• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy?

    2021-09-28 02:18:44HengAnZhou周恒安LiCai蔡立TengXu許騰YonggangZhao趙永剛andWanjunJiang江萬(wàn)軍
    Chinese Physics B 2021年9期
    關(guān)鍵詞:萬(wàn)軍恒安

    Heng-An Zhou(周恒安),Li Cai(蔡立),Teng Xu(許騰),Yonggang Zhao(趙永剛),and Wanjun Jiang(江萬(wàn)軍),?

    1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing 100084,China

    2Frontier Science Center for Quantum Information,Tsinghua University,Beijing 100084,China

    Keywords:ferrimagnet,perpendicular magnetic anisotropy,ferrite and garnet devices,crystal growth

    1.Introduction

    Rare earth iron garnet(ReIG)of composition Re3Fe5O12is one of the most interesting material systems which has continuously attracted attention in the magnetism community[1–4]for storage,[5–9]microwave devices,[10–13]oscillators,[14,15]waveguides,[16–18]magneto-optical isolators,[19–21]spin current generator[22–25]and magnonic devices.[26–30]Very recently,ReIGs with a perpendicular magnetic anisotropy(PMA)appear as a popular material system in the field of spin-orbitronics.[31–35]Particularly,the electrical manipulation of perpendicular magnetization vectors[7,36,37]and the high-speed domain wall(DW)motion,[3,38–40]both enabled by the pure spin currents(in proximity with heavy metal Pt and/or W layers)have been successfully demonstrated.For examples,motion of DW at velocities of 750 m/s[3]and even above 4000 m/s,[40]was recently observed.

    Through replacing a nonmagnetic Re element(Y,for example)by the other Re elements with large magnetic moments(Gd,[41,42]Eu,[43]Ho,[44,45]Tb,[46,47]and Dy[48,49]in particular),additional source of magnetism,together with many intriguing properties are introduced.[50–55]Using Gd3Fe5O12(GdIG)as an example,it contains three magnetic sublattices,[56,57]the a-site Fe3+ions octahedrally coordinated with the surrounding O2?ions,the d-site Fe3+ions tetrahedrally coordinated with the O2?ions,and the c-site Gd3+ions dodecahedrally coordinated with the O2?ions.[4]The moments of the a-site Fe3+ions are antiferromagnetically coupled to the moments of the d-site Fe3+ions,which also exhibit a weak ferromagnetic coupling to the moments of the c-site Gd3+ions.Through varying temperatures,the net magnetic moments of the Fe3+ions and the Gd3+ions can be fully compensated,manifesting as a magnetization compensation temperature(TM).[56–58]On the other hand,due to the slightly different g factors of the Fe and Gd elements,the net(spin/orbit)angular moments can also be fully compensated,marked as an angular moment compensation temperature(TA).These two characteristic temperatures of the GdIG films,resembling as the equivalent properties of antiferromagnets,have recently brought new exciting opportunities for spintronics.[59,60]The most recently reported ultrafast DW motion[3,38–40]and strong magnon–phonon coupling[61–63]are just a few representative examples.It should be mentioned here that among all ReIGs,GdIG is particularly promising as it exhibits the highest(near room temperature)compensation temperature,[56,57]which promises its potential for room temperature ultrafast spintronics.

    Note that pulsed laser deposition(PLD)is frequently used for synthesizing high quality garnet films,and complex oxides in general.[43,64,65]The size of sample is however,typically limited to a few millimeters.[66,67]Recently,off-axis magnetron sputtering has been used for growing garnet films with high quality,[68,69]implying that magnetron sputtering is also suitable for growing large area garnet films with high uniformity.However,a systematic investigation of the growth condition and annealing condition on the properties in GdIG is still lacking.

    Towards spin-orbitronic applications,GdIG(or ReIG in general)thin films with a PMA at room temperature are demanded.To obtain a GdIG film with a PMA,a tensile strain arising from the lattice mismatch between the GdIG film and the substrate should be carefully examined.[70–72]Since the lattice constant of GdIG is 1.2471 nm,[56–58]we will use single crystalline Gd3Sc2Ga3O12(GSGG)substrate with a lattice constant 1.2554 nm,which could provide a maximum tensile strain that can be beneficial for stabilizing PMA.Note that different growth conditions,including the growth temperature,the annealing temperature/time,the lattice mismatch between substrates and films(and the resulting strain),not only affect the growth dynamics of GdIG films,but also substantially alter the magnetic properties.In this study,we will systematically study the surface morphological,the structural,and the magnetic properties of GdIG films grown under different conditions,aiming for achieving a room temperature PMA and a smooth surface,together with a low effective magnetic damping parameter.

    Following this motivation,the evolution of PMA,the surface roughness,and the magnetization compensation of GdIG films will be investigated through changing(a)the annealing temperature,(b)the growth temperature,(c)the substrate preannealing temperature,(d)the annealing duration,and(e)the lattice mismatch between different substrates.In the very end,we will quantify(f)the evolution of magnetization compensation temperature as a function of growth parameters and(g)the effective Gilbert damping parameter in the GdIG/Pt bilayer.

    2.Results and analyses

    GdIG thin films with a fixed(nominal)thickness of 15 nm were deposited on top of various(111)-oriented single crystalline substrates by using a radio-frequency(RF)magnetron sputtering technique,from a commercial target with a nominal composition of Gd3Fe5O12by using an ultrahigh vacuum(UHV)sputtering system(AJA-Orion 8).The base pressure of the main chamber is better than 3×10?8Torr.During the deposition,the argon pressure was fixed at 3 mTorr,the deposition rate of GdIG is calibrated to be 0.6 nm/min.An in-situ annealing process could be conducted in the sputtering chamber under a mixture of argon and oxygen environment,with an oxygen partial pressure of 20% of 1 mTorr.After annealing,all films were naturally cooled down to room temperature.

    A Gd3Fe5O12target of nominal composition(99.99%)and various single crystalline substrates used in the present work were commercially available from Kejing,LTD(Hefei,China).X-ray diffraction(XRD)experiments were done by using a Smartlab x-ray diffractometer(Rigaku).Surface morphology was characterized by using a Bruker atomic force microscope(AFM).Magnetometry measurements were done by using a Quantum Design magnetic properties measurement system(MPMS).Transport measurements were done by using a Quantum Design physical properties measurement system(PPMS).All magnetometry,AFM,XRD,and spin pumping experiments were performed at room temperature,unless otherwise specified.

    2.1.Annealing effects on the films grown at room temperature

    We first synthesized a series of GdIG films of fixed thickness 15 nm on the GSGG(111)-oriented single crystalline substrates at room temperature,which were subsequently annealed in-situ in the growth chamber under different annealing temperatures(Tan).Tanranges from 400°C to 800°C in 100°C steps,with a fixed duration of 3 hours.Figures 1(a)–1(f)show the corresponding perpendicular magnetization hysteresis loops(M–Hz)of the as-grown GdIG film and the GdIG films annealed at different Tan.The as-grown GdIG film does not show any measurable magnetic signal.For Tan≥600°C,both magnetic signals and square-like hysteresis loops appear,which confirm the presence of PMA of the prepared GdIG films.The evolution of the saturation magnetization(Ms)and the coercivity(Hc),as a function of Tan,are summarized in Fig.1(g).It is clear that Msstarts to increase from Tan=500°C,which reaches a constant value(Ms=25 emu/cc)when Tan≥600°C.The corresponding Hcincreases following the increase of Tan.

    To correlate the magnetic properties with the film quality,we further studied the surface morphology and the crystal structure of these GdIG films.The evolution of the surface roughness(obtained by performing AFM experiments)as a function of Tanis shown in Figs.2(a)–2(f).A smooth surface of the as-grown GdIG film and the film annealed at 400°C and 500°C with a roughness value around 0.15 nm(rms)can be seen.It is also noted that the grain size increases following the increase of Tan(≥600°C).Monotonic increases of the height depth(defined as the distance between the highest peak and lowest valley)and roughness(rms)as a function of Tanare further shown in Fig.2(g),which contribute to the enhancement of Hc.

    Fig.1.(a)–(f)The magnetization hysteresis loops(M–Hz)of the as-grown GdIG film and the GdIG films that were annealed at different annealing temperatures(Tan).Magnetic fields were applied normal to the film plane(i.e.,along the z direction).(g)The evolution of the saturation magnetization(Ms)and coercivity(Hc)as a function of Tan.

    Fig.2.(a)–(f)A series of AFM images for GdIG films.The increased grain sizes can be found with the increase of annealing temperature Tan.(g)The height depth and the surface roughness(rms)as a function of Tan.(h)The corresponding XRD spectra of GdIG films,in which diffraction peaks of the GSGG(444)crystal orientation can be seen,together with the GdIG(444)peak when Tan≥600 °C.

    It has been previously mentioned that GdIG film with PMA is an ideal platform for spin–orbitronics.For the currentinduced spin–orbit torque(SOT)manipulation of the perpendicular magnetization or DW dynamics in the GdIG films,a very thin capping layer of heavy metals(~4 nm)with a strong spin–orbit interaction is typically required.For the annealed GdIG films with a PMA,a typical height depth is around 8 nm(Tan=600°C).Thus,a 4 nm heavy metal capping layer cannot ensure a full coverage of GdIG films,which prohibits a further SOT study in these films.

    In order to probe the structural properties,we have performed XRD experiments.The x-ray spectra of GdIG films measured around the(444)diffraction peaks of the substrate are shown in Fig.2(h).It can be seen that the(444)diffraction peaks of the GdIG films are only visible when Tan≥600°C,which indicate the crystallization of GdIG films.The evolution of the film peak position with respect to the substrate peak position reveals an expected tensile strain from the substrate,which is also consistent with the occurrence of PMA.

    2.2.Varying the growth temperature

    In the following,we will examine the influence of the growth temperature(Tgr)on the film quality.At a relative high growth temperature,atoms with sufficient kinetic energy could easily find the lattice matched location on the substrate,which could naturally give rise to a smoother surface of GdIG film,together with a strong PMA.Note that the growth dynamics by changing growth/annealing temperature(Tgr/Tan)could be different.In the former case,atoms could move to the corresponding lattice position(during growth)and form a highquality film.In the latter case,atoms in a grain are not able to move(after growth)between grains during annealing.

    Fig.3.(a)–(c)TheAFM images of GdIG flimsgrown atdifferent temperatures(Tgr).(d)The XRDspectraof GdIG flimsdeposited at 600°C,700 °C,and800 °C,respectively.(e)–(g)Thecorresponding M–Hz loops.(h)TheevolutionofMs and Hc as a function of Tgr.(i)–(k)The SMR measured intheHallgeometryinGdIG/Pt(15 nm/4 nm)bilayers.Shown intheinsetis an opticalimage ofHall bardevice.The scale bar is 20μm.(l)The saturated as function of Tgr.(m)–(o)The measured in a planar Hall geometry.(p)The effective feild of PMA(μ0Hk)as a function of Tgr.

    Since our previous experiments suggested that GdIG films can crystallize at 600°C(during the annealing),and meanwhile,exhibit PMA,we will explore the properties of the GdIG films grown at 600°C,700°C,and 800°C respectively.After deposition,an in situ annealing at the corresponding growth temperature for 3 hours was conducted.Figures 3(a)–3(c)are the AFM images of these three samples,in which no visible grains can be seen from the AFM images.The surfaces are very smooth with a roughness(rms)less than 0.19 nm,in stark contrast with the films grown at room temperature(Fig.2).The corresponding XRD spectra of the GdIG films show(444)diffraction peaks of both substrate and GdIG film,as shown in Fig.3(d).Intensity oscillations can also be observed,indicating a high-quality crystallinity and a smooth interface.

    2.3.Varying the substrate preannealing temperature

    It is also known that the substrate quality could affect the magnetic and structural properties of films.We will subsequently examine whether a preannealing procedure on the aspurchased substrate could influence both the film roughness and the strength of PMA.These substrates were preannealed at 500°C for 0.5 hour before growth in vacuum,as most of adhesive carbides on the substrate will disappear at 500°C,which could likely give rise to a better film quality.After the preannealing process,we deposited GdIG films at 600°C and 700°C,respectively,which were subsequently followed by an in situ annealing at the corresponding growth temperature for 3 hours.The AFM images shown in Figs.4(a)and 4(b)indicate that both films exhibit very smooth surfaces with roughnesses(rms)of 0.17 nm and 0.18 nm,respectively.The magnetic measurements show that the M–Hzloops(Figs.4(c)and 4(d))remain the same as those of GdIG films which did not involve a substrate preannealing(Fig.3).These results indicate that preannealing of the as-purchased substrates is not essential,for which could not improve the quality of the GdIG films.

    Fig.4.(a)and(b)AFM images of GdIG films grown on the preannealed substrates.Before the growth of GdIG,GSGG substrates were preannealed at 500 °C for 0.5 hour.The growth temperature of GdIG film is 600°C and 700°C,respectively.(c)and(d)M–Hz loops of GdIG films,which remain approximately the same as that of GdIG films grown on the as-purchased substrates(Fig.3).

    2.4.Varying the duration of annealing time

    Fig.5.(a)and(b)The AFM images of GdIG films annealed at 700 °C for 2 hours,1 hour,0.2 hour,and 0 hour,respectively.(e)–(h)The M–Hz loops of GdIG films that were being annealed for different durations of time.(i)–(l)and(m)–(p)The corresponding AHE/PHE curves in GdIG/Pt bilayers.(q)and(r)The annealing duration dependent Hc and Hk,obtained from AHE and PHE measurements,respectively.

    2.5.Varying substrates with different lattice constants

    To elucidate the important role of the strain for stabilizing PMA in GdIG films,we will use different single crystalline garnet substrates with a continuous change of lattice constants. This is made possible by using commercially available garnet substrates,including Gd3Sc2Ga3O12(GSGG),Gd0.63Y2.37Sc2Ga3O12(GYSGG),Gd2.6Ca0.4Ga4.1Mg0.25Zr0.65O12(SGGG),and Y3Sc2Ga3O5(YSGG)(Kejing,LTD).The nominal lattice constants are 1.2554 nm,1.2507 nm,1.248 nm,and 1.2426 nm,respectively.These substrates thus provide an ideal platform for examining the evolution of PMA from the tensile strain to the compressive strain.The GdIG films were all deposited at 700°C,and followed by an in situ annealing at 700°C for 3 hours.

    Figures 6(a)–6(d)are the AFM images of GdIG films,all of which exhibit a roughness around 0.17 nm(rms),a result similar to the previous experiments(Figs.3 and 4).In order to characterize the quality of the GdIG films and calculate the lattice constant of the used substrates,we also performed XRD experiments.Based on the Bragg’s law,the lattice constant can be calculated.The positions of(444)peaks lead the lattice constants of GSGG,GYSGG,SGGG,and YSGG to be determined as 1.2552 nm,1.2506 nm,1.2481 nm,and 1.2426 nm,respectively.These calculated lattice constants are tabulated in Table 1.Additionally,the Laue fringes on both sides of the(444)peak can be observed from the XRD spectra,as shown in Fig.6(e).

    While both the crystal structure and the surface morphology are very high-quality,the magnetic properties of the GdIG films grown on these different substrates are however,quite different.Figure 6(f)shows the M–Hzloops,which clearly evidence a substrate dependence of magnetic properties.In particular,with a small lattice constant change of 1%between GSGG and YSGG substrates,the magnetic remanence ratio drastically changed from 100%to 5%,as shown in Fig.6(g).The resultant magnetic anisotropy,as reflected by the shape of M–Hzloops,changes accordingly.These results indicate the important role of lattice mismatch for stabilizing PMA in GdIG films.

    Table 1.Detailed material specific parameters of substrates and GdIG films.

    Fig.6.(a)–(d)The AFM images of GdIG films deposited on top of different single crystalline substrates.(e)The corresponding XRD spectra of GdIG films.(f)The associated M–Hz loops.(g)The lattice mismatch dependent magnetic remanence ratio.

    2.6.Evolution of magnetization compensation temperatures

    Fig.7.The–T curves measured in GdIG/Pt bilayer with Hz=1 T.Data is shifted(up and down)for clarity.The sudden jump of –T is identified as TM.

    2.7.The Gilbert damping of GdIG

    One of the unique motivations of studying the compensated ferrimagnetic insulator is the absence of conduction electrons,which leads to a low damping parameter that promises their usage in low power consumption spintronics.In the following,we will use a spin pumping technique[25,77]to determine the amplitude of effective damping parameterαeffin a GdIG/Pt bilayer deposited at 700°C and in situ annealed for 2 hours.In this experiment,we fabricated GdIG/Pt microstripes which were integrated with a co-planer waveguide(CPW),as shown in the inset to Fig.8(a).When a microwave current is fed into the CPW,the accompanied oscillating rf magnetic field drives the precession of magnetization of the GdIG films,which results in the pumping of spin current into the adjacent heavy metal Pt layer.An electrical voltage signal can be subsequently detected,as a result of the inverse spin Hall effect of the Pt layer.

    Figure 8(a)shows the spin-pumping voltages measured at different microwave frequencies.During this measurement,the magnetic field HIPwas applied in plane with an angle 45°with respect to the GdIG/Pt microstripe.Each spectrum exhibits two symmetrical resonant peaks with an opposite sign,which evolve systematically as a function of the resonant frequency.The resonant linewidth can be obtained by using V=VspΔH2/[(H?Hr)2+ΔH2],where Vsp,ΔH,and Hrare the amplitudes of spin pumping voltage,linewidth,and resonant field,respectively.Through studying the dependence of the linewidth as a function of the microwave frequency,the effective damping parameter(αeff)can be estimated based on ΔH=ΔH0+αeffω/γ,as shown in Fig.8(b).Considering a gyromagnetic ratioγ=2.8 GHz/kOe,μ0ΔH0=8 mT,αeff=0.04±0.01 can be obtained.Specifically,theαeffof GdIG/Pt is bigger than that of YIG/Pt(1×10?4to 1×10?3).[25,78]The enhanced damping parameter may originate from the lattice mismatch between GdIG and substrate,or the induced noncollinear spin profile of the Fe3+sublattices due to the presence of the heavy Gd3+ions.[79,80]

    Fig.8.(a)The resonant spectra measured at different microwave frequencies in the presence of in-pane magnetic fields HIP.Shown in the inset is an optical image of the device,in which GdIG/Pt microstripe is located between CPW.The scar bar is 50μm.The fitted spin-pumping signal is highlighted in red.(b)The evolution of resonant widths as a function of resonant frequency which can be linearly fitted by using ΔH=ΔH0+αeffω/γ.

    3.Conclusion

    In summary,we have systematically studied the surface morphology,the structural properties,and the magnetic properties of compensated ferrimagnetic insulator thin films of composition Gd3Fe5O12(GdIG).In particular,the influence of the annealing temperatures/durations,the growth temperatures,and the choice of substrates for ensuring both highquality growth and the presence of a perpendicular magnetic anisotropy(PMA)were studied.The GdIG films grown at room temperature and annealed at temperature higher than 600°C exhibit PMA,but a very rough surface.The surface roughness can be substantially improved by changing the growth temperature(≥600°C).And we have found that the strength of PMA reaches maximum when depositing GdIG at 700°C and following an in situ annealing for 2 hours at 700°C.Furthermore,the effect from the lattice mismatch(and from tensile strain to compressive strain)by choosing different single crystalline ReIG substrates was also examined.In the end,we have also quantified the effective magnetic damping parameter(αeff=0.04±0.01)through a spin pumping experiment in a GdIG/Pt microstripe.Through optimizing the growth conditions of GdIG films,our studies could provide useful information for synthesizing similar perpendicularly magnetized ReIG films and their heterostructures,which could be beneficial for developing the efficient compensated ferrimagnetic spintronics.

    猜你喜歡
    萬(wàn)軍恒安
    北京中恒安科技股份有限公司
    富婆投毒前夫:離婚不離家背后的末路瘋狂
    中醫(yī)藥堂傳奇 第四十八回 丁甘仁滬上勝洋醫(yī) 丁濟(jì)萬(wàn)軍營(yíng)救傷員
    誰(shuí)的執(zhí)念誰(shuí)的悲哀:子虛烏有300萬(wàn)人性異動(dòng)
    重慶恒安戴斯大酒店
    今日重慶(2017年6期)2017-07-05 13:09:17
    恒安集團(tuán)啟動(dòng)
    福建輕紡(2017年12期)2017-04-10 12:56:35
    恒安特柔小輕芯嬰兒紙尿褲嘗新上市——更柔軟,讓薄更舒服
    生活用紙(2016年7期)2017-01-19 07:36:49
    恒安簽約普華永道打造
    生活用紙(2016年5期)2017-01-19 07:36:03
    恒安國(guó)際2015年實(shí)現(xiàn)營(yíng)收 244.5億港元
    生活用紙(2016年5期)2017-01-19 07:36:01
    水能生火
    欧美中文综合在线视频| 岛国在线免费视频观看| 哪里可以看免费的av片| 精品乱码久久久久久99久播| 欧美一区二区国产精品久久精品| 亚洲熟妇中文字幕五十中出| 人人妻,人人澡人人爽秒播| 精品人妻1区二区| 亚洲精品成人久久久久久| 一a级毛片在线观看| 黄色女人牲交| 岛国在线观看网站| 成人一区二区视频在线观看| 天堂av国产一区二区熟女人妻| 国产熟女xx| 欧美日韩综合久久久久久 | 亚洲美女黄片视频| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产 | 日本三级黄在线观看| 国产探花极品一区二区| 亚洲精品一区av在线观看| 亚洲国产欧洲综合997久久,| 日韩欧美精品免费久久 | 亚洲精品一卡2卡三卡4卡5卡| 无遮挡黄片免费观看| 国产精品自产拍在线观看55亚洲| 99久久精品国产亚洲精品| 看片在线看免费视频| 国产99白浆流出| 丰满人妻一区二区三区视频av | 亚洲va日本ⅴa欧美va伊人久久| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 亚洲五月婷婷丁香| 九色国产91popny在线| 小说图片视频综合网站| 色吧在线观看| 午夜精品久久久久久毛片777| 国产色爽女视频免费观看| 国产精品99久久99久久久不卡| 在线观看一区二区三区| 一边摸一边抽搐一进一小说| 日本一本二区三区精品| 久久久久久人人人人人| 免费高清视频大片| 黄色片一级片一级黄色片| 免费观看精品视频网站| 97碰自拍视频| 国产精品精品国产色婷婷| 99热6这里只有精品| 中文字幕高清在线视频| 亚洲乱码一区二区免费版| 综合色av麻豆| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 91字幕亚洲| 国产精品日韩av在线免费观看| 精品熟女少妇八av免费久了| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| 少妇裸体淫交视频免费看高清| 国内精品久久久久久久电影| 一本综合久久免费| 国内揄拍国产精品人妻在线| 啪啪无遮挡十八禁网站| 亚洲av成人精品一区久久| 一区二区三区激情视频| 久久久久久大精品| 中出人妻视频一区二区| 特级一级黄色大片| 中文字幕人成人乱码亚洲影| 色播亚洲综合网| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 麻豆国产97在线/欧美| 国产真实乱freesex| 可以在线观看毛片的网站| 日韩人妻高清精品专区| 免费大片18禁| 丰满人妻熟妇乱又伦精品不卡| 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 色播亚洲综合网| 国产久久久一区二区三区| 波野结衣二区三区在线 | 亚洲第一欧美日韩一区二区三区| 熟妇人妻久久中文字幕3abv| 99久久精品热视频| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| 久久欧美精品欧美久久欧美| 欧美在线一区亚洲| 亚洲人成网站高清观看| 99国产极品粉嫩在线观看| 嫩草影院精品99| 成年免费大片在线观看| 欧美日韩精品网址| 亚洲18禁久久av| 亚洲欧美日韩高清专用| 欧美日韩国产亚洲二区| www.色视频.com| 性色avwww在线观看| 淫妇啪啪啪对白视频| av在线蜜桃| 有码 亚洲区| 国产成人av教育| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 日本免费a在线| 亚洲欧美精品综合久久99| 色老头精品视频在线观看| 国内揄拍国产精品人妻在线| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 91在线精品国自产拍蜜月 | АⅤ资源中文在线天堂| 久99久视频精品免费| 国产又黄又爽又无遮挡在线| 欧美日本视频| 成人永久免费在线观看视频| 亚洲 欧美 日韩 在线 免费| 午夜福利在线在线| 久久精品夜夜夜夜夜久久蜜豆| or卡值多少钱| 免费观看的影片在线观看| 午夜福利成人在线免费观看| 人人妻人人看人人澡| 精品国产超薄肉色丝袜足j| www日本黄色视频网| 九九热线精品视视频播放| 亚洲最大成人手机在线| 99热这里只有精品一区| 亚洲无线观看免费| 欧美又色又爽又黄视频| 哪里可以看免费的av片| 毛片女人毛片| 中文字幕精品亚洲无线码一区| 韩国av一区二区三区四区| 亚洲成人中文字幕在线播放| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 国产野战对白在线观看| 毛片女人毛片| 亚洲va日本ⅴa欧美va伊人久久| 国产伦精品一区二区三区视频9 | 国产视频一区二区在线看| 亚洲av成人av| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 国产黄a三级三级三级人| xxxwww97欧美| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲国产一区二区在线观看| 国内精品美女久久久久久| 中文字幕熟女人妻在线| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| 天美传媒精品一区二区| 国产 一区 欧美 日韩| 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 不卡一级毛片| 在线观看美女被高潮喷水网站 | 日日夜夜操网爽| 日本与韩国留学比较| 母亲3免费完整高清在线观看| 精品久久久久久久久久免费视频| av中文乱码字幕在线| 69av精品久久久久久| 久久人妻av系列| 波多野结衣高清无吗| 久久久久久久精品吃奶| 久久久久久久亚洲中文字幕 | 日本免费a在线| 久久久久精品国产欧美久久久| 国产高潮美女av| 听说在线观看完整版免费高清| 国产精品久久电影中文字幕| 日本黄大片高清| 免费大片18禁| 国产精品电影一区二区三区| 男女视频在线观看网站免费| 国产视频内射| 国内精品美女久久久久久| 天天添夜夜摸| 久久国产精品人妻蜜桃| 国产午夜精品久久久久久一区二区三区 | 老汉色av国产亚洲站长工具| 亚洲久久久久久中文字幕| 小说图片视频综合网站| 天美传媒精品一区二区| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看 | 国产黄片美女视频| or卡值多少钱| 高潮久久久久久久久久久不卡| 日韩欧美精品v在线| 久久久久九九精品影院| 日本熟妇午夜| 久久香蕉国产精品| 国产高清videossex| 国产精品综合久久久久久久免费| 在线观看午夜福利视频| 欧美高清成人免费视频www| 在线观看一区二区三区| 亚洲成a人片在线一区二区| 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| 天堂影院成人在线观看| 美女大奶头视频| 毛片女人毛片| 亚洲av二区三区四区| 亚洲av日韩精品久久久久久密| 亚洲不卡免费看| 又粗又爽又猛毛片免费看| 丝袜美腿在线中文| 欧美日韩国产亚洲二区| 国产三级黄色录像| 亚洲av成人精品一区久久| 亚洲国产精品sss在线观看| 午夜免费激情av| 亚洲国产日韩欧美精品在线观看 | 中文字幕高清在线视频| 国产精品一区二区三区四区久久| 亚洲国产精品久久男人天堂| 无遮挡黄片免费观看| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| 最近在线观看免费完整版| 好看av亚洲va欧美ⅴa在| 美女黄网站色视频| 成熟少妇高潮喷水视频| 国产三级在线视频| a在线观看视频网站| 亚洲一区二区三区不卡视频| 琪琪午夜伦伦电影理论片6080| 法律面前人人平等表现在哪些方面| 国产午夜福利久久久久久| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 高清日韩中文字幕在线| 欧美极品一区二区三区四区| 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 国产三级黄色录像| 最新美女视频免费是黄的| 国产成人系列免费观看| xxxwww97欧美| 嫩草影视91久久| 禁无遮挡网站| 欧美区成人在线视频| 观看美女的网站| 窝窝影院91人妻| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| 成人18禁在线播放| xxxwww97欧美| 在线十欧美十亚洲十日本专区| 亚洲片人在线观看| 午夜老司机福利剧场| 男女那种视频在线观看| 久久久久久人人人人人| 在线观看美女被高潮喷水网站 | 1024手机看黄色片| 成人精品一区二区免费| 国产真实伦视频高清在线观看 | 亚洲精品一区av在线观看| av视频在线观看入口| 真实男女啪啪啪动态图| 中文字幕人成人乱码亚洲影| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 又黄又粗又硬又大视频| 搡女人真爽免费视频火全软件 | 国产乱人视频| 黄片大片在线免费观看| 国产乱人伦免费视频| 偷拍熟女少妇极品色| 中文字幕久久专区| 日本精品一区二区三区蜜桃| 欧美大码av| 午夜a级毛片| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 亚洲欧美日韩卡通动漫| 欧美乱色亚洲激情| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 国产一区二区激情短视频| 最近最新中文字幕大全电影3| 久久精品夜夜夜夜夜久久蜜豆| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 久久久色成人| 亚洲精品在线美女| 免费观看的影片在线观看| 婷婷精品国产亚洲av| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 国产精品三级大全| 看免费av毛片| 九色成人免费人妻av| 观看免费一级毛片| 欧美黄色片欧美黄色片| 日本三级黄在线观看| 亚洲精品成人久久久久久| xxxwww97欧美| 国产三级在线视频| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 久久久国产成人精品二区| 伊人久久大香线蕉亚洲五| 国产淫片久久久久久久久 | 国产高清videossex| 动漫黄色视频在线观看| 欧美一区二区国产精品久久精品| 久久精品影院6| 亚洲最大成人手机在线| 婷婷亚洲欧美| АⅤ资源中文在线天堂| 亚洲av电影不卡..在线观看| 国产精品亚洲一级av第二区| 亚洲精品美女久久久久99蜜臀| 高清毛片免费观看视频网站| 天堂网av新在线| 99久久精品热视频| 精品久久久久久久久久久久久| 在线观看一区二区三区| 日韩欧美在线二视频| 少妇丰满av| www国产在线视频色| 伊人久久大香线蕉亚洲五| 操出白浆在线播放| 欧美又色又爽又黄视频| 日本黄色片子视频| 在线视频色国产色| 久久精品国产99精品国产亚洲性色| 人人妻人人澡欧美一区二区| www国产在线视频色| 精品久久久久久,| 美女高潮的动态| 亚洲精品一区av在线观看| 久久久久性生活片| 欧美av亚洲av综合av国产av| 蜜桃亚洲精品一区二区三区| 无遮挡黄片免费观看| 国产精品亚洲av一区麻豆| 国产三级在线视频| 欧美一级毛片孕妇| 少妇丰满av| 成年女人毛片免费观看观看9| 日本与韩国留学比较| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 国产69精品久久久久777片| 国产午夜精品久久久久久一区二区三区 | 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 久久久国产成人精品二区| 在线视频色国产色| 亚洲久久久久久中文字幕| 国产高清激情床上av| 校园春色视频在线观看| 婷婷六月久久综合丁香| 久久人妻av系列| 深夜精品福利| 国产激情偷乱视频一区二区| 午夜福利免费观看在线| 搞女人的毛片| 欧美成人a在线观看| 成年版毛片免费区| 嫁个100分男人电影在线观看| 欧美区成人在线视频| 午夜免费激情av| 亚洲精品在线美女| 在线观看免费午夜福利视频| 此物有八面人人有两片| 女人被狂操c到高潮| 精华霜和精华液先用哪个| 人妻久久中文字幕网| 最新中文字幕久久久久| 午夜久久久久精精品| 宅男免费午夜| av专区在线播放| 亚洲国产欧美人成| 韩国av一区二区三区四区| 在线观看美女被高潮喷水网站 | 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 成人av一区二区三区在线看| 女警被强在线播放| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 国内揄拍国产精品人妻在线| 真实男女啪啪啪动态图| 国产一区二区亚洲精品在线观看| 亚洲一区二区三区不卡视频| 啪啪无遮挡十八禁网站| 动漫黄色视频在线观看| 国产成人av教育| 国产野战对白在线观看| 亚洲国产中文字幕在线视频| 岛国视频午夜一区免费看| 啦啦啦观看免费观看视频高清| 国产一区二区亚洲精品在线观看| 欧美+日韩+精品| 最近最新中文字幕大全免费视频| 久99久视频精品免费| 亚洲国产欧美网| 成年女人看的毛片在线观看| 欧美zozozo另类| 亚洲国产欧美网| АⅤ资源中文在线天堂| 99久久成人亚洲精品观看| 五月伊人婷婷丁香| 99久久精品国产亚洲精品| 国产高潮美女av| 国产精华一区二区三区| 黄色成人免费大全| 欧美在线一区亚洲| 成人永久免费在线观看视频| 久久久国产精品麻豆| 午夜精品一区二区三区免费看| 精品国产美女av久久久久小说| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| bbb黄色大片| 欧美黄色片欧美黄色片| www.熟女人妻精品国产| 美女大奶头视频| 日本黄色片子视频| 国产主播在线观看一区二区| 国产高清三级在线| 久久久久久国产a免费观看| 国产熟女xx| 亚洲国产精品成人综合色| 午夜两性在线视频| 操出白浆在线播放| 亚洲精品成人久久久久久| 国产高清videossex| 国产国拍精品亚洲av在线观看 | 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 最近最新中文字幕大全免费视频| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片午夜丰满| 国产真实伦视频高清在线观看 | 99久久综合精品五月天人人| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清| 舔av片在线| 欧美精品啪啪一区二区三区| 99riav亚洲国产免费| 国产爱豆传媒在线观看| 蜜桃亚洲精品一区二区三区| 国产精品免费一区二区三区在线| 中文字幕av在线有码专区| 在线观看美女被高潮喷水网站 | 91字幕亚洲| 99久国产av精品| 精品国产美女av久久久久小说| 成人欧美大片| 国产高清有码在线观看视频| 精品一区二区三区视频在线观看免费| 国内精品久久久久久久电影| 国产精品av视频在线免费观看| 夜夜躁狠狠躁天天躁| or卡值多少钱| 变态另类成人亚洲欧美熟女| 99精品久久久久人妻精品| 日韩成人在线观看一区二区三区| 一本精品99久久精品77| 中文字幕熟女人妻在线| 亚洲精品一卡2卡三卡4卡5卡| 国产真实乱freesex| 亚洲国产精品sss在线观看| 亚洲天堂国产精品一区在线| 丰满乱子伦码专区| h日本视频在线播放| av女优亚洲男人天堂| 亚洲成人精品中文字幕电影| 国产 一区 欧美 日韩| a级毛片a级免费在线| 国产毛片a区久久久久| 男人和女人高潮做爰伦理| 男女午夜视频在线观看| 日韩欧美在线二视频| 亚洲内射少妇av| 搞女人的毛片| 欧美乱妇无乱码| 亚洲美女黄片视频| 两个人看的免费小视频| 黄色视频,在线免费观看| av天堂中文字幕网| 99热6这里只有精品| 国产高清激情床上av| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 国产一级毛片七仙女欲春2| 日本黄色片子视频| 丰满人妻一区二区三区视频av | 99在线人妻在线中文字幕| 日韩国内少妇激情av| 亚洲av免费高清在线观看| 亚洲成人精品中文字幕电影| 亚洲人成网站高清观看| 国产伦人伦偷精品视频| 日本黄大片高清| 国产97色在线日韩免费| 免费电影在线观看免费观看| 亚洲在线自拍视频| 十八禁网站免费在线| 天堂av国产一区二区熟女人妻| 欧美日韩瑟瑟在线播放| 天美传媒精品一区二区| 成人国产综合亚洲| 久久久久国内视频| 91久久精品电影网| 最近在线观看免费完整版| 我的老师免费观看完整版| 免费在线观看亚洲国产| 精华霜和精华液先用哪个| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 午夜福利成人在线免费观看| 国产精品,欧美在线| 波多野结衣巨乳人妻| 51午夜福利影视在线观看| 女同久久另类99精品国产91| 国产美女午夜福利| 精品国产超薄肉色丝袜足j| 午夜激情欧美在线| 亚洲成人中文字幕在线播放| av黄色大香蕉| 国产一区二区激情短视频| 亚洲一区二区三区不卡视频| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 国产97色在线日韩免费| 久久这里只有精品中国| 国产成人a区在线观看| 露出奶头的视频| 国内精品一区二区在线观看| 亚洲精品影视一区二区三区av| 国产一级毛片七仙女欲春2| 免费在线观看亚洲国产| 男女下面进入的视频免费午夜| 淫妇啪啪啪对白视频| 综合色av麻豆| 国产欧美日韩精品一区二区| 香蕉丝袜av| 精品不卡国产一区二区三区| 国产真实乱freesex| 91av网一区二区| 真实男女啪啪啪动态图| 久久久久久大精品| 天天一区二区日本电影三级| 欧美激情在线99| 午夜两性在线视频| 亚洲最大成人手机在线| 日韩免费av在线播放| 91麻豆av在线| 美女高潮喷水抽搐中文字幕| 午夜免费男女啪啪视频观看 | 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 久久久久久人人人人人| 桃色一区二区三区在线观看| 国产一区在线观看成人免费| 高清在线国产一区| 国产国拍精品亚洲av在线观看 | 国产一区在线观看成人免费| 尤物成人国产欧美一区二区三区| 波多野结衣高清作品| 亚洲成av人片在线播放无| 亚洲av熟女| 亚洲国产高清在线一区二区三| 18禁黄网站禁片午夜丰满| 少妇人妻一区二区三区视频| 国产久久久一区二区三区| 一二三四社区在线视频社区8| 亚洲午夜理论影院| 国产高清有码在线观看视频| 成人特级黄色片久久久久久久| 欧美日韩福利视频一区二区| 在线视频色国产色| 日韩欧美国产在线观看| 长腿黑丝高跟| 亚洲最大成人中文| 精品无人区乱码1区二区| 亚洲18禁久久av| 国产精品99久久99久久久不卡| 最新在线观看一区二区三区| 久久香蕉国产精品| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看| 国产精品自产拍在线观看55亚洲| 国产一级毛片七仙女欲春2|