• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evolution of domain structure in Fe3GeTe2?

    2021-03-11 08:34:02SiqiYin尹思琪LeZhao趙樂ChengSong宋成YuanHuang黃元YoudiGu顧有地RuyiChen陳如意WenxuanZhu朱文軒YimingSun孫一鳴WanjunJiang江萬軍XiaozhongZhang章曉中andFengPan潘峰
    Chinese Physics B 2021年2期
    關(guān)鍵詞:萬軍朱文

    Siqi Yin(尹思琪), Le Zhao(趙樂), Cheng Song(宋成),?, Yuan Huang(黃元), Youdi Gu(顧有地), Ruyi Chen(陳如意),Wenxuan Zhu(朱文軒), Yiming Sun(孫一鳴), Wanjun Jiang(江萬軍),Xiaozhong Zhang(章曉中),?, and Feng Pan(潘峰)

    1Key Laboratory of Advanced Materials(MOE),School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China

    2State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing 100084,China

    3Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: Fe3GeTe2,two-dimensional magnet,thickness dependent domain structure

    1. Introduction

    The two-dimensional(2D)van der Waals(vdW)magnet behaves as intrinsic ferromagnetic or antiferromagnetic states even when the thickness is reduced to a monolayer.[1–4]Recent discovery of 2D magnets such as CrI3, Cr2Ge2Te6, and Fe3GeTe2(FGT)not only constitutes an ideal platform to explore the new physics of magnetism,[5,6,6–11]but also provides key materials for developing novel and high-performance spintronic devices.[12–14]Among these 2D materials, FGT emerges as an attractive candidate due to its metallic nature and relative high Curie temperature (~220 K).[15–17]Its Curie temperature can be further enhanced to room temperature by effective modulation of Fe content,[18]ionic liquid,[16]ionic implantation,[19]exchange coupling,[20]and substrate.[21]Huge amount of interesting magnetic and transport properties have been discovered in FGT and its vdW heterostructure, large anomalous Hall effect,[16]Kondo lattice behavior,[22]large anomalous Nernst effect,[23]antisymmetric magnetoresistance,[24]stabilized magnetic skyrmion phase,etc.[25–27]Most recently, spin–orbit torque driven magnetization reversal has been achieved in FGT/Pt bilayers,showing a promising future towards spintronic applications based on 2D materials.[28]

    Different from the bulk counterpart,it is natural to imagine the strong sensitivity of the performance of spintronics on the thickness of the 2D magnet. For example, a rich variety of domain structures in 2D FGT have been reported such as separated double-walled domain,[29]high-density Bloch-type skyrmion bubbles,[25]and movable N′eel-type skyrmion state by current pulses.[26]When thinned down to a monolayer,FGT exhibits a strong perpendicular magnetic anisotropy.While a formation of labyrinthian domain pattern was observed in rather thicker FGT.[15,30]Previous studies provided a hint on the critical role of the film thickness on the performance of FGT-based devices.Besides the labyrinthian domain reported in previous studies,[15,27]we found that there also exists other configuration of magnetic domain in FGT such as circular and dendritic shape. There is a transition of magnetic domains from a circular domain via a dendritic domain then to a labyrinthian domain with increasing FGT thickness, which is accompanied by rich variation of magnetization reversal.

    2. Experimental details

    FGT was obtained by Au-assisted mechanical exfoliation method.[31,32]The thickness of FGT was estimated roughly based on its optical contrast and measured accurately by atomic force microscope(Fig.S1 and Table S1 in supplementary material). A commercial polar magneto-optical Kerr microscope (MOKE) was used to observe the magnetic domain of FGT at low temperature.

    3. Results and discussion

    The crystal structure of monolayer FGT viewed from xz and xy planes is shown in the inset of Fig.1. FGT can be regarded as a hexagonal layered vdW crystal with space group P63/mmc.FGT monolayer is composed of a Fe3Ge covalently bonded slab sandwiched by two Te layers,and the Fe3Ge slab consists of two FeI(valence state of Fe3+) and one FeII(valence state of Fe2+). The thickness of monolayer FGT is 0.8 nm with an interlayer vdW gap of 0.295 nm.[16]

    Fig.1. Optical micrograph of FGT with different thicknesses and its corresponding domain structures.The regions I,II,and III in the left panel denote FGT with different thicknesses, and their corresponding typical magnetic domain structures are depicted as type I, type II, and type III in the right panel, respectively. The inset figure is the atomic structure of monolayer FGT viewed from xz and xy planes. FeI and FeII denote the two inequivalent Fe sites in the+3 and+2 states,respectively.

    The optical micrograph of FGT with different thicknesses is displayed in the left panel of Fig.1. FGT is divided into three regions by thickness. Regions I,II,and III are FGT crystals with thickness ranges of 11.2–21.6 nm,25.6–40.8 nm,and 45.6–112 nm,respectively. The thickness of 2D FGT could be estimated roughly by optical microscopy where thinner FGT exhibits a blue contrast due to the high transparency.[33]The typical magnetic domain structures of FGT in regions I,II and III are identified as types I,II,and III,respectively[right panel of Fig.1(a)]. The magnetic domain of type I which exists in the thinner FGT of 11.2–21.6 nm (such as region I) is a circular-shape domain. The case turns out to be different in type III which exists in the FGT thicker than 45.6 nm(such as region III),it is a multidomain with labyrinthian internal structure. As for type II,it is an intermediate case between type I and type III. The domain structure of type II is a dendritic multidomain,and its thickness range is between 25.6 nm and 40.8 nm.As for the FGT with the thicknesses of 21.6–25.6 nm and 40.8–45.6 nm,it shows a gradual transition from type I to type II and from type II to type III,respectively. The evolution of domain structure and magnetization reversal with thickness will be discussed below in detail.

    Various domain structures correspond to different kinds of magnetization reversals and hysteresis loops. We focus now on type I,a thinner FGT with a thickness range of 11.2–21.6 nm. Optical micrography of region I is displayed in Fig.2(a), and locations 1–4 present four FGT crystals of successive decreasing thickness. Figures 2(b)–2(e) are the hysteresis loops at locations 1–4, respectively, and it shows the change of Kerr signal in FGT sample at 150 K when the applied perpendicular magnetic field(μ0Hz)sweeps from?57.9 mT to 57.9 mT, and back to ?57.9 mT. A coercive field of 14 mT is observed in the hysteresis loop of location 1[Fig.2(b)].When the thickness decreases,it shows an increase of coercive field to 23.3 mT and a change of hysteresis into a rectangular shape at location 2, indicating a stronger perpendicular magnetic anisotropy in a thinner film[Fig.2(c)]. With further decreasing thickness,the coercive field becomes larger and reaches 43.4 mT at location 3 [Fig.2(d)]. At location 4 with the thinnest thickness,the coercive field is larger than the limit of the magnetic field in polar magneto-optical Kerr effect,in this situation magnetization does not saturate [Fig.2(e)].Next, we observe the change in domain while the perpendicular magnetic field changes from 57.9 mT to ?57.9 mT.The MOKE image of locations 1–4 atμ0Hz=57.9 mT is displayed in Fig.2(f). The optical contrast of the MOKE images from white (location 1) to light grey (location 2) to dark grey (location 3) to black (location 4) shows a decrease in thickness.When the applied μ0Hzreaches ?16.5 mT, the switching of domain at location 1 is firstly observed [Fig.2(g)]. Then the field of ?26.4 mT motivates the switching of domain in location 2[Fig.2(h)]. With further increasingμ0Hz,the domain of location 3 reverses at ?45.8 mT[Fig.2(i)]. While it increases to ?57.9 mT at last, partial reversal of magnetic domain in location 4 is observed[Fig.2(j)]. These features suggest that the reversal of domain firstly occurs in the FGT with thicker thickness, then the thinner one, and it is consistent with the decrease of the coercive field with increasing thickness as illustrated in Figs. 2(b)–2(e). The dynamic process of domain reversal in this area also supports this point(video S1). Note that the domains in locations 3 and 4 are domains with circular shape(type I).The domain with circular shape is unstable and evolves to a completely inverted magnetization state spontaneously,thus inducing a rectangular hysteresis loop with no gradual change. Since the domain width increases exponentially with thickness,[34]a single domain is expected to be observed in the thinnest sample,when the domain width exceeds the sample size.

    Figure 3(a) is the hysteresis loop of FGT containing locations 1–4 measured at 175 K, showing it having four steps labeled as 1–4, corresponding to the magnetization reversals of locations 1–4, respectively. A similar case can also be observed in the hysteresis loop measured at 150 K that four steps exist in the hysteresis loop but its shape changes due to decreasing temperature [Fig.3(b)]. The magnetic field of steps 1–4 corresponds to the coercive field of locations 1–4 in Figs.2(b)–2(e),respectively. It explains that the hysteresis loop of 2D magnet sometimes is found to have many steps,due to the inhomogeneity thickness in the measured 2D magnet. In the same way, the two steps of the loop in Fig.2(d)could be attributed to the selected area having drifted away and contained a small part of location 2 when measuring the Kerr loop.

    Fig.2. Hysteresis loop and domain structure of FGT in type I.(a)Optical micrography of FGT in type I.Locations 1–4 are FGT crystals with decreasing thickness. (b)–(e) Hysteresis loops of locations 1–4 measured by MOKE at 150 K, respectively. MOKE images of FGT at locations 1–4 under different perpendicular magnetic field: (f)+57.9 mT,(g)?16.5 mT,(h)?26.4 mT,(i)?45.8 mT,and(j)?57.9 mT.Scale bar is 25μm.

    Fig.3. Hysteresis loop of FGT containing locations 1–4 measured by MOKE at different temperature: (a)175 K,(b)150 K.

    We now turn towards region II. The corresponding data are presented in Fig.4. The typical MOKE images of domain in region II show a dendritic structure[Fig.4(a)].Concomitant MOKE images of region II are displayed in Fig.4(e). Locations 5–7 are three FGT crystals in region II with thicknesses of 40.8 nm,32 nm,28.8 nm,and their hysteresis loops are illustrated in Figs.4(b)–4(d),respectively. Here,the hysteresis loop of region II has a smaller coercivity than that of region I,and a gradual inversion of magnetization begins whenμ0Hzreaches the coercive field,resembling to hourglass-shape. Asμ0Hzis swept from 57.9 mT to ?57.9 mT, nucleation field HNis defined as a field when the magnetization begins to drop rapidly.[35,36]As depicted in Fig.4(b), the Kerr signal has a sharp decrease at nucleation field HNand then gradually decreases to reach the magnetization saturation,revealing the existence of multidomain. This is quite different from the type I having a circular domain with a rectangular loop. The coercive fields of locations 5–7 are 10 mT,15.2 mT,and 17.9 mT,respectively, demonstrating once again that it increases with decreasing thickness. Then a domain variation of region II is recorded during field sweeping from 57.9 mT to ?57.9 mT.The reversal of magnetic domain occurs in location 5 whenμ0Hzreaches ?11.5 mT [Fig.4(f)], and then in location 6 at the field of ?16.5 mT [Fig.4(g)], followed by in location 7 at the field of ?18.6 mT [Fig.4(h)]. This sequence of magnetization reversal is supported by the dynamic process of domain change (video S2). The magnetic domain in region II is dendritic, and grows from one side to take over the whole FGT crystals with variation of μ0Hz. Besides, it is not difficult to find that the domain size has a close relationship with the thickness. The domain size gradually increases from location 5 to location 6 then to location 7,reflecting an increasing tendency of the domain size with decreasing thickness.

    In the following we discuss the magnetization in region III and its domain structure type III.Region III represents the thick FGT with a thickness larger than 45.6 nm.A typical hysteresis loop of type III domain shows seriously reduced coercivity and remanence, which features as a tilted hourglass, as illustrated in Fig.5(a). Compared to that in type II, the hysteresis loop of type III shown in Fig.5(a)has three notable features. Firstly,different from a negative HNof type II,the nucleation field of type III is positive accompanied by a gradual drop of magnetization at HN. As the FGT thickness of type III increases, the positive nucleation field gradually increases(Fig.S2). It indicates a decreasing impedance for domain wall nucleation and motion with increasing film thickness.[37]Secondly, a big difference is seen in the remanence. The hysteresis loop of type II reveals a remanence of almost 100%,and that of type III exhibits an extreme small remanence at zero field. Thirdly, unlike a sharp change at HNin type II,the reversal of magnetization in type III occurs gradually. In addition, the hysteresis loop of type III does not have a variation from rectangular to irregular with increasing thickness,which is different from that of types I and II.The magnetic domain in region III emerges as the labyrinthian domain. Withμ0Hzvarying from 57.9 mT to ?57.9 mT, the labyrinthian domain appears as the field reaches 27.9 mT, leading to the drop of magnetization at HN,as displayed in Fig.5(b). As the field further decreases,the amount of labyrinthian domain increases[Fig.5(c)]. With further decrease ofμ0Hz,the density of the labyrinthian domain increases until the magnetization inverts completely[Fig.5(d)]. The remanence of nearly zero observed in Fig.5(a) can be explained as equal width of up and down stripe-domains at zero field. The above discussion can be also confirmed by the dynamic process of domain reversal in region III (video S3). The amount of labyrinthian domain gradually increases with the variation of the magnetic field until it reaches magnetization saturation.

    The labyrinthian magnetic domain (type III) in thicker FGT has also been verified by magnetic force microscopy and Lorentz transmission electron microscopy in previous studies.[15,27]On basis of this, we find that the magnetic domain of FGT also has circular(type I)and dendritic(type II)shapes. It can be clearly figured out that the thickness ranges of type I,type II,and type III domain are 11.2–21.6 nm,25.6–40.8 nm,and 45.6–112 nm,respectively(Table S1). Figure 6 summarizes the evolution of domain structure and its corresponding hysteresis loop with FGT thickness at 150 K,demonstrating that both the domain size and coercive field decrease with increasing FGT thickness.This evolution of magnetic domain in FGT shares similar characteristic with the Co/Pt multilayer with low disorder.[38]Further modulation of magnetic domain in FGT can be expected through electric field control in the next step.[39]

    Fig.4.Hysteresis loop and domain structure of FGT in type II.(a)MOKE images of domain structure of FGT in type II.Locations 5–7 are FGT crystals with successive decreasing thickness. (b)–(d)Hysteresis loops of locations 5–7 measured by MOKE at 150 K,respectively. MOKE images of FGT at locations 5–7 under different perpendicular magnetic field: (e)+20.5 mT,(f)?11.5 mT,(g)?16.5 mT,and(h)?18.6 mT.Scale bar is 25μm.

    Fig.5. Hysteresis loop and domain structure of FGT in type III. (a) Hysteresis loop of FGT in type III measured by MOKE. MOKE images of FGT in type III under different perpendicular magnetic field: (b)+27.9 mT,(c)+27.6 mT,and(d)+26.7 mT.A background was subtracted for the MOKE image.Scale bar is 25μm.

    Fig.6. The evolution of magnetic domain structure and hysteresis loop in Fe3GeTe2 at 150 K.

    We then propose a simple model to explain the thickness dependent domain configurations.The total energy of the FGT sample with a thickness of t can be expressed as[36]

    where Ew, Ed, and Ekare the domain wall energy, stray field energy, and anisotropy energy of samples, respectively. Domain wall energy Ewis equal to the product of domain wall energy per unit area(γw)and total surface area of the domain wall (S). The stray field energy Edis determined by the integral of magnetization M and magnetic field H. Anisotropy energy Eucan be expressed by the multiply of uniaxial magnetic anisotropy Kuand volume of domains not oriented in the easy direction Vu.

    The configurations of magnetic domain with uniaxial anisotropy can be simply divided into cases A, B, and C, as displayed in Fig.7(a). Case A is a single domain with a spin orientation along the easy axis, while case B shows a multidomain and its cross-section is a rectangular domain with alternate spin orientations. As for case C, it presents a closure multidomain with a spin flux closure within the film. The domain width of the multidomain is assumed to be d. The totally energy per unit area of cases A,B,and C is calculated as following.For case A of single domain,total free energy E arises from the stray field energy Ed,which is given by

    where μ0is the permeability of vacuum and Msis the saturation magnetization of the film. As for case B,total free energy E is a sum of stray field energy Edand domain wall energy Ew,which can be expressed as

    Fig.7. Domain configuration and its thickness dependence. (a) Domain configurations of cases A, B, and C. The domain width and film thickness are denoted as d and t,respectively. (b)Energy of domain configurations A,B,C varies with thickness.

    4. Conclusion

    We have investigated the thickness dependent evolution of domain structure in FGT. The domain of FGT transforms from circular magnetic domain to dendritic multidomain to labyrinthian domain with increasing thickness. Both domain size and coercive field of FGT are also found to decrease with the increase in thickness. The evolutions of the domain can be ascribed to energy changes from exchange interactiondominated in thinner layers to dipolar interaction-dominated in thicker layers. Our findings disclose an interesting evolution of domain configuration in FGT.

    Acknowledgment

    The authors thank Bolun Wang for help in AFM measurement. C.S. acknowledges the support of Beijing Innovation Center for Future Chip(ICFC),Tsinghua University.

    猜你喜歡
    萬軍朱文
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy?
    富婆投毒前夫:離婚不離家背后的末路瘋狂
    中醫(yī)藥堂傳奇 第四十八回 丁甘仁滬上勝洋醫(yī) 丁濟(jì)萬軍營救傷員
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
    石油物探(2017年1期)2017-03-15 10:46:51
    發(fā)現(xiàn)木耳
    水能生火
    久久久久国产精品人妻一区二区| 国产成人91sexporn| tube8黄色片| 伊人久久大香线蕉亚洲五| 精品国产超薄肉色丝袜足j| 久久久久国产精品人妻一区二区| 91精品伊人久久大香线蕉| 欧美另类一区| 成年女人毛片免费观看观看9 | 999精品在线视频| 丰满饥渴人妻一区二区三| 在线观看国产h片| 亚洲免费av在线视频| 日韩av在线免费看完整版不卡| 国产成人系列免费观看| a 毛片基地| 少妇人妻久久综合中文| 91国产中文字幕| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区91| 成人亚洲精品一区在线观看| 成年人免费黄色播放视频| 欧美变态另类bdsm刘玥| 久久毛片免费看一区二区三区| 久久久久久久大尺度免费视频| 国产精品免费视频内射| 欧美日韩视频高清一区二区三区二| 亚洲伊人久久精品综合| 日本色播在线视频| 欧美日韩福利视频一区二区| 波多野结衣一区麻豆| 亚洲av日韩精品久久久久久密 | 久久亚洲精品不卡| 在线亚洲精品国产二区图片欧美| 日韩一区二区三区影片| 国产精品免费视频内射| 欧美成人午夜精品| 亚洲精品第二区| 久热爱精品视频在线9| 狂野欧美激情性bbbbbb| 欧美精品亚洲一区二区| 一本大道久久a久久精品| 99九九在线精品视频| 高潮久久久久久久久久久不卡| 一级毛片 在线播放| 免费高清在线观看视频在线观看| 久久性视频一级片| 你懂的网址亚洲精品在线观看| 国产成人一区二区在线| 波多野结衣av一区二区av| videos熟女内射| 亚洲成人免费av在线播放| 丁香六月天网| 精品亚洲成a人片在线观看| 无遮挡黄片免费观看| 日韩 欧美 亚洲 中文字幕| 日韩精品免费视频一区二区三区| h视频一区二区三区| 午夜福利乱码中文字幕| 久久毛片免费看一区二区三区| 久久亚洲精品不卡| 久久久欧美国产精品| 在线精品无人区一区二区三| 久久av网站| 深夜精品福利| 黄色一级大片看看| 精品久久久久久久毛片微露脸 | 亚洲av综合色区一区| 悠悠久久av| 好男人电影高清在线观看| 极品少妇高潮喷水抽搐| 在线观看人妻少妇| 精品视频人人做人人爽| av欧美777| 蜜桃在线观看..| 亚洲久久久国产精品| 亚洲av日韩精品久久久久久密 | 最黄视频免费看| 少妇人妻 视频| 亚洲伊人久久精品综合| 久9热在线精品视频| 成人亚洲欧美一区二区av| 尾随美女入室| 国产在线视频一区二区| 亚洲九九香蕉| 男女下面插进去视频免费观看| 51午夜福利影视在线观看| 电影成人av| 视频在线观看一区二区三区| 性色av乱码一区二区三区2| 大香蕉久久网| 久久久国产精品麻豆| 欧美人与善性xxx| 亚洲成av片中文字幕在线观看| 国产欧美日韩精品亚洲av| 99精国产麻豆久久婷婷| 人妻一区二区av| 国产伦理片在线播放av一区| 日本黄色日本黄色录像| 高清视频免费观看一区二区| 看免费成人av毛片| 亚洲,欧美,日韩| 99国产精品免费福利视频| 久久女婷五月综合色啪小说| 欧美日韩av久久| 色播在线永久视频| 精品高清国产在线一区| 免费一级毛片在线播放高清视频 | 青春草视频在线免费观看| 亚洲情色 制服丝袜| 1024视频免费在线观看| 国产精品偷伦视频观看了| 欧美日韩福利视频一区二区| 91麻豆av在线| 制服人妻中文乱码| 一区二区三区四区激情视频| 咕卡用的链子| 亚洲精品一卡2卡三卡4卡5卡 | 一边亲一边摸免费视频| 久久热在线av| 真人做人爱边吃奶动态| 亚洲欧美精品综合一区二区三区| 一边摸一边抽搐一进一出视频| 国产精品免费视频内射| 天堂俺去俺来也www色官网| 国产视频一区二区在线看| 晚上一个人看的免费电影| 国产一区有黄有色的免费视频| 考比视频在线观看| 国产欧美日韩一区二区三 | www日本在线高清视频| 一级黄片播放器| 天天躁夜夜躁狠狠躁躁| 丝袜喷水一区| 人妻一区二区av| 丝袜美腿诱惑在线| 电影成人av| 又大又黄又爽视频免费| 色综合欧美亚洲国产小说| 91老司机精品| 女性被躁到高潮视频| 激情视频va一区二区三区| 18禁观看日本| 成年动漫av网址| 国产亚洲欧美在线一区二区| 亚洲七黄色美女视频| 午夜免费观看性视频| 中文字幕亚洲精品专区| 亚洲成人免费av在线播放| 亚洲av美国av| 国产男女超爽视频在线观看| 老鸭窝网址在线观看| 国产极品粉嫩免费观看在线| 中文精品一卡2卡3卡4更新| 国产成人av激情在线播放| 国语对白做爰xxxⅹ性视频网站| 国产黄色视频一区二区在线观看| 丰满饥渴人妻一区二区三| 精品人妻1区二区| 国产免费又黄又爽又色| 国产精品二区激情视频| 啦啦啦 在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 精品福利永久在线观看| 操出白浆在线播放| 免费在线观看黄色视频的| 国产精品亚洲av一区麻豆| 国产人伦9x9x在线观看| 中文字幕高清在线视频| 久久国产精品影院| 一级黄片播放器| 久久精品国产a三级三级三级| 赤兔流量卡办理| www.av在线官网国产| 最近最新中文字幕大全免费视频 | 激情五月婷婷亚洲| 啦啦啦中文免费视频观看日本| 精品久久久精品久久久| 水蜜桃什么品种好| 久久人人97超碰香蕉20202| 欧美av亚洲av综合av国产av| 久久毛片免费看一区二区三区| 女人久久www免费人成看片| 成年人免费黄色播放视频| 中文字幕另类日韩欧美亚洲嫩草| 少妇裸体淫交视频免费看高清 | 国产日韩欧美在线精品| 成人午夜精彩视频在线观看| 一级毛片黄色毛片免费观看视频| 免费看十八禁软件| 69精品国产乱码久久久| 国产成人免费观看mmmm| 欧美中文综合在线视频| av一本久久久久| netflix在线观看网站| 亚洲欧美激情在线| 日韩视频在线欧美| 国产精品九九99| 亚洲五月婷婷丁香| 另类精品久久| 在线亚洲精品国产二区图片欧美| 欧美97在线视频| 黑丝袜美女国产一区| 午夜av观看不卡| 国产精品欧美亚洲77777| 中文字幕高清在线视频| 亚洲精品第二区| 美女午夜性视频免费| 久久精品人人爽人人爽视色| 国产精品成人在线| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 国产精品一二三区在线看| avwww免费| 一级毛片黄色毛片免费观看视频| 精品国产乱码久久久久久小说| 美女扒开内裤让男人捅视频| 欧美乱码精品一区二区三区| 蜜桃国产av成人99| 一区二区日韩欧美中文字幕| 免费观看人在逋| 免费在线观看黄色视频的| 成人18禁高潮啪啪吃奶动态图| av不卡在线播放| 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 国产成人精品久久久久久| 亚洲色图 男人天堂 中文字幕| 多毛熟女@视频| 一本综合久久免费| 亚洲精品国产av蜜桃| 亚洲人成网站在线观看播放| 欧美精品一区二区大全| 久久久久视频综合| 50天的宝宝边吃奶边哭怎么回事| 午夜激情av网站| 国产在线观看jvid| 国产亚洲精品第一综合不卡| 国产真人三级小视频在线观看| 久久狼人影院| 免费高清在线观看日韩| 国产熟女午夜一区二区三区| 国产高清videossex| 国产精品熟女久久久久浪| 国产一级毛片在线| 国产一卡二卡三卡精品| 日本a在线网址| 极品人妻少妇av视频| 黄色a级毛片大全视频| 9热在线视频观看99| 国产在线观看jvid| 国产男女超爽视频在线观看| 欧美人与性动交α欧美精品济南到| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 亚洲精品在线美女| 一区二区日韩欧美中文字幕| 天堂中文最新版在线下载| 日本色播在线视频| 亚洲av电影在线观看一区二区三区| a 毛片基地| 巨乳人妻的诱惑在线观看| 丝袜美腿诱惑在线| 国产色视频综合| www.熟女人妻精品国产| 水蜜桃什么品种好| 欧美精品高潮呻吟av久久| 国产男女超爽视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 伦理电影免费视频| 免费日韩欧美在线观看| 免费黄频网站在线观看国产| 国产一区二区激情短视频 | 深夜精品福利| 汤姆久久久久久久影院中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| av不卡在线播放| 亚洲欧美色中文字幕在线| 成人亚洲精品一区在线观看| 嫁个100分男人电影在线观看 | 日韩一区二区三区影片| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 一级毛片黄色毛片免费观看视频| 香蕉国产在线看| 亚洲国产精品一区三区| 一级黄片播放器| 亚洲成av片中文字幕在线观看| 汤姆久久久久久久影院中文字幕| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| 久久久精品区二区三区| 亚洲国产看品久久| 成年美女黄网站色视频大全免费| 国产国语露脸激情在线看| 精品高清国产在线一区| 亚洲图色成人| 国产高清不卡午夜福利| 99精品久久久久人妻精品| 亚洲欧洲精品一区二区精品久久久| 亚洲国产最新在线播放| www.自偷自拍.com| 在线天堂中文资源库| 亚洲人成电影免费在线| 日本av手机在线免费观看| 久久久久久免费高清国产稀缺| 亚洲人成网站在线观看播放| 视频在线观看一区二区三区| 国产精品免费大片| a级毛片黄视频| 久久亚洲精品不卡| 亚洲黑人精品在线| 多毛熟女@视频| 麻豆乱淫一区二区| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 高潮久久久久久久久久久不卡| 欧美日韩亚洲高清精品| av有码第一页| 老司机午夜十八禁免费视频| 夜夜骑夜夜射夜夜干| 中文字幕av电影在线播放| 亚洲 国产 在线| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 99久久99久久久精品蜜桃| 99久久人妻综合| 国产有黄有色有爽视频| 亚洲综合色网址| 97人妻天天添夜夜摸| 国产主播在线观看一区二区 | 美女扒开内裤让男人捅视频| 亚洲国产最新在线播放| 欧美精品高潮呻吟av久久| 国产福利在线免费观看视频| 国产亚洲午夜精品一区二区久久| 精品福利观看| 亚洲精品一二三| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 免费人妻精品一区二区三区视频| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 午夜福利,免费看| 亚洲人成电影免费在线| 99久久99久久久精品蜜桃| 国产日韩欧美在线精品| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 午夜免费男女啪啪视频观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲综合色网址| 亚洲专区国产一区二区| 欧美黑人欧美精品刺激| 人人妻人人澡人人看| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| 亚洲人成电影观看| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产高清视频在线播放一区 | 国产欧美亚洲国产| 亚洲国产av新网站| 老司机亚洲免费影院| 国产日韩欧美在线精品| 国产精品久久久久久人妻精品电影 | 成人国产av品久久久| 欧美黑人精品巨大| 在线观看免费日韩欧美大片| 脱女人内裤的视频| 大香蕉久久成人网| 久久久久视频综合| 麻豆乱淫一区二区| 在线天堂中文资源库| 最新在线观看一区二区三区 | 国产一区有黄有色的免费视频| 免费看十八禁软件| 欧美日韩国产mv在线观看视频| 国产午夜精品一二区理论片| 一区在线观看完整版| 国产成人精品久久二区二区免费| 欧美av亚洲av综合av国产av| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| av又黄又爽大尺度在线免费看| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看 | 久久这里只有精品19| 又紧又爽又黄一区二区| 久久人妻福利社区极品人妻图片 | 久久亚洲精品不卡| 久久久亚洲精品成人影院| av一本久久久久| 欧美日韩精品网址| 精品国产一区二区三区四区第35| 国产成人影院久久av| 美女福利国产在线| 天天躁狠狠躁夜夜躁狠狠躁| 18在线观看网站| 王馨瑶露胸无遮挡在线观看| 午夜免费观看性视频| 美女主播在线视频| 欧美人与性动交α欧美软件| 国产精品国产av在线观看| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 国产一区二区激情短视频 | 人人妻人人澡人人看| 中文乱码字字幕精品一区二区三区| 人妻一区二区av| 一级毛片 在线播放| 欧美成人午夜精品| 看十八女毛片水多多多| 午夜久久久在线观看| 飞空精品影院首页| 亚洲av日韩在线播放| 精品一区二区三区av网在线观看 | 亚洲欧美一区二区三区黑人| 欧美久久黑人一区二区| 嫩草影视91久久| 亚洲国产欧美一区二区综合| 99久久综合免费| 国产av一区二区精品久久| 精品久久久久久电影网| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜一区二区| 啦啦啦在线观看免费高清www| 999精品在线视频| 在线看a的网站| 久久久久久久精品精品| 青春草视频在线免费观看| 在线观看免费午夜福利视频| 中文乱码字字幕精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 七月丁香在线播放| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 人人澡人人妻人| 国产免费又黄又爽又色| 观看av在线不卡| 国产精品免费视频内射| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡| 精品人妻一区二区三区麻豆| 这个男人来自地球电影免费观看| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 777米奇影视久久| 好男人电影高清在线观看| 亚洲美女黄色视频免费看| 亚洲欧美精品综合一区二区三区| 精品久久久久久久毛片微露脸 | 成人亚洲欧美一区二区av| 免费av中文字幕在线| 国产爽快片一区二区三区| 欧美精品一区二区免费开放| 亚洲精品第二区| 在线看a的网站| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 中国美女看黄片| 国产精品一区二区免费欧美 | 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 亚洲久久久国产精品| 国产精品人妻久久久影院| 国产精品久久久久久精品古装| 51午夜福利影视在线观看| av国产精品久久久久影院| 另类亚洲欧美激情| 777米奇影视久久| av在线app专区| 国产国语露脸激情在线看| 免费看av在线观看网站| 亚洲精品自拍成人| 超碰成人久久| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 国产真人三级小视频在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久精品古装| 丝袜人妻中文字幕| 亚洲一区中文字幕在线| 国产欧美亚洲国产| 啦啦啦在线观看免费高清www| 在线观看www视频免费| 国产成人精品无人区| 丝袜美足系列| 精品人妻熟女毛片av久久网站| 免费久久久久久久精品成人欧美视频| av天堂在线播放| 日本av免费视频播放| a 毛片基地| 亚洲九九香蕉| 高清不卡的av网站| 精品人妻在线不人妻| 亚洲精品乱久久久久久| 91字幕亚洲| 日本av免费视频播放| 亚洲专区国产一区二区| 精品免费久久久久久久清纯 | 亚洲精品av麻豆狂野| 亚洲第一青青草原| 高清av免费在线| 在线观看人妻少妇| 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 久久免费观看电影| 下体分泌物呈黄色| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 最近最新中文字幕大全免费视频 | 啦啦啦 在线观看视频| 久久综合国产亚洲精品| 久久久欧美国产精品| 国产精品 欧美亚洲| 欧美97在线视频| 国产成人欧美在线观看 | 人人妻,人人澡人人爽秒播 | 青青草视频在线视频观看| 考比视频在线观看| 亚洲综合色网址| 亚洲精品一区蜜桃| 日韩伦理黄色片| 老汉色∧v一级毛片| 久久性视频一级片| 一边摸一边做爽爽视频免费| 亚洲黑人精品在线| av不卡在线播放| 成年美女黄网站色视频大全免费| 咕卡用的链子| 久久国产精品大桥未久av| 少妇猛男粗大的猛烈进出视频| 十八禁网站网址无遮挡| 人人澡人人妻人| 精品国产一区二区三区四区第35| 日韩大片免费观看网站| 亚洲图色成人| 国产欧美日韩综合在线一区二区| 国产成人欧美| 亚洲天堂av无毛| 欧美日韩黄片免| 日本av免费视频播放| 一区二区三区激情视频| 男女边摸边吃奶| 又紧又爽又黄一区二区| 又大又爽又粗| 亚洲欧美日韩另类电影网站| 国产精品久久久久久人妻精品电影 | 丝袜在线中文字幕| 如日韩欧美国产精品一区二区三区| 国产亚洲一区二区精品| 免费人妻精品一区二区三区视频| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 国产黄色免费在线视频| 麻豆乱淫一区二区| 两性夫妻黄色片| 蜜桃国产av成人99| 男人操女人黄网站| 悠悠久久av| 婷婷色综合大香蕉| 黄色 视频免费看| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o | 视频区欧美日本亚洲| 高清不卡的av网站| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 免费观看人在逋| 日本欧美国产在线视频| 久久99一区二区三区| 亚洲欧美中文字幕日韩二区| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 午夜老司机福利片| 97在线人人人人妻| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 男人添女人高潮全过程视频| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 搡老乐熟女国产| 一本一本久久a久久精品综合妖精| svipshipincom国产片| 精品一区二区三卡| 色综合欧美亚洲国产小说| 两个人免费观看高清视频| 黄片播放在线免费| 国产一区二区激情短视频 | 国产一区二区 视频在线| 19禁男女啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | 国产成人欧美| 视频在线观看一区二区三区| 啦啦啦啦在线视频资源| 男人操女人黄网站| 91字幕亚洲| 七月丁香在线播放| 日韩 欧美 亚洲 中文字幕| 国产精品欧美亚洲77777| 国产欧美日韩一区二区三 |