to the even parity|H〉|H〉and|V〉|V〉. In this case,the situation that Charlie cannot distinguish|φ±P〉will not cause error in the polarization DOF,so that the encoded bits and the BSM result in the polarization DOF can still be used in the security checking. On the other hand,if both parties use the diagonal basis,|φ+P〉corresponds to the even parity|+P〉|+P〉and|?P〉?P〉, while|φ?P〉corresponds to the odd parity|+P〉|?P〉and|?P〉|+P〉. As a result,if Charlie randomly announces|φ+P〉or|φ?P〉,it may cause error in the polarization DOF.As a result,for avoiding the error caused by the partial HBSM,the parties have to discard the encoded bits and the BSM result in the polarization DOF when Charlie obtains|φ±P〉?|ψ±S〉,but only use the BSM result and the encoding bits in the spatial-mode DOF to check the security. On the other hand, in the hyperentanglement swapping process, if Charlie obtains|φ±P〉?|ψ±S〉, the communication parties cannot determine the constructed quantum state in the polarization DOF, which may make Bob obtain wrong messages by comparing the constructed quantum state and encoded quantum state in the polarization DOF.For avoiding the message error, the parties have to discard the corresponding hyperentangled photons inSAandSBsequences. As Charlie may obtain|φ±P〉?|ψ±S〉with the probability of 1/4,Alice can transmit 1.5 bits of classical messages to Bob in each communication round in statistics.

    4. Security analysis

    Now,we analyze the security of our MDI one-step QSDC protocols in theory.In the protocols,all the measurement tasks are handed over to the third measurement party Charlie, who can be even controlled by Eve and the measurement results are public to all. We show the relationship among the first HBSM result in the polarization DOF,the complete polarization BSM result and Alice’s and Bob’s joint operations in Table 4. We set the HBSM result in the polarization DOF as|ψ+〉for simplicity. If the HBSM obtains the other result, we can obtain the similar results. From Table 4, the BSM result is independent of Alice’s bit value. One can read out Alice’s encoded message only by combining the BSM result with Bob’s operation. As Bob’s random operation is private,only Bob can obtain the encoded messages. Meanwhile,if Charlie deliberately announces wrong HBSM or BSM result, Bob may read out wrong messages according to the measurement results. However, as Charlie does not know the positions of the security checking photons before announcing the measurement results,his dishonest behavior may increase the error rate. In this way,his dishonest behavior can be detected by the communication parties.Based on the above analysis,our protocol can resist all the possible attacks from the imperfect measurement devices and the measurement party.

    Table 4. The relationship among the HBSM result in the polarization DOF, the complete polarization BSM result and Alice’s and Bob’s joint operation. Here,we set the HBSM result in the polarization DOF as|ψ+〉for simplicity.

    Then, we consider a common attack mode, say, the intercept-resend attack. For achieving the goal of MDI, the parties require to transmit photons in quantum channels twice.During the first photon transmission process,Eve can intercept some photons from Alice. For avoiding detection,he prepares some single photons and sends them to Charlie to make the HBSM.In this way,Alice actually constructs the hyperentangled channel with Eve.During the second photon transmission process,Eve also intercepts the corresponding photons of the intercepted photons in the first photon transmission, so that he can finally obtain Alice’s encoded messages by performing the polarization BSM.In the protocol,the communication security is guaranteed by two rounds of security checking. During the first photon transmission process,as the randomly encoded security checking photons are randomly inserted into theCAandCBsequences,Eve may steal some security checking photons inevitably. As Eve does not know the generation basis of the single photons, he can only randomly chooseZorXbasis to measure the photons in both DOFs and generate a new photon according to his measurement result. When Eve chooses wrong basis,his new generated photon may cause wrong HBSM result and increase the error rate,so that the parties can detect Eve’s attack. As long as the security of the first photon transmission process can be guaranteed, Eve cannot steal meaningful messages even if she could steal some photons during the second photon transmission process. Meanwhile,Charlie(Eve)cannot obtain the encoded messages from the HBSM and polarization BSM results,because he does not know Bob’s random encoding in the polarization DOF.However, the intercept-resend attack in the second photon transmission process would make Charlie obtain wrong BSM results and disturb the communication. We set the second security checking to guarantee the security of the second photon transmission process. As a result, with the help of two rounds of security checking, the security and correctness of the messages can be guaranteed. Our protocols can resist the intercept-resend attack in theory.

    Third, we consider another common attack, the Trojan horse attack,in which the attacker inserts his own photons into the photon sequences to steal the encoded messages. In our protocol,with the help of the entanglement swapping,the photons to be encoded are always in Alice’s and Bob’s locations before the encoding. In this way,the eavesdropper cannot insert photons into these photon sequences to steal the encoded messages,so that our protocols can also resist the Trojan horse attack.

    5. Simulation of the MDI one-step QSDC protocol’s secrete message capacity

    Taking Eq.(14)into Eq.(11),we can finally calculate the value ofCs.

    In Fig.3,we provide the value of logCsper pulse altered with the photon transmission distancedfrom Charlie to Alice(Bob). It can be found that with the complete HBSM and linear optical complete polarization BSM, the maximal photon transmission distance can reach about 177 km,so that the maximal communication distance is about 354 km.

    Fig. 3. The secrete message capacity (logCs) per pulse altered with the photon transmission distance d from Charlie to Alice(Bob). Here,we suppose that Alice and Bob use the SPDC sources to generate hyperentangled states with p′ =10?3. During each photon transmission process, we set the misalignment error rates in both DOFs as emP =emS=1.5%. We also set the inherent efficiencies as ηl1=ηl2=98%,the error rate of the homodyne measurement as ed=1%,the single photon detector in the complete polarization BSM process is 90%efficient with the dark-ground count rate as Y0=6.02×10?6.

    6. Discussion and conclusion

    In this paper, we propose two MDI one-step QSDC protocols based on the polarization-spatial-mode hyperentanglement. In our protocols, both Alice and Bob require photon state generation and the encoding. All the measurement tasks are handed over to the third party Charlie. In this way, our protocols can resist all possible attacks from practical imperfect measurement devices. In both protocols,with the help of the HBSM,Alice and Bob can construct the deterministic hyperentanglement channel by the hyperentanglement swapping.Then,after Alice’s and Bob’s encoding,they send the encoded photons to Charlie for the complete polarization BSM assisted by the spatial-mode entanglement. Bob can finally read out Alice’s encoding messages based on Charlie’s measurement results and his own encoding. In the first protocol, with the help of the complete HBSM, Alice can transmit two bits of messages to Bob by consuming two pairs of hyperentangled states. In the second MDI one-step QSDC protocol, with the practical partial HBSM, Alice can transmit 1.5 bits of messages to Bob by consuming two pairs of hyperentangled states in statistics.

    Here, the HBSM is the key element of our protocols.With the complete HBSM,our first MDI one-step protocol can achieve the higher capacity. Besides the HBSM in Ref. [56],there are other complete HBSM protocols with nonlinear optical elements, such as the cross-Kerr nonlinearity and artificial atoms.[65–68]The nonlinear optical elements have gained great progress in recent years.[69–73]In 2016, Becket al.obtained a large conditional cross-phase shift ofπ/6 between signal fields stored in an atomic quantum memory.[70]Soon later, Tiarkset al.reported the strong interactions in Rydberg electromagnetically induced transparency (EIT) experiments, which can create a large controlled phase shift of 3.3±0.2 rad, with the control pulses containing an average of 0.6 photons.[72]In 2020, Sinclairet al.reported the cross-Kerr nonlinearity in a free-space medium based on the Rydberg atoms and EIT technology. They obtained the nonlinear phases as 8 mrad/nW of signal power,corresponding to aχ3of 10?8m2/V2.[73]In this way, with the experimental development of the nonlinear optical elements,it is possible to realize the complete BSM in the near future.

    In conclusion, for enhancing one-step QSDC’s security under practical experimental condition,we propose two MDI one-step QSDC protocols,which can resist all possible attacks from the imperfect measurement device. In the MDI onestep QSDC protocols, Alice and Bob prepare a large number of identical polarization-spatial-mode two-photon hyperentangled states. Then, they send one photon of each hyperentangled photon pair to the third party Charlie to make the HBSM.In this way, Alice and Bob can construct the hyperentanglement channel with the hyperentanglement swapping. The first MDI one-step QSDC protocol uses the nonlinear complete HBSM to construct the hyperentanglement channel,while the second protocol uses the linear-optical partial HBSM. Then,Alice encodes her messages on her remaining photons in the polarization DOF by performing unitary operations and Bob also randomly operates his remaining photons to prevent message leakage. After encodings,Alice and Bob send their photons to Charlie. Charlie performs the linear-optical complete polarization BSM assisted by the spatial-mode entanglement on each photon pair and announces his measurement results.Combining Charlie’s measurement results with his own random operations, Bob can finally deduce Alice’s messages.Both the MDI one-step QSDC protocols are unconditionally secure in theory. In the first MDI one-step QSDC protocol,Alice can transmit 2 bits of message to Bob by using two hyperentangled photon pairs. In the second protocol, with the feasible linear-optical partial HBSM, Alice can transmit 1.5 bits of message to Bob by using two hyperentangled photon pairs in statistics. Our one-step MDI-QSDC protocols, especially the second protocol,may have potential applications in the near future.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11974189 and 12175106), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJB140001),and the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grand No.KYCX22-0963).

    猜你喜歡
    鐘偉
    One-step quantum dialogue
    再出發(fā)的勇氣
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?
    職場小白警示錄:公車追愛驚變“翻車現場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    国产69精品久久久久777片| 国产在视频线在精品| 特级一级黄色大片| av在线蜜桃| 精品一区二区免费观看| 一个人观看的视频www高清免费观看| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 精品一区二区三区视频在线观看免费| 午夜福利欧美成人| 一夜夜www| 老司机午夜十八禁免费视频| 国产伦精品一区二区三区四那| 动漫黄色视频在线观看| 久久久久久久久大av| 国产精品久久久久久人妻精品电影| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷色综合大香蕉| 欧美在线一区亚洲| 免费黄网站久久成人精品 | 男女做爰动态图高潮gif福利片| 欧美日韩乱码在线| 国产一区二区三区在线臀色熟女| 99国产综合亚洲精品| 无人区码免费观看不卡| 好看av亚洲va欧美ⅴa在| 亚洲 国产 在线| 九色成人免费人妻av| 欧美乱妇无乱码| 中文字幕人妻熟人妻熟丝袜美| 激情在线观看视频在线高清| avwww免费| 美女xxoo啪啪120秒动态图 | 国产91精品成人一区二区三区| 91久久精品国产一区二区成人| 性欧美人与动物交配| 国产熟女xx| 神马国产精品三级电影在线观看| 免费观看人在逋| xxxwww97欧美| 两性午夜刺激爽爽歪歪视频在线观看| 草草在线视频免费看| 欧美zozozo另类| 亚洲精品乱码久久久v下载方式| 亚洲国产日韩欧美精品在线观看| 丁香欧美五月| 天美传媒精品一区二区| 在线播放国产精品三级| 在线天堂最新版资源| www.色视频.com| 欧美黑人巨大hd| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 五月玫瑰六月丁香| 午夜激情欧美在线| 人人妻人人看人人澡| 成人国产一区最新在线观看| 观看美女的网站| 久久久国产成人精品二区| 国产精品亚洲美女久久久| 日本与韩国留学比较| 18禁在线播放成人免费| 亚洲成av人片免费观看| 日韩大尺度精品在线看网址| 亚洲成人久久性| 久久精品影院6| av女优亚洲男人天堂| 免费观看精品视频网站| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 最后的刺客免费高清国语| 麻豆成人午夜福利视频| 免费av观看视频| 自拍偷自拍亚洲精品老妇| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| www.www免费av| 国产在线精品亚洲第一网站| 国内少妇人妻偷人精品xxx网站| 床上黄色一级片| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| av在线观看视频网站免费| 国产精品女同一区二区软件 | 搡老熟女国产l中国老女人| 日韩欧美精品v在线| 69人妻影院| 欧美极品一区二区三区四区| 国产午夜福利久久久久久| АⅤ资源中文在线天堂| 久久久国产成人精品二区| 又黄又爽又免费观看的视频| 亚洲av美国av| 亚洲欧美激情综合另类| 亚洲av五月六月丁香网| 天堂动漫精品| 最新在线观看一区二区三区| 亚洲经典国产精华液单 | 真人做人爱边吃奶动态| 亚洲国产精品999在线| 女人十人毛片免费观看3o分钟| 国产成人啪精品午夜网站| 九九在线视频观看精品| 中文字幕熟女人妻在线| 免费黄网站久久成人精品 | 精品无人区乱码1区二区| 亚洲无线观看免费| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 此物有八面人人有两片| 日韩欧美免费精品| 中文在线观看免费www的网站| 亚洲精品在线美女| 欧美性猛交╳xxx乱大交人| 成年女人毛片免费观看观看9| 黄色配什么色好看| 天堂动漫精品| 亚洲欧美精品综合久久99| 亚洲精品一卡2卡三卡4卡5卡| 免费电影在线观看免费观看| 少妇人妻精品综合一区二区 | 九九热线精品视视频播放| 国产视频内射| 国产伦在线观看视频一区| 色噜噜av男人的天堂激情| 一区二区三区免费毛片| 啦啦啦韩国在线观看视频| 亚洲精品在线观看二区| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 国产真实伦视频高清在线观看 | 日本三级黄在线观看| 午夜福利在线观看免费完整高清在 | 免费大片18禁| 九色国产91popny在线| 一进一出抽搐gif免费好疼| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 午夜福利在线观看免费完整高清在 | av黄色大香蕉| 精品人妻1区二区| 欧美激情在线99| 国产大屁股一区二区在线视频| 麻豆久久精品国产亚洲av| 午夜福利免费观看在线| 国产在视频线在精品| 午夜福利高清视频| 亚洲精华国产精华精| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄 | 国产探花在线观看一区二区| avwww免费| 日韩亚洲欧美综合| 国产精品亚洲美女久久久| 国产蜜桃级精品一区二区三区| 精品欧美国产一区二区三| 18+在线观看网站| 色噜噜av男人的天堂激情| 久久九九热精品免费| 国产精品人妻久久久久久| 中文字幕人成人乱码亚洲影| 简卡轻食公司| 亚洲av二区三区四区| 免费高清视频大片| 人妻久久中文字幕网| 自拍偷自拍亚洲精品老妇| 深夜精品福利| 成人亚洲精品av一区二区| 在线天堂最新版资源| 欧美性猛交黑人性爽| 亚洲久久久久久中文字幕| 身体一侧抽搐| 91在线精品国自产拍蜜月| 国产综合懂色| 最好的美女福利视频网| 午夜精品在线福利| 成年版毛片免费区| a级毛片a级免费在线| 亚洲人成网站在线播| 精品国产亚洲在线| 观看美女的网站| 最近最新中文字幕大全电影3| 国产乱人视频| 高清毛片免费观看视频网站| 99国产精品一区二区三区| 97超视频在线观看视频| 91麻豆av在线| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 简卡轻食公司| 亚洲精品一卡2卡三卡4卡5卡| 国产三级黄色录像| 精品久久久久久久久久久久久| 国产乱人视频| 亚洲欧美清纯卡通| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站| 别揉我奶头 嗯啊视频| 午夜福利高清视频| 99riav亚洲国产免费| 中文资源天堂在线| 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 男人的好看免费观看在线视频| 亚洲国产日韩欧美精品在线观看| 天堂√8在线中文| 极品教师在线视频| 人人妻,人人澡人人爽秒播| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 狠狠狠狠99中文字幕| 国产探花在线观看一区二区| 香蕉av资源在线| xxxwww97欧美| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 宅男免费午夜| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 色精品久久人妻99蜜桃| 91在线观看av| 国产一区二区激情短视频| 校园春色视频在线观看| 无遮挡黄片免费观看| 最近在线观看免费完整版| 久久久久免费精品人妻一区二区| 国产精品三级大全| 午夜久久久久精精品| 午夜影院日韩av| 亚洲av免费高清在线观看| 少妇熟女aⅴ在线视频| 久久人人爽人人爽人人片va | 日韩欧美精品v在线| 麻豆国产av国片精品| 少妇高潮的动态图| 午夜福利免费观看在线| 欧美最黄视频在线播放免费| 我的女老师完整版在线观看| 精品日产1卡2卡| 一进一出抽搐gif免费好疼| 色精品久久人妻99蜜桃| 黄色一级大片看看| 国内毛片毛片毛片毛片毛片| 日韩欧美在线乱码| 国产av不卡久久| 日本在线视频免费播放| 亚洲成人精品中文字幕电影| 亚洲人成伊人成综合网2020| 老熟妇仑乱视频hdxx| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区 | 91九色精品人成在线观看| 久久久久久久久久黄片| 黄色丝袜av网址大全| 国产午夜精品久久久久久一区二区三区 | 久久精品人妻少妇| 免费观看的影片在线观看| 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 国产探花在线观看一区二区| 亚洲精品色激情综合| 欧美极品一区二区三区四区| 一级a爱片免费观看的视频| 欧美日韩福利视频一区二区| 久久国产精品影院| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 变态另类丝袜制服| 精品人妻一区二区三区麻豆 | 成人毛片a级毛片在线播放| 最近最新免费中文字幕在线| 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 国产精品人妻久久久久久| www.999成人在线观看| 亚洲男人的天堂狠狠| 午夜影院日韩av| 久99久视频精品免费| 九九在线视频观看精品| 中国美女看黄片| 国产免费男女视频| 在线观看美女被高潮喷水网站 | 97超视频在线观看视频| 中文在线观看免费www的网站| eeuss影院久久| 欧美色欧美亚洲另类二区| 成人毛片a级毛片在线播放| 99riav亚洲国产免费| 激情在线观看视频在线高清| 女人十人毛片免费观看3o分钟| 欧美日本视频| 国产成人福利小说| 人妻丰满熟妇av一区二区三区| www.色视频.com| 特大巨黑吊av在线直播| 日韩成人在线观看一区二区三区| 欧美3d第一页| 97碰自拍视频| 1024手机看黄色片| 亚洲成人久久性| 亚洲五月婷婷丁香| 欧美三级亚洲精品| 一本久久中文字幕| 精品不卡国产一区二区三区| 18美女黄网站色大片免费观看| 757午夜福利合集在线观看| 亚洲av日韩精品久久久久久密| 成人美女网站在线观看视频| 久久久久久久久久黄片| 久久久久久久亚洲中文字幕 | a级一级毛片免费在线观看| 欧美黑人欧美精品刺激| 国产成人a区在线观看| 香蕉av资源在线| 亚洲精品乱码久久久v下载方式| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| 悠悠久久av| 久久九九热精品免费| 午夜两性在线视频| 国产亚洲av嫩草精品影院| 波野结衣二区三区在线| 午夜福利在线观看吧| 婷婷亚洲欧美| 极品教师在线免费播放| 国产大屁股一区二区在线视频| 久久欧美精品欧美久久欧美| 亚洲精品粉嫩美女一区| 亚州av有码| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| 久久这里只有精品中国| 97超级碰碰碰精品色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久精品吃奶| 精品国内亚洲2022精品成人| 日本 av在线| 精品无人区乱码1区二区| 少妇高潮的动态图| 我要搜黄色片| 色综合婷婷激情| 日本精品一区二区三区蜜桃| 高清在线国产一区| www日本黄色视频网| 国产成人av教育| 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 国产欧美日韩精品一区二区| 香蕉av资源在线| 精品久久久久久成人av| 久久国产乱子免费精品| 少妇人妻精品综合一区二区 | 国产精品久久电影中文字幕| 久久久久久久久久成人| 亚洲精品亚洲一区二区| 色哟哟哟哟哟哟| 久久久久久大精品| 国产久久久一区二区三区| 好男人电影高清在线观看| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 97碰自拍视频| 午夜老司机福利剧场| 在线国产一区二区在线| 午夜日韩欧美国产| 日韩人妻高清精品专区| 日本 欧美在线| 91狼人影院| 十八禁网站免费在线| 51国产日韩欧美| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 亚洲天堂国产精品一区在线| 日韩欧美精品v在线| 麻豆国产av国片精品| 看十八女毛片水多多多| 成人特级av手机在线观看| 久久久久精品国产欧美久久久| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 成人永久免费在线观看视频| www.999成人在线观看| 桃色一区二区三区在线观看| 欧美区成人在线视频| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 黄色女人牲交| 亚洲欧美精品综合久久99| 在线观看一区二区三区| 中文在线观看免费www的网站| 亚洲av美国av| 欧美最黄视频在线播放免费| 舔av片在线| 久久精品国产亚洲av涩爱 | 天堂av国产一区二区熟女人妻| 麻豆国产97在线/欧美| 赤兔流量卡办理| or卡值多少钱| 内射极品少妇av片p| 成人午夜高清在线视频| 女同久久另类99精品国产91| 精品一区二区三区视频在线| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 3wmmmm亚洲av在线观看| 国产成人啪精品午夜网站| 高清日韩中文字幕在线| 国产探花在线观看一区二区| 亚洲性夜色夜夜综合| 色5月婷婷丁香| 岛国在线免费视频观看| 99视频精品全部免费 在线| 久久久色成人| 男人舔奶头视频| 性欧美人与动物交配| 一a级毛片在线观看| 黄色丝袜av网址大全| 亚洲自偷自拍三级| 少妇的逼水好多| 在线观看美女被高潮喷水网站 | 国产精品女同一区二区软件 | 草草在线视频免费看| 最近最新中文字幕大全电影3| АⅤ资源中文在线天堂| 91狼人影院| 欧美在线一区亚洲| 亚洲第一区二区三区不卡| 久99久视频精品免费| 久久人人精品亚洲av| 精品日产1卡2卡| 久久精品国产清高在天天线| a级一级毛片免费在线观看| 俄罗斯特黄特色一大片| 亚洲经典国产精华液单 | 欧美日本亚洲视频在线播放| 亚洲久久久久久中文字幕| 97超视频在线观看视频| 日韩欧美在线乱码| 91久久精品国产一区二区成人| 亚洲中文字幕日韩| 一边摸一边抽搐一进一小说| 看十八女毛片水多多多| 在现免费观看毛片| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 我的女老师完整版在线观看| 小蜜桃在线观看免费完整版高清| 成人午夜高清在线视频| 精品一区二区三区视频在线观看免费| 一级黄片播放器| www日本黄色视频网| 午夜久久久久精精品| 麻豆国产97在线/欧美| 国产成+人综合+亚洲专区| 亚洲五月天丁香| 麻豆久久精品国产亚洲av| 99久久精品国产亚洲精品| 久久精品久久久久久噜噜老黄 | 91久久精品电影网| 色视频www国产| 热99在线观看视频| 精品国内亚洲2022精品成人| 午夜亚洲福利在线播放| 在线天堂最新版资源| 一进一出抽搐动态| 精品久久久久久久久亚洲 | 久久精品91蜜桃| 非洲黑人性xxxx精品又粗又长| eeuss影院久久| 日本一本二区三区精品| 一个人免费在线观看的高清视频| 老熟妇乱子伦视频在线观看| 好男人在线观看高清免费视频| 久久热精品热| 久久精品国产99精品国产亚洲性色| 丰满的人妻完整版| 丁香六月欧美| 亚洲欧美日韩卡通动漫| 国内精品美女久久久久久| 麻豆av噜噜一区二区三区| www.色视频.com| 看片在线看免费视频| 国产黄色小视频在线观看| 久久香蕉精品热| 精品人妻熟女av久视频| 色噜噜av男人的天堂激情| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件 | 亚州av有码| 在线观看舔阴道视频| 18美女黄网站色大片免费观看| 在线观看av片永久免费下载| 欧美成人免费av一区二区三区| avwww免费| 免费人成在线观看视频色| 嫩草影院新地址| 一本综合久久免费| 久久久久九九精品影院| 又粗又爽又猛毛片免费看| 一级黄片播放器| 久久婷婷人人爽人人干人人爱| 国产伦精品一区二区三区四那| 亚洲欧美日韩卡通动漫| 99久久久亚洲精品蜜臀av| 如何舔出高潮| 久久精品影院6| 亚洲最大成人中文| 亚洲最大成人手机在线| 精品人妻视频免费看| 国产又黄又爽又无遮挡在线| or卡值多少钱| 女同久久另类99精品国产91| 国产视频内射| 久久久久久久久久黄片| 久久久久久久久久成人| 亚洲av免费高清在线观看| 成人三级黄色视频| 国产色婷婷99| 欧美激情在线99| 老熟妇仑乱视频hdxx| 亚洲男人的天堂狠狠| 亚洲国产欧美人成| 国产精品1区2区在线观看.| 日韩 亚洲 欧美在线| 日本 av在线| 国产在线男女| 欧美xxxx黑人xx丫x性爽| 久久精品人妻少妇| www.熟女人妻精品国产| or卡值多少钱| 国产精品久久久久久久电影| 久久精品国产99精品国产亚洲性色| 亚洲精品色激情综合| 免费看光身美女| av女优亚洲男人天堂| 男女下面进入的视频免费午夜| 看片在线看免费视频| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 久久人妻av系列| 日本免费a在线| 欧美日韩黄片免| 特大巨黑吊av在线直播| 国产三级黄色录像| 久久国产精品影院| 色视频www国产| 国产高清视频在线观看网站| 亚洲国产精品合色在线| 国产麻豆成人av免费视频| 能在线免费观看的黄片| 精品国产三级普通话版| 国产精品人妻久久久久久| 十八禁人妻一区二区| 日韩成人在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 69av精品久久久久久| 久久热精品热| av黄色大香蕉| 一个人免费在线观看电影| 每晚都被弄得嗷嗷叫到高潮| 欧洲精品卡2卡3卡4卡5卡区| 嫩草影院精品99| 日本黄色视频三级网站网址| 一级av片app| 国产一区二区在线av高清观看| 一个人看的www免费观看视频| 亚洲欧美激情综合另类| 美女高潮喷水抽搐中文字幕| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 久久久久久久久大av| 欧美激情国产日韩精品一区| 麻豆国产av国片精品| 国产精品av视频在线免费观看| 波多野结衣巨乳人妻| 18禁裸乳无遮挡免费网站照片| 久久国产乱子免费精品| a级一级毛片免费在线观看| 最后的刺客免费高清国语| 亚洲精品日韩av片在线观看| 免费一级毛片在线播放高清视频| 亚洲精品久久国产高清桃花| 无遮挡黄片免费观看| 国产精品电影一区二区三区| 97热精品久久久久久| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 亚洲国产精品999在线| a级一级毛片免费在线观看| 久久久久九九精品影院| 日韩中字成人| 久久久久久久久中文| 日本一二三区视频观看| 久久精品国产自在天天线| 亚洲成av人片在线播放无| 好男人在线观看高清免费视频| 国产免费av片在线观看野外av| 国产精品99久久久久久久久|