• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures

    2018-07-03 09:57:38LUPengfeiGOUYudanHEJiuningLIPingZHANGChanghuaLIXiangyuan
    物理化學學報 2018年6期
    關(guān)鍵詞:李萍物理化學學報

    LU Pengfei, GOU Yudan, HE Jiuning, LI Ping,*, ZHANG Changhua, LI Xiangyuan

    1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P. R. China.

    2 College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.

    1 Introduction

    Biodiesel fuels, synthesized by the trans-esterification of various fats and oils1, have drawn much research attention due to their excellent combustion characteristics, such as low pollution and renewability2–9. Long-chain methyl esters are main compositions of biodiesel, but small esters are the intermediate species during the combustion of biodiesel and long-chain methyl esters. Experimental ignition investigations for biodiesel and long-chain methyl esters (C11–C19) have been reported abundantly10–15, but for small esters have been reported limitedly16,17. Till now, the experimental ignition result for small ester of methyl pentanoate (MPE, C6H12O2) is not available in literatures. In order to have a comprehensive understanding of combustion properties of biodiesel and long-chain methyl esters, a study on the ignition characteristics of MPE is necessary. Besides, MPE can be used as an addition to mix with other hydrocarbons to reduce the soot emission and the CO concentration during the combustion of fuels18. So,measurements of ignition delay times for MPE were conducted in present work.

    For the chemical kinetic mechanism, Dievart et al.19provided a Princeton mechanism for the combustion of small methyl esters from methyl formate (MF, C2H4O2) to methyl pentanoate (MPE), and Korobeinichev et al.20developed an entire reaction mechanism base on a methyl butanoate (MB)mechanism21to simulate premixed laminar flames for MPE.These two mechanisms were used to predict ignition delay times of MPE for comparing with current measured data.

    2 Experimental methods

    Ignition delay times were measured behind reflected shock waves in a stainless-steel shock tube. The shock tube with an internal diameter of 10 cm was divided into two sections including a driver section of 4.0 m and a driven section of 5.0 m. Four piezoelectric pressure transducers were mounted on the driven section to determine the incident shock velocity. The CH radical emission during the ignition process was captured by a quartz optical fiber located at the same cross section as the last pressure transducer, which is 15 mm away from the end wall.Reflected shock pressure and temperature were acquired through the one-dimensional normal shock relations which using the measured initial temperature and pressure in the driven section, the measured incident shock wave velocity and the thermodynamic properties of the reactant mixtures. The uncertainties of reflected shock pressure and temperature were estimated about ±2.5% and ±1% respectively.

    The ignition delay time is defined as the time interval between the arrival of the reflected shock wave determined by the jump of pressure signal and the onset of ignition indicated by the steepest rise of the CH radical emission at the side-wall observation location. An example of how to determine an ignition delay time is shown in Fig. 1. Details of the ignition delay measurement can be found in our previous parpers22,23.Considering uncertainties from reflected shock pressure and temperature, the composition of reactant mixture, and uncertainty in determining ignition delay from pressure and CH radical emission profiles, the total uncertainty in measured ignition delay time is estimated within ±20%.

    3 Results and discussion

    Ignition delay times of MPE/air and MPE/4%O2/Ar mixtures have been measured. Compositions of mixtures are listed in Table 1.

    3.1 Ignition delay times of MPE/air

    Ignition delay time data of MPE/air at ignition temperatures(T) of 1050–1350 K, ignition pressures (P) around 1.5 × 105and 16 × 105Pa, equivalence ratios of 0.5, 1 and 2 are given in Table 2 and displayed in Fig. 2. In the Fig. 2, these data have been scaled to nominal pressures of 1.5 × 105and 16 × 105Pa using common law τign∞ P?1in advance. As is distinct in the Fig. 2, the ignition delay time increases definitely with decreasing of temperature or pressure, but the effect of equivalence ratio on the ignition delay time is different at different pressures.

    Fig. 1 Example of ignition delay time determination.

    Table 1 Molar composition of mixtures.

    In order to see how equivalence ratio affects ignition delay,an Arrhenius-type formula of τign= A × Фnexp(Ea/RT) was used to fit current data, where τign is the ignition delay time in microsecond, A is a constant, Ф is the equivalence ratio, n is equivalence ratio effect parameter, Eais the activation energy in kJ·mol?1, R is the universal gas constant with value of 8.314 J·mol?1·K?1, T is the reflected shock temperature in Kelvin. A single correlation for all ignition delay data is not possible,because the effects of equivalence ratio on ignition delay are not the same at 1.5 × 105and 16 × 105Pa. Two formulated results are as follow:

    Table 2 Measured ignition delay times of MPE/air at different conditions.

    Fig. 2 Ignition delay times of MPE/air.

    As shown in Eqs. (1) and (2), the effect of equivalence ratio on the ignition delay time follows τign∞ Ф+nat 1.5 × 105Pa,and on the contrary, the effect follows τign∞ Ф?nat 16 × 105Pa.The obtained equivalence ratio effect parameters indicate that ignition delay time has stronger dependence upon equivalence ratio at 16 × 105Pa. These positive and negative equivalence ratio effects are shown clearly in Fig. 2, at low pressure of 1.5 ×105Pa, ignition delay times of fuel-lean mixture are shorter than those of fuel-rich mixture, and the ignition delay times of fuel-rich mixture become shorter at 16 × 105Pa. This equivalence ratio dependence behavior is similar with other hydrocarbon fuel/air mixtures23–27. Besides, equations above show that the activation energy Eaat 1.5 × 105Pa is bigger than that at 16 × 105Pa, this means the ignition delay time is more sensitive to temperature at low pressure.

    The ignition delay times of MPE (C6H12O2) are compared with the results of methyl decanoate (MD, C11H22O2) and methyl palmitate (MP, C17H34O2) here. MD, a primary component in cuphea biodiesel28, is used for surrogate of biodiesels due to its property of relative high vapor pressure. A shock tube study of ignition delay of MD has been performed by Wang et al.11. Campbell et al.12has summarized various study of MD combustion characteristics in their paper. MP, a waxy solid at room temperature, is one of five main components of biodiesel blends. A measurement of MP/air ignition delay at 10 × 105Pa has been performed by Wang et al.13. Ignition delay time results of current MPE/air, MD/air11and MP/air13are displayed in Fig. 3. All data were scaled to 16× 105Pa using relationship τign∞ P?1to account for difference in pressures. It is observed that ignition delay times of MPE are longer than those of MD and MP at the temperatures below 1200 K (1/T = 0.83 K?1) and the former is more sensitive to the temperature. When temperatures are above 1200 K, the differences of ignition delay times for three fuels are small.

    3.2 Ignition delay times of MPE/4%O2/Ar

    Fig. 3 Comparison of ignition delay times of MPE/air,MD/air and MP/air.

    Ignition delay times of methyl laurate (MLA, C13H26O2)12and methyl oleate (MO, C19H36O2)15, both belong to methyl esters as MPE, have been measured when diluted in argon. In order to compare the ignition delay characteristic of MPE with those of them, ignition delay times of MPE in 4%O2/Ar were measured at ignition pressures of 3.5 × 105and 7 × 105Pa,ignition temperatures of 1210–1410K, and equivalence ratios of 0.75 and 1.25. These experimental conditions were chosen same as used for MLA and MO. The results obtained are given in Table 3 and shown in Fig. 4. These data are also correlated using the Arrhenius-type formula as follow:

    Table 3 Measured ignition delay times of MPE/4%O2/Ar at different conditions.

    Fig. 4 Ignition delay times of MPE/4%O2/Ar.

    The meaning of τign, P, Ф, R and T and their units in Eq. (3)are same as in Eqs. (1) and (2). As shown in Fig. 4, the increase of temperature or pressure, or decrease of equivalence ratio will cause the decrease of ignition delay time, and ignition delay times have the same sensitivity to temperature at each tested condition, this behavior is same as that in ignition delay of methyl acetate (MA)/4%O2/Ar studied by Zhang et al.17.Comparing to Eqs. (1) and (2), the activation energy of Eq. (3)is between 2.11 × 102and 1.73 × 102kJ·mol?1, this indicates that the sensitivity of MPE/4%O2/Ar ignition on temperature is between those of MPE/air at pressures of 1.5 × 105Pa and 16 ×105Pa. And the equivalence ratio effect parameter of Eq. (3) is close to that in the Eq. (1), indicating that MPE/4%O2/Ar has the similar ignition dependence on equivalence ratio with MPE/air at low pressure of 1.5 × 105Pa.

    Fig. 5 gives the ignition delay times of MPE/4%O2/Ar and MPE/air with the equivalence ratio of 1 and the pressure of 1.5 × 105Pa. The data for MPE/4%O2/Ar have been scaled to 1.5 × 105Pa using the Eq.(3). At this equivalence ratio, the fuel concentration is 0.5% for MPE/4%O2/Ar, much less than the concentration of 2.56% for MPE/air, so the ignition delay time of MPE/4%O2/Ar is longer than that of MPE/air. This follows the law that a reduction in fuel concentration results in an increase in ignition delay time17, and diluted gases do not affect the ignition delay time29.

    Fig. 5 Comparison between ignition delay times of MPE/4%O2/Ar and MPE/air.

    Fig. 6 Comparison of ignition delay times of MPE/4%O2/Ar,MD/4%O2/Ar and MP/4%O2/Ar.

    Fig. 6 compares present ignition delay times of MPE/4%O2/Ar with those of MLA/4%O2/Ar12and MO/4%O2/Ar15. The results show that the ignition delay time of MPE is more sensitive to temperature, and MPE ignition delay times are longer than those of MLA and MO when temperatures below 1280 K (1/T = 0.78 K?1). The same property is found in the ignition delay of MPE/air, as shown in Fig. 3. So for the methyl esters fuels, ignition delay times of a small ester are not longer than those of long-chain methyl esters at relatively high temperatures.

    3.3 Comparison with model predictions

    Dievart et al.19provided a combustion mechanism(Princeton mechanism) for small methyl esters from methyl formate (MF) to methyl pentanoate (MPE). Korobeinichev et al.20developed a detailed chemical kinetic mechanism to predict the premixed laminar flames of methyl pentanoate(MPE) and methyl hexanoate (MHX). Two mechanisms were used to predict the ignition delay times of MPE utilizing the CHEMKIN software at constant-volume, adiabatic and homogeneous conditions. The prediction results are displayed in Fig. 7 as lines.

    As shown in Fig. 7, two mechanisms can qualitatively predict the ignition delay times of MPE, but from quantitative point of view, Korobeinichev mechanism20exceedingly underestimates the measured ignition delay data, and Princeton mechanism19overestimates the current data at most conditions.Only at 16 × 105Pa and temperatures below 1200 K, simulated results of Princeton mechanism19for MPE/air agree well with current data at three equivalence ratios. In general, the predictions of Princeton mechanism19are relatively close to present experimental data. The comparison result indicates that the kinetic mechanisms for MPE need refinement, and current work provides experimental data for this refinement.

    3.4 Sensitivity analysis

    Fig. 7 Comparison between current data and predictions of mechanism s.

    Fig. 8 The results of sensitivity analysis for MPE ignition at 1280 K using the Princeton mechanism 19.

    Sensitivity analysis was carried out using Princeton mechanism19to assess key reactions that play the important role during the ignition process of MPE. A percent change,100 × [τign(2ki) ? τign(ki)]/τign(ki), is used to define the sensitivity coefficient of the i th reaction to ignition delay times30, where τ is the predicted ignition delay time and kistands for the rate constant of i th reaction. A negative sensitivity coefficient implies a promoting effect for overall reactivity, and vice versa.The analysis results are shown in Fig. 8.

    It can be seen from Fig. 8 that the chain-branching reaction H + O2 = O + OH and the reaction CH3 + HO2 =CH3O + OH play the main promoting effect on ignition of MPE/air and MPE/4%O2/Ar. For the inhibiting effect, the chain termination reaction CH3+ HO2= CH4+ O2plays the main role for MPE/air and MPE/4%O2/Ar ignition. The most promoting reaction H + O2= O + OH here is also the most promoting reaction in the high temperature ignition of alkanes22,23. The sensitivity analysis result of Zhang et al.17indicates that the reaction H + O2= O + OH also plays the most promoting effect on the ignition of MA, it may conclude that the most promoting reaction at high temperature ignition of methyl esters is H + O2= O + OH.

    4 Conclusions

    Ignition delay times of methyl pentanoate (MPE) diluted in air and in argon have been measured at high temperatures respectively. To our knowledge, ignition delay times of MPE are first reported here. Results show that an increase of temperature or pressure results in a decrease of ignition delay time definitely, but the effect of equivalence ratio on ignition delay is complex. For MPE/air, the ignition delay time follows τign∞ Ф+nat 1.5 × 105Pa and τign∞ Ф?nat 16 × 105Pa. And for MPE/4%O2/Ar, it follows τign∞ Ф+nat both 3.5 × 105and 7 ×105Pa. At present experimental condition, the ignition delay times of MPE/air are shorter than those of MPE/4%O2/Ar,because the concentration of MPE/air is much greater than that of MPE/4%O2/Ar. Compare to long-chain methyl esters,ignition delay times of MPE are more sensitive to temperature and longer than those of long-chain methyl esters only at relatively low temperatures (below 1200 K for MPE/air and below 1280 K for MPE/4%O2/Ar). Two chemical kinetic mechanisms used cannot well predict the measured ignition delay times of MPE, a further refinement of the mechanisms is required. Sensitivity analysis shows that the most promoting reaction for the high temperature ignition of MPE is H + O2=O + OH, which is same as that in the high temperature ignition of alkanes. Current study results are contributed to understand ignition characteristics of MPE, and are valuable for refining chemical kinetic mechanisms of MPE.

    (1) Shao, P.; He, J. Z.; Sun, P. L.; Jiang, S. T. Biosyst. Eng. 2009, 102,285. doi: 10.1016/j.biosystemseng.2008.11.014

    (2) Sarathy, S.; Thomson, M.; Pitz, W.; Lu, T. Proc. Combust. Inst. 2011,33, 399. doi: 10.1016/j.proci.2010.06.058

    (3) Dayma, G.; Sarathy, S.; Togbé, C.; Yeung, C.; Thomson, M.; Dagaut,P. Proc. Combust. Inst. 2011, 33, 1037.doi: 10.1016/j.proci.2010.05.024

    (4) Togbe, C.; Dayma, G.; Mze-Ahmed, A.; Dagaut, P. Energy Fuels 2010,24, 3906. doi: 10.1021/ef100484q

    (5) Glaude, P. A.; Herbinet, O.; Bax, S.; Biet, J.; Warth, V.; Battin-Leclerc,F. Combust. Flame 2010, 157, 2035.doi: 10.1016/j.combustflame.2010.03.012

    (6) HadjAli, K.; Crochet, M.; Vanhove, G.; Ribaucour, M.; Minetti, R.Proc. Combust. Inst. 2009, 32, 239. doi: 10.1016/j.proci.2008.09.002

    (7) Haylett, D. R.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2012,159, 552. doi: 10.1016/j.combustflame.2011.08.021

    (8) Herbinet, O.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2010, 157,893. doi: 10.1016/j.combustflame.2009.10.013

    (9) Westbrook, C. K.; Naik, C. V.; Herbinet, O.; Pitz, W. J.; Mehl, M.;Sarathy, S. M.; Curran, H. J. Combust. Flame 2011, 158, 742.doi: 10.1016/j.combustflame.2010.10.020

    (10) Nguyen, V. H.; Dinh, L. T. Biosyst. Eng. 2015, 134, 1.doi: 10.1016/j.biosystemseng.2015.03.009

    (11) Wang, W. J.; Oehlschlaeger, M. A. Combust. Flame 2012, 159, 476.doi: 10.1016/j.combustflame.2011.07.019

    (12) Campbell, M. F.; Davidson, D. F.; Hanson, R. K. Fuel 2014, 126, 271.doi: 10.1016/j.fuel.2014.02.050

    (13) Wang, W. J.; Gowdagiri, S.; Oehlschlaeger, M. A. Combust. Flame 2014, 161, 3014. doi: 10.1016/j.combustflame.2014.06.009

    (14) Campbell, M. F.; Davidson, D. F.; Hanson, R. K. Fuel 2016, 164, 151.doi: 10.1016/j.fuel.2015.09.078

    (15) Campbell, M. F.; Davidson, D. F.; Hanson, R. K.; Westbrook. C. K.Proc. Combust. Inst. 2013, 34, 419.doi: 10.1016/j.combustflame.2014.12.015

    (16) Akih-Kumgeh, B.; Bergthorson, J. M. Combust. Flame 2011, 158,1037. doi: 10.1016/j.combustflame.2010.10.021

    (17) Zhang, Z. H.; Hu, E. J.; Peng, C.; Meng, X.; Chen,Y. Z.; Huang, Z. H.Energy Fuels 2015, 29, 2719. doi: 10.1021/acs.energyfuels.5b00316

    (18) Dmitriev, A. M.; Knyazkov, D. A.; Bolshova, T. A.; Shmakov, A. G.;Korobeinichev, O. P. Combust. Flame 2015, 162, 1964.doi: 10.1016/j.combustflame.2014.12.015

    (19) Dievart, P.; Won, S. E.; Gong, J.; Dooley, S.; Ju, Y. Proc. Combust.Inst. 2013, 34, 821. doi: 10.1016/j.proci.2012.06.180

    (20) Korobeinichev, O. P.; Gerasimov, I. E.; Knyazkov, D. A.; Shmakov,A. G.; Bolshova, T. A.; Hansen, N.; Westbrook, C. K.; Dayma, G.;Yang, B. Z. Phys. Chem. 2015, 229, 759.doi: 10.1515/zpch-2014-0596

    (21) Yang, B.; Westbrook, C. K.; Cool, T. A.; Hansen, N.;Kohse-Hoinghaus, K. Phys. Chem. Chem. Phys. 2011, 13, 6901.doi: 10.1039/c0cp02065f

    (22) He, J. N.; Yong, K. L.; Zhang, W. F.; Li, P.; Zhang, C. H.; Li, X. Y.Energy Fuels 2016, 30, 8886. doi: 10.1021/acs.energyfuels.6b01122

    (23) Yong, K. L.; He, J. N.; Zhang, W. F.; Xian, L. Y.; Zhang, C. H.; Li, P.;Li, X. Y. Fuel 2017, 188, 567. doi: 10.1016/j.fuel.2016.09.054

    (24) He, J. N.; Li. Y. L.; Zhang. C. H.; Li. P.; Li. X. Y. Acta Phys. -Chim.Sin. 2015, 31, 836. [何九寧, 李友亮, 張昌華, 李萍, 李象遠. 物理化學學報, 2015, 31, 836.] doi: 10.3866/PKU.WHXB201503121

    (25) Darcy, D.; Tobin, C. J.; Yasunaga, K. Combust. Flame 2012, 159,2219. doi: 10.1016/j.combustflame.2012.02.009

    (26) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc.Combust. Inst. 2009, 32, 165. doi: 10.1016/j.proci.2008.05.004

    (27) Zhu, Y.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2014, 161,371. doi: 10.1016/j.proci.2008.05.004

    (28) Knothe, G.; Cermak, S. C.; Evangelista, R. L. Energy Fuels 2009, 23,1743. doi: 10.1021/ef800958t

    (29) Akih-Kumgeh, B.; Bergthorson, J. M. Energy Fuels 2010, 24, 2439.doi: 10.1021/ef901489k

    (30) Kumar, K.; Mittal, G.; Sung, C. J.; Law C. K. Combust. Flame 2008, 153, 343. doi:10.1016/j.combustflame.2007.11.012

    猜你喜歡
    李萍物理化學學報
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學報40年
    SLA:ErroranalysisofthelearnersinvocationalcollegeundertheBlendedLearningModel
    Chemical Concepts from Density Functional Theory
    找春天
    學報簡介
    學報簡介
    《深空探測學報》
    亚洲五月婷婷丁香| 一进一出抽搐gif免费好疼| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 国产淫片久久久久久久久 | 国产高清视频在线观看网站| 欧美在线一区亚洲| 亚洲第一欧美日韩一区二区三区| 免费看光身美女| 久久精品人妻少妇| 久久久久久大精品| av女优亚洲男人天堂 | 99精品欧美一区二区三区四区| 嫩草影院精品99| 成人特级av手机在线观看| 看片在线看免费视频| 国产视频内射| 国产97色在线日韩免费| 精品日产1卡2卡| 中文在线观看免费www的网站| 欧美最黄视频在线播放免费| 一本综合久久免费| 黄色成人免费大全| 一进一出抽搐gif免费好疼| 一级a爱片免费观看的视频| 亚洲激情在线av| a级毛片a级免费在线| 欧美激情在线99| 嫁个100分男人电影在线观看| 亚洲成人久久爱视频| 婷婷丁香在线五月| 国产成人av激情在线播放| 欧美日本视频| 一区二区三区激情视频| 悠悠久久av| 欧美av亚洲av综合av国产av| 国产伦精品一区二区三区视频9 | 亚洲精品在线美女| 亚洲av成人不卡在线观看播放网| www日本黄色视频网| 日本精品一区二区三区蜜桃| av在线天堂中文字幕| 中国美女看黄片| 可以在线观看的亚洲视频| 特大巨黑吊av在线直播| 亚洲av成人精品一区久久| 好看av亚洲va欧美ⅴa在| 精品不卡国产一区二区三区| 日韩精品青青久久久久久| 亚洲国产看品久久| 国产av不卡久久| 两个人视频免费观看高清| 精品欧美国产一区二区三| 女人被狂操c到高潮| 国产在线精品亚洲第一网站| 在线观看舔阴道视频| 欧美日韩综合久久久久久 | 午夜福利欧美成人| 99在线人妻在线中文字幕| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 亚洲avbb在线观看| 精品国内亚洲2022精品成人| 亚洲色图av天堂| 久久精品人妻少妇| 他把我摸到了高潮在线观看| 99在线人妻在线中文字幕| 偷拍熟女少妇极品色| 一个人免费在线观看的高清视频| 久久久久久久午夜电影| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区91| 免费观看的影片在线观看| 国产麻豆成人av免费视频| 特大巨黑吊av在线直播| 天堂影院成人在线观看| 国产又黄又爽又无遮挡在线| 一区二区三区国产精品乱码| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 亚洲精品中文字幕一二三四区| 亚洲欧美精品综合久久99| www日本在线高清视频| 亚洲成人中文字幕在线播放| 这个男人来自地球电影免费观看| 天堂av国产一区二区熟女人妻| 亚洲 国产 在线| 欧美性猛交黑人性爽| 99热6这里只有精品| 色综合婷婷激情| 最好的美女福利视频网| 老鸭窝网址在线观看| 欧美国产日韩亚洲一区| 免费在线观看影片大全网站| 九色成人免费人妻av| 国产成人av教育| 黑人操中国人逼视频| 午夜影院日韩av| 免费大片18禁| 欧美大码av| av在线蜜桃| 视频区欧美日本亚洲| a在线观看视频网站| 午夜福利视频1000在线观看| 国产精品一及| 亚洲九九香蕉| bbb黄色大片| 九色国产91popny在线| 国产黄片美女视频| 国产三级在线视频| 久久久久久大精品| 欧美日韩一级在线毛片| 国产久久久一区二区三区| 一级毛片高清免费大全| 超碰成人久久| 精品不卡国产一区二区三区| 午夜福利18| 午夜a级毛片| 露出奶头的视频| 亚洲欧美一区二区三区黑人| 欧美色视频一区免费| x7x7x7水蜜桃| 中文在线观看免费www的网站| 亚洲专区字幕在线| 欧美日韩黄片免| 国产一区在线观看成人免费| 国产亚洲欧美在线一区二区| 免费看日本二区| 日韩精品中文字幕看吧| 日韩欧美三级三区| 国产亚洲欧美98| 亚洲国产精品合色在线| www.999成人在线观看| 亚洲欧美日韩高清专用| 日本熟妇午夜| 99精品欧美一区二区三区四区| 18禁黄网站禁片午夜丰满| 欧美日本视频| 日韩欧美一区二区三区在线观看| 又大又爽又粗| 欧美中文综合在线视频| 国产欧美日韩精品一区二区| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 国产精品乱码一区二三区的特点| 久久久国产欧美日韩av| 国产三级黄色录像| 亚洲精品中文字幕一二三四区| 日本 欧美在线| 69av精品久久久久久| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 超碰成人久久| 在线观看免费视频日本深夜| 国产一区二区三区视频了| 99在线人妻在线中文字幕| 亚洲国产色片| aaaaa片日本免费| 免费一级毛片在线播放高清视频| 国产一区二区三区视频了| 日韩欧美三级三区| 国产主播在线观看一区二区| 欧美性猛交╳xxx乱大交人| 制服丝袜大香蕉在线| 亚洲人成电影免费在线| 日韩大尺度精品在线看网址| 国产视频一区二区在线看| 亚洲av成人不卡在线观看播放网| 午夜免费观看网址| 最近视频中文字幕2019在线8| 熟女人妻精品中文字幕| 亚洲男人的天堂狠狠| 超碰成人久久| 日韩成人在线观看一区二区三区| www.999成人在线观看| 日本一二三区视频观看| 精品日产1卡2卡| 麻豆一二三区av精品| 午夜两性在线视频| av国产免费在线观看| 亚洲狠狠婷婷综合久久图片| 黄片大片在线免费观看| 精品久久蜜臀av无| 国产欧美日韩精品一区二区| 色哟哟哟哟哟哟| 国产免费av片在线观看野外av| 一个人免费在线观看电影 | 亚洲av成人一区二区三| 欧美+亚洲+日韩+国产| 天堂动漫精品| www.精华液| 国内少妇人妻偷人精品xxx网站 | 午夜福利高清视频| 最近最新免费中文字幕在线| 香蕉久久夜色| 床上黄色一级片| 欧美一级毛片孕妇| 夜夜看夜夜爽夜夜摸| 天天添夜夜摸| 天堂网av新在线| 在线视频色国产色| 亚洲人成电影免费在线| 亚洲中文字幕日韩| 成人午夜高清在线视频| 精品国产乱子伦一区二区三区| 日韩成人在线观看一区二区三区| 国产成人aa在线观看| 老司机在亚洲福利影院| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 久久久久性生活片| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 欧美大码av| 午夜福利18| 久久午夜亚洲精品久久| 在线a可以看的网站| 最近视频中文字幕2019在线8| 亚洲欧洲精品一区二区精品久久久| 亚洲 国产 在线| 欧美成人一区二区免费高清观看 | 日韩av在线大香蕉| 国产午夜精品论理片| 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx| 十八禁网站免费在线| 久久精品国产99精品国产亚洲性色| 国产视频一区二区在线看| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 日本免费一区二区三区高清不卡| a在线观看视频网站| 无限看片的www在线观看| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 久久国产乱子伦精品免费另类| 欧美乱妇无乱码| 不卡av一区二区三区| 久久久水蜜桃国产精品网| 成熟少妇高潮喷水视频| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 国产精品98久久久久久宅男小说| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 亚洲国产欧洲综合997久久,| 中文在线观看免费www的网站| 欧美av亚洲av综合av国产av| aaaaa片日本免费| 国产极品精品免费视频能看的| av视频在线观看入口| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 久久久久久久精品吃奶| 麻豆一二三区av精品| 国产精品免费一区二区三区在线| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 91九色精品人成在线观看| 国产欧美日韩精品亚洲av| 国产精品永久免费网站| 最新中文字幕久久久久 | 国内精品美女久久久久久| 亚洲国产欧美一区二区综合| 亚洲最大成人中文| 精品国产乱码久久久久久男人| 国产欧美日韩精品一区二区| 宅男免费午夜| 色尼玛亚洲综合影院| 国产三级在线视频| 亚洲人与动物交配视频| 午夜福利高清视频| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩东京热| 久久精品夜夜夜夜夜久久蜜豆| 夜夜爽天天搞| 国产人伦9x9x在线观看| 国产99白浆流出| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 国产亚洲精品久久久久久毛片| 国产三级黄色录像| xxxwww97欧美| 国产精品乱码一区二三区的特点| 国产免费av片在线观看野外av| 欧美色视频一区免费| 在线观看舔阴道视频| 色噜噜av男人的天堂激情| 岛国在线免费视频观看| 欧美一级毛片孕妇| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 久99久视频精品免费| 国产熟女xx| 99久久精品热视频| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 亚洲乱码一区二区免费版| cao死你这个sao货| 日韩欧美国产在线观看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 人妻久久中文字幕网| 国产99白浆流出| 精品国产乱码久久久久久男人| 99热精品在线国产| 十八禁网站免费在线| 欧美大码av| 久久久成人免费电影| 国产精品久久电影中文字幕| avwww免费| 国产单亲对白刺激| 精华霜和精华液先用哪个| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区精品| 1000部很黄的大片| 亚洲色图 男人天堂 中文字幕| 午夜两性在线视频| 青草久久国产| 我的老师免费观看完整版| 日韩高清综合在线| 精品福利观看| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 亚洲专区字幕在线| 91在线精品国自产拍蜜月 | 亚洲乱码一区二区免费版| 免费在线观看亚洲国产| 国产av在哪里看| 热99re8久久精品国产| 999久久久国产精品视频| 午夜精品在线福利| 欧美一区二区精品小视频在线| 国产欧美日韩一区二区精品| 欧美一区二区精品小视频在线| 精品一区二区三区视频在线 | АⅤ资源中文在线天堂| 丁香六月欧美| 成人特级av手机在线观看| 精品久久久久久久人妻蜜臀av| 麻豆国产97在线/欧美| 国产激情欧美一区二区| 成年女人永久免费观看视频| 国产亚洲精品综合一区在线观看| 中文字幕熟女人妻在线| 91九色精品人成在线观看| 成在线人永久免费视频| 超碰成人久久| 久久亚洲真实| 中文亚洲av片在线观看爽| 国产成人影院久久av| 欧美日韩综合久久久久久 | 国产黄片美女视频| 性色avwww在线观看| 久久国产精品影院| 午夜免费激情av| 国产精品1区2区在线观看.| 久久天躁狠狠躁夜夜2o2o| 三级男女做爰猛烈吃奶摸视频| 成人无遮挡网站| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 日本黄色视频三级网站网址| av女优亚洲男人天堂 | 午夜福利成人在线免费观看| 草草在线视频免费看| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 久久热在线av| 国产一区二区在线av高清观看| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| av国产免费在线观看| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 中文字幕最新亚洲高清| 天堂√8在线中文| 国产激情偷乱视频一区二区| 国产精品女同一区二区软件 | 高清毛片免费观看视频网站| 黄色 视频免费看| 国产精品美女特级片免费视频播放器 | 男女视频在线观看网站免费| 全区人妻精品视频| 久99久视频精品免费| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美98| 一级a爱片免费观看的视频| 欧美极品一区二区三区四区| 18禁国产床啪视频网站| 国产激情欧美一区二区| 久久中文字幕人妻熟女| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 久99久视频精品免费| av天堂在线播放| 女人被狂操c到高潮| 亚洲国产看品久久| 最新美女视频免费是黄的| 五月玫瑰六月丁香| 天堂av国产一区二区熟女人妻| 最近视频中文字幕2019在线8| 亚洲自偷自拍图片 自拍| cao死你这个sao货| 精品国产亚洲在线| 美女 人体艺术 gogo| 人人妻人人澡欧美一区二区| 91麻豆av在线| 国产精品久久久久久精品电影| 久久久久久久久免费视频了| 午夜福利免费观看在线| 老司机深夜福利视频在线观看| 色播亚洲综合网| 国产亚洲精品久久久久久毛片| 1024手机看黄色片| 99国产极品粉嫩在线观看| 欧美中文日本在线观看视频| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 最近最新免费中文字幕在线| 麻豆久久精品国产亚洲av| 午夜激情福利司机影院| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av高清不卡| 真人一进一出gif抽搐免费| 大型黄色视频在线免费观看| 少妇的丰满在线观看| 婷婷六月久久综合丁香| 免费在线观看日本一区| 日韩欧美免费精品| 一级黄色大片毛片| 可以在线观看的亚洲视频| 亚洲美女黄片视频| 很黄的视频免费| 亚洲专区中文字幕在线| 后天国语完整版免费观看| 一级黄色大片毛片| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 香蕉丝袜av| 国产1区2区3区精品| 九色成人免费人妻av| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 亚洲男人的天堂狠狠| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 成人av一区二区三区在线看| 嫁个100分男人电影在线观看| h日本视频在线播放| 欧美成人性av电影在线观看| 国产伦一二天堂av在线观看| 久久久国产精品麻豆| 国产激情欧美一区二区| 国产精品一区二区三区四区久久| 国产人伦9x9x在线观看| 国产主播在线观看一区二区| 精品日产1卡2卡| 亚洲国产精品999在线| 首页视频小说图片口味搜索| www.自偷自拍.com| 精品一区二区三区视频在线 | 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 亚洲美女黄片视频| 天堂影院成人在线观看| 一个人免费在线观看的高清视频| 国产黄片美女视频| 精品熟女少妇八av免费久了| 日韩 欧美 亚洲 中文字幕| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 国产三级黄色录像| 手机成人av网站| 99在线视频只有这里精品首页| 日韩欧美精品v在线| 欧美大码av| or卡值多少钱| 日本成人三级电影网站| 很黄的视频免费| 99久久精品热视频| 少妇的逼水好多| 欧美zozozo另类| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人免费电影在线观看| 亚洲欧美激情综合另类| 欧美午夜高清在线| 黑人操中国人逼视频| 麻豆av在线久日| 999久久久国产精品视频| 熟女少妇亚洲综合色aaa.| АⅤ资源中文在线天堂| 日韩精品中文字幕看吧| 在线观看日韩欧美| 欧美在线黄色| 日韩大尺度精品在线看网址| 最近最新中文字幕大全免费视频| 三级国产精品欧美在线观看 | 日本精品一区二区三区蜜桃| 老司机深夜福利视频在线观看| 美女cb高潮喷水在线观看 | 高清在线国产一区| or卡值多少钱| 熟女电影av网| 欧美丝袜亚洲另类 | 一区二区三区国产精品乱码| a级毛片在线看网站| 日韩人妻高清精品专区| 国产精品 欧美亚洲| 欧美性猛交黑人性爽| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品19| 久久这里只有精品中国| 亚洲中文日韩欧美视频| 日本 欧美在线| 男人舔奶头视频| 级片在线观看| 日韩欧美免费精品| 色哟哟哟哟哟哟| 成熟少妇高潮喷水视频| 国产一区二区激情短视频| 精品福利观看| 很黄的视频免费| 免费电影在线观看免费观看| 91九色精品人成在线观看| 美女cb高潮喷水在线观看 | 男女那种视频在线观看| 精品免费久久久久久久清纯| 成人av一区二区三区在线看| 蜜桃久久精品国产亚洲av| 九九热线精品视视频播放| 变态另类成人亚洲欧美熟女| 97超级碰碰碰精品色视频在线观看| 宅男免费午夜| 超碰成人久久| 精品熟女少妇八av免费久了| 九九久久精品国产亚洲av麻豆 | 亚洲精品美女久久av网站| 亚洲午夜精品一区,二区,三区| 精品熟女少妇八av免费久了| 久久婷婷人人爽人人干人人爱| 91在线观看av| 久久午夜亚洲精品久久| 少妇丰满av| 国产成人精品久久二区二区免费| 国产成人影院久久av| 日韩欧美精品v在线| 免费在线观看日本一区| 男女视频在线观看网站免费| 国产av在哪里看| 亚洲在线自拍视频| 91久久精品国产一区二区成人 | 国产伦精品一区二区三区视频9 | 久久香蕉精品热| www国产在线视频色| 久久香蕉国产精品| 在线观看66精品国产| 首页视频小说图片口味搜索| 九色成人免费人妻av| 亚洲专区国产一区二区| 国内精品久久久久久久电影| 欧美黄色片欧美黄色片| 色老头精品视频在线观看| 午夜激情福利司机影院| 99热只有精品国产| 国产精品国产高清国产av| 三级毛片av免费| 亚洲av免费在线观看| 欧美不卡视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 精品国产美女av久久久久小说| 两性夫妻黄色片| 男人舔女人下体高潮全视频| 国产亚洲精品综合一区在线观看| 毛片女人毛片| 午夜福利欧美成人| 9191精品国产免费久久| 真人一进一出gif抽搐免费| 国产精品av视频在线免费观看| 欧美日韩国产亚洲二区| 99在线视频只有这里精品首页| 国产精品久久久人人做人人爽| 熟妇人妻久久中文字幕3abv| 女警被强在线播放| 精品乱码久久久久久99久播| 老熟妇乱子伦视频在线观看| 国内精品久久久久久久电影|