• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step quantum dialogue

    2024-03-25 09:30:54PengHuiZhu朱鵬輝WeiZhong鐘偉MingMingDu杜明明XiYunLi李喜云LanZhou周瀾andYuBoSheng盛宇波
    Chinese Physics B 2024年3期
    關鍵詞:鐘偉

    Peng-Hui Zhu(朱鵬輝), Wei Zhong(鐘偉), Ming-Ming Du(杜明明),Xi-Yun Li(李喜云), Lan Zhou(周瀾),?, and Yu-Bo Sheng(盛宇波),,?

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: one-step quantum dialogue, hyperentanglement, hyperentanglement distribution, non-local Bellstate measurement

    1.Introduction

    Quantum secure communication can protect the security of transmitted messages based on the basic principles of quantum mechanics.Quantum secure communication has unconditional security, which is its most attractive advantage comparing with classical communication.There are some important branches in the quantum secure communication field,such as quantum key distribution (QKD),[1-9]quantum secret sharing(QSS),[10-14]quantum secure direct communication (QSDC),[15-18]and quantum dialogue (QD).[19,20]QKD and QSS can generate secret keys between two distant parties and among multiple parties, respectively.QSDC does not require keys.It enables the message sender to directly transmit messages to the message receiver through the quantum channel.QSDC has developed rapidly in theoretical and experimental aspects during the last few years.[21-42]In theory,in 2020, researchers introduced device-independent (DI) and measurement-device-independent(MDI)techniques in QSDC to enhance QSDC’s security under practical conditions.[22,23]Soon after, the masking (IN-CUM) technique was utilized in QSDC to increase its message capacity.[26]In 2023, the two-step QSDC scheme based on intermediate-basis was proposed,which used the intermediate-basis Einstein-Podolsky-Rosen(EPR)pairs to detect the channel security and help encode information.[32]Experimentally,the single-photon based QSDC experiment and entanglement-based QSDC experiment were realized in 2016 and 2017, respectively.[35,36]Recently,QSDC network experiment and a 100 km QSDC experiment were reported, which largely promoted the practicality of QSDC.[39,40]In 2023,the group of Paparelle realized the tabletop experimental demonstration of a CV-QSDC system.[42]

    QD,which will be detailed here,enables two distant communication parties to exchange messages through quantum channels.[43-51]In this way, QD can play the role of bidirectional QSDC.In 2004, Nguyen proposed the first QD protocol based on quantum entanglement.[19]In 2005, Manet al.pointed out the security loophole of the QD protocol in Ref.[19] and proposed a modified secure QD protocol.[20]In 2007,a quasi-secure single-photon-based QD protocol was proposed,[43]which can guarantee the confidentiality and control of the QD content, and has certain anti-attack capabilities.In 2009, Shiet al.utilized Bell state to realize a secure QD.[45]In 2010, they proposed a secure single-photonbased QD protocol combining the idea of QSDC and BB84 protocol.[46]In 2014, a two-step QD protocol evolved from the two-step QSDC protocol was proposed,[49]whose security is assured by the two-step QSDC protocol.[16]In the same year, the entanglement swapping technique was introduced into the QD protocol.[50]Later, Gonget al.utilized the continuous-variable GHZ states to realize the quantum network dialogue.[51]

    The conventional QSDC and QD protocols all require two rounds of photon transmission.We take the entanglementbased QSDC and QD protocols as examples.[15,16,19,20,45,49]Firstly, two communication parties firstly construct the longdistance entanglement channel by distributing a photon of each entangled photon pair in the quantum channel.Then,the photons are encoded by the parties.The encoded photons should be sent to one party for the Bell state measurement(BSM).However, in the photon transmission processes, the channel noise may cause photon transmission loss and quantum state decoherence, which may cause message loss and message error.Worse still, utilizing the channel noise, the eavesdropper (Eve) can intercept some messages without being detected.In 2022, the one-step QSDC protocol based on the hyperentanglement was put forward,[28]which reduces the photon transmission rounds from two to one.Compared with conventional two-step QSDC protocols,[15,16]one-step QSDC protocol can effectively simplify the experimental operation and reduce the message loss caused by the photon transmission loss.Later, to further enhance one-step QSDC’s security under practical imperfect conditions,researchers proposed DI and MDI one-step QSDC protocols.[29,30]Inspired by the one-step QSDC protocol, we propose the first one-step QD protocol.This one-step QD protocol first constructs the hyperentanglement channel between two distant communication parties.Then, the parties perform the hyperentanglementassisted complete BSM with the probability of 100%.In this way, the encoded photons are not required to transmit to one party,which can effectively reduce the message loss.To evaluate the one-step QD protocol’s performance under practical experimental conditions, we simulate its secret message capacity.Our one-step QD protocol has important applications in the quantum communication field.

    The paper is organized as follows.In Section 2, we explain the one-step QD protocol based on hyperentanglement.In Section 3, an example of the one-step QD protocol is put forward.In Section 4, we analyze the theoretic security and the secret message capacity of the one-step QD protocol.In Section 5,we make some discussion and the summary elaboration.

    2.One-step QD protocol

    The one-step QD protocol utilizes the hyperentangled photon pairs as the sources.Hyperentanglement means entanglement in two or more DOFs of a system.Hyperentanglement has important applications in increasing the channel capacity,[52,53]realizing the high-efficient entanglement purification,[54-57]complete BSM,[58,59]and multi-DOF teleportation.[60,61]The generation of various hyperentanglement has been widely researched.[62-64]As shown in Fig.1,the one-step QD protocol can be described as follows.

    Fig.1.The schematic diagram of the one-step QD protocol.The green circles linked by the dashed lines represent the initially prepared polarizationspatial-mode hyperentangled photon pairs in|φ+〉p ?|φ+〉s.The light blue circle pairs represent the randomly selected security checking photon pairs.The colorful circle pairs in steps (5) and (6) represent the encoded photon pairs.The light green rectangular box represents the non-local complete polarization Bell state measurement(BSM).

    Step 1The communication party Alice requires to generateNpolarized-spatial-mode hyperentangled states in|φ+〉p?|φ+〉s(Nis large).Here,we use|H〉and|V〉to represent the horizontal polarization and vertical polarization, respectively.The four polarization Bell states can be described as

    In the spatial-mode DOF,a1,a2,a′1,a′2represent different spatial modes in Alice’s location.The four spatial-mode Bell states can be described as

    We divide theNcopies of photon pairs into two photon sequences S1 and S2.

    Step 2Alice randomly selectsMphoton pairs for subsequent security checking and records their positions (Mis a large number andM <N).

    Step 3The photons in sequence S2 are sent from Alice to Bob through two quantum channels, and the photons in sequence S1 are stored in Alice’s quantum memory (QM)devices.The spatial modesa′1anda′2in Alice’s location correspond to the spatial modesb1andb2in Bob’s location,respectively.Bob stores all the received photons in his QM devices.

    Step 4For each security checking photon, Alice randomly selects the rectilinear (Z) basis or diagonal (X) basis in each DOF.Then, Alice announces the position and measurement bases in both DOFs of each security checking photon pair through a classical channel.Alice and Bob extract the security checking photons from the QM devices and measure them in both DOFs with the announced bases.In Fig.2,we show four linear optical apparatuses for Alice(Bob)measuring the photon inXsZp,XsXp,ZsXp,ZsZpbases and the corresponding measurement results.[65]Then,Alice(Bob)announces her (his) measurement results through the classical channel.Under the case that they both chooseZbasis in a DOF, if their measurement results are different, it indicates that a bit-flip error occurs in this DOF.Under the case that they both chooseXbasis in a DOF, if their measurement results are different, it indicates that a phase-flip error occurs.After the security checking, Alice and Bob estimate the bitflip error rate(eB)and phase-flip error rate(eP)in both DOFs.IfeBorePin any DOF exceeds a tolerable threshold,Alice determines that the photon transmission is unsafe and aborts the communication.Only when botheBandePin each DOF are lower than the tolerable thresholds, Alice and Bob continue the communication.

    Fig.2.Four linear optical apparatuses for the parties measuring the photons in(a)XsZp, (b)XsXp, (c)ZsXp, (d)ZsZp, and the corresponding measurement results.[65] PBS and BS represent the polarization beam splitter and 50:50 beam splitter, respectively.PBS can totally transmit the photon in|H〉and totally reflect the photon in|V〉photon.BS plays the role of the Hadamard(H)gate in the spatial-mode DOF,leading|i1〉→(|i1〉+|i2〉)and|i2〉→(|i1〉-|i2〉)(i=a,b).The quarter wave plate(QWP)can be treated as the H gate in the polarization DOF,leading|H〉→(|H〉+|V〉)and|V〉→(|H〉-|V〉).

    Fig.3.Schematic principle of the encoding and non-local hyperentanglement-assisted polarization BSM in our one-step QD protocol.The parties can perform the σxp operation by passing the photon through the half wave plate(HWP).Combining two QWPs with an HWP, the parties can perform the σzp operation.After the encoding,the parties perform the non-local hyperentanglement-assisted polarization BSM.[28,58] Four polarization Bell states can be distinguished by the responses of eight photon detectors D1-D8.

    Step 6 Both parties perform the non-local hyperentanglement-assisted polarization BSM, which is also shown in Fig.3.After the measurement, both parties announce the detector responses through a classical channel.From the detector responses, both parties can deduce the encoded polarization Bell state.The detector responses and the corresponding polarization Bell states are shown in Table 1.Then, combined with the detector responses and their own random operations, they can deduce the encoded operations from each other and realize the bidirectional communication.As the random operations are private,anyone except the communication parties cannot read out the exchanged messages.

    Table 1.The non-local complete polarization BSM results corresponding to the detector responses with the spatial Bell state being |φ+〉s.DiDj means both the photon detectors Di and Dj response.

    It is worth noting that if the Bell state in the spatial-mode DOF degrades to one of the other three Bell states in Eq.(2),the parties will obtain wrong polarization BSM result from the detector responses.We list the polarization Bell states corresponding to the detector responses with the spatial-mode entanglement in|ψ+〉sin Table 2.We take a specific example.From Table 2,if the polarization is|φ+〉p,the detectors D1D7,D2D8,D3D5,or D4D6will click.However,the parties deduce the polarization Bell state from Table 1, so that they will deduce that the encoded polarization Bell state is|ψ+〉p.

    Table 2.The non-local complete polarization BSM results corresponding to the detector responses with the spatial Bell state being|ψ+〉s.DiDj means both the photon detectors Di and D j response.

    3.A specific example of the one-step QD protocol

    To enhance the understanding of the one-step QD protocol,we provide a specific example of this one-step QD protocol.After the hyperentanglement distribution,Alice and Bob share the initial hyperentangled state in|φ+〉p?|φ+〉s.Suppose that Alice aims to transmit the message 1,and Bob aims to transmit the message 0.In this way, Alice performsσzpon the photon in S1 sequence, and Bob performsIpon the corresponding photon in S2 sequence.In addition,Alice also performsσxpon her photon and Bob performsσzpon his photon.After the encoding,the initial state|φ+〉pis converted to|ψ+〉p, while the state|φ+〉sis unchanged.The specific process is as follows:

    which corresponds to the responses of D1D7, D2D8, D3D5,or D4D6.Based on the detector responses, the parties obtain the encoded polarization Bell state is|ψ+〉pfrom Table 1.Then, each party combined|ψ+〉pwith his/her random operation.Alice can obtain that Bob’s encoding operation isIpcorresponding to the transmitted message of 0.Bob can obtain that Alice’s encoding operation isσzpcorresponding to the message of 1.

    4.Security analysis and the secret message capacity

    We first analyze the theoretic security of our one-step QD protocol against the most common attack, say, the interceptresend attack.During the photon transmission process, Eve can intercept some photons.To avoid being discovered, Eve prepares some new hyperentangled photon pairs in|φ+〉p?|φ+〉s.He distributes one photon of each hyperentangled photon pair to Bob through a perfect quantum channel and randomly encodes the photons in his location.After the parties’encodings, Eve performs the non-local complete polarization BSM with the parties,respectively,and he can deduce Alice’s and Bob’s message according to the announced detector responses from Alice and Bob.Meanwhile,the parties can only obtain Eve’s randomly encoded messages.However, this attack can be resisted by the security checking.As Alice randomly selects a large number of security checking photon pairs in the photon sequences.It is unavoidable for Eve to intercept some security checking photons.Eve’s newly generated photons in Bob’s location are not entangled with Alice’s corresponding photons.As a result,their measurement results in each DOF may be different with a probability of 50%.In this way, Eve’s intercept-resend attack can increaseeBandePin each DOF.Under ideal conditions, if there is no eavesdropping,eBandePin each DOF are strictly equal to 0.IfeBorePin any DOF is higher than 0,Alice can detect the existence of Eve.Under practical noisy conditions,Alice sets the tolerable thresholds ofeBandePin both DOFs.If the any error rate exceeds the tolerable threshold,Alice ensures that the photon distribution is unsafe and discards the communication.

    Actually,in the practical noisy channel condition,Eve can intercept a part of photons from the photon transmission process.The total error rates caused by Eve’s interception can be concealed by that caused by the channel noise,so that Eve will not be detected by the parties.As a result,Eve can obtain a part of encoded messages.As each hyperentangled photon pair carries 2 bits of messages,the message leakage rate of our one-step QD protocol is twice the photon interception rate.

    For evaluating the performance of our one-step QD protocol in the practical scenario,we numerically simulate its secret message capacity(Cs).Similar to QSDC,we define the secret message capacity of QD as the ratio of the total exchanged secure and correct qubits to the overall number of encoded photon pairs.Here, we consider the symmetric scenario, where the hyperentanglement source is at the midpoint between the communication parties.Under this circumstance, the generated photon pairs hyperentangled in two DOFs pass through a quantum channel with the transmission distance ofLto reach both parties, and the communication distanced=2L.Consequently, this configuration allows Eve to intercept photons intended for each party.According to Wyner’s wiretap channel theory,[66]we can calculateCsas[38,67,68]

    Here,I(A:B)(I(B:A))represents the message capacity from Alice to Bob (Bob to Alice).Similarly,I(B:E) (I(A:E))denotes the mutual message capacity between Bob and Eve(Alice and Eve).Theoretically, for a hyperentangled photon pair,Alice and Bob can exchange two bits of messages in total.With this framework, we can obtain the sum ofI(A:B)andI(B:A)as

    whereH(x)represents the binary Shannon entropy asH(x)=-xlog2x-(1-x)log2(1-x)andCrawdenotes the raw message capacity.eQDrepresents the total error rate of the protocol.

    Referring to the principles of the entanglement-based QKD and one-step QSDC protocols,[28,69,70]on can obtain the sum ofI(A:E)andI(B:E)as

    Thus,Csof the one-step QD protocol can be calculated as

    Next,we estimate the values ofCrawandeQD.We utilize the spontaneous parametric down-conversion (SPDC) source to generate the original two-photon hyperentangled states.The SPDC source can generate a hyperentangled photon pair with a probability ofP(whereP~10-3).[57]GivenP ?1, our protocol only focuses on the vacuum state,one-pair,two-pair and three-pair emissions,while ignores the higher-order terms.Consequently, the practical photon stateρgenerated by the SPDC source can be expressed as

    Following the hyperentanglement distribution, the communication parties perform the non-local complete polarization BSM.The non-local polarization BSM protocol requires eight photon detectors D1-D8,four in Alice’s location and four in Bob’s location.As illustrated in Table 1, there are four kinds of detector responses corresponding to each polarized Bell state, each with an equal probability.In this simulation,we account for the practical photon detector, which is unable to distinguish the number of incident photons.Meanwhile,the photon detector has a dark count rate denoted asY0.The detection probability of detector Dj(j=1,2,...,8)whenkphotons are incident is represented asDkj.Here,we introduce the concept of collection efficiencyα,encompassing the coupling efficiencyηcbetween the photon source and fiber, the quantum memory efficiencyηm,the photon transmission efficiencyηt=10-0.2L/10,and the detection efficiency of the detectorηd(α=ηcηmηtηd).AsαandY0are far less than 1,Dkjcan be written as

    Here,we introduce a simplification by definingα′=α/4,enabling us to expressDkj ?kα′+Y0.

    The calculation ofCrawin our one-step QD protocol is similar as that in the one-step QSDC protocol.[28]First, we consider the vacuum state with the probability of 1-P-P2-P3, the clicks of all detectors are attributed to dark counts.Consequently,Craw1can be calculated as

    Second,we focus on the one hyperentangled-photon-pair component in Eq.(10)with a probability ofP.After the nonlocal BSM,this photon pair can cause the click of one detector pair,while the clicks of the other detector pairs are due to dark counts.Here,we suppose the encoded hyperentangled state to be|Φ+〉=|φ+〉p?|φ+〉s.It may lead the response of D1D5,D2D6,D3D7,or D4D8.In this case,Craw2can be calculated as

    Third, we consider the two hyperentangled-photon-pair components in Eq.(10) with a probability ofP2.The detection results can be categorized into the following two scenarios.First, only one detector pair clicks by the incident of the two photon pairs,such as D1D5.Secondly,two detector pairs click by the incident of the two photon pairs, such as D1D5and D2D6.Combining the two categories,we can obtain

    Fourth, we focus on the three hyperentangled-photonpair components with a probability ofP3.This situation can be classified into three categories, say, the incident of three photon pairs may cause the clicks of one detector pair, two detector pairs, and three detector pairs, respectively.In all the three categories, we can calculateD1+D2+D3+D4=D5+D6+D7+D8=3α′+4Y0.As a result, we can obtainCraw4 as

    On the other hand,we have to consider the multiple coincidences,say,three or more photon pairs click simultaneously at any one party’s side.It is obvious that the multiple coincidence will cause the failure of the non-local BSM.As the probability of four or more detectors clicking simultaneously is significantly lower than that of the threefold click,we only focus on the threefold click case.Referring to the calculations in Ref.[28], the threefold coincidence rate in the above four cases can be calculated as

    Then,we focus on the total error rateeQD.The error may be caused by both the imperfect experimental devices and the decoherence during the photon transmission.We first consider the error caused by the imperfect experimental devices.We also take|Φ+〉=|φ+〉p?|φ+〉sas an example.Only the clicks from D1D5, D2D6, D3D7, or D4D8are correct BSM results,while other types of clicks caused by dark counts would lead to error.Therefore,the correct message capacity corresponding to the vacuum state,one hyperentangled photon pair,two hyperentangled photon pairs,and three hyperentangled photon pairs can be calculated as

    In the above expression,Fp(Fs) represents the fidelity of target state in the polarization(spatial-mode)DOF.Decoherence may affect the non-local BSM results and cause errors,which may make Alice and Bob deduce incorrect messages.It is important to note that if the same kind of error occurs in both DOFs, the BSM can still obtain the right detector response.We take the case that the bit-flip error occurs in both DOFs as an example.In this case, the initial hyperentangled state will be converted to|ψ+〉p?|ψ+〉s.Suppose that Alice aims to transmit the message 1 and Bob aims to transmit the message 0,and their random operations are bothIp.After encoding,the hyperentangled state will evolve to|φ+〉p?|ψ+〉s.The BSM process can be written as

    As a result, the output photons will be detected by D3D5,D4D6,D1D7,or D2D8.From Table 1,Alice and Bob can infer the encoded polarization Bell state to be|ψ+〉p, and thus can exchange correct messages 1 and 0.Similarly, if the phaseflip error or bit-phase-flip error occurs in both DOFs, Alice and Bob can also obtain the correct polarization BSM results from the detector responses.Therefore,if the same kind of error occurs in both DOFs,the parties can still exchange correct messages based on the BSM results.

    Thus,the total correct rateCcorrecttis

    Taking the values ofCrawandeQDin Eqs.(18) and (23)into Eq.(9),we calculate the value ofCs.In Fig.4,we showCsof the one-step QD protocol altered with the communication distancedbetween the communication parties.We fixY0=6.02×10-6,ηm=ηc=0.95,ηd=0.9.For calculatingηt, we chooseα=0.2 dB/km.The parametersFpandFsare adjusted to be 1, 0.98, 0.96, respectively.It can be seen that whenFp=Fs=0.98, the maximum communication distance achieves approximately 211 km.With the repetition rate of the SPDC source being 10 GHz[71]andFp=Fs=0.98,Csis around 1435 bit/s at a communication distance of 100 km.

    Fig.4.The secret message capacity Cs alters with the communication distance d between the communication parties.Here, we fix Y0 =6.02×10-6, ηm =ηc =0.95, ηd =0.9, and adjust Fp =Fs =1,0.98,0.96,respectively.

    5.Discussion and conclusion

    QD enables two communication parties to directly exchange secret messages simultaneously,realizing real-time secure bidirectional communication.Similar to conventional QSDC protocols,[15-18]previous QD protocols require to transmit photons in the quantum channel twice.[19,20,43-47]The channel noise may cause photon transmission loss and quantum state decoherence in each photon transmission process.The photon transmission loss and quantum state decoherence can largely limit the maximal secure communication distance and reduce the secret message capacity.Worse still, they may cause message loss and message error, which makes the transmitted messages incomplete and incorrect.In our QD protocol, the parties only require to distribute photons in the quantum channel once, which can simplify the experimental operation and reduce the photon transmission loss.Most entanglement-based QD requires the complete BSM.[19,20,45,49]However, the linear-optical BSM only has a success probability of 50%.The complete BSM often relies on nonlinear optical elements,[72-76]which are difficult to realize under current experimental conditions.In contrast, our onestep QD protocol adopts the hyperentanglement-assisted nonlocal complete polarization BSM with a probability of 100%,which is feasible with current linear optical devices.

    QM is an important element of our one-step QD protocol.In the protocol, the parties should store the photons in the quantum memory until they ensure the photon transmission being secure.During recent few years,QM has achieved great experimental progresses.[77-83]In 2017, a high-fidelity nanophotonic QM with>95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout was experimentally demonstrated.[78]In 2018, Hsiaoet al.achieved a storage efficiency of 92.0%for a coherent optical memory based on the electromagnetically induced transparency (EIT) scheme in optically dense cold atomic media.[79]In 2019,a high-performance atomic Raman memory in87Rb vapor with the memory efficiency of above 82.0%for 6 ns-20 ns optical pulses and the unconditional fidelity of up to 98.0% was achieved.[80]Later, the coherent storage of light in an atomic frequency comb memory over 1 hour was realized by the group of Ma.[82]Recently, Zhanget al.reported their achievement on the fiber-integrated multimode quantum storage of single photon at telecom band with 330 temporal modes on a laser-written chip.[83]Based on these attractive progresses,our one-step QD protocol may be experimentally realized in the near future.

    From the security analysis, the channel noise makes it possible for Eve to intercept some photons without being detected,and increases message loss rate and message error rate.Similar to QSDC, in QD, the communication parties cannot perform the post-processing technique to resist message loss and message errors.In this way, the message loss and message error are two big obstacles in the practicality of QD.Actually, we can adopt the polarization-spatial-mode hyperentanglement purification and heralded amplification to modify our one-step QD protocol.In detail, Bob can perform the hyperentanglement amplification to herald the arrival of each transmitted photon.[84]After that,both parties can repeat the hyperentanglement purification[85]to improve the fidelity of the hyperentanglement channel.In theory, Alice and Bob can construct the nearly perfect hyperentanglement channel,where the parties can detect any eavesdropping behavior from Eve.As a result, the message leakage loophole can be eliminated.Meanwhile, the message loss and message error can be also nearly eliminated, thus guaranteeing the correctness and integrity of the transmitted messages.In contrast, in the previous entanglement-based QD protocols,[19,20]the parties cannot perform the EPP after the second photon transmission round, for the EPP may change the encoded messages.As a result, the decoherence caused by the second photon transmission round cannot be eliminated,which can bring security loophole and message errors.Moreover,our one-step QD can be combined with the quantum repeater and drone to construct the long-distance hyperentanglement channel,and thus realize the long-distance one-step QD.

    In summary, we propose the first one-step QD protocol with the help of hyperentanglement and non-local complete BSM.In the protocol, two communication parties first construct the hyperentanglement channel.After checking the security of the photon transmission process, they encode their messages in the polarization DOF of each hyperentangled photon pair.Then, by performing the non-local hyperentanglement-assisted complete polarization BSM,they can finally obtain the exchanged messages.This one-step QD protocol is theoretically secure and two parties can exchange 2 bits of messages by using a hyperentangled photon pair.The secret message capacity of the one-step QD protocol is numerically simulated.We obtain that with the fidelities in both DOFs ofFp=Fs=0.98,the one-step QD protocol can achieve the maximal communication distance of about 211 km.Compared with previous QD protocols, our one-step QD protocol has some attractive advantages.First, photons only need to transmit in the quantum channel once, which can simplify the experiment operations and reduce the photon transmission loss.Second, the non-local complete polarization BSM can completely distinguish four polarization Bell states and is feasible with current technique.Third, combined with the heralded amplification and purification,the nearly perfect hyperentanglement channel can be constructed between two parties,which can nearly eliminate the message leakage loophole,the message loss and message error.Moreover, combined with quantum repeater and drone,our one-step QD is possible to realize long-distance QD.In this way,our one-step QD protocol is an important development of QD and will have important applications in future quantum communication field.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110).

    猜你喜歡
    鐘偉
    再出發(fā)的勇氣
    Measurement-device-independent one-step quantum secure direct communication
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?
    職場小白警示錄:公車追愛驚變“翻車現(xiàn)場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結(jié)期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    99精品久久久久人妻精品| x7x7x7水蜜桃| 中亚洲国语对白在线视频| 女警被强在线播放| 午夜成年电影在线免费观看| 日日夜夜操网爽| 亚洲一区中文字幕在线| 中文字幕精品免费在线观看视频| 在线观看www视频免费| 村上凉子中文字幕在线| 久久精品夜夜夜夜夜久久蜜豆 | 精品国产亚洲在线| 国产真人三级小视频在线观看| 一a级毛片在线观看| 成人三级黄色视频| 国产av不卡久久| 99久久无色码亚洲精品果冻| 免费在线观看亚洲国产| 久久久久久亚洲精品国产蜜桃av| 啦啦啦观看免费观看视频高清| 女性被躁到高潮视频| 亚洲全国av大片| 久久中文看片网| 久久精品aⅴ一区二区三区四区| 18禁国产床啪视频网站| 啦啦啦 在线观看视频| 欧美成人性av电影在线观看| 国产麻豆成人av免费视频| 午夜久久久久精精品| 日韩大尺度精品在线看网址| 白带黄色成豆腐渣| 精品人妻1区二区| 欧美黄色片欧美黄色片| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看亚洲国产| 亚洲欧洲精品一区二区精品久久久| 麻豆一二三区av精品| 国产亚洲精品av在线| 黑人巨大精品欧美一区二区mp4| 成人三级黄色视频| 亚洲熟妇中文字幕五十中出| 亚洲无线在线观看| 国产精品二区激情视频| 露出奶头的视频| 成人午夜高清在线视频 | 国产精品亚洲美女久久久| 成人特级黄色片久久久久久久| 动漫黄色视频在线观看| 亚洲精品在线观看二区| 99国产极品粉嫩在线观看| 999久久久国产精品视频| 99国产极品粉嫩在线观看| 久久狼人影院| 国产av一区二区精品久久| 精品乱码久久久久久99久播| 日韩欧美一区二区三区在线观看| 亚洲第一青青草原| 长腿黑丝高跟| 俄罗斯特黄特色一大片| 亚洲一码二码三码区别大吗| 黄片大片在线免费观看| 国产97色在线日韩免费| 国产高清videossex| 老司机深夜福利视频在线观看| 精品久久久久久,| 欧美激情高清一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷人人爽人人干人人爱| 日本a在线网址| 可以免费在线观看a视频的电影网站| 一本综合久久免费| 欧美黑人精品巨大| 一本一本综合久久| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 亚洲无线在线观看| 日本撒尿小便嘘嘘汇集6| 91在线观看av| av在线播放免费不卡| 日韩av在线大香蕉| 99热这里只有精品一区 | 亚洲男人的天堂狠狠| 亚洲色图av天堂| 国产主播在线观看一区二区| 亚洲精品久久国产高清桃花| 怎么达到女性高潮| 97碰自拍视频| 免费人成视频x8x8入口观看| 久久热在线av| 日韩精品青青久久久久久| 露出奶头的视频| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| 97人妻精品一区二区三区麻豆 | 9191精品国产免费久久| 男女下面进入的视频免费午夜 | 中文字幕精品免费在线观看视频| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 真人做人爱边吃奶动态| 精华霜和精华液先用哪个| 国产成人精品久久二区二区91| 日韩欧美在线二视频| 在线观看66精品国产| 黄片小视频在线播放| 久久九九热精品免费| 免费观看精品视频网站| 自线自在国产av| 国产精品自产拍在线观看55亚洲| 亚洲精品国产一区二区精华液| 国产精品一区二区精品视频观看| 长腿黑丝高跟| 91麻豆av在线| 国产一区二区三区视频了| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 成年版毛片免费区| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 美国免费a级毛片| 精华霜和精华液先用哪个| 色精品久久人妻99蜜桃| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 亚洲av熟女| 黄色丝袜av网址大全| 精品国产亚洲在线| 免费女性裸体啪啪无遮挡网站| 色av中文字幕| 动漫黄色视频在线观看| 国产伦人伦偷精品视频| 亚洲男人的天堂狠狠| 亚洲国产高清在线一区二区三 | 制服人妻中文乱码| 亚洲真实伦在线观看| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区视频在线观看免费| 欧美性猛交╳xxx乱大交人| 特大巨黑吊av在线直播 | 99热6这里只有精品| 香蕉久久夜色| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 国产乱人伦免费视频| 99热只有精品国产| 欧美丝袜亚洲另类 | 人妻丰满熟妇av一区二区三区| 韩国精品一区二区三区| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久 | 午夜福利在线观看吧| 91老司机精品| 国产精品久久久久久亚洲av鲁大| 午夜福利在线观看吧| 日日夜夜操网爽| 亚洲成人精品中文字幕电影| 男人操女人黄网站| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 亚洲精品美女久久av网站| 国内毛片毛片毛片毛片毛片| 母亲3免费完整高清在线观看| 亚洲av成人av| 听说在线观看完整版免费高清| 一a级毛片在线观看| 亚洲精品在线观看二区| 亚洲 国产 在线| 日本黄色视频三级网站网址| www日本在线高清视频| 国语自产精品视频在线第100页| 老汉色∧v一级毛片| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网| 欧美zozozo另类| 91老司机精品| 国产精品香港三级国产av潘金莲| 给我免费播放毛片高清在线观看| 热re99久久国产66热| 国产不卡一卡二| 亚洲成av人片免费观看| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 精品日产1卡2卡| 精品一区二区三区视频在线观看免费| 满18在线观看网站| 午夜日韩欧美国产| 在线免费观看的www视频| 99久久国产精品久久久| 国产精品亚洲一级av第二区| 欧美日韩乱码在线| 久久 成人 亚洲| 97人妻精品一区二区三区麻豆 | 亚洲一区中文字幕在线| 亚洲久久久国产精品| 麻豆成人午夜福利视频| 午夜久久久在线观看| 亚洲成人国产一区在线观看| 色综合站精品国产| 免费在线观看完整版高清| 97人妻精品一区二区三区麻豆 | 满18在线观看网站| 变态另类丝袜制服| 国产精品久久久久久精品电影 | 九色国产91popny在线| 搡老熟女国产l中国老女人| 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码| 亚洲精品在线美女| 一夜夜www| 黄片播放在线免费| 两个人免费观看高清视频| 国产麻豆成人av免费视频| 国产黄片美女视频| 丝袜美腿诱惑在线| 制服人妻中文乱码| 精华霜和精华液先用哪个| 真人一进一出gif抽搐免费| 两性午夜刺激爽爽歪歪视频在线观看 | 两个人免费观看高清视频| 人人妻人人澡人人看| 777久久人妻少妇嫩草av网站| 色综合站精品国产| 欧美大码av| 欧美日本亚洲视频在线播放| 欧美日韩一级在线毛片| 亚洲av五月六月丁香网| 在线永久观看黄色视频| 日韩av在线大香蕉| 成人国语在线视频| 久久香蕉激情| 成人手机av| 成年人黄色毛片网站| 午夜精品久久久久久毛片777| 成人手机av| 国产欧美日韩一区二区精品| 亚洲免费av在线视频| 黄色毛片三级朝国网站| 成人特级黄色片久久久久久久| 一级a爱片免费观看的视频| 俄罗斯特黄特色一大片| 国产成人av教育| 看片在线看免费视频| 欧美三级亚洲精品| 久久中文看片网| 18禁裸乳无遮挡免费网站照片 | 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 免费在线观看视频国产中文字幕亚洲| 美女免费视频网站| 黄频高清免费视频| 校园春色视频在线观看| 99国产极品粉嫩在线观看| 成人手机av| 久久久久久久久中文| 国产在线观看jvid| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 三级毛片av免费| 亚洲精品久久国产高清桃花| 久久久久国内视频| 在线观看免费午夜福利视频| 真人一进一出gif抽搐免费| 亚洲成人久久爱视频| 校园春色视频在线观看| 国产伦一二天堂av在线观看| 一区二区三区高清视频在线| 一区二区三区精品91| 日本熟妇午夜| 99国产综合亚洲精品| 91老司机精品| 亚洲第一青青草原| www.熟女人妻精品国产| 久久国产精品男人的天堂亚洲| 日本一区二区免费在线视频| 色哟哟哟哟哟哟| 99久久无色码亚洲精品果冻| 色老头精品视频在线观看| 91成年电影在线观看| 欧美久久黑人一区二区| 国产欧美日韩一区二区三| 免费看日本二区| 大型黄色视频在线免费观看| 精品熟女少妇八av免费久了| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| www日本在线高清视频| 一个人免费在线观看的高清视频| 国产激情欧美一区二区| 在线天堂中文资源库| 一本精品99久久精品77| 99re在线观看精品视频| 欧美丝袜亚洲另类 | 久久久国产欧美日韩av| 99精品欧美一区二区三区四区| 亚洲激情在线av| 国产黄a三级三级三级人| 成人手机av| 在线av久久热| 色尼玛亚洲综合影院| 久久精品国产综合久久久| ponron亚洲| 国产黄a三级三级三级人| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 成年人黄色毛片网站| 久久国产精品影院| 久久精品91无色码中文字幕| 国产乱人伦免费视频| 51午夜福利影视在线观看| 精品国产国语对白av| 哪里可以看免费的av片| 啦啦啦观看免费观看视频高清| 欧美午夜高清在线| 国产高清videossex| 在线观看一区二区三区| 婷婷丁香在线五月| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 韩国精品一区二区三区| 国内精品久久久久久久电影| 亚洲av成人不卡在线观看播放网| 欧美日韩一级在线毛片| 麻豆久久精品国产亚洲av| 久久久久九九精品影院| 国产视频一区二区在线看| 免费人成视频x8x8入口观看| 国产精品99久久99久久久不卡| av在线天堂中文字幕| 国产在线精品亚洲第一网站| 韩国精品一区二区三区| 黑丝袜美女国产一区| 美女高潮喷水抽搐中文字幕| 国产一区二区在线av高清观看| 久久这里只有精品19| 日韩欧美国产在线观看| 亚洲av成人一区二区三| 亚洲国产精品合色在线| 久久久久久九九精品二区国产 | 亚洲真实伦在线观看| 午夜亚洲福利在线播放| 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 国产精品99久久99久久久不卡| 69av精品久久久久久| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 又黄又粗又硬又大视频| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 亚洲七黄色美女视频| 一本综合久久免费| 日本a在线网址| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av高清一级| 两性午夜刺激爽爽歪歪视频在线观看 | 天天添夜夜摸| 一本综合久久免费| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 视频区欧美日本亚洲| 国产人伦9x9x在线观看| 韩国精品一区二区三区| 成在线人永久免费视频| 日韩有码中文字幕| 国内精品久久久久精免费| 成人国产综合亚洲| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 很黄的视频免费| 可以在线观看毛片的网站| 曰老女人黄片| 国产成人欧美| 久久中文字幕人妻熟女| 久久久国产成人精品二区| 亚洲五月色婷婷综合| 欧美成人一区二区免费高清观看 | 欧美 亚洲 国产 日韩一| 精品免费久久久久久久清纯| 少妇熟女aⅴ在线视频| 日本a在线网址| 欧美精品啪啪一区二区三区| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 99久久无色码亚洲精品果冻| 亚洲熟女毛片儿| 午夜福利视频1000在线观看| ponron亚洲| 久久久精品国产亚洲av高清涩受| 亚洲真实伦在线观看| 在线av久久热| 欧美黑人精品巨大| 欧美久久黑人一区二区| 欧美激情极品国产一区二区三区| 久久精品国产综合久久久| 精品国产乱码久久久久久男人| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 桃红色精品国产亚洲av| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 久久香蕉精品热| 免费搜索国产男女视频| 50天的宝宝边吃奶边哭怎么回事| av天堂在线播放| 少妇裸体淫交视频免费看高清 | 亚洲国产欧洲综合997久久, | 久久久久久人人人人人| 日韩 欧美 亚洲 中文字幕| 露出奶头的视频| 黄色片一级片一级黄色片| 香蕉久久夜色| 美女午夜性视频免费| 最近在线观看免费完整版| 高潮久久久久久久久久久不卡| av欧美777| 后天国语完整版免费观看| 国产伦在线观看视频一区| 啦啦啦免费观看视频1| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 国产亚洲欧美在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网| 午夜免费激情av| 老司机深夜福利视频在线观看| 19禁男女啪啪无遮挡网站| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 日本a在线网址| 成年版毛片免费区| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 欧美日本亚洲视频在线播放| 人成视频在线观看免费观看| 日韩欧美国产在线观看| 丝袜在线中文字幕| 黑丝袜美女国产一区| www国产在线视频色| 欧美不卡视频在线免费观看 | 欧美性猛交黑人性爽| 亚洲第一电影网av| 国产亚洲精品第一综合不卡| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 国产v大片淫在线免费观看| 男女做爰动态图高潮gif福利片| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站 | 亚洲人成77777在线视频| 国产免费男女视频| 国产成人影院久久av| 黄色 视频免费看| 免费在线观看成人毛片| 国产精品香港三级国产av潘金莲| 国产成人av激情在线播放| 国产精品爽爽va在线观看网站 | 极品教师在线免费播放| 欧美不卡视频在线免费观看 | 国内精品久久久久精免费| 一个人免费在线观看的高清视频| 成年版毛片免费区| 99在线视频只有这里精品首页| 国产男靠女视频免费网站| 精品久久久久久成人av| АⅤ资源中文在线天堂| 老司机深夜福利视频在线观看| 视频在线观看一区二区三区| 大型黄色视频在线免费观看| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 精品国产乱子伦一区二区三区| 88av欧美| 国产片内射在线| 午夜福利欧美成人| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 叶爱在线成人免费视频播放| 国产激情久久老熟女| 精品国产超薄肉色丝袜足j| 国产aⅴ精品一区二区三区波| 欧美av亚洲av综合av国产av| 国产色视频综合| 又黄又爽又免费观看的视频| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 757午夜福利合集在线观看| 露出奶头的视频| www日本在线高清视频| 午夜福利视频1000在线观看| 欧美日本亚洲视频在线播放| 91大片在线观看| 免费高清在线观看日韩| 在线观看66精品国产| 一进一出抽搐动态| 一区福利在线观看| 亚洲 欧美一区二区三区| 精品免费久久久久久久清纯| 国产99白浆流出| 欧美黄色淫秽网站| 亚洲第一青青草原| 美国免费a级毛片| 日韩大码丰满熟妇| 亚洲真实伦在线观看| 在线播放国产精品三级| 一个人免费在线观看的高清视频| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| 欧美在线黄色| 国产激情欧美一区二区| 免费人成视频x8x8入口观看| 久久久久久九九精品二区国产 | 日韩精品中文字幕看吧| 一级作爱视频免费观看| 一a级毛片在线观看| 亚洲 欧美一区二区三区| 满18在线观看网站| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区| 久久久水蜜桃国产精品网| 亚洲最大成人中文| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 久久久久国内视频| 国产精品98久久久久久宅男小说| 搡老妇女老女人老熟妇| 白带黄色成豆腐渣| 性色av乱码一区二区三区2| 人妻丰满熟妇av一区二区三区| 草草在线视频免费看| 精品久久蜜臀av无| 精品电影一区二区在线| 丝袜人妻中文字幕| 欧美日韩精品网址| 美女高潮到喷水免费观看| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 悠悠久久av| 午夜免费激情av| 身体一侧抽搐| 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 人人妻人人澡欧美一区二区| 在线av久久热| 男女下面进入的视频免费午夜 | 国产视频一区二区在线看| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 免费在线观看成人毛片| 成人三级黄色视频| 国产激情久久老熟女| 国产一卡二卡三卡精品| 91老司机精品| 成人免费观看视频高清| 美国免费a级毛片| 欧美在线一区亚洲| 在线观看免费视频日本深夜| 1024手机看黄色片| 韩国精品一区二区三区| 久久精品国产99精品国产亚洲性色| 国产又爽黄色视频| 久久久久精品国产欧美久久久| 亚洲,欧美精品.| 欧美日本视频| 一区二区三区精品91| 国产又爽黄色视频| 麻豆一二三区av精品| 久久久久国内视频| 日韩免费av在线播放| 少妇的丰满在线观看| 免费av毛片视频| 成人18禁高潮啪啪吃奶动态图| 欧美黄色片欧美黄色片| 亚洲 欧美一区二区三区| 久久久久久国产a免费观看| 久久久久久久久中文| 听说在线观看完整版免费高清| 国产亚洲精品一区二区www| 嫩草影院精品99| 在线观看舔阴道视频| 久久中文字幕一级| 欧美性长视频在线观看| а√天堂www在线а√下载| 美国免费a级毛片| 少妇裸体淫交视频免费看高清 | 十分钟在线观看高清视频www| 久久国产乱子伦精品免费另类| 欧美另类亚洲清纯唯美| 欧美激情 高清一区二区三区| 国产激情偷乱视频一区二区| 久久中文字幕人妻熟女| 老司机在亚洲福利影院| 亚洲成av人片免费观看| 午夜免费成人在线视频| 亚洲男人的天堂狠狠| 在线天堂中文资源库| 侵犯人妻中文字幕一二三四区| 久久精品国产99精品国产亚洲性色| 国产三级黄色录像| 在线观看免费视频日本深夜| 亚洲欧美精品综合久久99| 免费高清在线观看日韩|