• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?

    2020-01-09 01:55:52FanWang王凡WeiZhong鐘偉LanZhou周瀾andYuBoSheng盛宇波
    Communications in Theoretical Physics 2019年12期
    關鍵詞:鐘偉

    Fan Wang (王凡), Wei Zhong (鐘偉),,2 Lan Zhou (周瀾), and Yu-Bo Sheng (盛宇波),4

    1Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    3School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    4Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China

    Abstract We theoretically study the phase sensitivities of two different phase-shift configurations in an SU(1,1)interferometer with coherent ?squeezed vacuum states.According to quantum Cram′er-Rao theorem,we analytically obtain the ultimate phase sensitivities for two types of phase shift accumulating in one- and two-arm.Compared with the case of one-arm phase shift,the model with phase shift encoding in both arms may provide a better sensitivity when the strength of squeezed vacuum state is large enough.Furthermore,we discuss the achievable sensitivities with the homodyne measurement by invoking of error-propagation formula.In addition,we study the effect of internal and outernal photon losses on the phase sensitivity of the SU(1,1)interferometer and find that the unbalanced interferometer is helpful to improve precision even with high external losses.

    Key words: SU(1,1) interferometer,quantum Fisher information,one- and two-arm phase shifts,Homodyne measurement

    1 Introduction

    Quantum metrology aims to obtain the higher sensitivity in parameter estimation using quantum mechanics methods.[1?4]The physical quantities,e.g.gravitational waves,electric fields,weak magnetic fields,atomic frequencies,are generally transformed into phase shifts which can be accurately measured through interferometric experiments,[5]i.e.,Mach-Zehnder interferometer (MZI).The phase sensitivity in linear optical MZI with classical approaches is limited by shot noise limit (SNL),i.e.,whereNis the average number of photons inside the interferometer.However,more works have shown that the use of entangled state like NOON state[6]can lead to improved sensitivity in optical-phase measurements.Restricted by Heisenberg’s uncertain relationship,the improved sensitivity can beat the SNL and reaching the Heisenberg limit (HL),i.e.,1/N.[7]

    In 1981,Caveset al.[3]proposed a scheme in optical interferometry that the SNL can be beaten by using coherent?squeezed-vacuum light as input.This scheme has been used in gravitational wave detection experiments,for example GEO600[8]and LIGO.[9]In 1986,Yurkeet al.[4]proposed another novel nonlinear interferometer,which replaced the 50:50 beam splitter in traditional MZI with active elements of optical parameter amplification (OPA)or four-wave mixing (FWM).They called this nonlinear interferometer as the SU(1,1)interferometer and the linear MZI as the SU(2)interferometer.A series of recent studies have shown that the SU(1,1) interferometer not only improves the phase measurement sensitivity compared with the SU(2) interferometer,but also performs more robust in suppressing detection noise.[10?12]Recently,Plicket al.[13]improved the original SU(1,1) interferometer.In their scheme,a strong coherent light beam was added,which solved the problem of the low number of photons of squeezed state prepared by the original scheme,and greatly improved the sensitivity of phase measurement.The SU(1,1) interferometer has been successfully implemented in the experiment.[14?15]Loss is one of the limit factors in parameter estimation.Recently,Mathieu Manceauet al.[10]showed that for a given gain of the first parametric amplifier,unbalancing the interferometer by increasing the gain of the second amplifier improves the interferometer properties.In this scheme,one can gain the optimal sensitivity even with the existence of external losses.

    Recently,some researches on the phase sensitivity in SU(2) interferometry with two types of phase shiftone-arm and two-arm have been done.[16?17]The results showed different phase shifts have an important impact on the ultimate precision.Moreover,some relevant researches on one-arm[18?21]and two-arm[11,22?23]phaseaccumulated SU(1,1) interferometer have been proposed.In Refs.[18–19],the authors discussed the achievable sensitivity with homodyne detection and showed it can approach HL for coherent and squeezed vacuum states.As is well known,the fundamental phase sensitivity is set by the quantum Cram′er-Rao bound (QCRB).Does the homodyne detection can reach this sensitivity bound in the above scenario? This question has not yet been addressed in Refs.[18–19].Meanwhile,for two-arm phase accumulating case,the fundamental phase sensitivity for a several of probe states was obtained in Refs.[22–23],while the discussion about the feasible detection method approaching such sensitivity was missed.In this paper,we make a full analysis of the phase sensitivities in one-arm and two-arm phase-shift accumulating SU(1,1) interferometer by using coherent?squeezed vacuum states,and then discuss the achievable sensitivities with the homodyne measurement.By analytically calculating the QFI,we find that the twoarm case shows a better precision with high strength of squeezed vacuum state,when compared with the singlearm case.However,such advantage does not take place in realistic measurement.To clarify this,we derive the achievable sensitivity with homodyne detection by invoking of error-propagation formula.Our results show that the achievable sensitivities are identical in both two phase shift cases.Although they approach HL,they can not saturate the QCRB.Due to photon losses and detector imperfections,the actual measurement sensitivities are often worse than the theoretical results.We further discuss the effects of photon losses on the achievable sensitivities for the two phase shift cases.We finally find that the unbalanced interferometer helps to improve precision for both cases even with high external losses.

    This paper is organized as follows.In Sec.2,we first briefly introduce the standard SU(1,1)interferometer and compute the theoretical phase sensitivities with the different types of phase shift.In.Sec.3,we explicitly derive the ultimate phase sensitivities by homodyne detection.Moreover,in Sec.4,we specifically study the SU(1,1) interferometer in the presence of detection noise and internal losses.Finally,the conclusions are given in Sec.5.

    2 The SU(1,1) Interferometer with Two Different Phase Shifts

    A standard SU(1,1) interferometer setup consists of two OPAs and a phase shift,as is shown in Fig.1.The operation of OPA,denoted by OPAi(i=1,2),which satisfies the following relations[4]

    wheres1andθ1describe the gain factor and phase of the first OPA.a0(a?0) andb0(b?0) are the annihilation (creation) operators of the upper and lower input modes of the interferometer,respectively.

    Fig.1 (Color online)SU(1,1)interferometer model with two types of phase shift: one-arm and two-arm.The input state is After the first OPA,it accumulates an unknown phase,which is determinated byUθ.Then it goes through the second OPA and a homodyne measurement is performed.The pump field between the two OPAs has aπ phase difference.

    Theoretically,the phase measurement sensitivity is limited by the quantum Cram′er-Rao bound (QCRB),which is one of the most important quantities for both quantum estimation theory and quantum information theory,has been widely studied.[1?2,24]The lower bound of the QCRB is provided by the inverse of quantum Fisher information(QFI),which depends only on the probe state and phase accumulation.Regardless of the measurement part,the theoretical sensitivity according to the quantum Cram′er-Rao theorem satisfies the following inequality

    whereFrepresents the QFI andυis the times of experiment operations.[1?2,24]Generally,such a bound can be reached by the maximum likelihood estimator for sufficiently largeυwith Bayesian estimation methods.

    The mean photons on each arm are given byni=〈ni〉(i=a,b).Note thatna=|α|2andnb= sinh2r,so the total photon number of input state isN0=na+nb.Due to the nonlinear property of OPA,the total number of photons after the OPA1is enlarged as

    One can rewrite the expressions of Eqs.(3) and (4) in terms ofnaandnb.For given fixeds1,F/N2tis plotted in Fig.2.The green dashed line corresponds to the so-called“HL”,i.e.,?θHL=1/Nt,which is however not fundamental sensitivity limit when the particle number fluctuating presents.[25?28]From Fig.2,one can see the amount of the QFIs become higher as thenbincreases for a fixedN0.In the other words,one can get higher phase sensitivity by input a squeezed vacuum state with larger strength.

    Fig.2 (Color online)The variation ofF/N2t as the function ofna andnb for phase shift in (a) one-arm and (b)two-arms.The gain factor of OPA1 iss1 =2.

    Next,we compare the theoretical sensitivities for both two types of phase shift according to Eq.(2).The difference ofgiven by Eqs.(3) and(4) is plotted in Fig.3(a),as a function ofnaandnbwith the gain factors1= 1.The green dashed line represents the two sensitivities are identical.It is shown that the case with phase shift in both arms performs the better sensitivity when the strength of squeezed vacuum state is large enough.

    A special case is considered here,we assume thatr= 0.As shown in Fig.3(b),the ultimate sensitivitiesas a function of strength of coherent state|α|,show that the phase shift in one arm can achieve the better sensitivity in this case.

    Fig.3 (Color online) (a) Difference between the sensitivities of the two types of phase shift: The green dashed line represents the amount of QFIs in two cases is equal.(b) Phase sensitivity as a function of coherent amplitude|α| forr =0.The blue line is phase shift in one arm,the red line is phase shift in both arms.The gain factor of OPA1 iss1 =1.

    3 Achievable Sensitivities by Homodyne Measurement

    In this section,we discuss the measurement sensitivity achieved with typical measurement in two types of phase shifts.In general,the phase measurement uncertainty is still retrieved from a simplified error propagation theory,such that where

    denotes the mean value of observableXandis the root-mean-square fluctuation.In our scheme,we perform a homodyne detection on the outputb2,

    3.1 Phase Shift In One Arm

    We start with phase shift only in the lower arm.As depicted in Fig.1,homodyne measurement is made on the portb2.In this way the total transformation of inputoutput relations of the interferometer can be described by

    where

    such that|μ|2?|ν|2=1.

    The SU(1,1) interferometer is typically studied in a balanced configuration in which the second parametric process is set to “undo” what the first parametric process did.Here,we first consider the balanced SU(1,1)interferometer configuration (i.e.,s1=s2=s).To satisfy the optimal phase condition given previously,we also set?α=?ξ=?1= 0.According to Ref.[19],when the phase of the second OPA?2=πmay provide the maximal achievable sensitivity.Therefore the mean value〈XA〉and the expectation ofX2Aare given by respectively,

    Submitting Eqs.(10) and (11) into Eq.(6) yields

    To approach the “HL”,we need to find the optimal condition of the photon numbers at the input of the SU(1,1) interferometer.In the asymptotic limitθ →0,?θAreduces to

    By using the relationships ofna=|α|2andnb= sinh2r,one can rewrite this expression in terms ofnaandnb.Figure 4 is plotted byNt?θA|θ→0corresponding tonaandnbfrom 0 to 100.Similar to the MZI,[29]the photon numbers in two input ports of the SU(1,1)interferometer also need to balance to approach the optimal sensitivity.[19]

    Fig.4 (Color online) The sensitivityNt?θA|θ→0 as a function ofna andnb with coherent state and squeezed vacuum state as the input state.Nt is the total photons throughout the model.

    Figure 5(a) is plotted by Eq.(12) to show the ultimate sensitivity with phase shift in the lower arm.As discussed above,the photon numbers of two input states need to balance,i.e.,|α|=sinhr.As shown in the figure,the minimum of phase sensitivity occurs atθ= 0,given by Eq.(13).One can see this sensitivity in a range beats SNL far and approaches HL,which shows the same performance as discussed in Ref.[19].In addition,we compare this result with the QCRB discussed in Sec.2.We find it is close to QCRB at the optimal point,which means homodyne detection is a sub-optimal measurement in this case.

    3.2 Phase Shift In Both Arms

    Below we consider the case of phase shift in both arms,which is missed in Ref.[22].In that case,the QFI for coherent and squeezed states was chiefly calculated.Similar to the previous process,we first get the total transform

    where

    The phase matching condition is still the?α=?ξ=?1=0.We similarly consider the balanced case (s1=s2=sandθ2=π).Using the same approach as in case A,the ultimate sensitivity is given by,

    where

    In the same way,we study the relation between two input ports photon numbers.Whenθ=0,Eq.(16) reduces to

    Interestingly,the optimal sensitivity is still obtained under the condition ofna=nb,which satisfies with that in single-arm phase shift case.

    Figure 5(b) shows the Eq.(16) as a function ofθ.These results are very similar to the ones calculated for case A.θ=0 is still the optimal condition to achieve the ultimate sensitivity and likewise homodyne detection is still sub-optimal in this case.However,one can see the sensitivity is lower whenθis away from zero point.

    Fig.5 (Color online)Log-plots of the phase sensitivities?θA and ?θB for both two cases with homodyne measurement (blue line),Eqs.(12) and (16),as a function ofθ.The strength of two OPAs iss = 2.The parameters of input state are as follows:r = 2.5,|α| = sinhr.The SNL is gray line and HL is purple line.The QCRB is presented by black line.

    4 Effects of Experimental Noises and Unbalanced Scheme

    As has been previously pointed out,the phase sensitivity is extremely affected by the photon losses both inside and outside of the interferometer due to the imperfections in the device and defects in the detector.We now turn to the effect of both of two types of losses on the measurement sensitivity in our scheme.Traditionally,photon losses can be modeled by adding an imaginary beam splitter and part of photons are dissipated into the environment when photons pass through,which can be described by

    whereTiis the efficiency of imaginary beam splitters.As shown in Fig.6,T1andT2represent the transmission rates in presence of the internal and external losses respectively.caandcbare the annihilation operators of the upper and lower loss modes of the interferometer.Here,we consider losses in both arms and continue to use coherent?squeezed vacuum states as input state.Below,we detailly discuss the phase sensitivities achieved by the homodyne detection in the presence of both inside and outside losses separately.

    Fig.6 (Color online)The loss model of SU(1,1)interferometer with homodyne measurement.The internal and external loss can be modeled by imaginary beam splitters.

    4.1 Phase Shift In One Arm

    First,we discuss the sensitivity with phase shift in the lower arm under condition ofs1=s2=s.Then the ultimate sensitivity with homodyne measurement is given by,

    which is composed of two parts,the first term is the ideal lossless sensitivity given by Eq.(12)and the second is the extra term due to the internal and external losses.WhenT1andT2equal to 1,the second term vanishes,and the sensitivity in this case will reduce to the ideal lossless case.

    Figures 7(a) and 7(b) show the phase sensitivity ?θALgiven by Eq.(20)in a narrow range close to 0.In Fig.7(a),we study the effect of internal losses on the interferometer by settingT2= 1 (no external losses).As can be seen from this figure,the increase of internal losses degrades the phase sensitivity.WhenT1= 0.5,it is impossible to beat the SNL.As shown in Fig.7(b),it shows that the effect of the detection efficiency by makingT1=1.Compared to Fig.7(a),one can see that SU(1,1)interferometer with phase shift in one arm shows the better performance in external noise resistance.

    Now we study the unbalanced interferometer(s12)with the existence of internal and external losses.The optimal conditionθ= 0 is considered here.Under this condition,the phase sensitivity is given by

    whereμ=coshs1coshs2?sinhs1sinhs2.

    Fig.7 (Color online) Log-plots of phase sensitivities with the existence of internal loss and external loss.(a),(b) Phase sensitivity ?θAL as a function ofθ in one-arm case.Different color curves represent different values ofT1 orT2.(c),(d)Phase sensitivity ?θBL as a function ofθ in two-arm case.The SNL is gray line and HL is purple line.The QCRB is presented by black line.The parameters are as follows:s=2,r =2.5 andα=sinhr.

    We keep the parameters ofT1ands1unchanged and study the effect ofs2on the ultimate sensitivity.Figure 8(a) shows the phase sensitivitygiven by Eq.(21),as a function ofs2for different values ofT2.It is confirmed that an increase of the second gain factor is helpful to improve precision even with high external losses and the ultimate sensitivity is close to ideal case.Similar results have been observed in Ref.[10].

    4.2 Phase Shift In Both Arms

    Next,we investigate the loss SU(1,1) interferometer with phase shift in both arms.Using the same approach as above,the ultimate sensitivity is given by:

    As was done before,we separately consider the effect of internal losses and external losses on phase sensitivity in this case.The extra term is very similar to the one calculated for case A.Figures 7(c) and 7(d) are plotted by Eq.(22).As shown in the figure,the phase sensitivities achieved in both cases have the similar performance in noise resistance.

    Finally,unbalanced interferometer is considered to study the influence of gain factors2on the phase sensitivity with internal and external losses.In this case,the phase sensitivity is given by

    whereμ=coshs1coshs2?sinhs1sinhs2.

    Figure 8(b) shows Eq.(23) as a function ofs2,and the result is much similar to the ones calculated for case A.When we introduce noise,an unbalanced interferometer model is good at resisting external loss.No matter what cases of phase shift,an increase of second gain factors2will improve the ultimate sensitivity and finally eliminate the interference of external loss.

    Fig.8 (Color online) Phase sensitivities (a) ?θAUL and (b) ?θBUL as a function of gain factors2 for various values of the detection efficiencyT2 in unbalanced SU(1,1) interferometer.The parameters of input state are as follows:r =3,α=sinhr.Note thats1 =1 andT1 =0.9.

    5 Conclusion

    In conclusion,we have studied the phase sensitivities of the SU(1,1) interferometer with two types of phase shift:One-arm and two-arms.For both two cases,we first exactly calculated the theoretical sensitivities for a mixing coherent state and squeezed vacuum state.We found that the sensitivity for two-arm phase shift case may outperform the single-arm case.We also considered the achievable sensitivity with homodyne measurement based on error propagation theory.Interestingly,we found that the achievable sensitivities for the two types of phase shift configuration provide the same sensitivity.It indicates that the advantage of sensitivity enhancement demonstrated above does not occur within practical measurement.Besides,we also showed that the homodyne detection is a sub-optimal measurement which can not saturate the QCRB but approach the HL.Finally,we considered effects of photon losses on the sensitivity of the SU(1,1) interferometer.We found that the achievable sensitivity degrades substantially when the internal and external losses exit.More importantly,in the unbalanced SU(1,1) interferometer,an increase of the gain of second OPA is helpful to resist and even eliminate the external loss for both two phase shift scenarios.

    Note addedRecently,Ref.[23] appeared,which derived a general phase-matching condition for maximal QFI in SU(1,1) interferometers for certain states,such as,coherent and even coherent states,squeezed vacuum and even coherent states,squeezed thermal and even coherent states.In this paper,we consider a different case by injecting a mixing of coherent state and squeezed vacuum state.The previous obtained phase-matching condition is also hold in our case,which can be complementary to applications in Ref.[23].Our results on maximal QFI for two different phase shift configurations and phase sensitivities accessible by homodyne measurement with and without noises,however,are not covered in Ref.[23].

    猜你喜歡
    鐘偉
    One-step quantum dialogue
    再出發(fā)的勇氣
    Measurement-device-independent one-step quantum secure direct communication
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    職場小白警示錄:公車追愛驚變“翻車現(xiàn)場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結(jié)期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    久久狼人影院| 18禁观看日本| 久久久久网色| 国语对白做爰xxxⅹ性视频网站| 日韩 亚洲 欧美在线| 男女午夜视频在线观看| 伦理电影大哥的女人| 中国三级夫妇交换| 久久 成人 亚洲| 激情视频va一区二区三区| 精品一品国产午夜福利视频| 国产成人精品在线电影| 精品久久久久久电影网| 一区二区三区四区激情视频| 精品国产超薄肉色丝袜足j| 久久这里有精品视频免费| 久久久国产精品麻豆| 亚洲熟女精品中文字幕| 观看美女的网站| 亚洲欧美精品综合一区二区三区 | 午夜福利一区二区在线看| 国产一区二区激情短视频 | 老汉色∧v一级毛片| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 自拍欧美九色日韩亚洲蝌蚪91| 9191精品国产免费久久| 精品亚洲成国产av| 久久精品国产亚洲av高清一级| 国产黄色免费在线视频| 久久精品国产亚洲av高清一级| 少妇猛男粗大的猛烈进出视频| 国产精品欧美亚洲77777| av网站在线播放免费| 中文精品一卡2卡3卡4更新| 2018国产大陆天天弄谢| 国产人伦9x9x在线观看 | 欧美成人精品欧美一级黄| 久久久久久人人人人人| 夫妻性生交免费视频一级片| 亚洲精品一二三| 免费女性裸体啪啪无遮挡网站| 青草久久国产| 亚洲成国产人片在线观看| 青春草亚洲视频在线观看| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 久久久久视频综合| 一级片'在线观看视频| 中文精品一卡2卡3卡4更新| 一级毛片 在线播放| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 亚洲综合色惰| 精品久久久久久电影网| 国产黄频视频在线观看| 五月伊人婷婷丁香| 久久久久精品久久久久真实原创| 亚洲一级一片aⅴ在线观看| 97在线视频观看| 欧美精品av麻豆av| 亚洲欧洲精品一区二区精品久久久 | 在线观看免费高清a一片| av电影中文网址| 99久久人妻综合| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂| 最近中文字幕2019免费版| 日本vs欧美在线观看视频| 99久久综合免费| 亚洲伊人色综图| 亚洲成色77777| 99热网站在线观看| 美女国产高潮福利片在线看| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 亚洲图色成人| 久久精品国产亚洲av高清一级| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| 日韩免费高清中文字幕av| 日本91视频免费播放| 久久人妻熟女aⅴ| 久久久久国产一级毛片高清牌| 国产精品熟女久久久久浪| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 国产男女内射视频| 韩国高清视频一区二区三区| www.av在线官网国产| 久久精品久久久久久噜噜老黄| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级| 在线观看www视频免费| 国产一区二区三区综合在线观看| 成人国产麻豆网| 色播在线永久视频| 久久久久久久亚洲中文字幕| 亚洲人成电影观看| av卡一久久| 精品亚洲成国产av| 免费高清在线观看视频在线观看| 卡戴珊不雅视频在线播放| 久久久久久久大尺度免费视频| 成人亚洲精品一区在线观看| 国产精品秋霞免费鲁丝片| 午夜91福利影院| tube8黄色片| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看| 亚洲精品美女久久av网站| 免费人妻精品一区二区三区视频| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 午夜福利在线观看免费完整高清在| 中文精品一卡2卡3卡4更新| 97精品久久久久久久久久精品| 深夜精品福利| 26uuu在线亚洲综合色| 大片免费播放器 马上看| 久久久久久久亚洲中文字幕| 日本av免费视频播放| 啦啦啦在线免费观看视频4| 99久久人妻综合| 成年美女黄网站色视频大全免费| 黑人欧美特级aaaaaa片| 久久久a久久爽久久v久久| 天天操日日干夜夜撸| 亚洲国产精品一区三区| 高清在线视频一区二区三区| 中文天堂在线官网| 在线观看免费高清a一片| 一个人免费看片子| 一区二区三区精品91| 啦啦啦中文免费视频观看日本| 十八禁高潮呻吟视频| 亚洲国产精品一区二区三区在线| 国产一区二区 视频在线| 女人被躁到高潮嗷嗷叫费观| 久久99一区二区三区| 精品一区在线观看国产| 亚洲美女搞黄在线观看| 熟女av电影| 看十八女毛片水多多多| av卡一久久| 欧美人与性动交α欧美软件| 国产精品 国内视频| 日本av免费视频播放| 免费在线观看黄色视频的| 国产激情久久老熟女| 日韩欧美精品免费久久| 黄色 视频免费看| 考比视频在线观看| 国产成人精品无人区| 97在线人人人人妻| 午夜福利,免费看| 国产精品国产三级专区第一集| 国产成人免费观看mmmm| 国产成人av激情在线播放| 欧美成人精品欧美一级黄| 国产又爽黄色视频| 成人亚洲精品一区在线观看| 中文欧美无线码| 亚洲精品国产色婷婷电影| 在现免费观看毛片| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| 国产成人精品久久二区二区91 | 亚洲av电影在线进入| 亚洲美女视频黄频| 欧美人与性动交α欧美软件| av线在线观看网站| 人人妻人人澡人人爽人人夜夜| 国产成人91sexporn| 99久久综合免费| 成人二区视频| 三上悠亚av全集在线观看| 成年动漫av网址| 国产成人精品久久久久久| 美女国产视频在线观看| 国语对白做爰xxxⅹ性视频网站| videos熟女内射| 人体艺术视频欧美日本| 五月伊人婷婷丁香| 亚洲精品av麻豆狂野| 最近手机中文字幕大全| 精品福利永久在线观看| 久久99精品国语久久久| 极品人妻少妇av视频| 色哟哟·www| av电影中文网址| 欧美av亚洲av综合av国产av | 亚洲第一青青草原| 男女边摸边吃奶| 十分钟在线观看高清视频www| 99久久综合免费| 久久久久久久国产电影| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 久久久久久久久免费视频了| 欧美日韩av久久| 久久久国产欧美日韩av| 亚洲中文av在线| 亚洲精品,欧美精品| 黑人猛操日本美女一级片| 9热在线视频观看99| 精品一品国产午夜福利视频| 永久免费av网站大全| 亚洲内射少妇av| 久久久久网色| 日韩电影二区| 免费观看在线日韩| 中国三级夫妇交换| av电影中文网址| 久久久a久久爽久久v久久| 欧美激情高清一区二区三区 | 制服人妻中文乱码| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 欧美日韩一区二区视频在线观看视频在线| 久久这里只有精品19| 国产免费视频播放在线视频| 精品国产超薄肉色丝袜足j| kizo精华| 久久精品亚洲av国产电影网| 国产成人av激情在线播放| 亚洲国产成人一精品久久久| 伦精品一区二区三区| 国产极品天堂在线| 国产一区亚洲一区在线观看| 男男h啪啪无遮挡| 国产一级毛片在线| 捣出白浆h1v1| 欧美日韩一级在线毛片| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 老汉色av国产亚洲站长工具| 如日韩欧美国产精品一区二区三区| 国产亚洲最大av| 最近2019中文字幕mv第一页| a级片在线免费高清观看视频| 久久99精品国语久久久| 青青草视频在线视频观看| 香蕉精品网在线| 国产一区二区激情短视频 | 丰满迷人的少妇在线观看| 免费日韩欧美在线观看| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 欧美日韩精品成人综合77777| 日韩成人av中文字幕在线观看| 9热在线视频观看99| 亚洲精品视频女| av又黄又爽大尺度在线免费看| 五月天丁香电影| 韩国精品一区二区三区| 亚洲成av片中文字幕在线观看 | 热99久久久久精品小说推荐| 2022亚洲国产成人精品| av免费在线看不卡| 亚洲国产日韩一区二区| 91国产中文字幕| 在线观看美女被高潮喷水网站| 在线观看www视频免费| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡 | 一区二区三区激情视频| 成人毛片a级毛片在线播放| 王馨瑶露胸无遮挡在线观看| 人妻人人澡人人爽人人| 美女午夜性视频免费| 伊人亚洲综合成人网| 两个人看的免费小视频| 欧美日韩亚洲高清精品| 最近中文字幕2019免费版| www.精华液| 女人被躁到高潮嗷嗷叫费观| 免费观看av网站的网址| 在线观看美女被高潮喷水网站| 亚洲欧美色中文字幕在线| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 老熟女久久久| 国产在线一区二区三区精| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 国产人伦9x9x在线观看 | 一区福利在线观看| 看非洲黑人一级黄片| 欧美 亚洲 国产 日韩一| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 我要看黄色一级片免费的| 精品人妻熟女毛片av久久网站| 中文字幕色久视频| 日韩中文字幕欧美一区二区 | 老司机影院成人| 赤兔流量卡办理| 国产欧美亚洲国产| 欧美国产精品一级二级三级| 老汉色∧v一级毛片| 国产一区二区激情短视频 | xxxhd国产人妻xxx| 国产野战对白在线观看| 男的添女的下面高潮视频| 成人国产av品久久久| 久久久久国产网址| 久久精品国产自在天天线| 人妻少妇偷人精品九色| 黄色一级大片看看| 日韩人妻精品一区2区三区| 中国国产av一级| 纯流量卡能插随身wifi吗| 夫妻性生交免费视频一级片| 99久久中文字幕三级久久日本| 一级毛片我不卡| 女的被弄到高潮叫床怎么办| 中文字幕人妻丝袜一区二区 | 美女大奶头黄色视频| 久久99热这里只频精品6学生| 老熟女久久久| 久久免费观看电影| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 国产成人91sexporn| 高清欧美精品videossex| 1024香蕉在线观看| 久久这里只有精品19| 国产精品99久久99久久久不卡 | 99国产综合亚洲精品| 亚洲精品国产一区二区精华液| 免费看av在线观看网站| 欧美日本中文国产一区发布| 丰满乱子伦码专区| 国产精品99久久99久久久不卡 | 国产熟女欧美一区二区| 久久99精品国语久久久| 日本av手机在线免费观看| 精品亚洲成a人片在线观看| 2022亚洲国产成人精品| 午夜老司机福利剧场| 少妇精品久久久久久久| 青草久久国产| 精品少妇内射三级| 精品一品国产午夜福利视频| 日本午夜av视频| 亚洲综合精品二区| 看免费成人av毛片| 国产国语露脸激情在线看| 亚洲欧美清纯卡通| 久久久久国产网址| 国产男人的电影天堂91| 纯流量卡能插随身wifi吗| 伊人亚洲综合成人网| 十分钟在线观看高清视频www| 黄网站色视频无遮挡免费观看| 18禁国产床啪视频网站| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说| 国产毛片在线视频| 日韩制服骚丝袜av| 夜夜骑夜夜射夜夜干| 丁香六月天网| 欧美xxⅹ黑人| 观看美女的网站| 国产色婷婷99| 两性夫妻黄色片| 精品卡一卡二卡四卡免费| 老女人水多毛片| 亚洲中文av在线| av一本久久久久| 香蕉精品网在线| 久久久久久久久久久久大奶| 日日摸夜夜添夜夜爱| 日韩视频在线欧美| 亚洲av中文av极速乱| 日本av手机在线免费观看| 一区福利在线观看| 极品人妻少妇av视频| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 国产精品一区二区在线不卡| 在线观看人妻少妇| 91国产中文字幕| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 日韩制服骚丝袜av| 性色av一级| 黄色一级大片看看| 亚洲综合色网址| 女人被躁到高潮嗷嗷叫费观| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲av男天堂| 成年人午夜在线观看视频| 久久久久精品人妻al黑| 国产精品人妻久久久影院| 日韩一区二区三区影片| 伦理电影大哥的女人| 亚洲精品国产一区二区精华液| 青青草视频在线视频观看| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 日韩三级伦理在线观看| 亚洲图色成人| 天天躁夜夜躁狠狠久久av| 9191精品国产免费久久| 在线观看免费视频网站a站| 男女免费视频国产| 久久久久久久精品精品| 亚洲少妇的诱惑av| 亚洲av中文av极速乱| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费在线观看黄色视频的| 国产黄色视频一区二区在线观看| 90打野战视频偷拍视频| 欧美少妇被猛烈插入视频| av线在线观看网站| 午夜日本视频在线| 亚洲欧美日韩另类电影网站| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 日韩视频在线欧美| 99热网站在线观看| 亚洲成人一二三区av| 免费观看在线日韩| 777久久人妻少妇嫩草av网站| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 高清av免费在线| 国产亚洲av片在线观看秒播厂| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 最近最新中文字幕大全免费视频 | 亚洲av欧美aⅴ国产| 国产精品熟女久久久久浪| 看免费成人av毛片| av一本久久久久| 伊人久久国产一区二区| 免费观看a级毛片全部| 蜜桃国产av成人99| 香蕉国产在线看| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 91成人精品电影| 国产精品秋霞免费鲁丝片| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 99久国产av精品国产电影| 国产在线视频一区二区| 成人国产av品久久久| 少妇被粗大猛烈的视频| 久久精品夜色国产| 人成视频在线观看免费观看| 久久97久久精品| 人妻 亚洲 视频| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久小说| 最近的中文字幕免费完整| 亚洲经典国产精华液单| 久久99热这里只频精品6学生| 国产精品不卡视频一区二区| 国产精品亚洲av一区麻豆 | 国产欧美日韩一区二区三区在线| 国产精品无大码| 国产精品免费视频内射| 夫妻性生交免费视频一级片| 综合色丁香网| 精品国产一区二区三区四区第35| 成人国产av品久久久| 少妇人妻 视频| 亚洲欧美精品综合一区二区三区 | 大片电影免费在线观看免费| 青春草视频在线免费观看| 亚洲综合色惰| 日韩制服丝袜自拍偷拍| 亚洲一码二码三码区别大吗| 国产av国产精品国产| 国产毛片在线视频| 夫妻午夜视频| av在线app专区| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品古装| 大陆偷拍与自拍| 国产片内射在线| 女性被躁到高潮视频| 国产男女超爽视频在线观看| 中文字幕最新亚洲高清| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 高清欧美精品videossex| 亚洲经典国产精华液单| 青青草视频在线视频观看| 久久这里有精品视频免费| 成人影院久久| 亚洲三级黄色毛片| 各种免费的搞黄视频| 一个人免费看片子| 大片电影免费在线观看免费| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频在线观看免费| 国产欧美日韩综合在线一区二区| 久久久久久免费高清国产稀缺| 亚洲精品自拍成人| 九色亚洲精品在线播放| 男女免费视频国产| 在现免费观看毛片| 国产精品一区二区在线观看99| 啦啦啦视频在线资源免费观看| 一区福利在线观看| 国产男女内射视频| 人妻 亚洲 视频| 日韩中文字幕视频在线看片| √禁漫天堂资源中文www| 欧美精品av麻豆av| a 毛片基地| 亚洲精品美女久久av网站| 欧美另类一区| 国产又爽黄色视频| av一本久久久久| 人妻一区二区av| 啦啦啦在线免费观看视频4| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 丝袜在线中文字幕| 午夜av观看不卡| 国产亚洲一区二区精品| 日韩av在线免费看完整版不卡| 在线免费观看不下载黄p国产| 国产免费福利视频在线观看| 免费日韩欧美在线观看| 香蕉丝袜av| 91精品伊人久久大香线蕉| 91精品三级在线观看| 黄色怎么调成土黄色| 国产在线视频一区二区| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 国产精品免费视频内射| 色婷婷av一区二区三区视频| 日韩一区二区视频免费看| 国产免费视频播放在线视频| 亚洲成色77777| 精品国产国语对白av| 国产在线免费精品| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 天美传媒精品一区二区| 不卡视频在线观看欧美| 人人妻人人添人人爽欧美一区卜| 女性生殖器流出的白浆| 欧美精品亚洲一区二区| 久久久久精品久久久久真实原创| 久久这里有精品视频免费| 91精品伊人久久大香线蕉| a级毛片在线看网站| 伊人久久大香线蕉亚洲五| 欧美少妇被猛烈插入视频| 五月开心婷婷网| 国产精品免费视频内射| av福利片在线| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 亚洲精品aⅴ在线观看| 妹子高潮喷水视频| 国产男女内射视频| 成人亚洲精品一区在线观看| 黄网站色视频无遮挡免费观看| 国产一区亚洲一区在线观看| 高清视频免费观看一区二区| 美女国产高潮福利片在线看| 亚洲av中文av极速乱| 欧美精品高潮呻吟av久久| 免费观看无遮挡的男女| 永久免费av网站大全| 九九爱精品视频在线观看| √禁漫天堂资源中文www| 人体艺术视频欧美日本| 国产乱来视频区| 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免| 超碰成人久久| 香蕉国产在线看| 日韩一区二区视频免费看| 久久韩国三级中文字幕| 久久精品亚洲av国产电影网| 国产精品香港三级国产av潘金莲 | 国产精品无大码| 欧美97在线视频| 好男人视频免费观看在线| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 观看美女的网站|