• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement-device-independent quantum secret sharing with hyper-encoding

    2022-10-26 09:46:48XingXingJu居星星WeiZhong鐘偉YuBoSheng盛宇波andLanZhou周瀾
    Chinese Physics B 2022年10期
    關(guān)鍵詞:鐘偉星星

    Xing-Xing Ju(居星星) Wei Zhong(鐘偉) Yu-Bo Sheng(盛宇波) and Lan Zhou(周瀾)

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: measurement-device-independent quantum secret sharing,hyper-encoding technology,cross-Kerr nonlinearity,hyper-entangled Greenberger–Horne–Zeilinger state analysis

    1. Introduction

    Quantum communication is an important branch of quantum information. Quantum communication has unconditional security, which is based on the basic principles of quantum mechanics. Quantum communication begins with the research on quantum key distribution(QKD),which was first proposed by Bennett and Brassard in 1984.[1]QKD can distribute secure keys between two remote participants.[2–17]Besides QKD,there are some important branches in the field of quantum communication,such as quantum secret sharing(QSS),[18–33]and quantum secure direct communication(QSDC).[34–49]

    QSS was first proposed by Hilleryet al.in 1999[18]based on quantum technology and traditional cryptographic sharing technology. In QSS protocols, the key sender (dealer) splits a key into several parts and distributes each part to a participant. The participants can read out the key only when they cooperate with each other. Conversely, all the participants can also cooperate to distribute a secure key to the dealer.[20]In 2004,Xiaoet al.[22]proposed a multi-party QSS protocol using the Greenberger–Horne–Zeilinger(GHZ)state.By choosing an asymmetric measurement basis, their protocol can be 100% efficient. In 2005, based on a QSDC protocol, Zhanget al.[23]proposed a (n,n)-threshold multiparty QSS scheme using single photons. In 2014,Bellet al.[25]reported an experimental demonstration of the graph state-based QSS.They showed that one can reliably encode,distribute and share quantum information among four parties with the graph state. In practical applications, there are some attack modes focusing on imperfect measurement devices,such as the fakestate attack,[50]time-shift attack,[51,52]and detection blinding attack.[53]Researchers proposed the measurement-deviceindependent (MDI) technology, which can resist all possible attacks from the imperfect measurement devices.[54–63]In 2015,Fuet al.proposed the first MDI-QSS protocol encoded in the polarization degree of freedom(DOF).[56]However,the key generation rate of the original MDI-QSS is relatively low.Hyper-encoding,which means encoding in two or more DOFs of a single photon,is an effective way to increase the channel capacity of single photons.Recently,the hyper-encoding technology has been widely adopted in the MDI-QKD and MDIQSDC protocols to increase the key generation rate and secure message capacity,respectively.[63–66]

    In this paper, we propose a hyper-encoding MDI-QSS protocol. In this protocol,the dealer and the other two participants generate polarization-spatial-mode hyper-encoded photon qudits and send the photons to the forth party. The forth party makes the hyper-entangled GHZ state analysis(HGSA)constructed with the cross-Kerr nonlinearities,which can completely distinguish all the 64 hyper-entangled GHZ states.With the hyper-encoding and HGSA, our hyper-encoding MDI-QSS protocol can achieve higher key generation rate and extend the communication distance. This hyper-encoding MDI-QSS has potential applications in the field of quantum communication in the future.

    This paper is organized as follows. In Section 2, we explain our hyper-encoding MDI-QSS protocol in detail. In Section 3, we analyze the security of the hyper-encoding MDIQSS protocol and simulate its key generation rate. In Section 4,we give some discussions and draw a conclusion.

    2. The hyper-encoding MDI-QSS protocol

    Fig.1. Illustration of the hyper-encoding MDI-QSS protocol. Alice,Bob and Charlie separately prepares phase-randomized weak coherent pulses(WCPs) in BB84 polarization states. The polarization modulator (Pol-M) controls the encoding in the polarization DOF, while the 50:50 beam splitter (BS) controls the encoding in the spatial-mode DOF. Our protocol adopts the hyper-entangled GHZ state analysis (HGSA) technique proposed in Ref.[64]to completely distinguish the 64 hyper-entangled GHZ states. Here,i1 and i2 (i=a,b,c)mean different spatial modes.

    Figure 1 illustrates the basic principle of our hyperencoding MDI-QSS protocol,which proceeds as follows.

    Step 1 The dealer Alice, and the other two parties Bob and Charlie randomly selectZbasis orXbasis in polarization and spatial-mode DOFs to generate a series of single photon qudits. In detail,the three parties first prepare single photons in BB84 polarization states with the help of polarization modulator(Pol-M).In the spatial-mode DOF,if one wants to generate a photon in theZbasis, he can directly generate the photon in the corresponding spatial mode. If he wants to generate a photon inXbasis,he uses the 50:50 beam splitter(BS),which can make|a1〉→|+〉aS(|b1〉→|+〉bS,|c1〉→|+〉cS)and|a2〉→|-〉aS(|b2〉→|-〉bS,|c2〉→|-〉cS). Then,they send the photons to a forth party David locating in the middle node of the quantum channels. Here,it should be noted that David can be untrustworthy,or even completely controlled by the eavesdropper.

    Step 2 When David receives the photon qudits, he performs the HGSA on the photons. Here, we adopt the HGSA protocol in Ref. [67], which can completely distinguish all the possible hyper-entangled GHZ states with the help of the cross-Kerr nonlinearity. The GHZ states in the polarization and spatial-mode DOFs can be written as

    Step 3 Alice,Bob,and Charlie announce the generation basis of each photon qudit in both DOFs. If the three photons for the HGSA are generated in different bases in a DOF,the HGSA result and their encoding in this DOF should be discarded. On the other hand, if the three photons are generated in the same basis in a DOF, the HGSA result and their encoding information in this DOF will be retained. When all the parties chooseXbasis in a DOF,the encoding information in this DOF would be used to generate the original key. Tables 1 and 2 provide all the possible GSA results and Alice’s key in the polarization and spatial-mode DOFs when the three parties use the same basis, respectively. When all the parties chooseXbasis in a DOF,Bob will publish his own encoding information in this DOF.We take the polarization DOF as an example. If the measurement result is|ψ+y 〉P(y=0,1,2,3),the encoding relationship isXA=XB ⊕XC. On the other hand,if the measurement result is|ψ-y 〉P(y=0,1,2,3), the encoding relationship isXA ⊕1=XB ⊕XC. As a result,Charlie can infer Alice’s encoding information in the polarization DOF as the original key. The rule in the spatial-mode DOF is the same as that in the polarization DOF.

    Table 1. Possible GSA results and Alice’s key in the polarization DOF when all parties use the same basis.

    Table 2. Possible GSA results and Alice’s key in the spatial-mode DOF when all parties use the same basis.

    Step 4 The three parties repeat steps 1–3 until Charlie obtains sufficient number of original keys.

    Step 5 When Alice, Bob and Charlie all chooseZbasis in a DOF, they will publish their encoding information in this DOF to make the security checking. A bit error happens if the measurement result is not the possible results shown in Tables 1 and 2. As a result,they can calculate the quantum bit error rate (QBER) in both DOFs. If the QBER of any DOF exceeds the tolerant threshold,they ensure that the key generation is not secure and discard all the generated original keys.In contrast, if the QBERs in both DOFs are lower than the tolerant thresholds, they will ensure the security of the key generation and retain the original keys.

    Step 6 Alice, Bob and Charlie perform error correction and private amplification to form the final secure keys.

    3. The security analysis and key generation rate of the hyper-encoding MDI-QSS protocol

    In this section,we provide the security analysis and simulate the key generation rate of our hyper-encoding MDI-QSS protocol.In our protocol,as all the measurement tasks are performed by the forth party, the protocol can resist all possible attacks from the measurement devices. Its security proof is similar to that of the original MDI-QSS protocol[56]and MDIQKD protocol.[54]Here, we have to consider the attack from the forth party David, who can be untrustworthy and totally controlled by Eve. In the first case, if David announces the wrong HGSA results, his dishonesty may make Charlie obtain wrong keys. However, his dishonest behavior would increase the QBER in both DOFs,and thus can be checked out by the security checking. It is worth noting that at the step 3 of the protocol, when all three parties chooseXbasis, only Bob publishes his encoding information. As Charlie does not announce his encoding information,Eve(David)cannot infer Alice’s key even though he can obtain HGSA results. As a result,the forth party cannot cause the key leakage.

    Then, we analyze the key generation of the hyperencoding MDI-QSS protocol.According to the basic selection principle in each DOF,there are totally three different cases.

    Next, we make a numerical simulation of this hyperencoding MDI-QSS protocol’s key generation rate under practical experimental condition. Based on previous experimental parameters given in Refs.[68,69],we assume that Alice(Bob,Charlie)uses the common WCP sources,in which the photon number follows the Poisson distribution with an average ofμa(μb,μc). The forth party locates in the middle of three parties with the distance between the forth party and any party beingd. In this way, the channel transmission efficiency ista=tb=tc=10-αd/10,whereα=0.2 dB/Km for a standard optical fiber. Based on Ref.[55], we setμa=μb=μc=0.3 and consider the total polarization and spatial-mode misalignment error rates asemP=emS=1.5%.

    According to the original MDI-QSS protocol encoding in polarization DOF,[56]the key generation rate of the MDI-QSS protocol encoding in the polarization DOF can be written as

    Figure 2 provides the key generation rateRtof our hyperencoding MDI-QSS protocol versus the photon transmission distancedfrom any party to the forth party. Based on the hyper-encoding technology, the parties can generate keys independently in both DOFs. Meanwhile, with the help of the QND gate constructed with the cross-Kerr nonlinearity, we can completely eliminate the influence from the multi-photon emission and the vacuum state emission, and reduce the total gain and total error rate in both DOFs. As a result,our MDIQSS protocol does not require the decoy state method. The above features can efficiently increase the key generation rate and extend the photon transmission distance. Under the photon transmission distanced=100 km,Rtcan achieve about 5.4×10-9, which is about three orders of magnitude higher than that of the original MDI-QSS protocol.[56]

    Fig. 2. Total secure key generation rate of our hyper-encoding MDIQSS protocol altered with the photon transmission distance d from any party to the forth party. Here,we suppose that the average photon numbers of the WCP sources satisfy μa=μb=μc=0.3.The misalignment error rates in both DOFs meet emP =emS =1.5%. The inherent efficiency and error rate of the homodyne measurement are ηl =0.98 and ed =0.01, respectively. We also set the inefficiency function for the error correction process in both DOFs to be f =1.16.

    4. Discussion and conclusion

    In our hyper-encoding MDI-QSS, the high-dimension system comprises two independent subsystems. The two subsystems can be manipulated and measured independently to generate the key, which can effectively increase the key generation rate of our MDI-QSS protocol. Moreover,if the GSA in a DOF fails but the GSA in the other DOF is successful,the parties only need to discard the key encoded in one DOF but still retain the coding information in the other DOF to generate the key. Meanwhile,an error in a DOF does not influence the coding information in the other DOF,which can still be used to generate the key. As a result,the hyper-encoding MDI-QSS protocol is quite flexible.

    It is natural that our MDI-QSS protocol can be extended to arbitraryN-party MDI-QSS.In theory,Nparties require to randomly prepare a large number of polarization-spatial-mode hyper-encoded photon qudits. Then,they send the photons to the measurement party for performing theN-photon HGSA,which can completely distinguish all the possibleN-photon GHZ states in both DOFs. After the HGSA,the measurement party announces the results, andNparties announce the generation basis of each photon. They only preserve the GSA result when they generate the photon qudits in the same basis in a DOF. When all theNparties choose theXbasis in a DOF, their encoding bits would be used to generate the original keys. When they all choose theZbasis in a DOF, they will announce their encoding in this DOF to make the security checking. When the security is guaranteed, the parties will perform the error correction and private amplification to form the final secure keys.

    Finally, we will briefly discuss the experimental realization of this MDI-QSS protocol. The complete HGSA is the key element of our MDI-QSS protocol. So far, the cross-Kerr is still a challenge in the experiment. The reason is that the natural cross-Kerr nonlinearity is quite weak, so that it is hard to discriminate the weak phase shift by the homodyne measurement. Fortunately, during the recent few years,the cross-Kerr nonlinearity has achieved great progress.[74–76]In 2016, Beck’s group experimentally obtained a cross-phase shift ofπ/6 between signal fields stored in an atomic quantum memory.[74]Later,D¨urret al.reached the strong interactions in the Rydberg electromagnetically induced transparency(EIT) experiments, which created a controlled phase shift of 3.3±0.2 rad by using the incoming pulses with an average of 0.6 photons.[75]In 2019,Sinclairet al.realized the cross-Kerr nonlinearity in a free-space medium based on the Rydberg atoms and EIT technology,where the phase shift is 8 mrad/nW of signal power.[76]Based on the above attractive progress,it is possible to realize the complete HGSA in the near future.

    In summary, we have proposed a polarization-spatialmode hyper-encoding MDI-QSS protocol, in which all the three parties, Alice, Bob and Charlie, prepare photon qudits hyper-encoded in spatial-mode and polarization DOFs. They send their photons to the forth party to make the complete HGSA. After the complete HGSA, all the three participants announce the generation basis of their photons in both DOFs,and Bob also announces his codes in both DOFs. If all the three parties choose theXbasis in a DOF,Charlie can speculate Alice’s raw key in this DOF according to the HGSA result and Bob’s code. In the protocol, the parties can encode the keys in both DOFs independently. The measurement errors and imperfect operations in one DOF do not affect the key generation in the other DOF.Meanwhile,the HGSA in the protocol can completely distinguish all the 64 hyper-entangled GHZ states and the incoming number in each input mode,so that the influence from vacuum state emission and multi-photon emission can be eliminated. The above factors can efficiently increase the key generation rate of our MDI-QSS protocol. This hyper-encoding MDI-QSS protocol may have potential applications in the near future.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11974189 and 12175106).

    猜你喜歡
    鐘偉星星
    One-step quantum dialogue
    Measurement-device-independent one-step quantum secure direct communication
    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?
    硬漢鐘偉
    兩顆星星
    大灰狼(2018年7期)2018-08-30 18:51:08
    On Syntactical Features of John F. Kennedy’s Inaugural Speech
    串星星
    星星洗澡
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    來自星星的玩笑
    亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 久久久久国产精品人妻一区二区| 狠狠精品人妻久久久久久综合| 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放| 最近中文字幕2019免费版| 十八禁网站网址无遮挡 | av在线老鸭窝| 男女无遮挡免费网站观看| 内射极品少妇av片p| 国产成人精品久久久久久| 最黄视频免费看| 有码 亚洲区| 天天躁夜夜躁狠狠久久av| 日产精品乱码卡一卡2卡三| 最新中文字幕久久久久| 久久午夜综合久久蜜桃| 99久国产av精品国产电影| 久久久久久久大尺度免费视频| 人妻 亚洲 视频| 99视频精品全部免费 在线| 五月伊人婷婷丁香| 男女国产视频网站| 免费大片18禁| 美女福利国产在线| 精品国产国语对白av| 夫妻午夜视频| 毛片一级片免费看久久久久| 国产 精品1| 在线观看人妻少妇| 黄色配什么色好看| 一区二区三区精品91| 久久人人爽人人爽人人片va| 卡戴珊不雅视频在线播放| 国产 精品1| 乱码一卡2卡4卡精品| 日韩免费高清中文字幕av| 一级黄片播放器| 欧美一级a爱片免费观看看| 亚洲成色77777| 深夜a级毛片| 欧美少妇被猛烈插入视频| 一本一本综合久久| 99久久人妻综合| 成年人免费黄色播放视频 | 免费av中文字幕在线| 热re99久久国产66热| 人人澡人人妻人| 亚洲人与动物交配视频| 国产日韩欧美亚洲二区| 青春草视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久v下载方式| 亚洲人与动物交配视频| 又爽又黄a免费视频| 日韩熟女老妇一区二区性免费视频| 国产午夜精品久久久久久一区二区三区| 亚洲精品色激情综合| 久久 成人 亚洲| 另类精品久久| 亚洲欧美成人精品一区二区| 人妻夜夜爽99麻豆av| 人体艺术视频欧美日本| 亚洲性久久影院| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| 国产在视频线精品| av福利片在线| 亚洲欧洲国产日韩| 亚洲精品久久午夜乱码| 在现免费观看毛片| 中文在线观看免费www的网站| 亚洲欧美成人精品一区二区| 国产成人精品福利久久| 欧美亚洲 丝袜 人妻 在线| 国产精品三级大全| 在线 av 中文字幕| tube8黄色片| 国产av码专区亚洲av| 人人妻人人澡人人看| 日韩成人av中文字幕在线观看| 乱系列少妇在线播放| 日本欧美视频一区| 美女脱内裤让男人舔精品视频| 国内揄拍国产精品人妻在线| 一本色道久久久久久精品综合| 国产精品无大码| 交换朋友夫妻互换小说| 亚洲精华国产精华液的使用体验| 国产一区二区三区av在线| av福利片在线观看| 亚洲欧美精品专区久久| 久久久精品94久久精品| 最近最新中文字幕免费大全7| 多毛熟女@视频| 国产成人aa在线观看| 国精品久久久久久国模美| 日本黄色片子视频| 91精品一卡2卡3卡4卡| 三级经典国产精品| 国产毛片在线视频| 极品少妇高潮喷水抽搐| 精品久久久噜噜| 99re6热这里在线精品视频| 久久久久久久久久久丰满| 欧美精品高潮呻吟av久久| 国产又色又爽无遮挡免| 国产黄片美女视频| 男女免费视频国产| 一区在线观看完整版| 91久久精品电影网| 国产伦在线观看视频一区| 成年av动漫网址| 三上悠亚av全集在线观看 | 少妇人妻一区二区三区视频| 亚洲欧洲日产国产| 最近中文字幕高清免费大全6| 最后的刺客免费高清国语| 内地一区二区视频在线| 伦理电影大哥的女人| 成人国产麻豆网| 午夜福利视频精品| 免费黄色在线免费观看| 80岁老熟妇乱子伦牲交| 国产免费福利视频在线观看| 777米奇影视久久| 国产精品嫩草影院av在线观看| 视频中文字幕在线观看| 超碰97精品在线观看| 免费看光身美女| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 国产91av在线免费观看| 不卡视频在线观看欧美| 国产真实伦视频高清在线观看| 男女边吃奶边做爰视频| 成年人午夜在线观看视频| 亚洲精品一区蜜桃| 99国产精品免费福利视频| 精品一品国产午夜福利视频| 亚洲,欧美,日韩| 特大巨黑吊av在线直播| 欧美+日韩+精品| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 麻豆乱淫一区二区| 人妻一区二区av| 国产极品天堂在线| 伦理电影免费视频| 色哟哟·www| 美女xxoo啪啪120秒动态图| 亚洲成人手机| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 国产精品秋霞免费鲁丝片| 国产免费视频播放在线视频| 亚洲av不卡在线观看| 国产淫语在线视频| 91午夜精品亚洲一区二区三区| 亚洲精品国产色婷婷电影| 国产中年淑女户外野战色| 人人妻人人看人人澡| 在线观看免费日韩欧美大片 | 国产乱人偷精品视频| av线在线观看网站| 看十八女毛片水多多多| 日韩不卡一区二区三区视频在线| 国产免费一区二区三区四区乱码| 高清毛片免费看| 免费av不卡在线播放| 亚洲国产精品专区欧美| 春色校园在线视频观看| 久久国产精品男人的天堂亚洲 | 亚洲人成网站在线观看播放| a级毛片在线看网站| 亚洲av.av天堂| 2021少妇久久久久久久久久久| 亚洲人成网站在线播| 高清午夜精品一区二区三区| 亚洲自偷自拍三级| 少妇 在线观看| 国产成人一区二区在线| 免费观看a级毛片全部| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 全区人妻精品视频| 中国三级夫妇交换| 黄色视频在线播放观看不卡| 成人午夜精彩视频在线观看| 亚洲av日韩在线播放| 日韩伦理黄色片| a级毛片免费高清观看在线播放| 在线观看国产h片| 国产欧美另类精品又又久久亚洲欧美| 日韩三级伦理在线观看| 日本爱情动作片www.在线观看| 亚洲国产精品一区三区| 麻豆成人午夜福利视频| 人妻人人澡人人爽人人| 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久久久久丰满| 亚洲欧美一区二区三区黑人 | 十八禁高潮呻吟视频 | 久久精品夜色国产| 国产精品99久久久久久久久| 久久精品国产自在天天线| 一区二区三区乱码不卡18| 男人添女人高潮全过程视频| 国产在线免费精品| av.在线天堂| 欧美精品国产亚洲| 热99国产精品久久久久久7| 夜夜爽夜夜爽视频| 欧美亚洲 丝袜 人妻 在线| 久久韩国三级中文字幕| 观看免费一级毛片| 久久久午夜欧美精品| 9色porny在线观看| 狠狠精品人妻久久久久久综合| 久久人妻熟女aⅴ| 91久久精品国产一区二区三区| 国产亚洲一区二区精品| 伊人久久国产一区二区| 亚洲第一区二区三区不卡| 亚洲精品日韩av片在线观看| 哪个播放器可以免费观看大片| 亚洲欧美日韩卡通动漫| 日本91视频免费播放| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 亚洲av在线观看美女高潮| 国产永久视频网站| 91在线精品国自产拍蜜月| 高清毛片免费看| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放 | 国产精品秋霞免费鲁丝片| 国产精品久久久久成人av| 夜夜爽夜夜爽视频| 国产精品成人在线| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 亚洲精品乱码久久久v下载方式| 国产91av在线免费观看| 永久免费av网站大全| 国国产精品蜜臀av免费| 人妻系列 视频| 五月开心婷婷网| 大码成人一级视频| 日韩一区二区三区影片| 国产黄片美女视频| 夫妻午夜视频| 91精品国产九色| 国产高清不卡午夜福利| 激情五月婷婷亚洲| 亚洲精品一区蜜桃| 最新的欧美精品一区二区| 六月丁香七月| 另类亚洲欧美激情| 国产伦精品一区二区三区视频9| 我要看黄色一级片免费的| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 免费观看性生交大片5| 亚洲av成人精品一区久久| 国产真实伦视频高清在线观看| 高清欧美精品videossex| 熟女av电影| 一区在线观看完整版| 中文乱码字字幕精品一区二区三区| 国产成人freesex在线| 国产成人精品婷婷| 国产精品蜜桃在线观看| 制服丝袜香蕉在线| 午夜久久久在线观看| 精品国产国语对白av| 日韩电影二区| 精品熟女少妇av免费看| 九色成人免费人妻av| 欧美 日韩 精品 国产| 永久免费av网站大全| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 水蜜桃什么品种好| 国产男女超爽视频在线观看| av一本久久久久| 中文在线观看免费www的网站| av在线观看视频网站免费| 国产精品免费大片| 麻豆精品久久久久久蜜桃| 在线播放无遮挡| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 国产探花极品一区二区| 日韩中文字幕视频在线看片| 另类精品久久| 边亲边吃奶的免费视频| 国产av国产精品国产| 日韩精品免费视频一区二区三区 | 乱系列少妇在线播放| 久久久久国产网址| 亚洲内射少妇av| 99久久人妻综合| 街头女战士在线观看网站| 国产亚洲精品久久久com| 黄色一级大片看看| 免费av中文字幕在线| 老女人水多毛片| 亚洲熟女精品中文字幕| 精品人妻熟女av久视频| 精品国产一区二区三区久久久樱花| 视频中文字幕在线观看| 美女中出高潮动态图| 免费播放大片免费观看视频在线观看| 在现免费观看毛片| 蜜桃在线观看..| 男的添女的下面高潮视频| 亚洲国产精品专区欧美| 91在线精品国自产拍蜜月| 中文字幕制服av| 国产av一区二区精品久久| 日产精品乱码卡一卡2卡三| av卡一久久| 91精品一卡2卡3卡4卡| 久久久久视频综合| 男人狂女人下面高潮的视频| 国产女主播在线喷水免费视频网站| 在线观看免费高清a一片| 尾随美女入室| 啦啦啦在线观看免费高清www| 欧美成人精品欧美一级黄| 久久免费观看电影| 春色校园在线视频观看| 精品酒店卫生间| 伦理电影免费视频| 国产免费又黄又爽又色| 精品国产一区二区三区久久久樱花| 黑人猛操日本美女一级片| 建设人人有责人人尽责人人享有的| 国产精品99久久久久久久久| 免费久久久久久久精品成人欧美视频 | 欧美日韩国产mv在线观看视频| 内射极品少妇av片p| 夫妻午夜视频| 日日啪夜夜爽| av福利片在线| 国产69精品久久久久777片| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 在线播放无遮挡| 亚洲内射少妇av| 丝袜喷水一区| 国产精品久久久久久久电影| 日日爽夜夜爽网站| av黄色大香蕉| 夫妻性生交免费视频一级片| 免费观看性生交大片5| 欧美老熟妇乱子伦牲交| 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 99久国产av精品国产电影| 黑丝袜美女国产一区| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 各种免费的搞黄视频| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 曰老女人黄片| 亚洲欧美一区二区三区黑人 | 亚洲无线观看免费| 精品久久国产蜜桃| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 18禁动态无遮挡网站| 天天操日日干夜夜撸| 2021少妇久久久久久久久久久| 久久女婷五月综合色啪小说| 少妇裸体淫交视频免费看高清| 人妻 亚洲 视频| 国产国拍精品亚洲av在线观看| 免费黄频网站在线观看国产| 美女主播在线视频| 国产精品一二三区在线看| 美女大奶头黄色视频| 一区二区三区乱码不卡18| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 九色成人免费人妻av| 久久午夜福利片| 伦理电影大哥的女人| 国产高清有码在线观看视频| 欧美+日韩+精品| 久久久久人妻精品一区果冻| h视频一区二区三区| 丰满人妻一区二区三区视频av| 高清午夜精品一区二区三区| 各种免费的搞黄视频| 在线观看人妻少妇| 亚洲av男天堂| 又爽又黄a免费视频| 搡女人真爽免费视频火全软件| 中文字幕亚洲精品专区| 黄色日韩在线| 亚洲欧洲精品一区二区精品久久久 | 成年人午夜在线观看视频| 精品酒店卫生间| 日韩av免费高清视频| 欧美精品高潮呻吟av久久| 最新的欧美精品一区二区| 在线免费观看不下载黄p国产| 天天操日日干夜夜撸| 成年人午夜在线观看视频| 三级国产精品欧美在线观看| 夜夜骑夜夜射夜夜干| 最近中文字幕2019免费版| 成人无遮挡网站| 免费av不卡在线播放| 六月丁香七月| .国产精品久久| 国产成人a∨麻豆精品| 亚洲久久久国产精品| 一级二级三级毛片免费看| 成人美女网站在线观看视频| 婷婷色综合大香蕉| 久久久国产一区二区| 亚洲国产欧美日韩在线播放 | 成年av动漫网址| 日韩中字成人| 特大巨黑吊av在线直播| av福利片在线| 亚洲精品国产av蜜桃| 哪个播放器可以免费观看大片| 香蕉精品网在线| 国产午夜精品久久久久久一区二区三区| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 国产精品久久久久成人av| 亚洲成人av在线免费| 久久 成人 亚洲| 伊人久久精品亚洲午夜| 综合色丁香网| 亚洲国产精品999| 亚洲国产精品一区三区| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 久久国产精品男人的天堂亚洲 | 国产欧美日韩精品一区二区| 大片电影免费在线观看免费| 国产精品麻豆人妻色哟哟久久| 女人精品久久久久毛片| 老熟女久久久| 伦理电影免费视频| 美女福利国产在线| 久久久久久久久久成人| 久久ye,这里只有精品| 18+在线观看网站| 97在线视频观看| 午夜免费观看性视频| 自拍欧美九色日韩亚洲蝌蚪91 | 各种免费的搞黄视频| av黄色大香蕉| 国产成人免费观看mmmm| 欧美丝袜亚洲另类| 欧美日韩在线观看h| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 少妇猛男粗大的猛烈进出视频| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 亚洲自偷自拍三级| 久久国产精品男人的天堂亚洲 | 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 亚洲av欧美aⅴ国产| 亚洲国产色片| 欧美精品一区二区大全| 久久国内精品自在自线图片| 在线天堂最新版资源| 2021少妇久久久久久久久久久| 亚洲国产精品一区二区三区在线| 亚洲四区av| 91久久精品电影网| 麻豆成人午夜福利视频| 日日啪夜夜撸| 国产精品伦人一区二区| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 久久久久久久久大av| 极品少妇高潮喷水抽搐| 美女国产视频在线观看| 91成人精品电影| 久久久国产一区二区| 免费看不卡的av| 久久人人爽av亚洲精品天堂| 少妇高潮的动态图| 亚洲色图综合在线观看| 看十八女毛片水多多多| 丰满少妇做爰视频| 免费观看av网站的网址| 亚洲综合精品二区| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡 | 只有这里有精品99| 国产精品伦人一区二区| 日本午夜av视频| 亚洲不卡免费看| 亚洲伊人久久精品综合| 97在线人人人人妻| 十分钟在线观看高清视频www | 91aial.com中文字幕在线观看| 少妇 在线观看| 国产黄频视频在线观看| 婷婷色av中文字幕| 久久国产乱子免费精品| 中文字幕亚洲精品专区| 亚洲国产精品专区欧美| 亚洲第一av免费看| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 国产日韩一区二区三区精品不卡 | 伊人久久国产一区二区| 国产精品成人在线| 久久精品国产亚洲网站| 久久国产乱子免费精品| 久久久久久久久久久丰满| 国产精品国产三级国产av玫瑰| 99热这里只有是精品50| 国产高清国产精品国产三级| 岛国毛片在线播放| 免费观看的影片在线观看| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类| 菩萨蛮人人尽说江南好唐韦庄| 又黄又爽又刺激的免费视频.| 亚洲内射少妇av| 亚洲,欧美,日韩| 99九九在线精品视频 | 日韩一区二区三区影片| 美女主播在线视频| 99热6这里只有精品| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 成人国产麻豆网| 欧美97在线视频| 久久综合国产亚洲精品| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 日日啪夜夜爽| 免费av中文字幕在线| 在线精品无人区一区二区三| 亚洲高清免费不卡视频| 国产精品一区二区性色av| 性色av一级| 久久久久久伊人网av| 久久久精品免费免费高清| 视频中文字幕在线观看| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 婷婷色麻豆天堂久久| 中文字幕亚洲精品专区| 国产成人91sexporn| 丝袜喷水一区| 午夜激情久久久久久久| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 亚洲av欧美aⅴ国产| 欧美成人精品欧美一级黄| 国产一区二区在线观看av| 久久久a久久爽久久v久久| 搡老乐熟女国产| 伦理电影大哥的女人| 国产片特级美女逼逼视频| 男的添女的下面高潮视频| 欧美成人精品欧美一级黄| 日韩中文字幕视频在线看片| 熟女av电影| 能在线免费看毛片的网站| 亚洲精品视频女| 亚洲美女视频黄频| 美女中出高潮动态图| 嫩草影院新地址| 亚洲第一区二区三区不卡| 久久精品国产亚洲网站| 极品人妻少妇av视频| 成年女人在线观看亚洲视频| 久久久久人妻精品一区果冻| 成人亚洲精品一区在线观看| 乱系列少妇在线播放| 久久精品久久久久久噜噜老黄| 青春草视频在线免费观看| 免费观看性生交大片5| 亚洲国产精品一区二区三区在线| 国产无遮挡羞羞视频在线观看| 99热网站在线观看| 少妇被粗大的猛进出69影院 | 夜夜看夜夜爽夜夜摸| 最近的中文字幕免费完整| 日韩伦理黄色片| 99久久精品一区二区三区| 久久6这里有精品| 成人毛片a级毛片在线播放|