• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures?

    2021-03-11 08:34:00GuoWuWang王國(guó)武ChunShengGuo郭春生LiangQiao喬亮TaoWang王濤andFaShenLi李發(fā)伸
    Chinese Physics B 2021年2期
    關(guān)鍵詞:王濤春生王國(guó)

    Guo-Wu Wang(王國(guó)武), Chun-Sheng Guo(郭春生), Liang Qiao(喬亮),Tao Wang(王濤),3,?, and Fa-Shen Li(李發(fā)伸)

    1Key Laboratory for Magnetism and Magnetic Materials of MOE,Lanzhou University,Lanzhou 730000,China

    2Guangzhou Newlife Magnet Electricity Co.,Ltd.,Guangzhou 511356,China

    3Key Laboratory of Special Function Materials and Structure Design(Ministry of Education),Lanzhou University,Lanzhou 730000,China

    Keywords: soft magnetic composite,high frequency magnetic property,power electronic,core loss

    1. Introduction

    Power electronic equipment(such as sensors,transformers, and motors) is widely used in the energy field, including the generation, transmission, and conversion of electrical energy. However, problems such as severe heating, low energy density, and large size and mass result in high energy loss and low energy conversion efficiency of power electronic devices.[1–5]For example, according to the International Energy Agency,if all industrial motors were driven by a new generation of power electronic devices,more than 300×106kWh of electricity would be saved globally by 2030.[1,6]Therefore,to reduce the electricity consumption throughout industrial society,the next-generation power electronics must meet the requirements of high energy density,high energy conversion efficiency, miniaturization, and lightness. According to power electronics,increasing the operating frequency can reduce the size of the devices’ inductance and capacitance while keeping the ripple voltage constant.[1]Therefore,developing highfrequency soft magnetic materials(SMMs)that can work efficiently at high frequencies is the key to producing energy electronic devices with high energy density. The development of wide bandgap (WBG) semiconductors (SiC and GaN) makes it possible for power electronic devices to work at higher frequencies with higher energy density and energy conversion efficiency.[7]However,the SMMs needed for power electronic devices remain lacking.

    At present, due to the advantages of high permeability,low core loss, and cheap price, soft ferrites, such as MnZn,NiZn, and NiZnCu ferrites, almost monopolize the SMMs in all power electronic devices.[8–16]However, these materials have an unsurmountable defect that their low saturation magnetization and operating frequency cannot meet the requirements of the next-generation power electronics. SMMs such as carbonyl iron,FeNi and FeSi have a natural resonance frequency up to GHz and can maintain a permeability that does not decrease with frequency.[17–23]Unfortunately, the permeability of traditional soft magnetic composites(SMCs)is very low (usually less than 10), which results in high core loss when used at high frequencies. Therefore, to fully unlock the potential of WBG semiconductors and meet the needs of the next-generation power electronics, SMMs must have high operating frequencies (over 100 MHz) and simultaneously have a permeability as high as possible.[1]However,due to the Snoek limit,traditional soft magnetic materials cannot simultaneously achieve a high natural resonance frequency and high magnetic permeability. The Snoek limit[24,25]can be expressed as follows:

    whereμiis the initial permeability, fris the natural resonance frequency, γ is the gyromagnetic ratio, and Msis the saturation magnetization.According to Eq.(1),in a certain material,its(μi?1)frvalue is constant,which means that high natural resonance frequency and high permeability cannot be satisfied simultaneously. This is the fundamental reason for restricting the use of SMMs at high frequencies. Therefore, to fully unlock the potential of WBG semiconductors and meet the needs of the next generation of power electronic devices,the Snoek limit must be exceeded. For easy-plane SMMs, the relationship between permeability and natural resonance frequency is as follows:[26]

    where Hθand H?are out-of-plane and in-plane anisotropic fields, respectively. Since Hθ?H?, the easy-plane material will have a higher (μi?1)frvalue and thus a higher permeability at higher frequencies.

    In this study, we prepare a kind of easy-plane-like carbonyl iron composite using high-aspect-ratio flaky carbonyl iron(HAR-FCI)particles. On the one hand, since Hθ?H?,this material can effectively break through the Snoek limit and achieve higher permeability at higher frequencies. On the other hand, HAR-FCI particles can effectively inhibit the skin effect and reduce eddy current loss. Combined with these two advantages, carbonyl iron composites with easy-planelike structure can be a good candidate material to fully unlock the potential of WBG semiconductors and meet the requirements of the next-generation power electronics.

    2. Experiment

    In experiment,HAR-FCI particles were obtained by planetary ball milling. ZnO ball grinding balls (d =5 mm) were used, and the ratio of ball to powder was 25:1. The rotation speed and time were 350 r/min and 8 h,respectively. We took 50 mL anhydrous ethanol used on each 4 g carbonyl iron powder during the ball milling process. Then 1 g of raw carbonyl iron(R-SCI)and 1 g of HAR-FCI were uniformly mixed with 0.13 g of polyurethane(PU)in an ultrasonic environment,respectively. Here,a certain amount of acetone was used to dissolve the PU.After completely mixing,the HAR-FCI mixture was rotated for 10 min at a magnetic field of 1 T to ensure that all HAR-FCI particles were aligned parallel to a certain plane.Both mixtures were kept at 60?C for 10 h to dry the excess acetone in the mixture. After complete drying,it was pressed at a pressure of 4 MPa to form a ring with an outer diameter of 15 mm,an inner diameter of 7 mm,and a thickness of 5 mm,which were respectively labeled as SCI/PU and FCI/PU.Figure 1 presents a schematic diagram of the composites.

    The morphology of the R-SCI and HAR-FCI particles was observed with a scanning electron microscope(SEM,Hitachi S-4800). The phase structure was characterized by powder x-ray diffraction(XRD,Philips X’Pert PRO)with Cu Kα radiation (λ = 0.15418 nm). The composites’ static magnetic properties were measured at room temperature using a vibrating sample magnetometer (VSM, Lake Shore 7304).The magnetic moment orientation of the as-milled composites was characterized by the room temperature transmission M¨ossbauer spectra. In the transmission geometry,the incident γ-ray was parallel to the axis of the oriented disk. The permeability of the composites at 1–100 MHz and 0.1–18 GHz was measured using an impedance analyzer (Agilent 4294A)and vector network analyzer(VNA,Agilent E8363B),respectively.The composite’s core loss was measured by a wideband power analyzer(Clarke–Hess Model 2335A).

    Fig.1. Schematic diagram of the prepared FCI/PU and SCI/PU composites.

    3. Results and discussion

    3.1. Morphology and phase structure analysis

    Figure 2 shows the morphology of R-SCI and HAR-FCI particles. Figures 2(a)–2(c) show that R-SCI particles were regular spheres in homogenous sizes, and the largest particle was approximately 5μm.The ball-milled particles had irregular flake shapes,as shown in Figs.2(d)and 2(e). Figures 2(f)–2(i)indicate that the diameter and thickness of the HAR-FCI particle were approximately 10μm and 0.5μm,respectively,so their aspect ratio was approximately 20.

    Fig.2. Morphologies of [(a)–(c)] R-SCI and [(d),(e)] HAR-FCI particles, [(f),(g)] diameter of a single HAR-FCI particle, and [(h),(i)]thickness of a single HAR-FCI particle.

    Figure 3 shows the XRD patterns of the R-SCI and HARFCI particles. The two sets of spectral lines were typical characteristic Fe spectra,in which the 44?,65?,and 82?diffraction peaks correspond to (110), (200), and (211) Fe cell crystal planes with BCC structures, respectively. There are no significant changes between the two sets of peaks except a slight reduction in the diffraction peak intensity of the FAR-FCI particles. This proves that there was no phase transition during the ball milling process. The reduction in the diffraction peak intensity was mainly caused by the defects and stresses introduced during the ball milling process,which decreased the particles’crystallinity.

    Fig.3. XRD patterns of the R-SCI and HAR-FCI particles.

    3.2. Static magnetic properties

    Figure 4 shows the hysteresis loops of the FCI/PU composite in the oriented plane and perpendicular to the oriented plane, and the corresponding static magnetic parameters are presented in Table 1. For convenience, we define the composite’s orientation plane as the x0y plane and the direction perpendicular to this plane as the z axis. Figure 4 demonstrates that the composite was easily magnetized to saturation in the x0y plane,and the corresponding magnetization saturation field was 5 kOe. In the z axis direction, however, when the external field strength reached 20 kOe, it still could not be magnetized to saturation. In addition, in the x0y plane,the composite’s coercive(Hc)and residual magnetization(Mr)were both significantly smaller than the z axis. This indicates that the composite’s magnetic moments were distributed isotropically along the oriented plane,and the composite was more easily magnetized to saturation within the oriented plane.

    Fig.4. Hysteresis loop of the FCI/PU composite in x0y plane and z direction.

    Table 1. Static magnetic parameters of the FCI/PU composite.

    To further study the distribution of magnetic moments in the composites, we measured the M¨ossbauer spectra of the SCI/PU and FCI/PU.The γ-ray was perpendicular to the oriented plane(x0y plane). We characterized the orientation degree of the composites’magnetic moment by the ratio of peaks 2 and 5 to peaks 1 and 6:[27]

    where θ is the average angle between the γ-ray and magnetic moment,and f =sin(θ)represents the magnetic moment’s average orientation degree. In materials with magnetic moments completely distributed in the plane(θ =90?),the intensity ratio of the six-line spectrum should be 3:4:1:1:4:3, that is, the intensity of peaks 2 and 5 exceeds peaks 1 and 6. As shown in Fig.5(b),the ratio of the six-line spectrum was not the typical ratio corresponding to an orientation angle θ =90?. This was mainly because some low-aspect ratio carbonyl iron particles were not completely parallel to the oriented plane during the orientation process,resulting in partial magnetic moments that were randomly arranged in the three-dimensional direction.However, Fig.5(a) clearly shows that the intensity of peaks 2 and 5 exceeded the peaks 1 and 6. According to Eq. (3),we calculated that the orientation degrees of the two composites in the x0y plane were 0.72 and 0.8,respectively. Because the HAR-FCI particles were affected by a strong demagnetizing field,their magnetic moment was bound within the plane.Combined with the hysteresis loop in Fig.4,we can conclude that, in the FCI/PU composite, the particles rotated with the magnetic moment during the rotational orientation process and were arranged parallel to the oriented plane(except for a few carbonyl iron particles with a low aspect ratio). Due to the small anisotropic field of the HAR-FCI particles in the plane,the magnetic moment was easy to rotate in the plane, so the composite was more easily magnetized in the oriented plane,resulting in an easily magnetized plane.

    Fig.5. M¨ossbauer spectrum of(a)SCI/PU and(b)FCI/PU composites.

    3.3. High frequency magnetic properties

    Figures 6(a) and 6(b) shows the magnetic spectra of the SCI/PU and FCI/PU composites from 1 MHz to 18 GHz.Both the composites maintained a flat permeability under 100 MHz,and the relaxation of the magnetic spectrum appeared afterward. The differences between the two composites’ magnetic spectra were mainly as follows: (1) compared with the SCI/PU,the initial permeability of the FCI/PU increased by 3 times and (2) the imaginary part of the FCI/PU permeability appeared as two sets of resonance peaks. To further understand the composites’ magnetization process, we fit the measured magnetic spectra. The fitting formulas are[28]

    where χd0and χs0represent the susceptibility contributed by domainwall displacement and magnetic moment rotation,respectively; ωd0is the domainwall resonance angular frequency, ωs0is the natural resonance angular frequency, β is the damping of the domainwall displacement, and α is the damping of the magnetic moment rotation. It is noted that ωs0obtained by fitting here is the intrinsic resonance frequency without considering the damping effect, and the natural resonance angle frequency actually exhibited by the composite should be expressed as[28]

    Figures 6(c)–6(f) show the fitting results of magnetic spectra of the SCI/PU and FCI/PU composites. The corresponding fitting parameters are listed in Table 2.In the FCI/PU composite, a new resonance peak appeared at approximately 200 MHz. By fitting the magnetic spectra,we confirmed that this peak was derived from the domain wall resonance. This means that the SCI/PU composite was magnetized by a single magnetic moment rotation, and only natural resonance peaks existed in the magnetic spectra. During the dynamic magnetization process,however,the easy plane-like FCI/PU composite contained contributions of both the magnetic moment rotation and domain wall displacement.[29]In addition,compared with the SCI/PU,the composite’s permeability increased by 3 times(from 7.5 to 21.5)at 100 MHz and its natural resonance frequency(fr)shifted to higher frequencies by 1.7 GHz. The simultaneous increases of μiand frled to an obviously increased (μi?1)frvalue (5.1 times), which is important for the composite to break through the Snoek limit and to work efficiently at higher frequencies.

    Fig.6. [(a),(b)]Permeability of the SCI/PU and FCI/PU at 1 MHz–18 GHz,[(c),(d)]fitting permeability of the real and imaginary parts of the SCI/PU composite,and[(e),(f)]fitting permeability of the real and imaginary parts of the FCI/PU composite.

    Table 2. Relevant parameters corresponding to the fitting magnetic spectra of the SCI/PU and FCI/PU composites.

    3.4. Core loss

    The test of core loss is carried out at room temperature.When core loss is tested,the composite needs to be wound and a certain voltage(VRMS)is applied to ensure that the inner part of the composite reaches a desired Bm. According to Bm, the VRMScan be given as follows:

    where N is the number of coil turns, and Aeis effective sectional area:

    The effective volume(Ve)formula of the composite is as follows:

    where D and d are the outer diameter and inner diameter,and h is the thickness of the magnetic ring.

    Figures 7(a) and 7(b) show the core loss of the SCI/PU and FCI/PU at 50–500 kHz for the magnetic fluxes of 10,20, and 30 mT, respectively. The composites’ core loss increased slowly with the frequency. Figure 7(a)shows that, at 500 kHz,the core losses at 10,20,and 30 mT for the SCI/PU were 191.7, 804.2, and 1912.6 mW/cm3, respectively, while the core losses of the FCI/PU under the same conditions were 80.0,355.3,and 810.7 mW/cm3,as demonstrated in Fig.7(b).

    Fig.7. The variation trend of coreloss with frequency for (a) SCI/PU and(b)FCI/PU under the magnetic fluxes of 10,20,and 30 mT.

    Fig.8. Histogram of coreloss comparison for SCI/PU and FCI/PU at 30 mT.

    Figure 8 shows a histogram of the core loss comparison of the SCI/PU and FCI/PU at 30 mT.The core loss of the FCI/PU significantly declined in comparison to the SCI/PU.Under the same conditions,the core loss of the FCI/PU decreased by approximately 60%.

    4. Conclusions

    To break through the Snoek limit and to obtain a higher permeability at higher frequencies, we have used HAR-FCI particles to prepare an FCI/PU composite with an easy planelike structure. The composite’s dynamic magnetization process and core loss are carefully studied,leading to the following conclusions:

    (1) Due to its easy-plane-like structure, the (μi?1)frvalue of the FCI/PU composite increases by 5.1 times compared with the SCI/PU. This effectively breaks through the Snoek limits, demonstrating that the composite can work efficiently at higher frequencies.

    (2) The FCI/PU composite has a domain wall resonance peak at 200 MHz, which shows that both the domain wall displacement and magnetic moment rotation occur simultaneously during the FCI/PU’s dynamic magnetization process.

    (3) Compared with the SCI/PU, the core loss of the FCI/PU under the same conditions decreases by nearly 60%.

    猜你喜歡
    王濤春生王國(guó)
    綿師學(xué)人
    ——王濤
    Transition to chaos in lid–driven square cavity flow?
    地下王國(guó)
    逃離鼠王國(guó)
    曹春生作品
    建立新王國(guó)
    NBA特刊(2018年21期)2018-11-24 02:47:48
    王濤作品
    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?
    曹春生
    不認(rèn)賬
    雜文選刊(2014年12期)2014-11-17 03:53:48
    我要看日韩黄色一级片| 亚洲最大成人手机在线| 99热全是精品| 欧美高清成人免费视频www| 你懂的网址亚洲精品在线观看 | 亚洲人成网站在线播放欧美日韩| 成人国产麻豆网| 亚洲无线在线观看| 午夜激情福利司机影院| 91在线观看av| 亚洲激情五月婷婷啪啪| 国产国拍精品亚洲av在线观看| 亚洲va在线va天堂va国产| 欧美成人免费av一区二区三区| 亚洲精华国产精华液的使用体验 | 亚洲熟妇熟女久久| 久99久视频精品免费| 国产成人a区在线观看| 欧美最新免费一区二区三区| 香蕉av资源在线| 夜夜爽天天搞| 国产在视频线在精品| 看十八女毛片水多多多| 久久久久久伊人网av| 亚洲国产精品成人综合色| 麻豆av噜噜一区二区三区| 午夜视频国产福利| 精品人妻偷拍中文字幕| 国产欧美日韩精品亚洲av| 男插女下体视频免费在线播放| 亚洲不卡免费看| 成人高潮视频无遮挡免费网站| 国产三级在线视频| 中国国产av一级| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 12—13女人毛片做爰片一| 久久久久久久久久黄片| 亚洲欧美清纯卡通| 一本精品99久久精品77| 久久精品91蜜桃| 亚洲综合色惰| 久久午夜亚洲精品久久| 99热这里只有是精品50| 亚洲第一区二区三区不卡| 色综合亚洲欧美另类图片| 卡戴珊不雅视频在线播放| 男人狂女人下面高潮的视频| 一个人看的www免费观看视频| 国产不卡一卡二| 两个人视频免费观看高清| 免费看日本二区| 亚洲,欧美,日韩| 久久久午夜欧美精品| 淫秽高清视频在线观看| 极品教师在线视频| 熟妇人妻久久中文字幕3abv| 久久亚洲精品不卡| www.色视频.com| 99久久无色码亚洲精品果冻| 级片在线观看| 亚洲av二区三区四区| 热99在线观看视频| 精品久久久久久久末码| 亚洲五月天丁香| 亚洲精品日韩在线中文字幕 | 午夜日韩欧美国产| 免费看光身美女| 欧美日韩在线观看h| 一个人免费在线观看电影| 成人二区视频| 亚洲专区国产一区二区| 久久久久久久久大av| 18禁裸乳无遮挡免费网站照片| 级片在线观看| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 久久草成人影院| 日韩国内少妇激情av| 黄片wwwwww| 嫩草影院入口| 最近最新中文字幕大全电影3| 熟女电影av网| 天堂√8在线中文| 午夜爱爱视频在线播放| 国内精品久久久久精免费| 精品少妇黑人巨大在线播放 | 99久久精品一区二区三区| 久久久久久久久中文| 亚洲精品亚洲一区二区| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 在线a可以看的网站| 国产精品一及| 精品无人区乱码1区二区| 亚洲性久久影院| 国产 一区精品| 岛国在线免费视频观看| 午夜久久久久精精品| 成年女人看的毛片在线观看| 国产亚洲91精品色在线| 国产亚洲欧美98| 不卡视频在线观看欧美| 搡女人真爽免费视频火全软件 | 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 寂寞人妻少妇视频99o| 精品久久国产蜜桃| 色视频www国产| 国产成人freesex在线 | 成人欧美大片| 精品久久久久久久久亚洲| 99久久无色码亚洲精品果冻| 99精品在免费线老司机午夜| 男人舔奶头视频| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 最新在线观看一区二区三区| 国产精品电影一区二区三区| 全区人妻精品视频| 丰满人妻一区二区三区视频av| 性插视频无遮挡在线免费观看| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 欧美三级亚洲精品| 99热网站在线观看| 亚洲精品国产成人久久av| 日韩亚洲欧美综合| 亚洲不卡免费看| 亚洲,欧美,日韩| 少妇的逼水好多| 亚洲最大成人中文| 国产乱人视频| 国产精品,欧美在线| 免费大片18禁| 最近手机中文字幕大全| 精品无人区乱码1区二区| 直男gayav资源| 亚洲丝袜综合中文字幕| 伦精品一区二区三区| 国产探花极品一区二区| 亚洲成人久久性| 午夜福利在线在线| 色吧在线观看| 欧美日韩乱码在线| 免费观看的影片在线观看| 午夜爱爱视频在线播放| 免费看日本二区| 丝袜喷水一区| 又黄又爽又免费观看的视频| 欧美一区二区精品小视频在线| 欧美一区二区亚洲| 日本在线视频免费播放| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 69av精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 12—13女人毛片做爰片一| 久久综合国产亚洲精品| 国产在视频线在精品| 国产乱人视频| 欧美激情在线99| 真实男女啪啪啪动态图| 久久欧美精品欧美久久欧美| 午夜老司机福利剧场| 国产av麻豆久久久久久久| 日本与韩国留学比较| 男女视频在线观看网站免费| 亚洲人成网站在线观看播放| 2021天堂中文幕一二区在线观| 久久精品综合一区二区三区| 国产美女午夜福利| 久久亚洲国产成人精品v| 一级a爱片免费观看的视频| 日韩欧美精品免费久久| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 别揉我奶头~嗯~啊~动态视频| 亚洲性久久影院| 日本黄大片高清| 丰满乱子伦码专区| 女人被狂操c到高潮| 在线a可以看的网站| 久久久精品94久久精品| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 美女内射精品一级片tv| 国产成人一区二区在线| 国产亚洲91精品色在线| 国内久久婷婷六月综合欲色啪| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文字幕日韩| 成人漫画全彩无遮挡| 日韩欧美 国产精品| 嫩草影院精品99| 中文字幕人妻熟人妻熟丝袜美| 久久欧美精品欧美久久欧美| 久久久色成人| 国产黄片美女视频| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 亚洲成人久久性| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看| 亚洲18禁久久av| 干丝袜人妻中文字幕| 亚洲第一区二区三区不卡| 18禁在线播放成人免费| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 中国美女看黄片| 老师上课跳d突然被开到最大视频| 国产精品人妻久久久久久| 免费看av在线观看网站| 成人美女网站在线观看视频| 我的老师免费观看完整版| 日韩成人av中文字幕在线观看 | 最新中文字幕久久久久| 亚洲成a人片在线一区二区| 插逼视频在线观看| 欧美一区二区亚洲| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 国产片特级美女逼逼视频| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 精品人妻一区二区三区麻豆 | 国产精品一区www在线观看| 欧美不卡视频在线免费观看| 丰满乱子伦码专区| 乱码一卡2卡4卡精品| 欧美日韩在线观看h| 欧美色视频一区免费| 国产精品乱码一区二三区的特点| 久久久久久久午夜电影| 观看免费一级毛片| av国产免费在线观看| 国产淫片久久久久久久久| 欧美激情久久久久久爽电影| 我要搜黄色片| 91在线观看av| 五月玫瑰六月丁香| 中文字幕免费在线视频6| 在线观看av片永久免费下载| 欧美激情在线99| 国产色婷婷99| 黄片wwwwww| 非洲黑人性xxxx精品又粗又长| 中文亚洲av片在线观看爽| 观看美女的网站| 天堂网av新在线| 亚洲欧美成人综合另类久久久 | 好男人在线观看高清免费视频| 亚洲最大成人中文| 亚洲av一区综合| 淫妇啪啪啪对白视频| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 日韩,欧美,国产一区二区三区 | 日韩中字成人| 精品无人区乱码1区二区| 日本-黄色视频高清免费观看| 欧美激情在线99| 欧美日本视频| 国产成人福利小说| 国产在线精品亚洲第一网站| 免费电影在线观看免费观看| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 国产真实乱freesex| 国产精品亚洲一级av第二区| av卡一久久| 尾随美女入室| 成人特级av手机在线观看| 观看免费一级毛片| 国产私拍福利视频在线观看| 人妻久久中文字幕网| 波多野结衣高清无吗| 亚洲av免费高清在线观看| 黄色日韩在线| 久久韩国三级中文字幕| 国产精品99久久久久久久久| 91久久精品国产一区二区三区| 亚洲av成人精品一区久久| 久久这里只有精品中国| 欧美中文日本在线观看视频| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 国产午夜福利久久久久久| 性插视频无遮挡在线免费观看| 内射极品少妇av片p| 色综合站精品国产| 大又大粗又爽又黄少妇毛片口| 久久精品国产清高在天天线| 亚洲国产精品国产精品| 男女做爰动态图高潮gif福利片| 免费看日本二区| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人久久小说 | 五月玫瑰六月丁香| 国产成人a区在线观看| 久久99热这里只有精品18| 老司机午夜福利在线观看视频| 亚洲激情五月婷婷啪啪| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 亚洲五月天丁香| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 免费一级毛片在线播放高清视频| 变态另类丝袜制服| 日韩大尺度精品在线看网址| АⅤ资源中文在线天堂| 久久久久久久亚洲中文字幕| 久久久久久久久久黄片| 真实男女啪啪啪动态图| 黑人高潮一二区| 乱码一卡2卡4卡精品| 久久这里只有精品中国| 亚洲第一电影网av| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 2021天堂中文幕一二区在线观| 三级毛片av免费| 亚洲成人久久性| 久久久色成人| 国产精品综合久久久久久久免费| 乱系列少妇在线播放| 国产成人精品久久久久久| 99riav亚洲国产免费| 在线观看66精品国产| 天天躁日日操中文字幕| 色综合色国产| av卡一久久| 大香蕉久久网| 精品久久久久久久末码| 亚洲aⅴ乱码一区二区在线播放| 特级一级黄色大片| av在线播放精品| 特级一级黄色大片| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 淫秽高清视频在线观看| 91在线观看av| 国产黄色小视频在线观看| 欧美日韩国产亚洲二区| 日本免费a在线| 国产亚洲精品av在线| 嫩草影院精品99| 国产精品不卡视频一区二区| 欧美日韩乱码在线| 日韩精品中文字幕看吧| av卡一久久| 国产黄片美女视频| 男女之事视频高清在线观看| 国产毛片a区久久久久| 两个人视频免费观看高清| 伊人久久精品亚洲午夜| 亚洲av熟女| 国产免费男女视频| 一夜夜www| 日韩,欧美,国产一区二区三区 | 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 欧美性感艳星| 久久鲁丝午夜福利片| 一夜夜www| 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 国产精品免费一区二区三区在线| 成人美女网站在线观看视频| 97在线视频观看| 中文字幕av在线有码专区| a级毛片a级免费在线| 亚洲中文日韩欧美视频| 欧美一区二区亚洲| 亚洲国产精品合色在线| 免费搜索国产男女视频| 国产亚洲精品av在线| 波多野结衣高清作品| 午夜福利成人在线免费观看| 12—13女人毛片做爰片一| 观看美女的网站| 午夜视频国产福利| or卡值多少钱| 国产成人freesex在线 | 国产精品综合久久久久久久免费| 中文字幕精品亚洲无线码一区| av中文乱码字幕在线| 女人被狂操c到高潮| 18禁黄网站禁片免费观看直播| 人妻久久中文字幕网| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 哪里可以看免费的av片| 国产亚洲精品av在线| 观看美女的网站| 日韩精品中文字幕看吧| 性插视频无遮挡在线免费观看| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品 | 亚洲成a人片在线一区二区| 亚洲美女黄片视频| 内地一区二区视频在线| www.色视频.com| av在线老鸭窝| 欧美性猛交黑人性爽| 91狼人影院| 91在线精品国自产拍蜜月| 一个人看视频在线观看www免费| 69人妻影院| 一个人看的www免费观看视频| 在线观看午夜福利视频| 国产女主播在线喷水免费视频网站 | 国产av一区在线观看免费| 我的女老师完整版在线观看| 可以在线观看毛片的网站| 成人特级av手机在线观看| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 精品一区二区三区人妻视频| 午夜激情福利司机影院| 精品久久久久久久久亚洲| 久久久久久久久久久丰满| 深夜精品福利| 国产在线男女| а√天堂www在线а√下载| 三级经典国产精品| 老司机影院成人| 大型黄色视频在线免费观看| 极品教师在线视频| 国产精品,欧美在线| 国产精品电影一区二区三区| 日韩欧美免费精品| 精品福利观看| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 极品教师在线视频| 国产精品免费一区二区三区在线| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 波野结衣二区三区在线| 日韩亚洲欧美综合| 自拍偷自拍亚洲精品老妇| 欧美另类亚洲清纯唯美| 日本精品一区二区三区蜜桃| 午夜免费男女啪啪视频观看 | 日本黄色视频三级网站网址| 午夜激情欧美在线| 欧美bdsm另类| 亚洲av成人精品一区久久| 91久久精品国产一区二区三区| 不卡视频在线观看欧美| 最近手机中文字幕大全| 人人妻,人人澡人人爽秒播| 女的被弄到高潮叫床怎么办| 国产私拍福利视频在线观看| 亚洲人成网站在线观看播放| 日韩av在线大香蕉| 亚洲欧美精品自产自拍| 99热这里只有是精品在线观看| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添av毛片| 嫩草影院入口| 国内少妇人妻偷人精品xxx网站| 干丝袜人妻中文字幕| 日韩制服骚丝袜av| 美女被艹到高潮喷水动态| 日韩欧美免费精品| 插逼视频在线观看| 国产中年淑女户外野战色| 搡老岳熟女国产| 尤物成人国产欧美一区二区三区| 有码 亚洲区| 伊人久久精品亚洲午夜| 给我免费播放毛片高清在线观看| 亚洲精品一区av在线观看| 亚洲国产精品久久男人天堂| 久久人人爽人人爽人人片va| 亚洲国产日韩欧美精品在线观看| 夜夜爽天天搞| 天天躁夜夜躁狠狠久久av| 极品教师在线视频| 国产精品人妻久久久影院| 免费av观看视频| 99久久无色码亚洲精品果冻| 老熟妇仑乱视频hdxx| 久久99热6这里只有精品| 国产精品av视频在线免费观看| 欧美最黄视频在线播放免费| 天美传媒精品一区二区| 中文亚洲av片在线观看爽| 99热6这里只有精品| 成人国产麻豆网| 国产精品电影一区二区三区| av视频在线观看入口| av.在线天堂| 99热这里只有是精品在线观看| 久久久成人免费电影| 国产精品电影一区二区三区| 久久6这里有精品| 麻豆久久精品国产亚洲av| 成人二区视频| 亚洲18禁久久av| 特级一级黄色大片| 亚洲最大成人手机在线| 深夜a级毛片| 国产又黄又爽又无遮挡在线| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 久久99热6这里只有精品| 香蕉av资源在线| 97超碰精品成人国产| 97热精品久久久久久| 国产精品久久久久久亚洲av鲁大| 日本三级黄在线观看| 欧美一区二区国产精品久久精品| 精品福利观看| 午夜激情福利司机影院| 丰满的人妻完整版| 久久久久久久久中文| 18禁在线无遮挡免费观看视频 | 国产精品久久电影中文字幕| 九色成人免费人妻av| 国产成人freesex在线 | av国产免费在线观看| 国内精品久久久久精免费| 日本爱情动作片www.在线观看 | 久久草成人影院| 国产精品人妻久久久影院| 国产精品野战在线观看| 综合色av麻豆| 免费看av在线观看网站| 99riav亚洲国产免费| 人妻制服诱惑在线中文字幕| 亚洲七黄色美女视频| 看十八女毛片水多多多| 久久午夜亚洲精品久久| 成年版毛片免费区| 午夜老司机福利剧场| 女同久久另类99精品国产91| 99riav亚洲国产免费| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 直男gayav资源| 亚洲精品粉嫩美女一区| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 亚洲专区国产一区二区| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 国产精品一二三区在线看| 成人三级黄色视频| 日本黄色片子视频| 日本五十路高清| 麻豆av噜噜一区二区三区| 亚洲国产精品sss在线观看| 午夜精品国产一区二区电影 | 国产91av在线免费观看| 亚洲av.av天堂| 日韩大尺度精品在线看网址| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 两个人视频免费观看高清| 婷婷精品国产亚洲av| 国内精品宾馆在线| 欧美+亚洲+日韩+国产| 成人二区视频| 男女做爰动态图高潮gif福利片| 久久人妻av系列| 国产一区二区在线av高清观看| 欧美日本视频| 99久久无色码亚洲精品果冻| 你懂的网址亚洲精品在线观看 | 桃色一区二区三区在线观看| 天天躁夜夜躁狠狠久久av| 精品无人区乱码1区二区| 精品人妻视频免费看| 国产精品久久电影中文字幕| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 一进一出抽搐动态| 我的女老师完整版在线观看| 亚洲最大成人中文| 51国产日韩欧美| 高清日韩中文字幕在线| 伊人久久精品亚洲午夜| 三级毛片av免费| 深夜精品福利| 一个人看的www免费观看视频| 夜夜夜夜夜久久久久| 变态另类丝袜制服| 在线观看免费视频日本深夜| 极品教师在线视频| 综合色av麻豆| 寂寞人妻少妇视频99o| 亚洲不卡免费看| 日韩欧美免费精品| 国内少妇人妻偷人精品xxx网站| 久久草成人影院| 精品乱码久久久久久99久播| 午夜视频国产福利| 91久久精品国产一区二区成人| 国产午夜福利久久久久久|