• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic Orbits Around Kerr Sen Black Holes?

    2020-01-09 01:56:16ChangQingLiu劉長青ChiKunDing丁持坤andJiLiangJing荊繼良
    Communications in Theoretical Physics 2019年12期
    關(guān)鍵詞:長青

    Chang-Qing Liu (劉長青), Chi-Kun Ding (丁持坤), and Ji-Liang Jing (荊繼良)

    1Department of Physics,Hunan University of Humanities Science and Technology,Loudi 417000,China

    2Department of Physics,and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education,Hunan Normal University,Changsha 410081,China

    Abstract We investigate periodic orbits and zoom-whirl behaviors around a Kerr Sen black hole with a rational number q in terms of three integers (z,w,v),from which one can immediately read off the number of leaves (or zooms),the ordering of the leaves,and the number of whirls.The characteristic of zoom-whirl periodic orbits is the precession of multi-leaf orbits in the strong-field regime.This feature is analogous to the counterpart in the Kerr space-time.Finally,we analyze the impact of the charge parameter b on the zoom-whirl periodic orbits.Compared to the periodic orbits around the Kerr black hole,it is found that typically lower energies are required for the same orbits in the Kerr Sen black hole.

    Key words: periodic orbits,Kerr Sen black hole,zoom-whirl,rational number

    1 Introduction

    Periodic orbits have played a crucial role in the treatment of some difficult problems in celestial mechanics,including the motions of planetary satellites,the long term stability of the solar system,and motion in galactic potential.It is fact that the relativistic precession of Mercury’s perihelion in the weak field is around a star.In the strong-field,perihelion precession in the equatorial plane of a black hole can result in zoom-whirl orbits for which the precession is so great at closest approach that the particle executes multiple circles before falling out to apastron again.The Laser Interferometer Gravitational-wave Observatory (LIGO)[1?3]and VIRGO collaborations reported the observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes is also relevant to this relativistic trajectories.In a series of papers.[4?8]Levinet al.,proposed a classification of the zoom-whirl structure of the periodic orbits around black hole by using Kerr geodesics[9?19]with a rational numberqin terms of three integers (z,w,v),

    wherewcounts the number of whirls,zcounts the number of leaves,andvindicates the order in which the leaves are traced out.The rational numberqexplicitly measures the degree of perihelion precession beyond the ellipse as well as the topology of the orbit.This classification is applied to black hole pairs,they found that zoom-whirl behavior is ubiquitous in comparable mass binary dynamics and entirely quantifiable through the spectrum of rational.This zoom-whirl behavior is also found in the Reissner-Nordstr?m black hole[7]and spherically symmetric naked singularity,[20]Kehagias-Sfetsos black hole.[21]Furthermore,periodic orbits are generalized from the equatorial taxonomy to fully generic 3D Kerr motion.[8]

    The Kerr-Sen black hole (KSBH) solution[22]is a charged and rotating solution in the low energy limit of heterotic string theory and is also characterized by mass,electric charges,and angular momentum,which are similar to those of the Kerr Newman black hole.Some distinguishable properties and various aspects of particle motion[23?30]in those space-times have been studied.Based on a topological taxonomy of periodic orbit,in this paper,we will use Levin’s[4]classification scheme to investigate the zoom-whirl behavior and orbital dynamics in the equatorial plane of the KSBH.We will use specific features of the periodic orbits to distinguish KSBH from Kerr black hole.

    The paper is organized as follows: In Sec.2,we first derive the relevant geodesic equations of KSBH using the Hamiltonian formulation.In Sec.3,we investigate the innermost bound and stable circular orbits,as well as a qualitative analysis of the effective potential.In Sec.4,the energy of zoom-whirl periodic orbits in the KSBH is studied.Finally,we end the paper with a summary.

    2 The Time-Like Geodesic Equations in the Kerr Sen Black Hole

    In Ref.[22],Sen obtained a four-dimensional solution that describes a rotating and electrically charged massive body in the low energy heterotic string field theory.In the Boyer-Lindquist coordinates,the Kerr-Sen metric can be rewritten as

    where the functions ?andρ2are given by

    HereMis the mass of the black hole,ais the specific angular momentum of the black hole,b=Q2/M,Qbeing the electrical charge of the black hole.In the particular caseb=0,the above solution is reduced to the Kerr one.The event horizon of the KSBH is located at

    The Hamiltonian of a time-like particle propagating along geodesics in a Kerr Sen black hole can be expressed as

    whereμis the mass of particle.It is easy to obtain two conserved quantities: the energyEand angular momentumLof the test particles with the following forms

    The first integral from the geodesic equations in case of the KSBH are calculated as follows.[23?30]Following the procedure in Ref.[4],we will convert the first integral equations into Hamiltonian formulation to avoid the numerical difficulties and smoothly plot the time-like zoomwhirl orbits.With the help of Hamilton’s equations

    the equations of the time-like particle motion become as,

    with

    where the superscripts′andθdenote differentiation with respect torandθ,respectively.The quantityQis the generalized Carter constant related to the constant of separationKbyQ=K ?(aE ?L)2.In this paper we only deal with the motion of bounded time-like (μ= 1) particles in the equatorial plane,for which motion lies in the 4D hypersurface defined byθ=π/2,and on whichQ=0.

    3 Bound on Angular MomentumL

    As mentioned in Ref.[4],in order to have a sufficiently rich variety of zoom–whirl periodic orbits,the angular momentumLof the particle should satisfies

    where ISCO stands for“Innermost Stable Circular Orbit”and IBCO for “Innermost Bound Circular Orbit”.LISCOis the lowest value ofLfor which the potential has a local minimum.ForL < LISCO,all orbits will plunge into the black hole,soLISCOsets the lower limit on bound orbits.LIBCOmarks the first appearance of an unstable circular orbit that is energetically bound.It sets the upper limit only in the sense that we expect to see the most zoom-whirl behavior.From the geodesics,the conditions to determine the ISCO are

    which yield

    For the non-rotating black hole,these equations can be solved simultaneously forEandLto give

    And the radius of the ISCO is given by

    Whenb=0,one will getrISCOfor the Schwarzschild black hole,

    The radius of the IBCO is given from the conditionE=1,[31]

    While when0,no analytical result is available.Nevertheless,we can obtain a numerical solution.The results are listed in Fig.1 for prograde orbit.For the prograde ISCO and IBCO,both the angular momentumLISCOandLIBCOdecreases with the black hole spinaand the charge parameterb.

    For a non-spinning black hole (a=0),we can rewrite the radial equation as the expression of effective potential

    with

    this effective potentialVeffis a different function ofrfor each fixedLand is independent ofE.The result is a simple visual way to describe the different types of allowed motion asLis varied.However,the effective potentialVeffof the spinning Kerr Sen black hole is dependent ofE.We therefore lose the ability to visualize easily the variation of orbits with energy.A useful pseudo-effective potential[7]is constructed through the conditionR(r)=0 as

    with

    Even if the difference betweenEand the value ofVeffno longer gives the value of ˙r2,this pseudo-effective potential illustrates the change of periodic orbits with energy.

    Fig.1 (Color online) Angular momentumLIBCO andLISCO vs.a in the Kerr Sen black hole,with Parameterb = 1,0.8,0.6,0.4,0.2,0 from left to right,here we setM =1.

    Figure 2 depicts the influence of the charge parameterbto the effective potential.The maximum value of the effective potential decreases with the increasing of the charge parameterb.

    Fig.2 (Color online) Effective potentials with different the charge parameterb for the corresponding angular momentumL =Lav = (LISCO+LIBCO)/2 in the Kerr Sen black hole: in (a),parameter takes the valueb = 0,0.2,0.4,0.6,0.8,1 from top to bottom; in (b),parameter takes the valueb = 0.69,0.6,0.4,0.2,0 from left to right.Here we setM =1.

    Notice that the corresponding angular momentumLof the effective potential takes the valueLav[20](the average value ofLISCOandLIBCO)

    this would give an appropriate potential well for any parameterbthat captures most of the physics of the bound orbits.In the last section 5,the angular momentumLalso takes the valueLavas we analyze the impact of the charge parameterbon the energy of the periodic orbit,in order to have a sufficiently deep potential well that supports a wider variety of orbits.

    4 Periodic Orbits in Kerr Sen Black Hole

    In this section,we shall study zoom-whirl periodic orbits around the KSBH.We use the taxonomy of orbit of Levinet al.[4?7]to derive the association between periodic orbits and rational numbersqfrom the dynamical systems perspective.Any bound orbit may be characterized by two fundamental frequencies–the libration in the radial coordinate,ωr,and the rotation in the angular coordinate,ωφ.Zoom-whirl periodic orbit corresponds to trajectories where the ratio of these two frequencies is a rational numberqin terms of three integers (z,w,v),

    where ?φ=∫Tr(dφ/dt)dtis the equatorial angle accumulated in one radial cycle from apastron to apastron.By this definition,we see thatqis the amount an orbit precesses beyond the closed ellipse.These three quantitiesz,w,vhave a geometric interpretation in terms of the structure of the trajectory,wherezis the ‘zoom’ number,wis the number of “whirls”,andvis the number of vertices formed by joining the successive apastra of the orbits.[4]Thus the trajectory will close and the particle returns to its initial state within a finite(affine)time,thus executing its prior trajectory repeatedly.

    Using the geodesic equations of the KSBH,we get the expression of the rational numberq,

    whererpandrais the periastron and apastron of the zoom-whirl orbit,respectively.In the equatorial plane,one of the roots is always 0 andRcan be written as

    Now the rational numberqis a function ofq(a,b,E,L,r0,rp,ra).To haveqas a function of(a,b,E,L)only,we have to findr0,rp,raas functions of(a,b,E,L).Thus we expand the polynomial

    and equate to the definition ofR(r)in Eq.(14),matching up coefficients in powers ofrand finding a system of equations forr0,rp,ra.Sincer= 0 is always a root,this is equivalent to a 3rd order equation inrand cubic equation have a generic solution.The cubic equation is given as

    with

    The nonzero roots in ascending order are

    where

    We now have established a simple relationship between rational numberqand the quantitiesa,b,LandE,by inputting the value ofz,wandvfor a givena,bandLto locate theE,apastronraand perihelionrpof the corresponding periodic orbit.

    In Fig.3,we depict zoom-whirl periodic orbits with variouszvalues.Whenzincreases from 1 to 4,the leave of the zoom-whirl periodic orbits varying from one leaf to four leaves.So “z” is visualized as the number of leaves,or“zoom”in the particle orbit.Figure 4 shows orbits with variouswvalues,every object travels at least a full from 4πaround to 8πthe central black hole aswincreases from 1 to 3.It means that the number of extra turns around the center of the geometry gives us the value ofw.Figure 5 illustrates zoom-whirl orbits with variousvvalues,red line shows that the zoom-whirl orbits withv=1 andv= 3 move along the different trajectory; the energy of the zoom-whirl orbit withv=3 is higher than the zoomwhirl orbit withv=1.

    Fig.3 (Color online)Zoom-whirl periodic orbits withq =w+v/z =1+1/z,(z =1,2,3,4)fora=0,b=0.2,L=3.8,here we setM =1.

    Fig.4 (Color online)Zoom-whirl periodic orbits withq =w+v/z =w+0/1,(w =1,2,3)fora=0.6,b=0.1,L=2.9,here we setM =1.

    Fig.5 (Color online) Zoom-whirl periodic orbits withq =w +v/z = 1+v/4,(v = 1,3) fora = 0,b = 0.2,L=3.8,here we setM =1.

    Finally,we must address the degeneracy that arises when the quotientv/zis a reducible fraction.Thus we require thatv/zis an irreducible fraction.Asqhave approximate values,the zoom-whirl orbit is precessions.For instance,v/z=42/125≈1/3,the orbit withq=167/125 is the precessions of the orbit withq= 4/3.Figure 6 shows several pairs of the precession orbits.All orbits withz= 1,2,3,4 are drawn.Between each of these low leaf orbits,randomly selected high zoom orbits are shown as well.The high zoom orbits (the second and fourth rows of Fig.6) look like precessions of the low zoom orbits (the first and third rows of Fig.6).[4]That is to say,any aperiodic orbit will be arbitrarily well approximated by a nearby periodic orbit.

    5 Energy of Generic Orbits

    Zoom-whirl periodic orbits give us a way to visually inspect orbits in different space-time to understand whether we can distinguish the KSBH from the Kerr black hole.So now we analyze the impact of the charge parameterbon the zoom-whirl periodic orbits.Transitions in the periodic orbits can be observed when the energyEand angular momentumLchanges,which emanate in the form of gravitational waves.Rational numberq,as a function ofq(a,b,E,L),contains the information on transitions in the periodic orbits during the inspiral stage.Figures 7 and 8 indicate that rational numberqmonotonically increases withEand decreases withLwhen the charge parameterbtakes the values 1,0.8,0.6,0.4,0.2,and 0 in both the rotating and not-rotating KSBHs.Taking(z=1,2,3,4,w=1,v=1)andLav=(LIBCO+LISCO)/2,we list the corresponding energy for each periodic orbit in Tables 1 and 2.It is shown that the corresponding energyEfor each periodic orbit decreases with the charge parameterb.It implies that the particles in the KSBH with angular momentumLavin a sufficiently deep potential well possess a richer variety of bound periodic orbits and a wider range of energyEthan their Kerr black hole counterparts.

    Table1 The energy values of (z = 1,2,3,4,w = 1,v = 1) orbits around the non-rotating (a = 0) Kerr sen black hole for variousb are presented with their corresponding angular momentum,Lav =(LIBCO+LISCO)/2.

    Fig.6 (Color online) A series of periodic orbits witha = 0.6,b = 0.18,L = 3,M = 1.Notice that the highz orbits look like precessions of the energetically closest lowz.

    Fig.7 (Color online) The variation ofq as a function of energyE and angular momentumL for different values ofb in non-rotating KSBH:decreasing from left to right the values are 1,0.8,0.6,0.4,0.2,and 0.In(a),for eachb depicted above,the corresponding angular momentum isLav =(LIBCO+LISCO)/2.In(b),energy is kept fixed when(z,w,v)=(2,1,1).

    Fig.8 (Color online) The variation ofq as a function of energyE and angular momentumL for different values of the charge parameterb in Kerr sen black hole with the fixed rotating parametera = 0.6: decreasing from left to right the values are 0.69,0.6,0.4,0.2,and 0.In (a),for eachb depicted above,the corresponding angular momentum isLav =(LIBCO+LISCO)/2.In (b),energy is kept fixed when (z,w,v)=(2,1,1).

    Table2 The energy values of (z = 1,2,3,4,w = 1,v = 1) orbits around the rotating (a = 0.6) Kerr sen black hole for variousb are presented with their corresponding angular momentum,Lav =(LIBCO+LISCO)/2.

    6 Summary

    In this paper,we have studied periodic orbits in the equatorial plane around the KSBH with a rational numberqin terms of three integers (z,w,v) under the taxonomy of orbit of Levinet al.[4?8]By using the Hamiltonian formulation,the geodesic motion of a time-like particle in the KSBH was analyzed,and the bound on the innermost bound and stable circular orbits were also calculated.We found that the angular momentumLISCOandLIBCOdecreases with the black hole spinaand the charge parameterb.We showed that all eccentric periodic orbits around the KSBH show zoom whirl behavior of some kind for the angular momentum of the time-like particles in the regionLISCO< L < LIBCO.The characteristic of the zoomwhirl periodic orbits is a spectrum of multi-leaf clovers structure,what’s more,aperiodic orbits will look like precessions of low-leaf clovers in the strong-field regime.This feature is qualitatively similar to those in the Kerr spacetime.Finally,we analyzed the impact of the charge parameterbon the zoom-whirl periodic orbits to distinguish the KSBH from the Kerr black.We found that periodic orbits around the KSBH occur at lower energies than their Kerr black hole counterparts.These results may provide us a possible observational signature by testing these periodic orbits around the central source to distinguish the KSBH from the Kerr black hole.

    猜你喜歡
    長青
    閃念大柳塔
    淺談“長青壺”的藝術(shù)風(fēng)格
    山東陶瓷(2021年5期)2022-01-17 02:35:54
    長青開啟中馬圓夢(mèng)之旅
    長青《敗者為王》萬人首映創(chuàng)紀(jì)錄
    長青 首涉電影殺青
    長青 筑夢(mèng)書香中國
    長青 邁步環(huán)保公益
    長青榮耀三十載
    以精品工程 打造基業(yè)長青
    圣誕樹長青器
    久久国产精品影院| 亚洲国产欧美日韩在线播放| 可以免费在线观看a视频的电影网站| 亚洲国产精品一区二区三区在线| 91成人精品电影| 色老头精品视频在线观看| 青青草视频在线视频观看| 一进一出抽搐动态| 国产福利在线免费观看视频| 搡老岳熟女国产| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 亚洲av电影在线进入| 久久精品国产a三级三级三级| 99久久99久久久精品蜜桃| 欧美中文综合在线视频| 制服诱惑二区| 国产有黄有色有爽视频| 国产精品国产av在线观看| 久久久久久人人人人人| 亚洲国产成人一精品久久久| 午夜日韩欧美国产| 操美女的视频在线观看| 一级,二级,三级黄色视频| 日韩,欧美,国产一区二区三区| 国产精品久久久av美女十八| 黄网站色视频无遮挡免费观看| 美国免费a级毛片| 久久午夜综合久久蜜桃| 精品国产一区二区久久| 亚洲av日韩在线播放| 99国产精品免费福利视频| 亚洲国产毛片av蜜桃av| 激情视频va一区二区三区| 中文字幕av电影在线播放| 亚洲精品国产一区二区精华液| 男人操女人黄网站| 国产亚洲精品久久久久5区| 中文字幕人妻丝袜一区二区| 亚洲少妇的诱惑av| 久久国产精品影院| 一本综合久久免费| 国产片内射在线| 亚洲欧美成人综合另类久久久| 满18在线观看网站| 国产精品.久久久| 久久精品熟女亚洲av麻豆精品| 女人被躁到高潮嗷嗷叫费观| a级毛片黄视频| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 99热网站在线观看| 亚洲精品久久久久久婷婷小说| 精品人妻1区二区| 国产成人欧美| 人妻人人澡人人爽人人| 欧美国产精品一级二级三级| 久久久国产成人免费| 欧美xxⅹ黑人| 91精品三级在线观看| 91成人精品电影| 妹子高潮喷水视频| 99久久99久久久精品蜜桃| 大片电影免费在线观看免费| 亚洲天堂av无毛| 国产精品久久久久久人妻精品电影 | videos熟女内射| 欧美乱码精品一区二区三区| 国产精品 欧美亚洲| 欧美日韩成人在线一区二区| 久久人妻福利社区极品人妻图片| 人妻一区二区av| 午夜福利视频在线观看免费| 一边摸一边做爽爽视频免费| 国产成人a∨麻豆精品| 国产亚洲欧美精品永久| 日本黄色日本黄色录像| 另类精品久久| 欧美久久黑人一区二区| 国产精品亚洲av一区麻豆| 制服诱惑二区| 国产成人精品久久二区二区91| 捣出白浆h1v1| 午夜福利乱码中文字幕| 亚洲国产成人一精品久久久| 国产精品99久久99久久久不卡| 日日夜夜操网爽| 在线av久久热| 亚洲av欧美aⅴ国产| 91成年电影在线观看| 久久毛片免费看一区二区三区| 亚洲精品国产av蜜桃| 一本久久精品| xxxhd国产人妻xxx| 男女高潮啪啪啪动态图| 国产区一区二久久| 在线观看免费午夜福利视频| 亚洲激情五月婷婷啪啪| 亚洲精品中文字幕一二三四区 | 青春草视频在线免费观看| av在线app专区| 欧美亚洲日本最大视频资源| 岛国在线观看网站| 亚洲国产欧美网| 国产一区二区 视频在线| 一级片'在线观看视频| 亚洲av片天天在线观看| 久久国产亚洲av麻豆专区| 2018国产大陆天天弄谢| 亚洲国产av影院在线观看| 国产精品成人在线| 最近最新免费中文字幕在线| 国产福利在线免费观看视频| 国内毛片毛片毛片毛片毛片| 啦啦啦 在线观看视频| 久久天堂一区二区三区四区| 精品视频人人做人人爽| 在线观看人妻少妇| 国产高清视频在线播放一区 | 久久国产精品大桥未久av| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区三 | 久久国产精品大桥未久av| 国产一区二区三区综合在线观看| 国产精品久久久人人做人人爽| 在线观看一区二区三区激情| 99久久人妻综合| 久久久久久人人人人人| 欧美 日韩 精品 国产| 秋霞在线观看毛片| 777久久人妻少妇嫩草av网站| 国产成+人综合+亚洲专区| 丝袜美足系列| av国产精品久久久久影院| 精品第一国产精品| 亚洲精品国产色婷婷电影| 色综合欧美亚洲国产小说| 夜夜夜夜夜久久久久| 18禁裸乳无遮挡动漫免费视频| 大片电影免费在线观看免费| 国产精品亚洲av一区麻豆| 日本撒尿小便嘘嘘汇集6| bbb黄色大片| 最黄视频免费看| 成人手机av| 亚洲人成电影观看| 亚洲精品日韩在线中文字幕| 美女高潮喷水抽搐中文字幕| 黄片小视频在线播放| 久久久久精品人妻al黑| 高清视频免费观看一区二区| 国产精品二区激情视频| 黄色视频不卡| 电影成人av| 一进一出抽搐动态| 自拍欧美九色日韩亚洲蝌蚪91| xxxhd国产人妻xxx| 国产免费一区二区三区四区乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久精品久久久| netflix在线观看网站| 曰老女人黄片| 一区二区三区激情视频| 超碰成人久久| 黄网站色视频无遮挡免费观看| 午夜精品国产一区二区电影| 精品亚洲成国产av| 久久亚洲精品不卡| 亚洲国产看品久久| avwww免费| avwww免费| 久久久精品免费免费高清| av在线app专区| 美女视频免费永久观看网站| www.自偷自拍.com| 青春草视频在线免费观看| 亚洲视频免费观看视频| 岛国毛片在线播放| 国产一区二区三区在线臀色熟女 | 免费少妇av软件| 日韩欧美一区视频在线观看| 人妻一区二区av| 91av网站免费观看| 18在线观看网站| 日本wwww免费看| 欧美日韩亚洲国产一区二区在线观看 | 日韩大码丰满熟妇| 国产色视频综合| 免费在线观看黄色视频的| 国产97色在线日韩免费| 美女扒开内裤让男人捅视频| 久久久久精品国产欧美久久久 | av电影中文网址| 久久久久久久大尺度免费视频| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 纯流量卡能插随身wifi吗| 精品一区二区三卡| 日本欧美视频一区| 另类亚洲欧美激情| av视频免费观看在线观看| 精品人妻在线不人妻| 亚洲成av片中文字幕在线观看| 国产av精品麻豆| 亚洲av日韩在线播放| 桃红色精品国产亚洲av| 国产黄频视频在线观看| 国产极品粉嫩免费观看在线| 最黄视频免费看| 大码成人一级视频| 天堂8中文在线网| 人妻人人澡人人爽人人| 久久人人爽人人片av| 成年av动漫网址| 在线永久观看黄色视频| 久久av网站| 99re6热这里在线精品视频| 99国产综合亚洲精品| 中亚洲国语对白在线视频| 精品熟女少妇八av免费久了| 午夜激情久久久久久久| 脱女人内裤的视频| 欧美精品亚洲一区二区| 男人舔女人的私密视频| 欧美97在线视频| 久久久水蜜桃国产精品网| 大型av网站在线播放| 国产麻豆69| 欧美久久黑人一区二区| av在线播放精品| 久久国产精品人妻蜜桃| 国产精品 欧美亚洲| 亚洲欧美日韩高清在线视频 | 日韩中文字幕视频在线看片| 亚洲欧洲日产国产| 99久久99久久久精品蜜桃| 亚洲精品成人av观看孕妇| 久久精品国产a三级三级三级| 国产伦理片在线播放av一区| 中文字幕人妻丝袜制服| 免费观看a级毛片全部| 极品人妻少妇av视频| 人人澡人人妻人| 99久久综合免费| 欧美日韩精品网址| 亚洲欧美激情在线| 亚洲成人免费av在线播放| 亚洲久久久国产精品| 欧美激情高清一区二区三区| 国产精品自产拍在线观看55亚洲 | 欧美国产精品一级二级三级| av在线播放精品| 黑人操中国人逼视频| 一边摸一边抽搐一进一出视频| 国产精品国产三级国产专区5o| 欧美精品高潮呻吟av久久| 十八禁网站免费在线| 男女下面插进去视频免费观看| 中文字幕另类日韩欧美亚洲嫩草| 69av精品久久久久久 | 国产亚洲欧美在线一区二区| 高清黄色对白视频在线免费看| 在线观看免费午夜福利视频| 欧美国产精品一级二级三级| 午夜福利影视在线免费观看| 超碰97精品在线观看| 国产欧美日韩一区二区三 | 一级,二级,三级黄色视频| 欧美日韩一级在线毛片| 国产高清国产精品国产三级| 午夜福利影视在线免费观看| 丝袜脚勾引网站| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 桃红色精品国产亚洲av| 最新在线观看一区二区三区| 黄色a级毛片大全视频| 亚洲自偷自拍图片 自拍| 999精品在线视频| h视频一区二区三区| 黄色视频,在线免费观看| 久久精品久久久久久噜噜老黄| 自拍欧美九色日韩亚洲蝌蚪91| 高潮久久久久久久久久久不卡| 曰老女人黄片| 午夜精品国产一区二区电影| 日韩电影二区| 俄罗斯特黄特色一大片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av电影在线观看一区二区三区| 色婷婷久久久亚洲欧美| 999久久久国产精品视频| 精品亚洲乱码少妇综合久久| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 黄色片一级片一级黄色片| 成人三级做爰电影| 夜夜骑夜夜射夜夜干| 999精品在线视频| 美女午夜性视频免费| 黄片小视频在线播放| 亚洲av美国av| 99国产精品一区二区蜜桃av | 人人澡人人妻人| 高清欧美精品videossex| 国产无遮挡羞羞视频在线观看| 久久人人97超碰香蕉20202| 国产精品二区激情视频| 亚洲精华国产精华精| 亚洲国产av影院在线观看| 免费在线观看日本一区| a级毛片黄视频| 久久久久久久国产电影| 老汉色av国产亚洲站长工具| 超色免费av| 99久久国产精品久久久| 午夜免费鲁丝| 久久久精品区二区三区| 日韩欧美一区视频在线观看| 精品国产一区二区三区久久久樱花| av片东京热男人的天堂| 亚洲欧美清纯卡通| av天堂在线播放| 国产精品av久久久久免费| 日本wwww免费看| 黑人猛操日本美女一级片| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 欧美人与性动交α欧美软件| 一本色道久久久久久精品综合| 国产日韩一区二区三区精品不卡| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 老司机影院毛片| 国产精品秋霞免费鲁丝片| 亚洲成人国产一区在线观看| 性高湖久久久久久久久免费观看| 十八禁人妻一区二区| 女警被强在线播放| 久久99热这里只频精品6学生| 韩国高清视频一区二区三区| 91麻豆精品激情在线观看国产 | 两个人免费观看高清视频| 51午夜福利影视在线观看| 日韩中文字幕视频在线看片| 国产免费视频播放在线视频| 又黄又粗又硬又大视频| av在线app专区| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 午夜久久久在线观看| 黄色视频在线播放观看不卡| 国产不卡av网站在线观看| 亚洲精品久久久久久婷婷小说| 欧美久久黑人一区二区| 免费在线观看影片大全网站| 亚洲av美国av| 视频区图区小说| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 麻豆av在线久日| www.精华液| 亚洲中文字幕日韩| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 一本综合久久免费| av视频免费观看在线观看| 在线观看免费日韩欧美大片| 精品一区二区三区av网在线观看 | 熟女少妇亚洲综合色aaa.| a 毛片基地| 99re6热这里在线精品视频| 国产精品秋霞免费鲁丝片| 午夜福利影视在线免费观看| 国产精品久久久av美女十八| 免费看十八禁软件| 日本wwww免费看| 日韩 亚洲 欧美在线| 99re6热这里在线精品视频| 国产一区二区在线观看av| 亚洲欧美一区二区三区久久| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看| 午夜久久久在线观看| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| 大香蕉久久成人网| 国产1区2区3区精品| 在线观看人妻少妇| 如日韩欧美国产精品一区二区三区| 亚洲情色 制服丝袜| 午夜福利视频在线观看免费| 日本精品一区二区三区蜜桃| 美女主播在线视频| 欧美大码av| 999精品在线视频| 久久久国产精品麻豆| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 国产成人av激情在线播放| 丝袜在线中文字幕| 人人妻人人澡人人爽人人夜夜| 老司机福利观看| 色婷婷久久久亚洲欧美| 午夜福利一区二区在线看| 一级片免费观看大全| 中国国产av一级| 亚洲精品国产av蜜桃| 久久精品国产亚洲av高清一级| 色婷婷av一区二区三区视频| 91精品伊人久久大香线蕉| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 一区二区三区精品91| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| 大片电影免费在线观看免费| 亚洲精品一卡2卡三卡4卡5卡 | 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 国产成人欧美| 男女之事视频高清在线观看| 9色porny在线观看| 嫩草影视91久久| 永久免费av网站大全| 9色porny在线观看| 国产亚洲精品第一综合不卡| 亚洲精华国产精华精| 国产免费视频播放在线视频| 亚洲欧美色中文字幕在线| 天天操日日干夜夜撸| 一级片免费观看大全| 精品视频人人做人人爽| 三级毛片av免费| 欧美乱码精品一区二区三区| 久久狼人影院| 亚洲人成电影观看| 精品国产国语对白av| 精品国产一区二区三区四区第35| 欧美日韩视频精品一区| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 欧美日韩一级在线毛片| www日本在线高清视频| 亚洲男人天堂网一区| 日韩大片免费观看网站| 亚洲三区欧美一区| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 97在线人人人人妻| 丝袜人妻中文字幕| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产 | 18在线观看网站| 91精品国产国语对白视频| 国产xxxxx性猛交| 制服诱惑二区| 人妻人人澡人人爽人人| 他把我摸到了高潮在线观看 | 国产色视频综合| 9191精品国产免费久久| 久热这里只有精品99| 日韩有码中文字幕| 97精品久久久久久久久久精品| 免费高清在线观看日韩| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产a三级三级三级| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 亚洲va日本ⅴa欧美va伊人久久 | 91成年电影在线观看| 久久ye,这里只有精品| 久久久国产欧美日韩av| 亚洲国产欧美一区二区综合| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 国产精品免费大片| 涩涩av久久男人的天堂| 操出白浆在线播放| 一级a爱视频在线免费观看| www.999成人在线观看| 亚洲精品国产一区二区精华液| 欧美 日韩 精品 国产| 亚洲精华国产精华精| 我要看黄色一级片免费的| 美女高潮到喷水免费观看| 伦理电影免费视频| 波多野结衣av一区二区av| tocl精华| av免费在线观看网站| 国产精品自产拍在线观看55亚洲 | 动漫黄色视频在线观看| 中文字幕人妻丝袜制服| 精品国内亚洲2022精品成人 | 五月天丁香电影| 欧美日本中文国产一区发布| 久久久国产一区二区| 99久久人妻综合| 欧美精品一区二区免费开放| 欧美日韩av久久| 免费观看av网站的网址| 日日夜夜操网爽| 亚洲成人国产一区在线观看| 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 一区在线观看完整版| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| 欧美另类一区| 亚洲伊人色综图| 国产成人影院久久av| 我要看黄色一级片免费的| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 十分钟在线观看高清视频www| 国产成人欧美| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 久久久水蜜桃国产精品网| 国产精品欧美亚洲77777| 乱人伦中国视频| 桃红色精品国产亚洲av| 一本久久精品| 啦啦啦 在线观看视频| 国产精品欧美亚洲77777| videos熟女内射| 久9热在线精品视频| 国产一级毛片在线| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 99国产精品一区二区蜜桃av | 久久精品国产亚洲av高清一级| av在线播放精品| 少妇粗大呻吟视频| 欧美人与性动交α欧美精品济南到| 亚洲精品成人av观看孕妇| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美成狂野欧美在线观看| 国产精品免费视频内射| 亚洲精品中文字幕一二三四区 | 日本av手机在线免费观看| 久久久精品免费免费高清| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 9热在线视频观看99| 在线看a的网站| 我要看黄色一级片免费的| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 久久久水蜜桃国产精品网| 精品一区二区三区av网在线观看 | 在线 av 中文字幕| 少妇裸体淫交视频免费看高清 | 精品国产一区二区三区四区第35| 日本wwww免费看| 欧美亚洲日本最大视频资源| 大香蕉久久成人网| 亚洲欧美激情在线| 视频在线观看一区二区三区| 久久久久国产精品人妻一区二区| 亚洲精华国产精华精| 精品福利观看| 欧美在线一区亚洲| 女性被躁到高潮视频| 男女免费视频国产| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 久久中文字幕一级| 中文字幕高清在线视频| 岛国毛片在线播放| 亚洲欧美日韩高清在线视频 | 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品国产亚洲精品| 丝瓜视频免费看黄片| 日本wwww免费看| 国产在线一区二区三区精| 少妇人妻久久综合中文| 一个人免费看片子| 日韩大片免费观看网站| 国产野战对白在线观看| 最新在线观看一区二区三区| 无遮挡黄片免费观看| 久久久久久亚洲精品国产蜜桃av| 国产在线一区二区三区精| 免费不卡黄色视频| 精品人妻1区二区| 亚洲免费av在线视频| 久久久国产欧美日韩av| 少妇的丰满在线观看| 91成人精品电影| 可以免费在线观看a视频的电影网站| 搡老岳熟女国产| 老司机福利观看| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 久久天堂一区二区三区四区| 久久影院123| 深夜精品福利| 免费在线观看日本一区| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费|