• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement-device-independent quantum secret sharing with hyper-encoding

    2022-10-26 09:46:48XingXingJu居星星WeiZhong鐘偉YuBoSheng盛宇波andLanZhou周瀾
    Chinese Physics B 2022年10期
    關(guān)鍵詞:鐘偉星星

    Xing-Xing Ju(居星星) Wei Zhong(鐘偉) Yu-Bo Sheng(盛宇波) and Lan Zhou(周瀾)

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: measurement-device-independent quantum secret sharing,hyper-encoding technology,cross-Kerr nonlinearity,hyper-entangled Greenberger–Horne–Zeilinger state analysis

    1. Introduction

    Quantum communication is an important branch of quantum information. Quantum communication has unconditional security, which is based on the basic principles of quantum mechanics. Quantum communication begins with the research on quantum key distribution(QKD),which was first proposed by Bennett and Brassard in 1984.[1]QKD can distribute secure keys between two remote participants.[2–17]Besides QKD,there are some important branches in the field of quantum communication,such as quantum secret sharing(QSS),[18–33]and quantum secure direct communication(QSDC).[34–49]

    QSS was first proposed by Hilleryet al.in 1999[18]based on quantum technology and traditional cryptographic sharing technology. In QSS protocols, the key sender (dealer) splits a key into several parts and distributes each part to a participant. The participants can read out the key only when they cooperate with each other. Conversely, all the participants can also cooperate to distribute a secure key to the dealer.[20]In 2004,Xiaoet al.[22]proposed a multi-party QSS protocol using the Greenberger–Horne–Zeilinger(GHZ)state.By choosing an asymmetric measurement basis, their protocol can be 100% efficient. In 2005, based on a QSDC protocol, Zhanget al.[23]proposed a (n,n)-threshold multiparty QSS scheme using single photons. In 2014,Bellet al.[25]reported an experimental demonstration of the graph state-based QSS.They showed that one can reliably encode,distribute and share quantum information among four parties with the graph state. In practical applications, there are some attack modes focusing on imperfect measurement devices,such as the fakestate attack,[50]time-shift attack,[51,52]and detection blinding attack.[53]Researchers proposed the measurement-deviceindependent (MDI) technology, which can resist all possible attacks from the imperfect measurement devices.[54–63]In 2015,Fuet al.proposed the first MDI-QSS protocol encoded in the polarization degree of freedom(DOF).[56]However,the key generation rate of the original MDI-QSS is relatively low.Hyper-encoding,which means encoding in two or more DOFs of a single photon,is an effective way to increase the channel capacity of single photons.Recently,the hyper-encoding technology has been widely adopted in the MDI-QKD and MDIQSDC protocols to increase the key generation rate and secure message capacity,respectively.[63–66]

    In this paper, we propose a hyper-encoding MDI-QSS protocol. In this protocol,the dealer and the other two participants generate polarization-spatial-mode hyper-encoded photon qudits and send the photons to the forth party. The forth party makes the hyper-entangled GHZ state analysis(HGSA)constructed with the cross-Kerr nonlinearities,which can completely distinguish all the 64 hyper-entangled GHZ states.With the hyper-encoding and HGSA, our hyper-encoding MDI-QSS protocol can achieve higher key generation rate and extend the communication distance. This hyper-encoding MDI-QSS has potential applications in the field of quantum communication in the future.

    This paper is organized as follows. In Section 2, we explain our hyper-encoding MDI-QSS protocol in detail. In Section 3, we analyze the security of the hyper-encoding MDIQSS protocol and simulate its key generation rate. In Section 4,we give some discussions and draw a conclusion.

    2. The hyper-encoding MDI-QSS protocol

    Fig.1. Illustration of the hyper-encoding MDI-QSS protocol. Alice,Bob and Charlie separately prepares phase-randomized weak coherent pulses(WCPs) in BB84 polarization states. The polarization modulator (Pol-M) controls the encoding in the polarization DOF, while the 50:50 beam splitter (BS) controls the encoding in the spatial-mode DOF. Our protocol adopts the hyper-entangled GHZ state analysis (HGSA) technique proposed in Ref.[64]to completely distinguish the 64 hyper-entangled GHZ states. Here,i1 and i2 (i=a,b,c)mean different spatial modes.

    Figure 1 illustrates the basic principle of our hyperencoding MDI-QSS protocol,which proceeds as follows.

    Step 1 The dealer Alice, and the other two parties Bob and Charlie randomly selectZbasis orXbasis in polarization and spatial-mode DOFs to generate a series of single photon qudits. In detail,the three parties first prepare single photons in BB84 polarization states with the help of polarization modulator(Pol-M).In the spatial-mode DOF,if one wants to generate a photon in theZbasis, he can directly generate the photon in the corresponding spatial mode. If he wants to generate a photon inXbasis,he uses the 50:50 beam splitter(BS),which can make|a1〉→|+〉aS(|b1〉→|+〉bS,|c1〉→|+〉cS)and|a2〉→|-〉aS(|b2〉→|-〉bS,|c2〉→|-〉cS). Then,they send the photons to a forth party David locating in the middle node of the quantum channels. Here,it should be noted that David can be untrustworthy,or even completely controlled by the eavesdropper.

    Step 2 When David receives the photon qudits, he performs the HGSA on the photons. Here, we adopt the HGSA protocol in Ref. [67], which can completely distinguish all the possible hyper-entangled GHZ states with the help of the cross-Kerr nonlinearity. The GHZ states in the polarization and spatial-mode DOFs can be written as

    Step 3 Alice,Bob,and Charlie announce the generation basis of each photon qudit in both DOFs. If the three photons for the HGSA are generated in different bases in a DOF,the HGSA result and their encoding in this DOF should be discarded. On the other hand, if the three photons are generated in the same basis in a DOF, the HGSA result and their encoding information in this DOF will be retained. When all the parties chooseXbasis in a DOF,the encoding information in this DOF would be used to generate the original key. Tables 1 and 2 provide all the possible GSA results and Alice’s key in the polarization and spatial-mode DOFs when the three parties use the same basis, respectively. When all the parties chooseXbasis in a DOF,Bob will publish his own encoding information in this DOF.We take the polarization DOF as an example. If the measurement result is|ψ+y 〉P(y=0,1,2,3),the encoding relationship isXA=XB ⊕XC. On the other hand,if the measurement result is|ψ-y 〉P(y=0,1,2,3), the encoding relationship isXA ⊕1=XB ⊕XC. As a result,Charlie can infer Alice’s encoding information in the polarization DOF as the original key. The rule in the spatial-mode DOF is the same as that in the polarization DOF.

    Table 1. Possible GSA results and Alice’s key in the polarization DOF when all parties use the same basis.

    Table 2. Possible GSA results and Alice’s key in the spatial-mode DOF when all parties use the same basis.

    Step 4 The three parties repeat steps 1–3 until Charlie obtains sufficient number of original keys.

    Step 5 When Alice, Bob and Charlie all chooseZbasis in a DOF, they will publish their encoding information in this DOF to make the security checking. A bit error happens if the measurement result is not the possible results shown in Tables 1 and 2. As a result,they can calculate the quantum bit error rate (QBER) in both DOFs. If the QBER of any DOF exceeds the tolerant threshold,they ensure that the key generation is not secure and discard all the generated original keys.In contrast, if the QBERs in both DOFs are lower than the tolerant thresholds, they will ensure the security of the key generation and retain the original keys.

    Step 6 Alice, Bob and Charlie perform error correction and private amplification to form the final secure keys.

    3. The security analysis and key generation rate of the hyper-encoding MDI-QSS protocol

    In this section,we provide the security analysis and simulate the key generation rate of our hyper-encoding MDI-QSS protocol.In our protocol,as all the measurement tasks are performed by the forth party, the protocol can resist all possible attacks from the measurement devices. Its security proof is similar to that of the original MDI-QSS protocol[56]and MDIQKD protocol.[54]Here, we have to consider the attack from the forth party David, who can be untrustworthy and totally controlled by Eve. In the first case, if David announces the wrong HGSA results, his dishonesty may make Charlie obtain wrong keys. However, his dishonest behavior would increase the QBER in both DOFs,and thus can be checked out by the security checking. It is worth noting that at the step 3 of the protocol, when all three parties chooseXbasis, only Bob publishes his encoding information. As Charlie does not announce his encoding information,Eve(David)cannot infer Alice’s key even though he can obtain HGSA results. As a result,the forth party cannot cause the key leakage.

    Then, we analyze the key generation of the hyperencoding MDI-QSS protocol.According to the basic selection principle in each DOF,there are totally three different cases.

    Next, we make a numerical simulation of this hyperencoding MDI-QSS protocol’s key generation rate under practical experimental condition. Based on previous experimental parameters given in Refs.[68,69],we assume that Alice(Bob,Charlie)uses the common WCP sources,in which the photon number follows the Poisson distribution with an average ofμa(μb,μc). The forth party locates in the middle of three parties with the distance between the forth party and any party beingd. In this way, the channel transmission efficiency ista=tb=tc=10-αd/10,whereα=0.2 dB/Km for a standard optical fiber. Based on Ref.[55], we setμa=μb=μc=0.3 and consider the total polarization and spatial-mode misalignment error rates asemP=emS=1.5%.

    According to the original MDI-QSS protocol encoding in polarization DOF,[56]the key generation rate of the MDI-QSS protocol encoding in the polarization DOF can be written as

    Figure 2 provides the key generation rateRtof our hyperencoding MDI-QSS protocol versus the photon transmission distancedfrom any party to the forth party. Based on the hyper-encoding technology, the parties can generate keys independently in both DOFs. Meanwhile, with the help of the QND gate constructed with the cross-Kerr nonlinearity, we can completely eliminate the influence from the multi-photon emission and the vacuum state emission, and reduce the total gain and total error rate in both DOFs. As a result,our MDIQSS protocol does not require the decoy state method. The above features can efficiently increase the key generation rate and extend the photon transmission distance. Under the photon transmission distanced=100 km,Rtcan achieve about 5.4×10-9, which is about three orders of magnitude higher than that of the original MDI-QSS protocol.[56]

    Fig. 2. Total secure key generation rate of our hyper-encoding MDIQSS protocol altered with the photon transmission distance d from any party to the forth party. Here,we suppose that the average photon numbers of the WCP sources satisfy μa=μb=μc=0.3.The misalignment error rates in both DOFs meet emP =emS =1.5%. The inherent efficiency and error rate of the homodyne measurement are ηl =0.98 and ed =0.01, respectively. We also set the inefficiency function for the error correction process in both DOFs to be f =1.16.

    4. Discussion and conclusion

    In our hyper-encoding MDI-QSS, the high-dimension system comprises two independent subsystems. The two subsystems can be manipulated and measured independently to generate the key, which can effectively increase the key generation rate of our MDI-QSS protocol. Moreover,if the GSA in a DOF fails but the GSA in the other DOF is successful,the parties only need to discard the key encoded in one DOF but still retain the coding information in the other DOF to generate the key. Meanwhile,an error in a DOF does not influence the coding information in the other DOF,which can still be used to generate the key. As a result,the hyper-encoding MDI-QSS protocol is quite flexible.

    It is natural that our MDI-QSS protocol can be extended to arbitraryN-party MDI-QSS.In theory,Nparties require to randomly prepare a large number of polarization-spatial-mode hyper-encoded photon qudits. Then,they send the photons to the measurement party for performing theN-photon HGSA,which can completely distinguish all the possibleN-photon GHZ states in both DOFs. After the HGSA,the measurement party announces the results, andNparties announce the generation basis of each photon. They only preserve the GSA result when they generate the photon qudits in the same basis in a DOF. When all theNparties choose theXbasis in a DOF, their encoding bits would be used to generate the original keys. When they all choose theZbasis in a DOF, they will announce their encoding in this DOF to make the security checking. When the security is guaranteed, the parties will perform the error correction and private amplification to form the final secure keys.

    Finally, we will briefly discuss the experimental realization of this MDI-QSS protocol. The complete HGSA is the key element of our MDI-QSS protocol. So far, the cross-Kerr is still a challenge in the experiment. The reason is that the natural cross-Kerr nonlinearity is quite weak, so that it is hard to discriminate the weak phase shift by the homodyne measurement. Fortunately, during the recent few years,the cross-Kerr nonlinearity has achieved great progress.[74–76]In 2016, Beck’s group experimentally obtained a cross-phase shift ofπ/6 between signal fields stored in an atomic quantum memory.[74]Later,D¨urret al.reached the strong interactions in the Rydberg electromagnetically induced transparency(EIT) experiments, which created a controlled phase shift of 3.3±0.2 rad by using the incoming pulses with an average of 0.6 photons.[75]In 2019,Sinclairet al.realized the cross-Kerr nonlinearity in a free-space medium based on the Rydberg atoms and EIT technology,where the phase shift is 8 mrad/nW of signal power.[76]Based on the above attractive progress,it is possible to realize the complete HGSA in the near future.

    In summary, we have proposed a polarization-spatialmode hyper-encoding MDI-QSS protocol, in which all the three parties, Alice, Bob and Charlie, prepare photon qudits hyper-encoded in spatial-mode and polarization DOFs. They send their photons to the forth party to make the complete HGSA. After the complete HGSA, all the three participants announce the generation basis of their photons in both DOFs,and Bob also announces his codes in both DOFs. If all the three parties choose theXbasis in a DOF,Charlie can speculate Alice’s raw key in this DOF according to the HGSA result and Bob’s code. In the protocol, the parties can encode the keys in both DOFs independently. The measurement errors and imperfect operations in one DOF do not affect the key generation in the other DOF.Meanwhile,the HGSA in the protocol can completely distinguish all the 64 hyper-entangled GHZ states and the incoming number in each input mode,so that the influence from vacuum state emission and multi-photon emission can be eliminated. The above factors can efficiently increase the key generation rate of our MDI-QSS protocol. This hyper-encoding MDI-QSS protocol may have potential applications in the near future.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11974189 and 12175106).

    猜你喜歡
    鐘偉星星
    One-step quantum dialogue
    Measurement-device-independent one-step quantum secure direct communication
    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?
    硬漢鐘偉
    兩顆星星
    大灰狼(2018年7期)2018-08-30 18:51:08
    On Syntactical Features of John F. Kennedy’s Inaugural Speech
    串星星
    星星洗澡
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    來自星星的玩笑
    色综合亚洲欧美另类图片| 99国产极品粉嫩在线观看| av片东京热男人的天堂| 搡老妇女老女人老熟妇| av在线播放免费不卡| 亚洲成人久久性| 久久国产亚洲av麻豆专区| 麻豆国产av国片精品| 国产三级黄色录像| av天堂在线播放| 中文字幕精品免费在线观看视频| 大香蕉久久成人网| 久久亚洲精品不卡| 窝窝影院91人妻| 久久午夜亚洲精品久久| 婷婷六月久久综合丁香| 欧美绝顶高潮抽搐喷水| 精品欧美一区二区三区在线| 国产三级黄色录像| 男女做爰动态图高潮gif福利片 | 国产成人啪精品午夜网站| 亚洲一卡2卡3卡4卡5卡精品中文| 黄频高清免费视频| 丁香欧美五月| 亚洲熟女毛片儿| 脱女人内裤的视频| bbb黄色大片| 男女下面插进去视频免费观看| 一二三四社区在线视频社区8| 亚洲精品久久成人aⅴ小说| 一本大道久久a久久精品| 丝袜美足系列| 免费看十八禁软件| 侵犯人妻中文字幕一二三四区| 亚洲五月婷婷丁香| 9色porny在线观看| 亚洲黑人精品在线| 国产精品久久久人人做人人爽| 人人妻,人人澡人人爽秒播| 免费在线观看视频国产中文字幕亚洲| 午夜久久久在线观看| x7x7x7水蜜桃| 99香蕉大伊视频| 日韩高清综合在线| 亚洲精华国产精华精| 亚洲五月天丁香| 欧美黄色片欧美黄色片| 一区福利在线观看| 乱人伦中国视频| 亚洲欧美激情在线| 国产成+人综合+亚洲专区| 老司机午夜福利在线观看视频| 桃红色精品国产亚洲av| 日本a在线网址| 国产午夜精品久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 老司机靠b影院| 老熟妇乱子伦视频在线观看| 啦啦啦韩国在线观看视频| 日韩欧美在线二视频| 非洲黑人性xxxx精品又粗又长| 亚洲五月婷婷丁香| 夜夜爽天天搞| 99国产综合亚洲精品| 亚洲第一青青草原| 亚洲全国av大片| 女同久久另类99精品国产91| 咕卡用的链子| 国产精品一区二区免费欧美| 欧美黄色淫秽网站| 视频在线观看一区二区三区| av在线天堂中文字幕| 美女免费视频网站| 国产欧美日韩一区二区三区在线| 午夜两性在线视频| 久久青草综合色| 亚洲天堂国产精品一区在线| 久久精品国产99精品国产亚洲性色 | 亚洲欧美一区二区三区黑人| 在线观看一区二区三区| 国产一区在线观看成人免费| 欧美亚洲日本最大视频资源| 欧美激情久久久久久爽电影 | 午夜精品国产一区二区电影| 亚洲av五月六月丁香网| 国产精品一区二区免费欧美| 桃色一区二区三区在线观看| 成人免费观看视频高清| 日本免费一区二区三区高清不卡 | 女生性感内裤真人,穿戴方法视频| 精品人妻在线不人妻| 亚洲精品久久成人aⅴ小说| 美女免费视频网站| 波多野结衣av一区二区av| 欧美日韩黄片免| 中出人妻视频一区二区| 国产精品久久久久久人妻精品电影| 日本 av在线| 免费av毛片视频| 这个男人来自地球电影免费观看| 午夜福利免费观看在线| 88av欧美| 欧美激情 高清一区二区三区| 18禁国产床啪视频网站| 黄片小视频在线播放| 久久精品影院6| 啦啦啦免费观看视频1| 老熟妇仑乱视频hdxx| 久久久久国产精品人妻aⅴ院| 中文字幕高清在线视频| 在线播放国产精品三级| 成熟少妇高潮喷水视频| 中文字幕人妻熟女乱码| 一边摸一边抽搐一进一小说| 一进一出抽搐动态| 免费在线观看黄色视频的| 午夜老司机福利片| 精品午夜福利视频在线观看一区| 亚洲成a人片在线一区二区| x7x7x7水蜜桃| 在线观看免费午夜福利视频| 制服诱惑二区| 亚洲人成电影观看| 亚洲狠狠婷婷综合久久图片| 黄色视频不卡| 99在线人妻在线中文字幕| 欧美黑人欧美精品刺激| 1024香蕉在线观看| 在线观看免费视频网站a站| 国产一卡二卡三卡精品| 久久国产精品男人的天堂亚洲| 久久精品国产清高在天天线| 国产一区在线观看成人免费| 日韩欧美一区视频在线观看| 88av欧美| 婷婷六月久久综合丁香| 美女高潮喷水抽搐中文字幕| 91成人精品电影| 巨乳人妻的诱惑在线观看| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区| 90打野战视频偷拍视频| 国产欧美日韩精品亚洲av| 亚洲专区国产一区二区| 国产亚洲欧美98| 99riav亚洲国产免费| 久久草成人影院| 淫妇啪啪啪对白视频| 一本综合久久免费| 午夜福利影视在线免费观看| www国产在线视频色| 久久久久久亚洲精品国产蜜桃av| 成人手机av| 一个人观看的视频www高清免费观看 | 亚洲自拍偷在线| 亚洲全国av大片| 村上凉子中文字幕在线| 精品人妻1区二区| 午夜福利18| 久久人人精品亚洲av| 亚洲美女黄片视频| 国产一区在线观看成人免费| 精品福利观看| 搡老熟女国产l中国老女人| 日日摸夜夜添夜夜添小说| 精品国产乱子伦一区二区三区| 欧美一级毛片孕妇| 国产人伦9x9x在线观看| 人妻久久中文字幕网| 少妇的丰满在线观看| 女人精品久久久久毛片| x7x7x7水蜜桃| 亚洲人成伊人成综合网2020| 免费久久久久久久精品成人欧美视频| 亚洲av电影不卡..在线观看| 校园春色视频在线观看| 中文字幕最新亚洲高清| 一区二区三区国产精品乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品亚洲精品国产色婷小说| 亚洲avbb在线观看| 亚洲欧美精品综合久久99| 色av中文字幕| 亚洲色图综合在线观看| 黄色毛片三级朝国网站| 亚洲专区字幕在线| 手机成人av网站| 777久久人妻少妇嫩草av网站| 悠悠久久av| 欧美黑人精品巨大| 中文字幕人妻丝袜一区二区| 51午夜福利影视在线观看| 老汉色∧v一级毛片| 久久久久国产精品人妻aⅴ院| 免费在线观看影片大全网站| 日韩免费av在线播放| 日本欧美视频一区| 久久精品影院6| 制服丝袜大香蕉在线| 久久天躁狠狠躁夜夜2o2o| 两人在一起打扑克的视频| 亚洲精品国产色婷婷电影| 亚洲国产精品久久男人天堂| 久久精品国产99精品国产亚洲性色 | 久久精品国产清高在天天线| 久久亚洲精品不卡| 欧美激情 高清一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 男人舔女人的私密视频| 午夜福利高清视频| 亚洲国产精品999在线| 色在线成人网| 自线自在国产av| 91成人精品电影| 啦啦啦免费观看视频1| 欧美在线黄色| 欧美黑人精品巨大| 深夜精品福利| 国产精品一区二区三区四区久久 | 亚洲自偷自拍图片 自拍| 国产日韩一区二区三区精品不卡| 中文字幕av电影在线播放| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 精品少妇一区二区三区视频日本电影| 久久精品91蜜桃| 亚洲美女黄片视频| 国产精品,欧美在线| 一个人免费在线观看的高清视频| 一区二区三区精品91| 老司机午夜福利在线观看视频| 99精品在免费线老司机午夜| 精品福利观看| 亚洲自拍偷在线| 成人免费观看视频高清| 在线观看免费日韩欧美大片| 操出白浆在线播放| 成人亚洲精品av一区二区| 一级毛片高清免费大全| 国产一级毛片七仙女欲春2 | 午夜福利18| 国产亚洲欧美在线一区二区| 给我免费播放毛片高清在线观看| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 国产av在哪里看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲九九香蕉| 日韩有码中文字幕| 久久人人爽av亚洲精品天堂| 老熟妇乱子伦视频在线观看| 免费少妇av软件| 俄罗斯特黄特色一大片| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜添小说| 午夜视频精品福利| 亚洲人成网站在线播放欧美日韩| 丁香欧美五月| 满18在线观看网站| 欧美日韩福利视频一区二区| 免费在线观看亚洲国产| 在线播放国产精品三级| 国产97色在线日韩免费| 久久久久久久久免费视频了| 日韩国内少妇激情av| 亚洲中文字幕日韩| 日韩欧美一区视频在线观看| а√天堂www在线а√下载| 精品熟女少妇八av免费久了| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 曰老女人黄片| 中文亚洲av片在线观看爽| 国产亚洲精品第一综合不卡| 午夜福利免费观看在线| 一区二区三区精品91| www.精华液| 欧美乱码精品一区二区三区| 国产高清视频在线播放一区| 色综合亚洲欧美另类图片| 亚洲熟妇熟女久久| 一区二区三区精品91| 成熟少妇高潮喷水视频| 精品高清国产在线一区| 精品国产超薄肉色丝袜足j| 91字幕亚洲| 啦啦啦免费观看视频1| 亚洲熟妇中文字幕五十中出| 日日干狠狠操夜夜爽| 极品人妻少妇av视频| 91老司机精品| 亚洲中文字幕日韩| 午夜福利一区二区在线看| 69av精品久久久久久| 亚洲第一电影网av| 中文字幕高清在线视频| 激情视频va一区二区三区| 日韩 欧美 亚洲 中文字幕| 99热只有精品国产| 国产亚洲精品第一综合不卡| 国产精品久久久久久精品电影 | 久久精品国产亚洲av香蕉五月| 国产精品自产拍在线观看55亚洲| 好男人在线观看高清免费视频 | 国产精品永久免费网站| 无限看片的www在线观看| 一进一出抽搐gif免费好疼| 亚洲片人在线观看| 亚洲精品中文字幕一二三四区| 多毛熟女@视频| 少妇粗大呻吟视频| 岛国视频午夜一区免费看| 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 午夜福利,免费看| 大香蕉久久成人网| 午夜日韩欧美国产| 亚洲视频免费观看视频| 97超级碰碰碰精品色视频在线观看| 9热在线视频观看99| 免费少妇av软件| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 欧美日本中文国产一区发布| 国产亚洲欧美精品永久| 欧美日韩黄片免| 国产一区二区在线av高清观看| 性少妇av在线| 亚洲电影在线观看av| videosex国产| 9色porny在线观看| 一级a爱片免费观看的视频| 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 亚洲av美国av| 一区在线观看完整版| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 精品人妻在线不人妻| 色综合亚洲欧美另类图片| a在线观看视频网站| 亚洲天堂国产精品一区在线| 侵犯人妻中文字幕一二三四区| 亚洲第一av免费看| 亚洲性夜色夜夜综合| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| 国产一区二区三区综合在线观看| 国内精品久久久久久久电影| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 一级作爱视频免费观看| 99国产精品一区二区三区| 长腿黑丝高跟| 99久久综合精品五月天人人| 欧美国产精品va在线观看不卡| 国产精品一区二区三区四区久久 | 久久久精品欧美日韩精品| 亚洲成a人片在线一区二区| 色综合婷婷激情| av欧美777| 麻豆国产av国片精品| xxx96com| 午夜视频精品福利| 日本a在线网址| 精品国内亚洲2022精品成人| 巨乳人妻的诱惑在线观看| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 在线免费观看的www视频| 欧美色欧美亚洲另类二区 | 满18在线观看网站| 人妻丰满熟妇av一区二区三区| 欧美亚洲日本最大视频资源| 国产精品久久久人人做人人爽| 国产国语露脸激情在线看| 国语自产精品视频在线第100页| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 午夜福利成人在线免费观看| 亚洲精品在线美女| 制服丝袜大香蕉在线| 最近最新中文字幕大全电影3 | 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 久99久视频精品免费| 日韩国内少妇激情av| 亚洲av美国av| 女人精品久久久久毛片| 精品久久久精品久久久| 人人妻人人澡欧美一区二区 | 午夜免费鲁丝| 好男人电影高清在线观看| 国产一区二区激情短视频| 视频在线观看一区二区三区| 亚洲av熟女| 女性生殖器流出的白浆| 国产私拍福利视频在线观看| 午夜福利18| 成人av一区二区三区在线看| 久久久久久人人人人人| 日韩精品青青久久久久久| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 欧美成人一区二区免费高清观看 | 久久这里只有精品19| 看片在线看免费视频| 不卡一级毛片| 纯流量卡能插随身wifi吗| 成人三级黄色视频| 亚洲男人天堂网一区| 精品久久久久久久毛片微露脸| 好男人在线观看高清免费视频 | 亚洲成av片中文字幕在线观看| 国产又爽黄色视频| 淫秽高清视频在线观看| 国产成人欧美在线观看| 此物有八面人人有两片| 欧美成狂野欧美在线观看| 国产精品1区2区在线观看.| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 免费少妇av软件| 日本撒尿小便嘘嘘汇集6| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 欧美激情久久久久久爽电影 | 一级作爱视频免费观看| netflix在线观看网站| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 国产精品电影一区二区三区| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 国产欧美日韩一区二区三区在线| 国产精品九九99| 亚洲成a人片在线一区二区| 精品日产1卡2卡| 成人18禁高潮啪啪吃奶动态图| 日韩免费av在线播放| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 国产亚洲欧美98| 久久午夜综合久久蜜桃| 亚洲av成人一区二区三| 精品久久久精品久久久| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利18| 男女午夜视频在线观看| 长腿黑丝高跟| 两人在一起打扑克的视频| 97人妻天天添夜夜摸| 一区二区日韩欧美中文字幕| 久久久水蜜桃国产精品网| 亚洲精品粉嫩美女一区| 一级片免费观看大全| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 国产乱人伦免费视频| 国产精品影院久久| 欧美黄色片欧美黄色片| 久久久国产精品麻豆| 男人的好看免费观看在线视频 | 成在线人永久免费视频| 午夜免费鲁丝| 又黄又粗又硬又大视频| 婷婷六月久久综合丁香| 18美女黄网站色大片免费观看| 91大片在线观看| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 亚洲情色 制服丝袜| 老司机深夜福利视频在线观看| 此物有八面人人有两片| 伊人久久大香线蕉亚洲五| 亚洲成人精品中文字幕电影| 久久精品人人爽人人爽视色| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久精品电影 | 日本免费一区二区三区高清不卡 | 天天躁夜夜躁狠狠躁躁| 久久久久亚洲av毛片大全| 免费av毛片视频| 麻豆av在线久日| 亚洲中文日韩欧美视频| 久久中文看片网| 制服人妻中文乱码| 无遮挡黄片免费观看| 欧美色欧美亚洲另类二区 | 一本久久中文字幕| 波多野结衣巨乳人妻| 国产精品久久久人人做人人爽| 亚洲欧美精品综合久久99| 午夜福利18| 免费在线观看黄色视频的| 亚洲国产日韩欧美精品在线观看 | 法律面前人人平等表现在哪些方面| 成人国产一区最新在线观看| 黄频高清免费视频| 亚洲av片天天在线观看| 啦啦啦 在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 纯流量卡能插随身wifi吗| 禁无遮挡网站| 国产精品98久久久久久宅男小说| 久久亚洲真实| 久久精品国产综合久久久| 两个人免费观看高清视频| 久久这里只有精品19| 亚洲一区二区三区色噜噜| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产亚洲av香蕉五月| 法律面前人人平等表现在哪些方面| 人人妻人人澡欧美一区二区 | 伊人久久大香线蕉亚洲五| 久久久久国内视频| 亚洲色图av天堂| 色综合站精品国产| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 亚洲精品国产色婷婷电影| 久久亚洲精品不卡| 女人精品久久久久毛片| 亚洲 国产 在线| 黄色片一级片一级黄色片| 女人高潮潮喷娇喘18禁视频| 国产成人av教育| 日本免费一区二区三区高清不卡 | 精品国产乱子伦一区二区三区| 黄色视频不卡| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 日韩大尺度精品在线看网址 | 精品第一国产精品| 国产成人系列免费观看| 久久久久九九精品影院| 国产精品免费视频内射| 一级,二级,三级黄色视频| 老司机在亚洲福利影院| 人成视频在线观看免费观看| 国产精品乱码一区二三区的特点 | √禁漫天堂资源中文www| 亚洲美女黄片视频| 国产麻豆69| 自线自在国产av| 美女 人体艺术 gogo| 久久人人精品亚洲av| 91麻豆av在线| 男女下面进入的视频免费午夜 | 国产精品秋霞免费鲁丝片| 午夜福利高清视频| 国产区一区二久久| 无遮挡黄片免费观看| 国产成人欧美在线观看| 女人高潮潮喷娇喘18禁视频| 欧美色欧美亚洲另类二区 | 制服诱惑二区| 精品一区二区三区视频在线观看免费| 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 亚洲一码二码三码区别大吗| 国产精品国产高清国产av| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 91麻豆精品激情在线观看国产| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| www国产在线视频色| 一级a爱片免费观看的视频| 国产高清videossex| 在线观看免费视频网站a站| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩综合在线一区二区| 国产男靠女视频免费网站| 91国产中文字幕| 国产一区二区三区视频了| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 国产精品秋霞免费鲁丝片| 欧美日本亚洲视频在线播放| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 波多野结衣av一区二区av| 性少妇av在线| 国产精品久久久av美女十八| 老司机福利观看| 国产一卡二卡三卡精品| 黄片播放在线免费| 美女高潮到喷水免费观看| 亚洲中文日韩欧美视频| 大陆偷拍与自拍| 99国产精品一区二区三区| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 亚洲熟女毛片儿| 午夜福利视频1000在线观看 | 免费女性裸体啪啪无遮挡网站| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av高清一级| 欧美乱码精品一区二区三区| 久久久精品欧美日韩精品| 国产伦一二天堂av在线观看| 搡老妇女老女人老熟妇| 亚洲自偷自拍图片 自拍|