孫登岳,程曉濤,郭倩倩,許盼盼,朱張亮,秦慧民,路福平
?
疏水性氨基酸的羥基化研究進展
孫登岳1,2,3,程曉濤1,郭倩倩1,許盼盼1,朱張亮1,秦慧民1,2,3,路福平1,2,3
1 天津科技大學(xué) 生物工程學(xué)院,天津 300457 2 天津科技大學(xué) 工業(yè)發(fā)酵微生物教育部重點實驗室,天津 300457 3 工業(yè)酶國家工程實驗室,天津 300457
金城. 2018酶工程??蜓? 生物工程學(xué)報, 2018, 34(7): 1021?1023.Jin C. Preface for special issue on enzyme engineering (2018). Chin J Biotech, 2018, 34(7): 1021?1023.
羥基化氨基酸在生物技術(shù)和分子生物學(xué)中具有獨特價值,具有抗真菌、抗菌、抗病毒和抗癌的特性。通過比較化學(xué)合成與生物催化合成羥基氨基酸的異同,選擇具有高對映結(jié)構(gòu)選擇性的生物催化合成方法成為羥基氨基酸合成的首選。生物催化實現(xiàn)疏水性氨基酸的羥基化和羥化酶緊密相關(guān),而羥化酶又是單核非血紅素Fe(Ⅱ) 和α-酮戊二酸依賴型雙加氧酶(Fe/αKGDs) 的一種,F(xiàn)e/αKGDs存在共性催化機制。因此,疏水性氨基酸在被催化的過程中,會利用關(guān)鍵中間體高價鐵-超氧復(fù)合體(Fe(Ⅳ)=O) 引起多種氧化轉(zhuǎn)化,從而完成羥基化過程。文中就疏水性氨基酸的羥基化合成及功能應(yīng)用,尤其是(2,3,4)-4-羥基-異亮氨酸(4-HIL) 和羥脯氨酸,進行了詳細的闡述,探討了Fe/αKGDs的共性催化反應(yīng)機制,并對羥基氨基酸在基礎(chǔ)研究和工業(yè)中的應(yīng)用進行了綜述。
羥基化氨基酸,生物學(xué)功能,生物合成,F(xiàn)e/αKGDs,催化機制
氨基酸是生命科學(xué)中普遍存在的重要化合物,在生物體中具有多種重要的功能。大多數(shù)氨基酸是蛋白質(zhì)的主要組成部分,在維持基本機制的平衡中起著重要作用。其中,羥基氨基酸是糖肽抗生素、環(huán)肽和膠原蛋白的組成部分,具有多種生理活性[1]。研究表明,這些含有羥基氨基酸殘基的肽,具有抗真菌、抗細菌、抗病毒和抗癌特性。此外,一些羥基氨基酸含有手性碳,是手性化合物的重要組成部分[2-3]。這種氨基酸由于能在多種化學(xué)材料、醫(yī)學(xué)藥物合成中作為手性前體、中間體和終產(chǎn)物,因此,廣泛應(yīng)用于多功能生物大分子、醫(yī)藥和精細化學(xué)品的合成[4-5]。羥基氨基酸除了可作為醫(yī)藥領(lǐng)域藥物合成的中間體,還廣泛用于飼料添加劑、食品強化劑、香料等多個領(lǐng)域,如L-β-羥基丙氨酸除用于食品領(lǐng)域中的氨基酸減肥飲料及運動飲料外,還可作為動物飼料添加劑;L-羥基脯氨酸在果汁、營養(yǎng)飲料、清涼飲料中常作為營養(yǎng)強化劑、增味劑;L-β-羥基丁氨酸也是一種添加劑,常用于食品和飼料領(lǐng)域。因此,羥基氨基酸的研究一直是一個不斷發(fā)展且具有巨大潛力的研究領(lǐng)域[6]。
Fe(Ⅱ) 和α-酮戊二酸依賴型羥化酶(Fe/αKGDs)是一類單核非血紅素鐵酶,在底物特定碳位具有羥基化、脫烷基化、脫飽和、環(huán)氧化、脫硫、鹵化和環(huán)化形成過氧化物等催化特性[7-10]。非活性碳原子的不對稱羥基化是工業(yè)上合成手性化合物重要方式,如藥物和精細化學(xué)品的合成[11]。該類型羥化酶在輔因子存在下能夠催化氨基酸生成羥化氨基酸。在催化反應(yīng)過程中,F(xiàn)e(Ⅱ) 會形成催化活性中心,伴隨羥化產(chǎn)物的生成,α-酮戊二酸經(jīng)過氧化脫羧生成琥珀酸。Fe/αKGDs能發(fā)生多種類型的單加氧反應(yīng),一些催化反應(yīng)涉及到次級代謝產(chǎn)物的合成途徑,如β-內(nèi)酰胺抗生素、類黃酮、生物堿、赤霉素等。Fe/αKGDs具有和各種親水化合物反應(yīng)的能力,氨基酸是其典型的底物,通常被催化為羥基氨基酸,F(xiàn)e/αKGDs雙加氧酶在催化氨基酸方面扮演著重要的角色,其中包括(2,3,4)-4HIL、(2,4)-5-羥基-亮氨酸、(2,3)-3-羥基-亮氨酸、N-琥珀酰-(2,3)-3-羥基-亮氨酸、cis-4-羥基-脯氨酸和4-羥基-纈氨酸等等。Fe/αKGDs作為自由氨基酸的生物催化劑,它的特點是能與氨基酸的特定碳位發(fā)生羥基化,如L-氨基酸的C3-、C4-和C5-位的催化反應(yīng)。文中就疏水性氨基酸羥基化合成的最新研究進展進行了綜述,詳細闡述了羥化氨基酸的功能與應(yīng)用,分析了Fe/αKGDs的結(jié)構(gòu)特征及共性催化機制,對該類酶在生物工程領(lǐng)域的應(yīng)用進行展望。
1.1.1 (2,3,4)-4-羥基-異亮氨酸 (4-HIL) 功能及應(yīng)用
4-HIL最初是在一年生草本植物葫蘆巴的種子中發(fā)現(xiàn)的,它擁有80%的游離氨基酸,具有促胰島素和抗肥胖的作用,是一種非常有前景的抗糖尿病藥物[12-13]。在用于治療Ⅱ型糖尿病的過程中,與普通化學(xué)藥物相比,可以避免很多不良反應(yīng)和副作用,如治療Ⅱ型糖尿病時出現(xiàn)的低血糖現(xiàn)象[14-15]。此外,4-HIL對調(diào)節(jié)血脂和降低膽固醇水平也有很好的療效,一方面,4-HIL在用于小鼠Ⅱ型糖尿病的模型中,具有抗高血糖和抗血脂異常的療效[16-17],另一方面,它也可以顯著降低血漿甘油三酯和總膽固醇的水平,分別降低了33%和22%[18]。綜上,4-HIL在治療慢性疾病方面是一種非常有前景的藥物,其治療功效主要包括抗感染、抗氧化、抗衰老、心臟保護和促進消化等[19-27]。因此,人們對4-HIL的需求越來越多,對其的研究越來越重視。
1.1.2 4-HIL的合成途徑
到目前為止,4-HIL的合成方法主要有3種:一是從葫蘆巴中萃取分離獲得4-HIL,二是化學(xué)合成,三是酶法生物合成(圖1A)。萃取分離法先用乙醇對葫蘆巴進行處理,萃取原料中的氨基酸,之后用離子交換樹脂對萃取物進一步洗脫純化,得到目標產(chǎn)物4-HIL[28-29]?;瘜W(xué)合成法通常用于化工產(chǎn)品和藥物合成。Wang等[30]提供了4-HIL的8步高效合成方法,合成的關(guān)鍵步驟是將乙基-2-甲基乙酸乙酯轉(zhuǎn)化為乙基(2,3)-2-甲基-3-羥基丁二酸酯, 總收率達到了39%。而Rolland等[31]提出了一種4-HIL的六步化學(xué)合成,其收率高達40%。
圖1 典型氨基酸羥基化合成途徑
酶法生物合成4-HIL是目前研究最多的合成方法。酶法合成具有催化特異性強且簡單高效的特點,因此,酶法生物合成4-HIL得到較多的研究和應(yīng)用。Ogawa等[32]利用篩選到的一株簡單節(jié)桿菌與含有支鏈氨基酸氨基轉(zhuǎn)移酶基因的大腸桿菌菌體細胞在α-KG、乙醛和L-谷氨酸共同存在下靜息培養(yǎng),成功獲得了4-HIL。Haefele等[33]研究結(jié)果表明,在Fe(Ⅱ)、α-KG、抗壞血酸和氧氣的存在下,異亮氨酸可被異亮氨酸羥化酶催化形成4-HIL。Kodera等[12]通過篩選得到可把異亮氨酸催化生成4-HIL的蘇云金桿菌菌株,并通過蛋白純化得到了該羥化酶,該酶催化異亮氨酸具有高對映立體結(jié)構(gòu)選擇性,只產(chǎn)生(2,3,4)-4- HIL。Smirnov等[34]基于4-羥基-異亮氨酸羥化酶(IDO) 羥基化異亮氨酸過程中生成副產(chǎn)物琥珀酸的反應(yīng)與TCA循環(huán)中α-KG氧化脫羧生成琥珀酸的反應(yīng)相耦聯(lián)的機理(圖2),通過改造菌株代謝途徑和過表達羥化酶的方法使得L-Ile轉(zhuǎn)化為4-HIL的產(chǎn)率高達82%。Shi 等[35]對4-HIL生物合成過程中的關(guān)鍵酶4-HIL脫氫酶 (HILDH) 進行了改造,實現(xiàn)了一步催化反應(yīng)高效生成 (2,3,4)-4-HIL,該酶具有嚴格的對映立體選擇性,克服了4-HIL商業(yè)規(guī)模生產(chǎn)的最大局限性。
圖2 異亮氨酸羥基化過程產(chǎn)生琥珀酸耦合重組菌株 E. coli 2Δ的三羧酸循環(huán)途徑示意圖[34]
萃取分離和化學(xué)合成4-HIL需要復(fù)雜的多級反應(yīng),致使產(chǎn)品合成過程中含有較多復(fù)雜成分,單獨采用上述兩種方法很難分離出單一的4-HIL。而酶法生物催化合成能嚴格控制對映立體結(jié)構(gòu)選擇性,高效獲得4-HIL。因此,酶法生物合成4-HIL必然將成為工業(yè)化應(yīng)用的新方向。
1.2.1 羥基脯氨酸的功能及應(yīng)用
羥基脯氨酸是較早發(fā)現(xiàn)的氨基酸類似物,而且是重要的藥物合成中間體,它可用于制備各種手性藥物和手性抗生素[36-37]。羥基脯氨酸有多種同分異構(gòu)體,可形成順式和反式構(gòu)型,如-3-羥基-L-脯氨酸(C3LHyp) 和-3-羥基-L-脯氨酸(T3LHyp) (圖1D),-4-羥基-L-脯氨酸(C4LHyp) 和-4-羥基-L-脯氨酸(T4LHyp) (圖1E)。這些羥基脯氨酸常存在于一些蛋白結(jié)構(gòu)中,包括膠原蛋白、植物細胞壁和多肽抗生素等,作用于多種自由氨基酸的Fe/αKGDs中,L-脯氨酸的羥化酶在工業(yè)中的應(yīng)用研究較多。
1.2.2 C3LHyp和T3LHyp特性及合成途徑
T3LHyp在膠原蛋白中含量最豐富,由脯氨?;?3-羥化酶特異性催化L-脯氨酸生成。而C3LHyp在治療癌癥和膠原蛋白代謝紊亂方面具有一定的療效[38],是生物活性成分及手性藥物合成的重要組成部分[39]。
T3LHyp主要來自于生物合成途徑,但到目前為止,對脯氨酸-3-羥化酶的研究報道尚不多見,T3LHyp的生物合成途徑仍然需要進一步的研究。在前期研究中,C3LHyp多是通過微生物發(fā)酵生產(chǎn)所得[40]。Johnston等[41]通過全細胞生物催化得到純度極高的C3LHyp,他們將L-proline cis-3-羥化酶基因從鏈霉菌中克隆到大腸桿菌中,以L-脯氨酸為底物,連續(xù)發(fā)酵培養(yǎng)60 h,C3LHyp的收率高達99%。
1.2.3 C4LHyp和T4LHyp特性及合成途徑
T4LHyp是通過翻譯后修飾形成,這是膠原蛋白合成最常見的方式。C4LHyp是由毒蘑菇毒傘蕈產(chǎn)生的,是毒蕈肽毒素的組成部分[42]。C4LHyp能夠抑制細胞生長,常用于檢測細胞在組織培養(yǎng)和體內(nèi)的抗腫瘤活性[43]。目前,C4LHyp的生產(chǎn)主要用作一種膠原抗癌的藥物[44-45]。
T4LHyp的合成僅有生物催化法被報道[46]。Shibasaki等[46]利用改造過的孢囊菌屬菌株sp. RH1過表達-4-脯氨酸羥化酶,從而獲得脯氨酸氧化缺陷細胞中的T4LHyp。在此方法的基礎(chǔ)上,研究者又通過進一步篩選菌株和優(yōu)化培養(yǎng)基,獲得了高產(chǎn)T4LHyp的菌株[48-57]。Shibasaki等為了滿足T4LHyp的工業(yè)需求,還嘗試建立了滿足商業(yè)規(guī)模的微生物發(fā)酵體系來生產(chǎn)T4LHyp[47]。
而Hara等[50]利用-4-脯氨酸羥化酶對游離的L-脯氨酸進行了催化合成,成功獲得了C4Lhyp。此外,在-4-脯氨酸羥化酶和N-乙酰轉(zhuǎn)移酶共同催化作用下也合成了N-乙酰- C4LHyp[51-52]。Bach等[51]設(shè)計使用來源于根瘤菌中的-4-脯氨酸羥化酶在體外催化L-脯氨酸成功得到C4LHyp,轉(zhuǎn)化率為10%。現(xiàn)階段C4LHyp的獲得基本利用酶法進行生物合成。
綜上,T4LHyp和C4LHyp的合成基本依賴4-脯氨酸羥化酶酶法生物催化,酶法生物催化法在合成羥脯氨酸方面具有一定優(yōu)勢。
5-羥基-色氨酸(5-HTP) 的合成是由L-色氨酸羥化酶催化底物L(fēng)-色氨酸(L-tryptophan) 產(chǎn)生的。5-HTP是血清素合成的中間體,常被用作治療神經(jīng)遞質(zhì)血清素的直接前體[52]。因此,5-HTP常被用于治療一些神經(jīng)方面的疾病,包括抑郁癥、失眠、纖維肌痛、肥胖、慢性頭痛等[53-57]。目前,從非洲加納籽中進行提取和分離5-HTP是該物質(zhì)的主要獲取途徑,該方法在工業(yè)上得到普遍應(yīng)用[58]。Winnicka等[59]報道了利用關(guān)鍵中間體DL-丙氨酸采用化學(xué)和多酶聯(lián)合反應(yīng)合成5-HTP。Boroda等[60]則利用多酶反應(yīng)以L-色氨酸為底物成功合成了5-HTP。然而,這些生物或化學(xué)合成5-HTP的方法存在諸多缺點,如收率低、純度低、分離難度大等,因此5-HTP的合成及實現(xiàn)工業(yè)化還需要進一步的研究。
除了上述重要的疏水性羥基氨基酸,還有其他研究相對較少的疏水氨基酸被報道。比如,3-羥基-纈氨酸是HIV蛋白酶抑制劑的合成中間體,在合成HIV蛋白酶抑制劑的過程中起重要作用[62];(2,3)-3-羥基-亮氨酸常用于制備某些脫氫酶(圖1C),并且是血小板聚集抑制劑和抗生素的組成成分[61],而(2,4)-5-羥基-亮氨酸(圖1B) 則參與了(2,4)-4-甲基脯氨酸的生物合成[62];而(2,3)-3-羥基-苯丙氨酸是抗生素(Lysobactin) 結(jié)構(gòu)中的重要部分[61]。
單加氧酶,雙加氧酶及Fe/αKGDs的發(fā)現(xiàn)和應(yīng)用為工業(yè)合成羥化氨基酸提供了重要的生物催化劑。其中氨基酸是Fe/αKGDs典型底物,在催化氨基酸時具有很高的區(qū)域及對映立體選擇性,此外,大量的Fe/αKGDs家族的酶晶體學(xué)研究也表明了這類酶都含有相似的保守序列及催化位點,具有共性結(jié)構(gòu)特征[63-66]。
很多Fe/αKGDs家族的酶蛋白晶體結(jié)構(gòu)研究揭示了該類酶都具有兩種保守的結(jié)構(gòu)特征[63]。首先,F(xiàn)e(Ⅱ) 和特定的氨基酸(兩個組氨酸的殘基和谷氨酸或天冬氨酸中的一個羧基)結(jié)合到一起;這個保守的金屬結(jié)合位點被稱為“2-His-1-carboxylate facial triad”[64]。其次,該保守的金屬結(jié)合位點位于雙鏈β螺旋(DSBH) 折疊內(nèi),DSBH折疊結(jié)構(gòu)被稱為“果凍卷”折疊(Jelly-roll) (圖3),該結(jié)構(gòu)在Fe/αKGDs這類酶中普遍存在[65]。DSBH 結(jié)構(gòu)是由8個反向β鏈形成的β-夾層結(jié)構(gòu)構(gòu)成,而β-夾層結(jié)構(gòu)是由2個四鏈反向β折疊組成[65-66]。基于這種保守結(jié)構(gòu),有人推測DSBH折疊結(jié)構(gòu)中的β鏈對底物的活性位點和特異性結(jié)合位點選擇性都能提供支持和幫助[65]。另外,廣泛的Fe/αKGDs家族的酶結(jié)構(gòu)及光譜分析對深入了解該類酶的金屬活性結(jié)合位點提供了更詳細的信息。金屬活性位點包含高度相似的保守序列HXD/EXnH motif,即金屬結(jié)合位點(圖3)。
圖3 Fe/αKGDs家族典型酶TauD (PDB:1GY9)的蛋白結(jié)構(gòu)
某些Fe/αKGDs是多結(jié)構(gòu)域蛋白的組成部分,具有共性催化機制。研究最為深入的是Fe/αKGDs對底物的羥基化反應(yīng)。羥基化可用于蛋白側(cè)鏈的修飾,如修復(fù)烷基化的DNA/RNA,降解環(huán)境垃圾等[63-65]。羥基化過程需要氧氣和輔因子,輔因子包括二價鐵和α-KG。在催化過程中,α-KG被一個氧原子氧化形成琥珀酸和二氧化碳,而另一個氧原子攻擊底物形成羥基氨基酸。Fe/αKGDs有一個高度相似的蛋白折疊結(jié)構(gòu),即DSBH 折疊,作為蛋白催化反應(yīng)結(jié)構(gòu)的核心,HXD/EXnH催化位點結(jié)合到亞鐵離子形成的活性中心上(圖4)[66-68]。α-KG與二價鐵以雙配位鍵的形式通過羧基和氧基團進行結(jié)合,該結(jié)合位點相對保守。但是,正是這種多變的底物結(jié)合位點,恰好導(dǎo)致了羥基化反應(yīng)的底物特異性和高對映立體選擇性。
在所有解析Fe/αKGDs酶復(fù)合物結(jié)構(gòu)的報道中,Hanauske-Abel 等首先提出了一種蛋白與金屬活性中心共性結(jié)合機制,包含F(xiàn)e(Ⅱ)-氨基酸側(cè)鏈在金屬活性中心以配位鍵的形式連接[72]。之后,多個Fe/αKGDs被發(fā)現(xiàn)且其結(jié)構(gòu)被解析,進一步改進了該催化模型機制,提出了酶的共性催化機制,具體催化過程如圖4所示。首先催化起始階段,亞鐵離子形成一個活性中心,以八面配位體復(fù)合物的形式存在,蛋白中的催化活性位點即2個組氨酸殘基與Asp/Glu的羧基 (2-His-l- carboxylate),以3個配位鍵形式結(jié)合到亞鐵活性中心[69],水分子占據(jù)了另外3個亞鐵活性中心位點 (圖4A)。α-KG的羰基和C-1位羧基取代了2個水分子,以二齒狀配位鍵形式結(jié)合到金屬活性中心亞鐵上 (圖4B)。在α-KG和蛋白催化位點與亞鐵活性中心結(jié)合后,底物會取代第三個與亞鐵活性中心結(jié)合的水分子,從而結(jié)合到亞鐵活性中心 (圖4C)。這時底物與活性中心的配位結(jié)合會削弱水分子與亞鐵活性中心的作用力,因此,激發(fā)了一個氧分子發(fā)生氧化反應(yīng),同時產(chǎn)生三價鐵-超氧中間體 (Fe(Ⅲ)-superoxo species)[66](圖4D)。Fe(Ⅲ)-superoxo species攻擊α-KG C-2位的羰基,導(dǎo)致該三價鐵復(fù)合體形成高價鐵-超氧復(fù)合體 (Fe(Ⅳ)=O),F(xiàn)e(Ⅳ)=O是發(fā)生羥基化的關(guān)鍵復(fù)合體(圖4E)。之后,F(xiàn)e(Ⅳ)=O激活α-KG使其發(fā)生氧化脫羧,釋放二氧化碳[70],生成的琥珀酸依然結(jié)合在高價鐵的活性中心上(圖4F)。這時Fe(Ⅳ)=O復(fù)合體奪取底物中的一個氫原子,生成Fe(Ⅲ)-OH復(fù)合體,底物脫氫后形成一個底物自由基 (圖4G),最后羥基自由基反彈結(jié)合到底物的自由基上 (或發(fā)生更復(fù)雜的化學(xué)反應(yīng)) 進而完成了底物羥基化,同時琥珀酸被釋放出來,這時高價鐵復(fù)原到初始二價鐵的狀態(tài)[71],從而完成了氨基酸羥基化過程。
圖4 Fe/αKGDs共性催化機制示意圖(示意圖中間部分為Fe/αKGDs發(fā)生催化反應(yīng)時金屬活性中心和蛋白催化活性結(jié)合位點透視圖)
上述Fe/αKGDs的共性催化機制中,F(xiàn)e(Ⅲ)=O被確定為最關(guān)鍵的中間體,廣泛的Fe/αKGDs類酶蛋白結(jié)構(gòu)研究為這種共性催化機制提供了堅實的數(shù)據(jù)支持[72-74]。已經(jīng)解析的一些該類酶的晶體結(jié)構(gòu)也都揭示了這種共性催化機制,即二價鐵活性中心形成的配位體復(fù)合物與Fe/αKGDs這類酶的3個氨基酸催化位點以配位鍵結(jié)合(圖4A–C)。當(dāng)α-KG氧化脫羧反應(yīng)發(fā)生時,底物并沒有伴隨發(fā)生氧化反應(yīng),這種反應(yīng)機制在所有Fe/αKGDs發(fā)生羥基化時是一致的[72]。在某些情況下,這種反應(yīng)特性可導(dǎo)致芳香族氨基酸殘基在其活性位點上發(fā)生自動氧化,該過程可能和Fe(Ⅳ)=O復(fù)合中間體相關(guān)[75]。高價鐵復(fù)合物能產(chǎn)生非耦合反應(yīng),Tuderman等[76]認為抗壞血酸具有減少高價鐵生成的功能,從而使具有催化活性的二價鐵復(fù)原到靜止?fàn)顟B(tài)。
羥基氨基酸作為一類重要的非天然氨基酸,具有多種生物學(xué)功能,在生物技術(shù)中得到廣泛應(yīng)用。它不但具有抗真菌、抗菌、抗病毒和抗癌的作用,而且還可作為前體或者中間體用于藥物的不對稱合成,同時它還可作為手性化合物的組成部分。通過化學(xué)合成方法可以成功獲得重要的羥基氨基酸,利用生物資源提取也可獲得一些羥基氨基酸。但到目前為止,由于氨基酸羥化酶不斷被發(fā)現(xiàn),因此,采取生物催化方法獲得特定羥基氨基酸的研究與日俱增,同時Fe/αKGDs這類加雙氧酶共性催化機制的提出有利于為進一步提高其催化效率奠定基礎(chǔ),但是,一些其他氨基酸羥基化的生物催化機制還需要進一步的研究和探索。此外,F(xiàn)e/αKGDs家族能催化合成羥基氨基酸的酶在未來一定會有更多被發(fā)現(xiàn),羥基化氨基酸的研究和應(yīng)用在今后也會越來越廣泛。
[1] Choroba OW, Williams DH, Spencer JB. Biosynthesis of the vancomycin group of antibiotics: involvement of an unusual dioxygenase in the pathway to (S)-4- hydroxyphenylglycine. J Am Chem Soc, 2000, 122(22): 5389–5390.
[2] Higgins LJ, Yan F, Liu PH, et al. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature, 2005, 437(7060): 838–844.
[3] Bodner MJ, Phelan RM, Freeman MF, et al. Townsend, non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics. J Am Chem Soc, 2010, 132(1): 12.
[4] Blaskovich MA, Evindar G, Rose NG, et al. Stereoselective synthesis of threo and erythro β-hydroxy and β-disubsti-tuted-β-hydroxy α-amino acids. J Org Chem, 1998, 63(11): 3631–3646.
[5] Palomo C, Arrieta A, Cossío FP, et al. Highly stereoselective synthesis of α-hydroxy β-amino acids through β-lactams: application to the synthesis of the taxol and bestatin side chains and related systems. Tetrahedron Lett, 1990, 31(44): 6429–6432.
[6] Hibi M, Kawashima T, Kodera T, et al. Characterization ofL-isoleucine dioxygenase for production of useful amino acids. Appl Environ Microb, 2011, 77(19): 6926–6930.
[7] Martinez S, Hausinger RP. Catalytic mechanisms of Fe(II)- and 2-oxoglutaratedependent oxygenases. J Biol Chem, 2015, 290(34): 20702–20711.
[8] Purpero V, Moran GR. The diverse and pervasive chemistries of the α-keto acid dependent enzymes, J Biol Inorg Chem. 2007, 12(5): 587–601.
[9] Hausinger RP. Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol, 2004, 39(1): 21–68.
[10] Prescott AG, Lloyd MD. The iron(II) and 2-oxoacid- dependent dioxygenases and their role in metabolism. Nat Prod Rep, 2000, 17(4): 367–383.
[11] Hibi M, Ogawa J. Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily. Appl Microbiol Biotechnol, 2014, 98(9): 3869–3876.
[12] Kodera T, Smirnov SV, Samsonova NN, et al. A novel L-isoleucine hydroxylating enzyme, L-isoleucine dioxygenase from, produces (2S, 3R, 4S)-4-hydroxyisoleucine. Biochem Biophys Res Commun, 2009, 390(3): 506–510.
[13] Moorthy R, Prabhu KM, Murthy PS. Anti-hyperglycemic compound (GII) from fenugreek (Trigonella foenum-graecum Linn.) seeds, its purification and effect in diabetes mellitus. Indian J Exp Biol, 2010, 48(11): 1111–1118.
[14] Jackson JE, Bressler R. Clinical pharmacology of sulfonylurea hypoglycemic agents: part 1. Drugs, 1981, 22(3): 211–245.
[15] Jennings AM, Wilson RM, Ward JD. Symptomatic hypoglycemia in NIDDM patients treated with oral hypoglycemic agents. Diab Care, 1989, 12(3): 203–208.
[16] Singh AB, Tamarkar AK, Narender T, et al. Antihyperglycaemic effect of an unusual amino acid (4-hydroxyisoleucine) in C57BL/KsJ-db/db mice. Nat Prod Res, 2010, 24(3): 258–265.
[17] Eidi A, Eidi M, Sokhteh M. Effect of fenugreek (L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr Res, 2007, 27(11): 728–733.
[18] Narender T, Puri A, Shweta, et al. 4-Hydroxyisoleucine an unusual amino acid as antidyslipidemic and antihyperglycemic agent. Bioorg Medic Chem Lett, 2006, 16(2): 293–296.
[19] Kandhare AD, Bodhankar SL, Mohan V, et al. Effect of glycosides based standardized fenugreek seed extract in bleomycin-induced pulmonary fbrosis in rats: Decisive role of Bax, Nrf2, NF-κB, Muc5ac, TNF-α and IL-1β. Chem Biol Interact, 2015, 237: 151–165.
[20] Aboubakr HA, Nauertz A, Luong NT, et al.antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J Food Protect, 2016, 79(6): 1001–1012.
[21] Sakr SA, Mahran HA, Abo-El-Yazid SM. Effect of fenugreek seeds extract on cyclophosphamide-induced histomorphometrical, ultrastructural and biochemical changes in testes of albino mice. Toxicol Ind Health, 2012, 28(3): 276–288.
[22] Panda S, Tahiliani P, Kar A. Inhibition of triiodothyronine production by fenugreek seed extract in mice and rats. Pharmacol Res, 1999, 40(5): 405–409.
[23] Lamfon H. Effect of fenugreek seed extract on carbendazim-inhibited spermatogenesis in albino rats. J App Pharmaceu Sci, 2012, 2(4): 9–13.
[24] Becker PM, Widjaja-Greefkes HCA, Van Wikselaar PG. Inhibition of binding of the AB5-type enterotoxins LT-I and cholera toxin to ganglioside GM1 by galactose-rich dietary components. Foodborne Pathog Dis, 2010, 7(3): 225–233.
[25] Bin-Hafeez B, Haque R, Parvez S, et al. Immunomodulatory efects of fenugreek (L.) extract in mice. Int Immunopharmacol, 2003, 3(2): 257–265.
[26] Mukthamba P, Srinivasan K. Hypolipidemic infuence of dietary fenugreek () seeds and garlic (Alliumsativum) in experimental myocardial infarction. Food Funct, 2015, 6(9): 3117–3125.
[27] Petit P, Sauvaire Y, Ponsin G, et al. Effects of a fenugreek seed extract on feeding behaviour in the rat: metabolic-endocrine correlates. Pharmacol Biochem Behav, 1993, 45(2): 369–374.
[28] Fowden L, Pratt HM, Smith A. 4-Hydroxyisoleucine from seed of. Phytochemistry, 1973, 12(7): 1707–1711.
[29] Sauvaire Y, Petit P, Broca C, et al. 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes, 1998, 47(2): 206–210
[30] Wang Q, Ouazzani J, Sasaki N A, et al. A practical synthesis of (2, 3, 4)-4-hydroxyisoleucine, a potent insulinotropic α-amino acid from fenugreek. Eur J Org Chem, 2002, 2002(5): 834–839.
[31] Rolland-Fulcrand V, Rolland M, Roumestant ML, et al. Chemoenzymatic synthesis of enantiomerically pure (2, 3, 4)-4-hydroxyisoleucine, an insulinotropic amino acid isolated from Fenugreek seeds. Eur J Org Chem, 2004, 2004(4): 873–877.
[32] Ogawa J, Yamanaka H, Mano J, et al. Synthesis of 4-hydroxyisoleucine by the aldolase–transaminase coupling reaction and basic characterization of the aldolase fromAKU 626. Biosci Biotechnol Biochem, 2007, 71(7): 1607–1615.
[33] Haefelé C, Bonfils C, Sauvaire Y. Characterization of a dioxygenase frominvolved in 4-hydroxyisoleucine biosynthesis. Phytochemistry, 1997, 44(4): 563–566.
[34] Smirnov SV, Kodera T, Samsonova NN, et al. Metabolic engineering ofto produce (2, 3, 4)-4-hydroxyisoleucine. Appl Microbiol Biotechnol, 2010, 88(3): 719–726.
[35] Shi X, Miyakawa T, Nakamura A, et al. Engineering a short-chain dehydrogenase/reductase for the stereoselective production of (2,3,4)-4- hydroxyisoleucine with three asymmetric centers. Sci Rep, 2017, 7(1): 13703.
[36] Berke? D, Kolarovi? A, Pova?anec F. Stereoselective sodium borohydride reduction, catalyzed by manganese(II) chloride, of γ-oxo-α-amino acids. A practical approach to-γ-hydroxy-α-amino acids. Tetrahedron Lett, 2010, 41(27): 5257–5260.
[37] Remuzon P.-4-hydroxy-L-proline, a useful and versatilechiral starting block. Tetrahedron, 1996, 52(44): 13803–13835.
[38] Mueller C, Emmrich J, Jaster R, et al. cis-Hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress. World J Gastroenterol, 2006, 12(10): 1569–1576.
[39] Shibasaki T, Mori H, Ozaki A. Cloning of an isozyme of proline 3-hydroxylase and its purification from recombinant. Biotechnol Lett, 2000, 22(24): 1967–1973.
[40] Mori H, Shibasaki T, Yano K, et al. Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylate free L-proline to cis-3-hydroxy- L-proline. J Bacteriol, 1997, 179(18): 5677–5683.
[41] Johnston RM, Chu LN, Liu M, et al. Hydroxylation of L-proline to-3-hydroxy-L-proline by recombinantexpressing a synthetic L-proline-3- hydroxylase gene. Enzym Micro Technol, 2009, 45(6/7): 484–490.
[42] Wieland T. Poisonous principles of mushrooms of the genus Amanita. Four-carbon amines acting on the central nervous system and cell-destroying cyclic peptides are produced. Science, 1968, 159(3818): 946–952.
[43] Takagi H, Yamada S. Roles of enzymes in anti-oxidative response system on three species of chenopodiaceous halophytes under NaCl-stress condition. Soil Sci Plant Nutrn, 2013, 59(4): 603–611.
[44] Tan EML, Ryh?nen LU. Proline analogues inhibit human skin fibroblast growth and collagen production in culture. J Invest Dermatol, 1983, 80(4): 261–267.
[45] Eldridge CF, Bunge RP, Bunge MB. Effect of-4-hydroxy-Lproline, an inhibitor of Schwann cell differentiation, on the secretion of collagens and noncollagenous protein by Schwann cells. Exp Cell Res, 1988, 174(2): 491–501.
[46] Shibasaki T, Hashimoto S, Mori H, et al. Construction of novel hydroxyproline-producing recombinantby introducing a proline 4-hydroxylase gene. J Biosci Bioeng, 2000, 90(5): 522–525.
[47] Shibasaki T, Mori H, Chiba S, et al. Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol, 1999, 65(9): 4028–4031.
[48] Matsuoka T, Serizawa N, Hosoya T, et al. Isolated cultures of microorganisms of,and. US, 5407826. 1995-04-18.
[49] Hosoya T, Matsuoka T, Serizawa N, et al. Two morphological groups derived fromand their relationship to-4-L-proline productivity. Mycoscience, 1995, 36(2): 193–197.
[50] Hara R, Kino K. Characterization of novel 2-oxoglutarate dependent dioxygenases converting L-proline to-4-hydroxy-Lproline. Biochem Biophys Res Commun, 2009, 379(4): 882–886.
[51] Bach TMH, Hara R, Kino K, et al. Microbial production of-acetyl cis-4-hydroxy-L-proline by coexpression of the Rhizobium L-proline cis-4-hydroxylase and the yeast-acetyltransferase Mpr1. Appl Microbiol Biotechnol, 2013, 97(1): 247–257.
[52] Hoa BTM, Hibi T, Nasuno R, et al. Production of-acetyl-4-hydroxy-L-proline by the yeast-acetyltransferase Mpr1. J Biosci Bioeng, 2012, 114(2): 160–165.
[53] Nicolodi M, Sicuteri F. Fibromyalgia and migraine, two faces of the same mechanism. Serotonin as the common clue for pathogenesis and therapy//Filippini GA, Costa CVL, Bertazzo A, eds. Recent Advances in Tryptophan Research. Advances in Experimental Medicine and Biology. Boston, MA: Springer, 1996, 398: 373–379.
[54] Cangiano C, Ceci F, Cascino A, et al. Eating behavior and adherence to dietary prescriptions in obese adult subjects treated with 5-hydroxytryptophan. Am J Clin Nutr, 1992, 56(5): 863–867.
[55] Guilleminault C, Cathala JP, Castaigne P. Effects of 5-hydroxytryptophan on sleep of a patient with a brain-stem lesion. Electroencephalogr Clin Neurophys, 1973, 34(2): 177–184.
[56] Bono G, Criscuoli M, Martignoni E, et al. Serotonin precursors in migraine prophylaxis. Adv Neurol, 1982, 33: 357–363.
[57] Birdsall TC. Therapeutic applications of taurine. Altern Med Rev, 1998, 3(2): 128–136.
[58] Turner EH, Loftis JM, Blackwell AD. Serotonin a la carte: Supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Therapeut, 2006, 109(3): 325–338.
[59] Winnicka E, Kańska M. Synthesis of [3-14C]-L- tryptophan and 5′-hydroxy-[3-14C]-L-tryptophan. J Radioanal Nucl Chem, 2009, 280(1): 79–84.
[60] Boroda E, Kański R, Kańska M. Synthesis of [14C]-l-tryptophan and [14C]-5′-hydroxy-l-tryptophan labeled in the carboxyl group. J Labelled Compd Rad, 2003, 46(5): 441–447.
[61] Hibi M, Kasahara T, Kawashima T, et al. Multi-enzymatic synthesis of optically pure β-hydroxy α-amino acids. Adv Synth Catal, 2015, 357(4): 767–774.
[62] Hibi M, Kawashima T, Sokolov PM, et al. L-leucine 5-hydroxylase ofis a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst. Appl Microbiol Biotechnol, 2013, 97(6): 2467–2472.
[63] Cheng AX, Han XJ, Wu YF, et al. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int. J Mol Sci, 2014, 15(1): 1080–1095.
[64] Hegg EL, Que L Jr. The 2-His-1-carboxylate facial triad: an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur J Biochem, 1997, 250(3): 625–629.
[65] Aik W, McDonough MA, Thalhammer A, et al. Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol, 2012, 22(6): 691–700.
[66] Clifton IJ, McDonough MA, Ehrismann D, et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. J Inorg Biochem, 2006, 100(4): 644–669.
[67] Henshaw TF, Feig M, Hausinger RP. Aberrant activity of the DNA repair enzyme AlkB. J Inorg Biochem, 2004, 98(5): 856–861.
[68] McDonough MA, Loenarz C, Chowdhury R, et al. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol, 2010, 20(6): 659–672.
[69] Chowdhury R, McDonough MA, Mecinovi? J, et al. Structural basis for binding of hypoxia-inducible factor to the oxygensensing prolyl hydroxylases. Structure, 2009, 17(7): 981–989.
[70] Elkins JM, Ryle MJ, Clifton IJ, et al. Xray crystal structure oftaurine/a-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry, 2002, 41(16): 5185–5192.
[71] Hanauske-Abel HM, Günzler V. A stereochemical concept for the catalytic mechanism of prolylhydroxylase: applicability to classification and design of inhibitors. J Theor Biol, 1982, 94(2): 421–455.
[72] Zhou J, Kelly WL, Bachmann BO, et al. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional alpha-KG-dependent non-heme iron enzyme: correlation with mechanisms and reactivities. J Am Chem Soc, 2001, 123(30): 7388–7398.
[73] Borowski T, Bassan A, Siegbahn PEM. Mechanism of dioxygen activation in 2-oxoglutarate-dependent enzymes: a hybrid DFT study. Chem Eur J, 2004, 10(4): 1031–1041.
[74] Dambrova M, Liepinsh E, Kalvinsh I. Mildronate: cardioprotective action through carnitine-lowering effect. Trends Cardiovas Med, 2002, 12(6): 275–279.
[75] Hopkinson RJ, Hamed RB, Rose NR, et al. Monitoring the activity of 2-oxoglutarate dependent histone demethylases by NMR spectroscopy: direct observation of formaldehyde. ChemBioChem, 2010, 11(4): 506–510.
[76] Tuderman L, Myllyl? R, Kivirikko KI. Nutrition classics. European Journal of Biochemistry, Volume 80, 1977: Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates. Nutr Rev, 1982, 40(10): 306–309.
(本文責(zé)編 陳宏宇)
Advances in hydroxylation of hydrophobic amino acid
Dengyue Sun1,2,3, Xiaotao Cheng1, Qianqian Guo1, Panpan Xu1, Zhangliang Zhu1, Huimin Qin1,2,3, and Fuping Lu1,2,3
1 College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China 2 Tianjin Key Laboratory of Industrial Microbiology,Tianjin300457, China 3 National Engineering Laboratory for Industrial Enzymes,Tianjin300457, China
Hydroxy amino acids, constituents of chiral pharmaceutical intermediates or precursors, have a variety of unique functions in the research fields of biotechnology and molecular biology, i.e. antifungal, antibacterial, antiviral and anticancer properties. Biosynthesis of hydroxy amino acids is preferred because of its high specificity and selectivity. The hydroxylation of hydrophobic amino acids is catalyzed by hydroxylase, which belongs to the mononuclear non-heme Fe(Ⅱ)/α-ketoglutarate-dependent dioxygenases (Fe/αKGDs). Fe/αKGDs utilize an (Fe(Ⅳ)=O) intermediate to activate diverse oxidative transformations with key biological roles in the process of catalytic reaction. Here, we review the physiological properties and synthesis of hydroxy amino acids, especially for the 4-HIL and hydroxyproline. The catalytic mechanism of Fe/αKGDs is elucidated, and the applications of hydroxy amino acids in industrial engineering are also discussed.
hydroxy amino acid, biological function, biosynthesis, Fe/αKGDs, catalytic mechanism
December 25, 2017;
February 5, 2018
National Natural Science Foundation of China (No. 31771911), Natural Science Foundation of Tianjin (No. 16JCQNJC09200).
Huimin Qin. Tel: +86-22-60602949; Fax: +86-22-60602298; E-mail: huiminqin@tust.edu.cnFuping Lu. E-mail: lfp@tust.edu.cn
10.13345/j.cjb.170509
國家自然科學(xué)基金 (No. 31771911),天津市自然科學(xué)基金 (No. 16JCQNJC09200) 資助。
2018-06-15
http://kns.cnki.net/kcms/detail/11.1998.Q.20180613.0859.001.html