• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step quantum dialogue

    2024-03-25 09:30:54PengHuiZhu朱鵬輝WeiZhong鐘偉MingMingDu杜明明XiYunLi李喜云LanZhou周瀾andYuBoSheng盛宇波
    Chinese Physics B 2024年3期
    關鍵詞:鐘偉

    Peng-Hui Zhu(朱鵬輝), Wei Zhong(鐘偉), Ming-Ming Du(杜明明),Xi-Yun Li(李喜云), Lan Zhou(周瀾),?, and Yu-Bo Sheng(盛宇波),,?

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: one-step quantum dialogue, hyperentanglement, hyperentanglement distribution, non-local Bellstate measurement

    1.Introduction

    Quantum secure communication can protect the security of transmitted messages based on the basic principles of quantum mechanics.Quantum secure communication has unconditional security, which is its most attractive advantage comparing with classical communication.There are some important branches in the quantum secure communication field,such as quantum key distribution (QKD),[1-9]quantum secret sharing(QSS),[10-14]quantum secure direct communication (QSDC),[15-18]and quantum dialogue (QD).[19,20]QKD and QSS can generate secret keys between two distant parties and among multiple parties, respectively.QSDC does not require keys.It enables the message sender to directly transmit messages to the message receiver through the quantum channel.QSDC has developed rapidly in theoretical and experimental aspects during the last few years.[21-42]In theory,in 2020, researchers introduced device-independent (DI) and measurement-device-independent(MDI)techniques in QSDC to enhance QSDC’s security under practical conditions.[22,23]Soon after, the masking (IN-CUM) technique was utilized in QSDC to increase its message capacity.[26]In 2023, the two-step QSDC scheme based on intermediate-basis was proposed,which used the intermediate-basis Einstein-Podolsky-Rosen(EPR)pairs to detect the channel security and help encode information.[32]Experimentally,the single-photon based QSDC experiment and entanglement-based QSDC experiment were realized in 2016 and 2017, respectively.[35,36]Recently,QSDC network experiment and a 100 km QSDC experiment were reported, which largely promoted the practicality of QSDC.[39,40]In 2023,the group of Paparelle realized the tabletop experimental demonstration of a CV-QSDC system.[42]

    QD,which will be detailed here,enables two distant communication parties to exchange messages through quantum channels.[43-51]In this way, QD can play the role of bidirectional QSDC.In 2004, Nguyen proposed the first QD protocol based on quantum entanglement.[19]In 2005, Manet al.pointed out the security loophole of the QD protocol in Ref.[19] and proposed a modified secure QD protocol.[20]In 2007,a quasi-secure single-photon-based QD protocol was proposed,[43]which can guarantee the confidentiality and control of the QD content, and has certain anti-attack capabilities.In 2009, Shiet al.utilized Bell state to realize a secure QD.[45]In 2010, they proposed a secure single-photonbased QD protocol combining the idea of QSDC and BB84 protocol.[46]In 2014, a two-step QD protocol evolved from the two-step QSDC protocol was proposed,[49]whose security is assured by the two-step QSDC protocol.[16]In the same year, the entanglement swapping technique was introduced into the QD protocol.[50]Later, Gonget al.utilized the continuous-variable GHZ states to realize the quantum network dialogue.[51]

    The conventional QSDC and QD protocols all require two rounds of photon transmission.We take the entanglementbased QSDC and QD protocols as examples.[15,16,19,20,45,49]Firstly, two communication parties firstly construct the longdistance entanglement channel by distributing a photon of each entangled photon pair in the quantum channel.Then,the photons are encoded by the parties.The encoded photons should be sent to one party for the Bell state measurement(BSM).However, in the photon transmission processes, the channel noise may cause photon transmission loss and quantum state decoherence, which may cause message loss and message error.Worse still, utilizing the channel noise, the eavesdropper (Eve) can intercept some messages without being detected.In 2022, the one-step QSDC protocol based on the hyperentanglement was put forward,[28]which reduces the photon transmission rounds from two to one.Compared with conventional two-step QSDC protocols,[15,16]one-step QSDC protocol can effectively simplify the experimental operation and reduce the message loss caused by the photon transmission loss.Later, to further enhance one-step QSDC’s security under practical imperfect conditions,researchers proposed DI and MDI one-step QSDC protocols.[29,30]Inspired by the one-step QSDC protocol, we propose the first one-step QD protocol.This one-step QD protocol first constructs the hyperentanglement channel between two distant communication parties.Then, the parties perform the hyperentanglementassisted complete BSM with the probability of 100%.In this way, the encoded photons are not required to transmit to one party,which can effectively reduce the message loss.To evaluate the one-step QD protocol’s performance under practical experimental conditions, we simulate its secret message capacity.Our one-step QD protocol has important applications in the quantum communication field.

    The paper is organized as follows.In Section 2, we explain the one-step QD protocol based on hyperentanglement.In Section 3, an example of the one-step QD protocol is put forward.In Section 4, we analyze the theoretic security and the secret message capacity of the one-step QD protocol.In Section 5,we make some discussion and the summary elaboration.

    2.One-step QD protocol

    The one-step QD protocol utilizes the hyperentangled photon pairs as the sources.Hyperentanglement means entanglement in two or more DOFs of a system.Hyperentanglement has important applications in increasing the channel capacity,[52,53]realizing the high-efficient entanglement purification,[54-57]complete BSM,[58,59]and multi-DOF teleportation.[60,61]The generation of various hyperentanglement has been widely researched.[62-64]As shown in Fig.1,the one-step QD protocol can be described as follows.

    Fig.1.The schematic diagram of the one-step QD protocol.The green circles linked by the dashed lines represent the initially prepared polarizationspatial-mode hyperentangled photon pairs in|φ+〉p ?|φ+〉s.The light blue circle pairs represent the randomly selected security checking photon pairs.The colorful circle pairs in steps (5) and (6) represent the encoded photon pairs.The light green rectangular box represents the non-local complete polarization Bell state measurement(BSM).

    Step 1The communication party Alice requires to generateNpolarized-spatial-mode hyperentangled states in|φ+〉p?|φ+〉s(Nis large).Here,we use|H〉and|V〉to represent the horizontal polarization and vertical polarization, respectively.The four polarization Bell states can be described as

    In the spatial-mode DOF,a1,a2,a′1,a′2represent different spatial modes in Alice’s location.The four spatial-mode Bell states can be described as

    We divide theNcopies of photon pairs into two photon sequences S1 and S2.

    Step 2Alice randomly selectsMphoton pairs for subsequent security checking and records their positions (Mis a large number andM <N).

    Step 3The photons in sequence S2 are sent from Alice to Bob through two quantum channels, and the photons in sequence S1 are stored in Alice’s quantum memory (QM)devices.The spatial modesa′1anda′2in Alice’s location correspond to the spatial modesb1andb2in Bob’s location,respectively.Bob stores all the received photons in his QM devices.

    Step 4For each security checking photon, Alice randomly selects the rectilinear (Z) basis or diagonal (X) basis in each DOF.Then, Alice announces the position and measurement bases in both DOFs of each security checking photon pair through a classical channel.Alice and Bob extract the security checking photons from the QM devices and measure them in both DOFs with the announced bases.In Fig.2,we show four linear optical apparatuses for Alice(Bob)measuring the photon inXsZp,XsXp,ZsXp,ZsZpbases and the corresponding measurement results.[65]Then,Alice(Bob)announces her (his) measurement results through the classical channel.Under the case that they both chooseZbasis in a DOF, if their measurement results are different, it indicates that a bit-flip error occurs in this DOF.Under the case that they both chooseXbasis in a DOF, if their measurement results are different, it indicates that a phase-flip error occurs.After the security checking, Alice and Bob estimate the bitflip error rate(eB)and phase-flip error rate(eP)in both DOFs.IfeBorePin any DOF exceeds a tolerable threshold,Alice determines that the photon transmission is unsafe and aborts the communication.Only when botheBandePin each DOF are lower than the tolerable thresholds, Alice and Bob continue the communication.

    Fig.2.Four linear optical apparatuses for the parties measuring the photons in(a)XsZp, (b)XsXp, (c)ZsXp, (d)ZsZp, and the corresponding measurement results.[65] PBS and BS represent the polarization beam splitter and 50:50 beam splitter, respectively.PBS can totally transmit the photon in|H〉and totally reflect the photon in|V〉photon.BS plays the role of the Hadamard(H)gate in the spatial-mode DOF,leading|i1〉→(|i1〉+|i2〉)and|i2〉→(|i1〉-|i2〉)(i=a,b).The quarter wave plate(QWP)can be treated as the H gate in the polarization DOF,leading|H〉→(|H〉+|V〉)and|V〉→(|H〉-|V〉).

    Fig.3.Schematic principle of the encoding and non-local hyperentanglement-assisted polarization BSM in our one-step QD protocol.The parties can perform the σxp operation by passing the photon through the half wave plate(HWP).Combining two QWPs with an HWP, the parties can perform the σzp operation.After the encoding,the parties perform the non-local hyperentanglement-assisted polarization BSM.[28,58] Four polarization Bell states can be distinguished by the responses of eight photon detectors D1-D8.

    Step 6 Both parties perform the non-local hyperentanglement-assisted polarization BSM, which is also shown in Fig.3.After the measurement, both parties announce the detector responses through a classical channel.From the detector responses, both parties can deduce the encoded polarization Bell state.The detector responses and the corresponding polarization Bell states are shown in Table 1.Then, combined with the detector responses and their own random operations, they can deduce the encoded operations from each other and realize the bidirectional communication.As the random operations are private,anyone except the communication parties cannot read out the exchanged messages.

    Table 1.The non-local complete polarization BSM results corresponding to the detector responses with the spatial Bell state being |φ+〉s.DiDj means both the photon detectors Di and Dj response.

    It is worth noting that if the Bell state in the spatial-mode DOF degrades to one of the other three Bell states in Eq.(2),the parties will obtain wrong polarization BSM result from the detector responses.We list the polarization Bell states corresponding to the detector responses with the spatial-mode entanglement in|ψ+〉sin Table 2.We take a specific example.From Table 2,if the polarization is|φ+〉p,the detectors D1D7,D2D8,D3D5,or D4D6will click.However,the parties deduce the polarization Bell state from Table 1, so that they will deduce that the encoded polarization Bell state is|ψ+〉p.

    Table 2.The non-local complete polarization BSM results corresponding to the detector responses with the spatial Bell state being|ψ+〉s.DiDj means both the photon detectors Di and D j response.

    3.A specific example of the one-step QD protocol

    To enhance the understanding of the one-step QD protocol,we provide a specific example of this one-step QD protocol.After the hyperentanglement distribution,Alice and Bob share the initial hyperentangled state in|φ+〉p?|φ+〉s.Suppose that Alice aims to transmit the message 1,and Bob aims to transmit the message 0.In this way, Alice performsσzpon the photon in S1 sequence, and Bob performsIpon the corresponding photon in S2 sequence.In addition,Alice also performsσxpon her photon and Bob performsσzpon his photon.After the encoding,the initial state|φ+〉pis converted to|ψ+〉p, while the state|φ+〉sis unchanged.The specific process is as follows:

    which corresponds to the responses of D1D7, D2D8, D3D5,or D4D6.Based on the detector responses, the parties obtain the encoded polarization Bell state is|ψ+〉pfrom Table 1.Then, each party combined|ψ+〉pwith his/her random operation.Alice can obtain that Bob’s encoding operation isIpcorresponding to the transmitted message of 0.Bob can obtain that Alice’s encoding operation isσzpcorresponding to the message of 1.

    4.Security analysis and the secret message capacity

    We first analyze the theoretic security of our one-step QD protocol against the most common attack, say, the interceptresend attack.During the photon transmission process, Eve can intercept some photons.To avoid being discovered, Eve prepares some new hyperentangled photon pairs in|φ+〉p?|φ+〉s.He distributes one photon of each hyperentangled photon pair to Bob through a perfect quantum channel and randomly encodes the photons in his location.After the parties’encodings, Eve performs the non-local complete polarization BSM with the parties,respectively,and he can deduce Alice’s and Bob’s message according to the announced detector responses from Alice and Bob.Meanwhile,the parties can only obtain Eve’s randomly encoded messages.However, this attack can be resisted by the security checking.As Alice randomly selects a large number of security checking photon pairs in the photon sequences.It is unavoidable for Eve to intercept some security checking photons.Eve’s newly generated photons in Bob’s location are not entangled with Alice’s corresponding photons.As a result,their measurement results in each DOF may be different with a probability of 50%.In this way, Eve’s intercept-resend attack can increaseeBandePin each DOF.Under ideal conditions, if there is no eavesdropping,eBandePin each DOF are strictly equal to 0.IfeBorePin any DOF is higher than 0,Alice can detect the existence of Eve.Under practical noisy conditions,Alice sets the tolerable thresholds ofeBandePin both DOFs.If the any error rate exceeds the tolerable threshold,Alice ensures that the photon distribution is unsafe and discards the communication.

    Actually,in the practical noisy channel condition,Eve can intercept a part of photons from the photon transmission process.The total error rates caused by Eve’s interception can be concealed by that caused by the channel noise,so that Eve will not be detected by the parties.As a result,Eve can obtain a part of encoded messages.As each hyperentangled photon pair carries 2 bits of messages,the message leakage rate of our one-step QD protocol is twice the photon interception rate.

    For evaluating the performance of our one-step QD protocol in the practical scenario,we numerically simulate its secret message capacity(Cs).Similar to QSDC,we define the secret message capacity of QD as the ratio of the total exchanged secure and correct qubits to the overall number of encoded photon pairs.Here, we consider the symmetric scenario, where the hyperentanglement source is at the midpoint between the communication parties.Under this circumstance, the generated photon pairs hyperentangled in two DOFs pass through a quantum channel with the transmission distance ofLto reach both parties, and the communication distanced=2L.Consequently, this configuration allows Eve to intercept photons intended for each party.According to Wyner’s wiretap channel theory,[66]we can calculateCsas[38,67,68]

    Here,I(A:B)(I(B:A))represents the message capacity from Alice to Bob (Bob to Alice).Similarly,I(B:E) (I(A:E))denotes the mutual message capacity between Bob and Eve(Alice and Eve).Theoretically, for a hyperentangled photon pair,Alice and Bob can exchange two bits of messages in total.With this framework, we can obtain the sum ofI(A:B)andI(B:A)as

    whereH(x)represents the binary Shannon entropy asH(x)=-xlog2x-(1-x)log2(1-x)andCrawdenotes the raw message capacity.eQDrepresents the total error rate of the protocol.

    Referring to the principles of the entanglement-based QKD and one-step QSDC protocols,[28,69,70]on can obtain the sum ofI(A:E)andI(B:E)as

    Thus,Csof the one-step QD protocol can be calculated as

    Next,we estimate the values ofCrawandeQD.We utilize the spontaneous parametric down-conversion (SPDC) source to generate the original two-photon hyperentangled states.The SPDC source can generate a hyperentangled photon pair with a probability ofP(whereP~10-3).[57]GivenP ?1, our protocol only focuses on the vacuum state,one-pair,two-pair and three-pair emissions,while ignores the higher-order terms.Consequently, the practical photon stateρgenerated by the SPDC source can be expressed as

    Following the hyperentanglement distribution, the communication parties perform the non-local complete polarization BSM.The non-local polarization BSM protocol requires eight photon detectors D1-D8,four in Alice’s location and four in Bob’s location.As illustrated in Table 1, there are four kinds of detector responses corresponding to each polarized Bell state, each with an equal probability.In this simulation,we account for the practical photon detector, which is unable to distinguish the number of incident photons.Meanwhile,the photon detector has a dark count rate denoted asY0.The detection probability of detector Dj(j=1,2,...,8)whenkphotons are incident is represented asDkj.Here,we introduce the concept of collection efficiencyα,encompassing the coupling efficiencyηcbetween the photon source and fiber, the quantum memory efficiencyηm,the photon transmission efficiencyηt=10-0.2L/10,and the detection efficiency of the detectorηd(α=ηcηmηtηd).AsαandY0are far less than 1,Dkjcan be written as

    Here,we introduce a simplification by definingα′=α/4,enabling us to expressDkj ?kα′+Y0.

    The calculation ofCrawin our one-step QD protocol is similar as that in the one-step QSDC protocol.[28]First, we consider the vacuum state with the probability of 1-P-P2-P3, the clicks of all detectors are attributed to dark counts.Consequently,Craw1can be calculated as

    Second,we focus on the one hyperentangled-photon-pair component in Eq.(10)with a probability ofP.After the nonlocal BSM,this photon pair can cause the click of one detector pair,while the clicks of the other detector pairs are due to dark counts.Here,we suppose the encoded hyperentangled state to be|Φ+〉=|φ+〉p?|φ+〉s.It may lead the response of D1D5,D2D6,D3D7,or D4D8.In this case,Craw2can be calculated as

    Third, we consider the two hyperentangled-photon-pair components in Eq.(10) with a probability ofP2.The detection results can be categorized into the following two scenarios.First, only one detector pair clicks by the incident of the two photon pairs,such as D1D5.Secondly,two detector pairs click by the incident of the two photon pairs, such as D1D5and D2D6.Combining the two categories,we can obtain

    Fourth, we focus on the three hyperentangled-photonpair components with a probability ofP3.This situation can be classified into three categories, say, the incident of three photon pairs may cause the clicks of one detector pair, two detector pairs, and three detector pairs, respectively.In all the three categories, we can calculateD1+D2+D3+D4=D5+D6+D7+D8=3α′+4Y0.As a result, we can obtainCraw4 as

    On the other hand,we have to consider the multiple coincidences,say,three or more photon pairs click simultaneously at any one party’s side.It is obvious that the multiple coincidence will cause the failure of the non-local BSM.As the probability of four or more detectors clicking simultaneously is significantly lower than that of the threefold click,we only focus on the threefold click case.Referring to the calculations in Ref.[28], the threefold coincidence rate in the above four cases can be calculated as

    Then,we focus on the total error rateeQD.The error may be caused by both the imperfect experimental devices and the decoherence during the photon transmission.We first consider the error caused by the imperfect experimental devices.We also take|Φ+〉=|φ+〉p?|φ+〉sas an example.Only the clicks from D1D5, D2D6, D3D7, or D4D8are correct BSM results,while other types of clicks caused by dark counts would lead to error.Therefore,the correct message capacity corresponding to the vacuum state,one hyperentangled photon pair,two hyperentangled photon pairs,and three hyperentangled photon pairs can be calculated as

    In the above expression,Fp(Fs) represents the fidelity of target state in the polarization(spatial-mode)DOF.Decoherence may affect the non-local BSM results and cause errors,which may make Alice and Bob deduce incorrect messages.It is important to note that if the same kind of error occurs in both DOFs, the BSM can still obtain the right detector response.We take the case that the bit-flip error occurs in both DOFs as an example.In this case, the initial hyperentangled state will be converted to|ψ+〉p?|ψ+〉s.Suppose that Alice aims to transmit the message 1 and Bob aims to transmit the message 0,and their random operations are bothIp.After encoding,the hyperentangled state will evolve to|φ+〉p?|ψ+〉s.The BSM process can be written as

    As a result, the output photons will be detected by D3D5,D4D6,D1D7,or D2D8.From Table 1,Alice and Bob can infer the encoded polarization Bell state to be|ψ+〉p, and thus can exchange correct messages 1 and 0.Similarly, if the phaseflip error or bit-phase-flip error occurs in both DOFs, Alice and Bob can also obtain the correct polarization BSM results from the detector responses.Therefore,if the same kind of error occurs in both DOFs,the parties can still exchange correct messages based on the BSM results.

    Thus,the total correct rateCcorrecttis

    Taking the values ofCrawandeQDin Eqs.(18) and (23)into Eq.(9),we calculate the value ofCs.In Fig.4,we showCsof the one-step QD protocol altered with the communication distancedbetween the communication parties.We fixY0=6.02×10-6,ηm=ηc=0.95,ηd=0.9.For calculatingηt, we chooseα=0.2 dB/km.The parametersFpandFsare adjusted to be 1, 0.98, 0.96, respectively.It can be seen that whenFp=Fs=0.98, the maximum communication distance achieves approximately 211 km.With the repetition rate of the SPDC source being 10 GHz[71]andFp=Fs=0.98,Csis around 1435 bit/s at a communication distance of 100 km.

    Fig.4.The secret message capacity Cs alters with the communication distance d between the communication parties.Here, we fix Y0 =6.02×10-6, ηm =ηc =0.95, ηd =0.9, and adjust Fp =Fs =1,0.98,0.96,respectively.

    5.Discussion and conclusion

    QD enables two communication parties to directly exchange secret messages simultaneously,realizing real-time secure bidirectional communication.Similar to conventional QSDC protocols,[15-18]previous QD protocols require to transmit photons in the quantum channel twice.[19,20,43-47]The channel noise may cause photon transmission loss and quantum state decoherence in each photon transmission process.The photon transmission loss and quantum state decoherence can largely limit the maximal secure communication distance and reduce the secret message capacity.Worse still, they may cause message loss and message error, which makes the transmitted messages incomplete and incorrect.In our QD protocol, the parties only require to distribute photons in the quantum channel once, which can simplify the experimental operation and reduce the photon transmission loss.Most entanglement-based QD requires the complete BSM.[19,20,45,49]However, the linear-optical BSM only has a success probability of 50%.The complete BSM often relies on nonlinear optical elements,[72-76]which are difficult to realize under current experimental conditions.In contrast, our onestep QD protocol adopts the hyperentanglement-assisted nonlocal complete polarization BSM with a probability of 100%,which is feasible with current linear optical devices.

    QM is an important element of our one-step QD protocol.In the protocol, the parties should store the photons in the quantum memory until they ensure the photon transmission being secure.During recent few years,QM has achieved great experimental progresses.[77-83]In 2017, a high-fidelity nanophotonic QM with>95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout was experimentally demonstrated.[78]In 2018, Hsiaoet al.achieved a storage efficiency of 92.0%for a coherent optical memory based on the electromagnetically induced transparency (EIT) scheme in optically dense cold atomic media.[79]In 2019,a high-performance atomic Raman memory in87Rb vapor with the memory efficiency of above 82.0%for 6 ns-20 ns optical pulses and the unconditional fidelity of up to 98.0% was achieved.[80]Later, the coherent storage of light in an atomic frequency comb memory over 1 hour was realized by the group of Ma.[82]Recently, Zhanget al.reported their achievement on the fiber-integrated multimode quantum storage of single photon at telecom band with 330 temporal modes on a laser-written chip.[83]Based on these attractive progresses,our one-step QD protocol may be experimentally realized in the near future.

    From the security analysis, the channel noise makes it possible for Eve to intercept some photons without being detected,and increases message loss rate and message error rate.Similar to QSDC, in QD, the communication parties cannot perform the post-processing technique to resist message loss and message errors.In this way, the message loss and message error are two big obstacles in the practicality of QD.Actually, we can adopt the polarization-spatial-mode hyperentanglement purification and heralded amplification to modify our one-step QD protocol.In detail, Bob can perform the hyperentanglement amplification to herald the arrival of each transmitted photon.[84]After that,both parties can repeat the hyperentanglement purification[85]to improve the fidelity of the hyperentanglement channel.In theory, Alice and Bob can construct the nearly perfect hyperentanglement channel,where the parties can detect any eavesdropping behavior from Eve.As a result, the message leakage loophole can be eliminated.Meanwhile, the message loss and message error can be also nearly eliminated, thus guaranteeing the correctness and integrity of the transmitted messages.In contrast, in the previous entanglement-based QD protocols,[19,20]the parties cannot perform the EPP after the second photon transmission round, for the EPP may change the encoded messages.As a result, the decoherence caused by the second photon transmission round cannot be eliminated,which can bring security loophole and message errors.Moreover,our one-step QD can be combined with the quantum repeater and drone to construct the long-distance hyperentanglement channel,and thus realize the long-distance one-step QD.

    In summary, we propose the first one-step QD protocol with the help of hyperentanglement and non-local complete BSM.In the protocol, two communication parties first construct the hyperentanglement channel.After checking the security of the photon transmission process, they encode their messages in the polarization DOF of each hyperentangled photon pair.Then, by performing the non-local hyperentanglement-assisted complete polarization BSM,they can finally obtain the exchanged messages.This one-step QD protocol is theoretically secure and two parties can exchange 2 bits of messages by using a hyperentangled photon pair.The secret message capacity of the one-step QD protocol is numerically simulated.We obtain that with the fidelities in both DOFs ofFp=Fs=0.98,the one-step QD protocol can achieve the maximal communication distance of about 211 km.Compared with previous QD protocols, our one-step QD protocol has some attractive advantages.First, photons only need to transmit in the quantum channel once, which can simplify the experiment operations and reduce the photon transmission loss.Second, the non-local complete polarization BSM can completely distinguish four polarization Bell states and is feasible with current technique.Third, combined with the heralded amplification and purification,the nearly perfect hyperentanglement channel can be constructed between two parties,which can nearly eliminate the message leakage loophole,the message loss and message error.Moreover, combined with quantum repeater and drone,our one-step QD is possible to realize long-distance QD.In this way,our one-step QD protocol is an important development of QD and will have important applications in future quantum communication field.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110).

    猜你喜歡
    鐘偉
    再出發(fā)的勇氣
    Measurement-device-independent one-step quantum secure direct communication
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?
    職場小白警示錄:公車追愛驚變“翻車現(xiàn)場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結(jié)期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    日韩av在线大香蕉| 久久午夜亚洲精品久久| 欧洲精品卡2卡3卡4卡5卡区| 国产伦在线观看视频一区| 亚洲色图av天堂| 日日啪夜夜撸| 少妇的逼好多水| 嫩草影院入口| 欧美3d第一页| 尾随美女入室| 亚洲精品自拍成人| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| 麻豆乱淫一区二区| 天堂av国产一区二区熟女人妻| 99视频精品全部免费 在线| 五月伊人婷婷丁香| 狠狠狠狠99中文字幕| 最近2019中文字幕mv第一页| 亚洲人成网站高清观看| 少妇熟女aⅴ在线视频| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 一个人免费在线观看电影| 乱系列少妇在线播放| 久久人妻av系列| 看免费成人av毛片| 亚洲精品日韩av片在线观看| 狂野欧美激情性xxxx在线观看| 久久久久九九精品影院| 亚洲av不卡在线观看| 久久久久免费精品人妻一区二区| 亚洲真实伦在线观看| 久久精品影院6| 成人无遮挡网站| 国产v大片淫在线免费观看| 成人一区二区视频在线观看| 欧美一区二区精品小视频在线| 亚洲av男天堂| 日韩欧美精品免费久久| 精品99又大又爽又粗少妇毛片| av在线亚洲专区| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 久久久久久久久久黄片| 国产亚洲av嫩草精品影院| 色尼玛亚洲综合影院| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 亚洲第一电影网av| 亚洲国产精品合色在线| 在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频 | 日本成人三级电影网站| 看非洲黑人一级黄片| 亚洲av一区综合| 韩国av在线不卡| 亚洲丝袜综合中文字幕| 91午夜精品亚洲一区二区三区| 亚洲自偷自拍三级| 精品一区二区三区视频在线| 亚洲人成网站高清观看| 特级一级黄色大片| 成人午夜精彩视频在线观看| 午夜福利视频1000在线观看| 欧美激情在线99| 毛片一级片免费看久久久久| or卡值多少钱| 一夜夜www| av在线播放精品| 美女xxoo啪啪120秒动态图| 久久精品综合一区二区三区| 97在线视频观看| 日本免费a在线| 欧美成人一区二区免费高清观看| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 一卡2卡三卡四卡精品乱码亚洲| 最近最新中文字幕大全电影3| 成人一区二区视频在线观看| 亚洲最大成人中文| 国产爱豆传媒在线观看| 亚洲欧美成人综合另类久久久 | www日本黄色视频网| 在线观看美女被高潮喷水网站| 国产日本99.免费观看| 看黄色毛片网站| 久久久午夜欧美精品| 国产亚洲91精品色在线| 久久久色成人| 免费av观看视频| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 51国产日韩欧美| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 国产黄片视频在线免费观看| 国产精品伦人一区二区| 成人高潮视频无遮挡免费网站| 精品久久久久久久久亚洲| 日本免费a在线| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 国产亚洲5aaaaa淫片| 欧美一区二区国产精品久久精品| 97热精品久久久久久| 久久韩国三级中文字幕| 在线天堂最新版资源| 成年版毛片免费区| 又粗又爽又猛毛片免费看| 91午夜精品亚洲一区二区三区| 亚洲欧美成人综合另类久久久 | 色综合亚洲欧美另类图片| 听说在线观看完整版免费高清| 日本一二三区视频观看| 日韩 亚洲 欧美在线| 如何舔出高潮| 亚洲精华国产精华液的使用体验 | 亚洲18禁久久av| av又黄又爽大尺度在线免费看 | 欧美最新免费一区二区三区| 在线免费观看不下载黄p国产| 九九久久精品国产亚洲av麻豆| 亚洲av二区三区四区| a级毛色黄片| 免费搜索国产男女视频| 有码 亚洲区| 日产精品乱码卡一卡2卡三| or卡值多少钱| 99久久久亚洲精品蜜臀av| 波多野结衣巨乳人妻| 啦啦啦啦在线视频资源| 久久久国产成人免费| 精品久久久久久成人av| 在线观看午夜福利视频| 美女黄网站色视频| 97超视频在线观看视频| 天堂√8在线中文| 日日摸夜夜添夜夜爱| 国产美女午夜福利| 国产av一区在线观看免费| 亚洲精华国产精华液的使用体验 | 国产成人福利小说| 亚洲精品久久国产高清桃花| 麻豆av噜噜一区二区三区| 男女那种视频在线观看| 国产极品精品免费视频能看的| 12—13女人毛片做爰片一| 日韩中字成人| 色哟哟·www| 美女xxoo啪啪120秒动态图| 欧美激情在线99| 成人无遮挡网站| 久久精品国产99精品国产亚洲性色| 老女人水多毛片| 日韩,欧美,国产一区二区三区 | 波多野结衣高清无吗| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 免费在线观看成人毛片| 国产精品永久免费网站| 欧美日本视频| 成人毛片60女人毛片免费| 99热网站在线观看| 国产成人a∨麻豆精品| 极品教师在线视频| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 欧洲精品卡2卡3卡4卡5卡区| 国产高潮美女av| 观看美女的网站| 亚洲国产精品久久男人天堂| 亚洲av中文av极速乱| 99国产精品一区二区蜜桃av| 欧美潮喷喷水| 少妇丰满av| 最近手机中文字幕大全| 欧美日韩国产亚洲二区| 日韩欧美三级三区| 人妻系列 视频| 网址你懂的国产日韩在线| 久久中文看片网| 中文字幕精品亚洲无线码一区| 黄色配什么色好看| 国产精品三级大全| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 久久久久久久亚洲中文字幕| 自拍偷自拍亚洲精品老妇| 日本av手机在线免费观看| 日韩欧美国产在线观看| 国产爱豆传媒在线观看| 久久久久久大精品| ponron亚洲| 久久久久国产网址| 黄色配什么色好看| 1000部很黄的大片| 人体艺术视频欧美日本| 91aial.com中文字幕在线观看| 日本黄大片高清| 高清在线视频一区二区三区 | av免费在线看不卡| 免费观看人在逋| 一进一出抽搐动态| 国产乱人偷精品视频| 国产精品不卡视频一区二区| 在线观看免费视频日本深夜| 深夜a级毛片| 国产精品精品国产色婷婷| 亚洲国产精品成人久久小说 | 欧美日韩精品成人综合77777| 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 国产 一区 欧美 日韩| 精品不卡国产一区二区三区| 少妇丰满av| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| 久久亚洲国产成人精品v| 欧美又色又爽又黄视频| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 欧美最黄视频在线播放免费| 中文字幕av成人在线电影| 亚洲欧美日韩卡通动漫| 欧美潮喷喷水| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 熟女电影av网| 丝袜美腿在线中文| 国产精品不卡视频一区二区| 床上黄色一级片| 亚洲久久久久久中文字幕| 欧美精品一区二区大全| 午夜免费激情av| 日韩成人伦理影院| 床上黄色一级片| 午夜精品国产一区二区电影 | 亚洲精品久久国产高清桃花| 人妻制服诱惑在线中文字幕| 我要看日韩黄色一级片| 99精品在免费线老司机午夜| 久久精品夜夜夜夜夜久久蜜豆| 午夜爱爱视频在线播放| 免费观看在线日韩| 一区二区三区四区激情视频 | 色哟哟·www| 丰满乱子伦码专区| 精品熟女少妇av免费看| 亚洲精品成人久久久久久| 亚洲无线在线观看| 日本欧美国产在线视频| av在线老鸭窝| 精品不卡国产一区二区三区| 欧美不卡视频在线免费观看| 免费av观看视频| 成人特级黄色片久久久久久久| 日韩精品有码人妻一区| 中国国产av一级| 久久人人爽人人片av| 国产在线男女| 99国产极品粉嫩在线观看| 一级二级三级毛片免费看| 日本黄色片子视频| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 中国美女看黄片| 老师上课跳d突然被开到最大视频| 国产亚洲精品久久久久久毛片| 深夜精品福利| 在线免费十八禁| 51国产日韩欧美| 中国美白少妇内射xxxbb| 久久精品夜夜夜夜夜久久蜜豆| 男人的好看免费观看在线视频| 亚洲图色成人| 神马国产精品三级电影在线观看| 亚洲婷婷狠狠爱综合网| 不卡视频在线观看欧美| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| 97人妻精品一区二区三区麻豆| 亚洲国产色片| 日本-黄色视频高清免费观看| 日韩av在线大香蕉| 亚洲国产精品合色在线| 一夜夜www| kizo精华| 久久久久久久午夜电影| 啦啦啦韩国在线观看视频| 美女国产视频在线观看| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 嘟嘟电影网在线观看| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 久久久久久久久久成人| 我要看日韩黄色一级片| 国产成人午夜福利电影在线观看| 97在线视频观看| 久久久久久久亚洲中文字幕| 久久精品国产清高在天天线| 亚洲美女搞黄在线观看| eeuss影院久久| 日韩一区二区三区影片| 99国产极品粉嫩在线观看| 在线免费十八禁| 中文亚洲av片在线观看爽| 岛国在线免费视频观看| 国产免费男女视频| 欧美性猛交╳xxx乱大交人| 亚洲三级黄色毛片| 长腿黑丝高跟| 成人美女网站在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲四区av| 麻豆一二三区av精品| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 村上凉子中文字幕在线| 一本久久精品| 少妇的逼水好多| 极品教师在线视频| h日本视频在线播放| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 在线天堂最新版资源| 亚洲国产欧美人成| 亚洲人成网站在线播| 一区二区三区高清视频在线| 亚洲av熟女| 色尼玛亚洲综合影院| 寂寞人妻少妇视频99o| 在线观看一区二区三区| av天堂在线播放| 色综合站精品国产| 一级毛片我不卡| 天堂影院成人在线观看| 欧美日韩一区二区视频在线观看视频在线 | av卡一久久| 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 亚洲精华国产精华液的使用体验 | 高清毛片免费看| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影| 美女 人体艺术 gogo| 日韩欧美国产在线观看| 亚洲最大成人中文| 日本与韩国留学比较| 麻豆国产97在线/欧美| 女人十人毛片免费观看3o分钟| 最近2019中文字幕mv第一页| 中文在线观看免费www的网站| 国产午夜精品一二区理论片| 亚洲av二区三区四区| 国产三级在线视频| 有码 亚洲区| 欧美色视频一区免费| 在线播放国产精品三级| 国产探花极品一区二区| 97人妻精品一区二区三区麻豆| 在线观看美女被高潮喷水网站| 国产在视频线在精品| 亚洲精品久久久久久婷婷小说 | 男人舔奶头视频| 性插视频无遮挡在线免费观看| 国产av麻豆久久久久久久| 五月伊人婷婷丁香| 精品无人区乱码1区二区| 夫妻性生交免费视频一级片| 性色avwww在线观看| 中文亚洲av片在线观看爽| 最近手机中文字幕大全| 亚洲成人久久性| 国产精品久久久久久精品电影小说 | 在线天堂最新版资源| 中国美女看黄片| 美女脱内裤让男人舔精品视频 | 国产成人freesex在线| 最近中文字幕高清免费大全6| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 一本一本综合久久| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| av在线观看视频网站免费| 国产视频内射| av免费观看日本| 午夜福利成人在线免费观看| 少妇被粗大猛烈的视频| 日本黄大片高清| 久久久久网色| 亚洲激情五月婷婷啪啪| 午夜爱爱视频在线播放| 欧美不卡视频在线免费观看| 中文精品一卡2卡3卡4更新| 亚洲精品456在线播放app| 九九在线视频观看精品| 国产精品日韩av在线免费观看| 级片在线观看| av在线观看视频网站免费| 欧美激情在线99| av专区在线播放| 热99在线观看视频| 能在线免费观看的黄片| 变态另类成人亚洲欧美熟女| 久久精品综合一区二区三区| 国产91av在线免费观看| 2022亚洲国产成人精品| 在现免费观看毛片| 一个人看的www免费观看视频| 淫秽高清视频在线观看| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 欧美一级a爱片免费观看看| 又粗又硬又长又爽又黄的视频 | avwww免费| 亚洲图色成人| 长腿黑丝高跟| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区三区四区久久| 小蜜桃在线观看免费完整版高清| 午夜亚洲福利在线播放| 在线a可以看的网站| 日本一二三区视频观看| 91午夜精品亚洲一区二区三区| 成年免费大片在线观看| 男女下面进入的视频免费午夜| av黄色大香蕉| АⅤ资源中文在线天堂| 国产成人一区二区在线| 亚洲精品影视一区二区三区av| 美女脱内裤让男人舔精品视频 | 女同久久另类99精品国产91| 好男人在线观看高清免费视频| 日本免费一区二区三区高清不卡| 成人鲁丝片一二三区免费| 久久精品夜夜夜夜夜久久蜜豆| 九九在线视频观看精品| 欧美最黄视频在线播放免费| 久久精品综合一区二区三区| 国产精品99久久久久久久久| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 久久99热6这里只有精品| 久久99精品国语久久久| 成人亚洲精品av一区二区| 亚洲av.av天堂| 国产精品电影一区二区三区| 欧美日韩乱码在线| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 亚洲成人精品中文字幕电影| av黄色大香蕉| 成人特级av手机在线观看| 国产探花极品一区二区| 亚洲欧美清纯卡通| 又粗又爽又猛毛片免费看| 国产精品久久久久久久久免| 亚洲一级一片aⅴ在线观看| 亚洲av中文字字幕乱码综合| 久久6这里有精品| 在线观看免费视频日本深夜| 少妇人妻精品综合一区二区 | 综合色丁香网| 在线观看66精品国产| 午夜精品在线福利| 只有这里有精品99| 尤物成人国产欧美一区二区三区| 国产av不卡久久| 国产亚洲精品av在线| 一个人观看的视频www高清免费观看| 国产熟女欧美一区二区| 成人性生交大片免费视频hd| 五月伊人婷婷丁香| 天堂网av新在线| 久久精品影院6| 国内精品久久久久精免费| 国产av不卡久久| 欧美人与善性xxx| 岛国在线免费视频观看| 少妇高潮的动态图| 色综合色国产| 国产精品嫩草影院av在线观看| 午夜福利在线在线| 高清毛片免费看| 亚洲内射少妇av| 亚洲性久久影院| 欧美成人a在线观看| 国产免费一级a男人的天堂| 欧美色欧美亚洲另类二区| avwww免费| 99热精品在线国产| 国产高清有码在线观看视频| 成年女人看的毛片在线观看| 日韩一区二区三区影片| 国产精品久久久久久精品电影| 国产激情偷乱视频一区二区| 两个人视频免费观看高清| 永久网站在线| 免费看日本二区| 黑人高潮一二区| 国产伦一二天堂av在线观看| 欧美xxxx黑人xx丫x性爽| 91久久精品电影网| 欧美另类亚洲清纯唯美| 变态另类丝袜制服| 九草在线视频观看| 简卡轻食公司| 久久亚洲精品不卡| 赤兔流量卡办理| 六月丁香七月| 日韩av不卡免费在线播放| 欧美高清性xxxxhd video| 国产av不卡久久| 久久久久国产网址| 99在线视频只有这里精品首页| 久久国产乱子免费精品| 亚洲人成网站高清观看| 18禁在线播放成人免费| 亚洲中文字幕日韩| 国产亚洲欧美98| 97超视频在线观看视频| 熟妇人妻久久中文字幕3abv| 国产精华一区二区三区| 日本色播在线视频| 欧美一级a爱片免费观看看| 搡老妇女老女人老熟妇| 身体一侧抽搐| 极品教师在线视频| 亚洲内射少妇av| 成年版毛片免费区| 亚洲精华国产精华液的使用体验 | 成人毛片a级毛片在线播放| 国产精品久久久久久久久免| АⅤ资源中文在线天堂| 婷婷亚洲欧美| 热99re8久久精品国产| 免费av毛片视频| 看黄色毛片网站| 欧美xxxx黑人xx丫x性爽| 亚洲精品久久久久久婷婷小说 | kizo精华| 男人的好看免费观看在线视频| 国产午夜精品久久久久久一区二区三区| 日本一本二区三区精品| 日韩强制内射视频| 欧美日韩国产亚洲二区| 91久久精品国产一区二区成人| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| av在线蜜桃| 国产黄色视频一区二区在线观看 | 亚洲真实伦在线观看| 欧美3d第一页| www日本黄色视频网| 高清毛片免费看| 色吧在线观看| 亚洲最大成人手机在线| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 啦啦啦观看免费观看视频高清| 欧美不卡视频在线免费观看| 毛片一级片免费看久久久久| 亚洲欧美日韩东京热| 亚洲av熟女| 国内精品一区二区在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲成人av在线免费| 91久久精品国产一区二区成人| 国产精品久久久久久久电影| 成人性生交大片免费视频hd| 欧美又色又爽又黄视频| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区视频9| 久久久a久久爽久久v久久| 丰满乱子伦码专区| 国产精品乱码一区二三区的特点| 少妇猛男粗大的猛烈进出视频 | 日韩大尺度精品在线看网址| 久久国产乱子免费精品| 欧美成人精品欧美一级黄| 免费av毛片视频| 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 国产黄色小视频在线观看| 国产探花在线观看一区二区| 在线观看av片永久免费下载| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 级片在线观看| 男女边吃奶边做爰视频| 亚洲无线观看免费| 国产一级毛片七仙女欲春2| 一夜夜www| 精品不卡国产一区二区三区| 1024手机看黄色片| 国产极品天堂在线| 美女 人体艺术 gogo| 亚洲精品日韩av片在线观看| 精品久久久久久成人av| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 国产一区二区在线av高清观看| 欧美日本视频| 性插视频无遮挡在线免费观看|