• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis

    2018-07-03 09:57:54OROZCOVALENCIAUlisesZQUEZJosVELAAlberto
    物理化學(xué)學(xué)報(bào) 2018年6期

    OROZCO-VALENCIA Ulises , GáZQUEZ José L. , VELA Alberto ,*

    1 Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, Ciudad de México, 07360, México.

    2 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México, 09340,México.

    1 Introduction

    Chemical reactivity within density functional theory(CRDFT) is a very active field that studies chemical transformations1–8. Aiming to justify the Hard-Soft Acids-Bases principle (HSAB)9, Parr and Pearson developed a simple approach to study chemical reactivity assuming that the energy of a chemical system is a smooth and differentiable function of the number of electrons that can be represented as a quadratic function of this variable, we call this procedure the Parr and Pearson model (PP)10. This model is supported by the Taylor expansion of the energy as a function of the number of electrons keeping constant the external potential, leading to the emblematic PP expression ΔE = μΔ N +η(Δ N )2for the change in the energy as a function of the change in the number of electrons, ΔN, where μ and η are the electronic chemical potential and the global hardness. This simple model has explained many aspects of chemical reactivity that are well documented in the literature. The change in the energy involved in an association reaction such as A + B → AB can be approximated as Δ EAB? ΔEA+ΔEB, where the change in the energy of each reactant is evaluated according to the expression mentioned above for the change of the energy in terms of the corresponding change in the number of electrons. Minimizing ΔEABwith respect to the amount of charge transferred and using the constraint that the number of electrons is conserved,one obtains that

    Considering that the global hardnesses of both species are positive, the direction of electron flow is determined by the chemical potential difference. Thus, if μA> μBthen ΔNA< 0,meaning that A is the nucleophile (species donating electrons)and B the electrophile (species accepting electrons)1,10.According to Pearson if the number of electrons transferred in an association reaction is large, it is likely that it may have a low activation barrier, and he used this amount of charge transferred to rationalize the reactivity of several organic and inorganic reactions, founding a good correlation between Eq.(1) with kinetic and equilibrium constants11,12. The applicability of this ansatz stands on the fact that the molecular structure of the transition state is complied by the two fragments having geometries very similar to those of the free reactants or, in other words, that this reaction has an early transition state(ETS), in agreement with Hammond’s postulate13. In fact, this is the scenario where one expects that CRDFT will have better predicting capabilities14,15.

    Recently we presented a partitioning scheme for the number of electrons exchanged in an association chemical reaction considering that both species accept and donate charge, aiming to determine the charge-transfer mechanism, electrophilic or nucleophilic, prevailing in the reaction16,17. We showed that the global change in the number of electrons of reactant (fragment)A can be written as

    where

    is the nucleophilic channel, and

    the electrophilic channel. In Eqs. (3) and (4), I and A are the vertical ionization potential and electron affinity, respectively,of the corresponding species, that are determined by the energy differences: I = E(N – 1) ? E(N) and A = E(N) ? E(N + 1). This partitioning scheme has been successfully used to quantify the amount of charge transferred by σ donation and π-backdonation in transition metal (TM) ligand interactions17. The global charge transfer partitioning just described was complemented with a local version that through the atomic condensed Fukui functions of the reactants allowed us to establish which are the most relevant atoms of each reactant participating in the reaction16. Therefore, in Ref.16 and Ref. 17 it is shown that this global and local partitioning provides scales, through the amount of charge transferred that can serve as alternative reactivity scales.

    The aim of the present work is to apply this global and local charge transfer partitioning model to explain the experimental kinetic constants for a set of indoles studied by Mayr18, paying special attention to the conclusions provided by the analysis of the most reactive atoms in these reactions.

    2 Local model: a summary

    In this section we very briefly describe the procedure that leads to the working equations of the local model including the partitioning that distinguishes charge transfer channels as electrophilic or nucleophilic, for each reactant and leads to determine which are the key atoms involved in the reaction. For mathematical details we refer the reader to Ref. 16. The derivation starts considering the functional Taylor expansion of E[ρ(r)], truncated to second order, and assuming that the changes in the electron density Δρ(r) are only due to electron transfer; then Δρ(r) = f(r)ΔN, where f(r) is the Fukui function(FF)19,20. Introducing an atomic resolution for the FFs we obtain the following expression for the energy change of a reactant

    where fkis the Condensed Fukui Function (CFF) of the k-th atom in the corresponding molecule21–24.

    A key consideration in our local model is that we will not include all atoms of each reactant in the evaluation of the change in its energy. Instead, we will include a atoms from reactant A and b atoms from reactant B. Therefore, the change in the energy due to the changes on each reactant is given by

    where we use the subindex ab in Δε to indicate that this energy change takes into consideration a atoms of reactant A and b from reactant B. It is worth noting that when a and b are equal to the total number of atoms in the reactants, Eq. (6) reduces to the global model, as it should. The selection of atoms follows the criterion that large values of the FF correspond to more reactive sites in a chemical species. Thus, the atoms are ranked depending on their CFF values and the first to be included are those with larger values of their CFFs. Minimizing Eq. (6) with respect to ΔNA, using the constraint that the total number of electrons is conserved leads to the following expression for the amount of charge transferred to reactant A when considering a atoms of A and b atoms of reactant B:

    By assuming that the association reactions is such that A is the nucleophile and B the electrophile, one can use the nucleophilic CFF for atom α in A, f?α, and the electrophilic CFF for atom β in B, f+β. Following the same partitioning procedure used in the global model leads one to the following working equations to evaluate the nucleophilic charge transferred when considering a atoms of A and b atoms B:

    Proceeding analogously one can show that for the electrophilic channel,

    Eqs. (8) and (9) are the working expressions that we will use below to illustrate how they can be used to determine which are the most important atomic sites of the reactants participating in the reaction.

    3 Computational details

    Unless otherwise stated, all calculations reported in this work were made with Gaussian 09 (G09)25using the PBE functional26,27and the 6-311G(d,p) basis set, and in gas phase. A frequency analysis was done on every molecule to confirm that the stationary points located by the optimization procedure were minima in the potential energy surface. The CFFs were determined through the response-of-molecular-fragment approach24, with Yang and Mortier’s scheme21where f+k=qk(N) ?qk(N + 1) is the electrophilic CFF and f?k= qk(N ? 1) ?qk(N) is the nucleophilic CFF, and qkis the charge of the k-atom in the molecule having N, N + 1 and N - 1 electrons. The atomic charges were obtained with Hirshfeld’s Population Analysis (HPA)28. The Fukui functions were evaluated following their the definitions1,19: f?(r) = ρN(r) ? ρN?1(r) for the nucleophilic function, and f+(r) = ρN+1(r) ? ρN(r) for the electrophilic function, where ρk(r) is the electronic density of molecule having k = N, N + 1 and N - 1 electrons, respectively.For the rendering of the FFs we used VMD, version 1.9.129.

    4 Reactions between indoles and 4,6-dinitrobenzofuroxan

    In this section we apply the global and local charge transfer partitioning model described above to the reaction between a set of indoles and 4,6-dinitrobenzofuroxan (DNBF). These reactions have been thoroughly analyzed by Mayr and his group18. The set of indoles, considered as reactants A, and DNBF, as reactant B (the common substrate) are shown in Fig.1. To determine which is the prevailing electron transfer channel in the reaction, we analyze first the global charge transfer. In Table 1 we present the global reactivity indexes for the indoles considered here and for DNBF, in addition to the global charge transferred and the electrophilic and nucleophilic partition charges evaluated by Eqs. (1), (3) and (4). Also shown are the experimental kinetic constants taken from the work of Mayr18.

    Fig. 1 a) Indoles with ―X (―NH2, ―OH, ―MeO,―Me, ―H, ―Cl, ―CO2H, ―CN) substituents; b) DNBF.

    Table 1 Global reactivity indexes, vertical ionization potential (I),electron affinity (A), chemical potential (μ) and hardness (η); total charge transfer (ΔN), electrophilic (ΔN ele) and nucleophilic charge-transfer (ΔN nuc) channels obtained with the PBE exchange-correlation functional and the experimental kinetic constants taken from Ref. 18.

    To determine which is the dominant charge transfer channel in the reaction, in Ref. 16 we postulated that the prevailing charge transfer channel is that where the amount of electrons transferred goes parallel with the direction where the reactions proceeds faster. Hence, from the data reported in Table 1 we conclude that the nucleophilic channel is the dominant electron transfer mechanism in the reaction since the trend obtained with iΔN Anuci is in general agreement with that observed in the experimental kinetic constants. Therefore we can conclude that nucleophilicity of indoles toward DNBF is the main electronic process in the initial stages of these reactions. Fig. 2 depicts the good correlation obtained between the nucleophilic charge transfer channel and the experimental kinetic constants. This provides graphical support to the previous conclusion: the charge transfer mechanism prevailing in the reaction between substituted indoles and DNBF is a nucleophilic one on the indoles, i.e., in all cases they are donating charge to DNBF through the nucleophilic channel. We can also suggest that ΔN Anuccan be used or considered as a nucleophilic scale for indoles when reacting with DNBF given that the ordering provided by this global descriptor is in agreement with the scale presented by Mayr and collaborators18. To illustrate the role played by exact exchange in the prediction of the charge transferred by our model, in Table 2 we report the global reactivity indexes obtained using M06-2X30and the 6-311G(d,p)basis set, and in Fig. 3 we depict the correlation between the nucleophilic charge transferred predicted by this functional and the experimental kinetic constants. One can see that the trends are the same, independently of the exchangecorrelation functional, but the inclusion of exact exchange does improve the correlations. With GGA (PBE) we obtain a value of R2= 0.978 and with a global hybrid (M06-2X), R2= 0.982.The reason for the improvement comes from the fact that the vertical ionization potentials and electron affinities are better predicted with global hybrids.

    Fig. 2 Correlation between the PBE nucleophilic channel and the experimental kinetic constants.

    Table 2 Global reactivity indexes, vertical ionization potential (I),electron affinity (A), chemical potential (μ) and hardness (η);total charge transfer (ΔN), electrophilic (ΔN ele) and nucleophilic charge-transfer (ΔN nuc) channels obtained with the M06-2X exchange-correlation functional and the experimental kinetic constants taken from Ref. 18.

    We now use the local model to illustrate its utility to identify the most reactive atoms on each reactant. In Table 3 we show the nucleophilic CFFs for the indoles considered in this work and the electrophilic CFFs of DNBF. The atoms of both reactants are labeled as shown in Fig. 1. For reasons that are clarified below, we decided to select the seven larger values of each reactant.

    With the values of the CFFs shown in Table 3 and the ionization potentials and electron affinities reported in Table 1,the local nucleophilic channel for each indole was evaluated according to Eq. (8) taking different combinations of reactive atoms between indoles (a-atoms, first subindex) and DNBF(b-atoms, second subindex). For each a and b combination of atoms in the indoles and DNBF, respectively, we evaluated the corresponding correlation coefficient (R2) between Δand the experimental kinetic constants. These correlations coefficients are reported in Table 4.

    Fig. 3 Correlation between the M 06-2X nucleophilic channel and the experimental kinetic constants.

    Table 3 The CFFs values for the indoles and DNBF according to the atomic positions defined in Fig. 1.

    Table 4 shows two clear tendencies. First, when increasing the number of reactive atoms in the indoles (index a),independently of the number of reactive atoms considered in DNBF, the correlation coefficients increase monotonically, i.e.,they have better correlations. Secondly, and in contrast with the previous observation, the situation is completely opposite with respect to DNBF where, in all cases, the correlations decrease monotonically as more reactive atoms in DNBF are considered.The global picture indicates that for these reactions the best correlation would correspond to that obtained with the global partitioning or, in other words, to include all atoms in the evaluation of the Δ. In our previous applications of the model we found that there was an optimum number of atoms on each reactant providing the maximum correlation and,consequently, going beyond this number of atoms worsened the correlations. Thus, in the present case, considering that the global correlation is very good and that the main intention with the local partitioning is to identify the most reactive atoms in the reactants, we decided to limit the number of atoms in the indoles to seven. In fact, to provide a more concrete selection of reactive sites one could limit the number of relevant atom to 4 considering that Table 4 shows that the improvement in the correlations is marginal when the number of atoms in the indoles goes beyond a = 3. Then, using the combination ab =32, i.e., taking the first three atoms in the indoles and the 2 atoms in DNBF that have the larger values of the CFFs, and from the data reported in Table 3, we find that the atoms playing the most important roles in the reaction are: in the indoles atoms a, c, e, f, and i; in DNBF, atoms c and d.Considering the most frequent appearance of the atoms in the eight indoles we can say that atoms c and e are the most likely atoms to participate in the reaction. It should be noted that for indoles with electron donating substituents the atom different from carbon in the group is, according to their CFFs values, the most likely atom to suffer the attack.

    We now use the information obtained above regarding the most reactive atoms together with spatial distribution of the FFs to propose a plausible starting geometry orientation betweenindoles and DNBF that could drive the system to the transition state. In Fig. 4 we present isosurface plots of the electrophilic and nucleophilic FFs of one indole (X = ―H) and DNBF.According to Fig. 4a the initial intermolecular binding between indoles and DNBF happens on the molecular plane since this orientation seems to maximize the overlap between the FFs;note that the nucleophilic FF of the indole covers the zone of C(e) atom and, moreover, the electrophilic FF of DNBF also covers the C(c) and C(d) atoms. Second, in Fig. 4b we show the isovalue plots of the electrophilic FF of the indole and the nucleophilic one of DNBF. These plots can provide further support to propose a molecular orientation in the binding between the indole and DNBF. In this case, the isosurface plots suggest that the overlap between the oxygen atom (position d)in DNBF and the carbon atom of the indole in position f are the most likely interacting sites. It is important to comment that this oxygen atom in DNBF has also a large negative charge in addition to a large nucleophilic CFF value, and that the carbon atom of indole in position f also has a low negative charge and a large electrophilic CFF value. This interaction by alienation of nucleophilic/electrophilic zones of DNBF and indole is feasible due to the proximity between C(e) and C(f) atoms in the indole. Moreover, note that the intermolecular binding suggested by our analysis and the alienation of nucleophilic/electrophilic zones between indole and DNBF produces a six-member ring that can stabilize this structure and makes it a good candidate to start searching for the TS of the reaction.Therefore, these isosurface plots of the FFs of indole and DNBF together with the knowledge about the most reactive atoms we can propose that the attack of the indole on DNBF may occur as shown in Fig. 5. Similar findings were obtained for the other indoles.

    Table 4 Correlations coefficients (R2) between the local nucleophilic channel of indoles and the experimental kinetic constants, for different combinations of reactive atoms in the indole (a) and in DNBF (b).

    Fig. 4 Isosurface plots of the Fukui Function (nucleophilic in red and electrophilic in blue), using an isovalue of 0.007, for the indole with X = ―H and DNBF.

    Fig. 5 Schematic representation of the interaction between indoles and DNBF.

    It is important to note that this analysis about the initial stages of the reaction mechanism between indoles and DNBF is in agreement with the experimental evidence about the intermolecular binding site between reactants31. Moreover, our conclusion that the nucleophilicity of indoles controls its reactivity towards DNBF is also in agreement with the experimental results of Mayr and other theoretical works using CRDFT18,32.

    5 Summary and conclusions

    In this work we applied a global and local partitioning model of charge transfer to the nucleophilicity of indoles reacting with 4,6-dinitrobenzofuroxan. The global model leads us to conclude that the reaction is controlled by a nucleophilic attack on the indoles, in agreement with the experimental conclusion.The nucleophilic charge transferred is in excellent agreement with the nucleophilic ordering proposed by Mayr and collaborators suggesting that this global reactivity index can be used as nucleophilic scale for the reactivity of indoles. The local analysis of the nucleophilic channel indicates that the atoms playing the most relevant roles in the reactions are C(c)and C(e) of indoles and the C(c) of 4,6-dinitrobenzofuroxan.Using the information provided by the local analysis and the spatial distribution of the electrophilic and nucleophilic Fukui functions of the indoles and 4,6-dinitrobenzofuroxan, we show that one can suggest molecular structures that can describe the first stages of the interactions between these reactants that can be used as starting geometries for the transition state search of these reactions. The analysis suggests the existence of an alienation of nucleophilic/electrophilic zones between indole and DNBF that produces a six-member ring.

    Acknowledgment:We thank the Laboratorio Nacional de Cómputo de Alto Desempe?o (LANCAD) for the use of their facilities.

    (1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Revised ed.; Oxford University Press: New York, NY,USA, 1994.

    (2) Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(Sici)1096-987x(19990115)20:1<129::Aid-Jcc13>3.0.Co;2-A

    (3) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029p

    (4) Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    (5) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.doi: 10.3866/Pku.Whxb20090332

    (6) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065.doi: 10.1021/cr040109f

    (7) Chattaraj, P. K.; Roy, D. R. Chem. Rev. 2007, 107, PR46.doi: 10.1021/cr078014b

    (8) Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43.doi: 10.1021/cr100149p

    (9) Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403.doi: 10.1016/0010-8545(90)85016-l

    (10) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/Ja00364a005

    (11) Pearson, R. G. Inorg. Chem. 1988, 27, 734.doi: 10.1021/ic00277a030

    (12) Pearson, R. G. J. Org. Chem. 1989, 54, 1423.doi: 10.1021/jo00267a034

    (13) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA, 2005.

    (14) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    (15) Roos, G.; Geerlings, P.; Messens, J. J. Phys. Chem. B 2009, 113,13465. doi: 10.1021/jp9034584

    (16) Orozco-Valencia, A. U.; Gazquez, J. L.; Vela, A. J. Phys. Chem. A 2017, 121, 4019. doi: 10.1021/acs.jpca.7b01765

    (17) Orozco-Valencia, U.; Gazquez, J. L.; Vela, A. J. Mol. Model. 2017,23, 207. doi: 10.1007/s00894-017-3368-y

    (18) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker,T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088.doi: 10.1021/jo0614339

    (19) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (20) Berkowitz, M. J. Am. Chem. Soc. 1987, 109, 4823.doi: 10.1021/ja00250a012

    (21) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008

    (22) Fuentealba, P.; Perez, P.; Contreras, R. J. Chem. Phys. 2000, 113,2544. doi: 10.1063/1.1305879

    (23) Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116,8731. doi: 10.1063/1.1467338

    (24) Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca,R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518

    (25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, USA, 2009.

    (26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,3865. doi: 10.1103/PhysRevLett.77.3865

    (27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78,1396. doi: 10.1103/PhysRevLett.78.1396

    (28) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.doi: 10.1007/bf00549096

    (29) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics Modell.1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5

    (30) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.doi: 10.1007/s00214-007-0310-x

    (31) Terrier, F.; Pouet, M. J.; Halle, J. C.; Hunt, S.; Jones, J. R.; Buncel,E. J. Chem. Soc., Perkin Trans. 2 1993, 1665.doi: 10.1039/p29930001665

    (32) Domingo, L. R.; Perez, P. Org. Biomol. Chem. 2011, 9, 7168.doi: 10.1039/c1ob05856h

    成人国产av品久久久| 大片免费播放器 马上看| 国产免费一级a男人的天堂| a级一级毛片免费在线观看| 精品亚洲成国产av| 三级国产精品片| 中文字幕av电影在线播放| 男女边吃奶边做爰视频| 久久精品国产自在天天线| 亚洲精品乱码久久久久久按摩| 18+在线观看网站| 国产伦在线观看视频一区| 日韩,欧美,国产一区二区三区| 中文在线观看免费www的网站| 熟女人妻精品中文字幕| 91精品国产国语对白视频| 日韩强制内射视频| 久久久久久久久大av| 最黄视频免费看| 久久久久久久久久人人人人人人| 国产精品人妻久久久久久| 熟妇人妻不卡中文字幕| 国产中年淑女户外野战色| 在现免费观看毛片| 毛片一级片免费看久久久久| 久久久精品94久久精品| 午夜免费鲁丝| 免费播放大片免费观看视频在线观看| 亚洲欧美精品自产自拍| 日韩在线高清观看一区二区三区| 男女无遮挡免费网站观看| 久久久国产欧美日韩av| 亚洲不卡免费看| 女的被弄到高潮叫床怎么办| 韩国av在线不卡| 美女cb高潮喷水在线观看| 一本一本综合久久| 一级毛片我不卡| 精品国产国语对白av| 日本猛色少妇xxxxx猛交久久| 欧美亚洲 丝袜 人妻 在线| av.在线天堂| 免费观看在线日韩| 欧美最新免费一区二区三区| 九草在线视频观看| 免费人成在线观看视频色| 国产乱人偷精品视频| 免费少妇av软件| 亚洲国产色片| 欧美丝袜亚洲另类| 免费看av在线观看网站| 久久99热6这里只有精品| 欧美 亚洲 国产 日韩一| 高清不卡的av网站| 亚洲精品久久午夜乱码| 亚洲av电影在线观看一区二区三区| 丰满乱子伦码专区| 777米奇影视久久| 丰满人妻一区二区三区视频av| 菩萨蛮人人尽说江南好唐韦庄| 日本色播在线视频| 亚洲天堂av无毛| 亚洲第一区二区三区不卡| 免费看光身美女| 久热这里只有精品99| 观看免费一级毛片| 亚洲精品456在线播放app| 欧美日韩av久久| 一区二区三区免费毛片| av在线播放精品| 男女边吃奶边做爰视频| 十分钟在线观看高清视频www | 大话2 男鬼变身卡| 国产探花极品一区二区| 久热这里只有精品99| 精品人妻一区二区三区麻豆| 妹子高潮喷水视频| 国产精品一区www在线观看| av国产久精品久网站免费入址| 日本爱情动作片www.在线观看| 国产精品人妻久久久影院| 视频区图区小说| 深夜a级毛片| 这个男人来自地球电影免费观看 | 午夜免费鲁丝| 国产精品女同一区二区软件| 国产成人精品婷婷| 免费不卡的大黄色大毛片视频在线观看| 久久久久久伊人网av| 草草在线视频免费看| 五月伊人婷婷丁香| 这个男人来自地球电影免费观看 | 亚洲av综合色区一区| 三级国产精品片| 如何舔出高潮| 免费少妇av软件| 夫妻性生交免费视频一级片| 少妇高潮的动态图| 久久精品熟女亚洲av麻豆精品| 亚洲第一av免费看| 亚洲三级黄色毛片| 久久婷婷青草| 国产伦精品一区二区三区四那| 大又大粗又爽又黄少妇毛片口| 黄色欧美视频在线观看| 国产免费又黄又爽又色| 大又大粗又爽又黄少妇毛片口| 美女中出高潮动态图| 人人妻人人看人人澡| kizo精华| 欧美变态另类bdsm刘玥| 日韩视频在线欧美| 午夜免费观看性视频| 国产av一区二区精品久久| 两个人免费观看高清视频 | 亚洲怡红院男人天堂| 欧美日韩精品成人综合77777| 免费观看a级毛片全部| 3wmmmm亚洲av在线观看| 国产极品粉嫩免费观看在线 | 中国美白少妇内射xxxbb| 日韩成人伦理影院| 久久久久久久久久成人| 国产精品99久久久久久久久| 亚洲无线观看免费| 日韩精品免费视频一区二区三区 | 大香蕉久久网| 黄色日韩在线| 国产精品一区二区三区四区免费观看| 亚洲性久久影院| 欧美最新免费一区二区三区| 十八禁网站网址无遮挡 | 久久人人爽人人爽人人片va| 国产精品国产三级国产av玫瑰| 日本爱情动作片www.在线观看| 啦啦啦视频在线资源免费观看| 观看美女的网站| 亚洲国产精品一区三区| a级毛片免费高清观看在线播放| 国产亚洲最大av| 狂野欧美激情性xxxx在线观看| 91久久精品国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产亚洲欧美精品永久| 国产精品人妻久久久影院| 又粗又硬又长又爽又黄的视频| 欧美精品国产亚洲| 亚洲av福利一区| 国产亚洲欧美精品永久| 九色成人免费人妻av| 天美传媒精品一区二区| 亚洲欧美日韩卡通动漫| av不卡在线播放| 精品一区二区三区视频在线| 欧美日韩av久久| 国产一级毛片在线| 亚洲精品一区蜜桃| 久久狼人影院| 内射极品少妇av片p| 伦理电影大哥的女人| 国产有黄有色有爽视频| 22中文网久久字幕| 亚洲美女黄色视频免费看| 国内揄拍国产精品人妻在线| 七月丁香在线播放| 午夜激情久久久久久久| 精品一区在线观看国产| 国产黄片视频在线免费观看| 在现免费观看毛片| 国产精品久久久久久精品古装| 精品人妻一区二区三区麻豆| 久热这里只有精品99| 日韩在线高清观看一区二区三区| 亚洲国产日韩一区二区| 性高湖久久久久久久久免费观看| 最近中文字幕2019免费版| 午夜福利在线观看免费完整高清在| 亚洲电影在线观看av| 亚洲av日韩在线播放| 欧美日韩在线观看h| 欧美日韩精品成人综合77777| 亚州av有码| 久久影院123| 亚洲婷婷狠狠爱综合网| 欧美 亚洲 国产 日韩一| a级毛色黄片| 国产精品蜜桃在线观看| 精品亚洲成a人片在线观看| 两个人免费观看高清视频 | 亚洲精品乱码久久久久久按摩| 婷婷色综合大香蕉| 99久久精品热视频| 又粗又硬又长又爽又黄的视频| 久久久久久久久大av| 亚洲欧美精品专区久久| 亚洲成色77777| 久久国产精品大桥未久av | 欧美 亚洲 国产 日韩一| 国产精品一二三区在线看| 内地一区二区视频在线| 在线观看人妻少妇| 欧美高清成人免费视频www| 少妇的逼水好多| 欧美+日韩+精品| 亚洲成色77777| 国产女主播在线喷水免费视频网站| 如日韩欧美国产精品一区二区三区 | 大码成人一级视频| 成人18禁高潮啪啪吃奶动态图 | 国产极品天堂在线| 国产熟女午夜一区二区三区 | 亚洲美女视频黄频| 有码 亚洲区| 久久青草综合色| 日韩免费高清中文字幕av| 麻豆乱淫一区二区| 丝瓜视频免费看黄片| h视频一区二区三区| 日本黄色日本黄色录像| 国产熟女欧美一区二区| 久久久久久久久久久久大奶| 国产一区二区三区av在线| 爱豆传媒免费全集在线观看| 一级毛片电影观看| 亚洲色图综合在线观看| 欧美xxxx性猛交bbbb| 欧美日韩亚洲高清精品| 在线观看人妻少妇| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| 精品熟女少妇av免费看| 国产永久视频网站| 一区二区av电影网| 91在线精品国自产拍蜜月| 日韩一区二区三区影片| 国产精品久久久久久精品电影小说| 国产在视频线精品| 欧美3d第一页| 青春草视频在线免费观看| 女人久久www免费人成看片| 91久久精品电影网| 成人国产麻豆网| videossex国产| 18禁动态无遮挡网站| 精品人妻熟女毛片av久久网站| 看十八女毛片水多多多| 日日啪夜夜撸| 国产精品国产三级国产av玫瑰| 高清不卡的av网站| 少妇人妻精品综合一区二区| 丁香六月天网| 99re6热这里在线精品视频| 日韩欧美 国产精品| 日韩大片免费观看网站| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 国产精品麻豆人妻色哟哟久久| 精品人妻熟女毛片av久久网站| 国产女主播在线喷水免费视频网站| 爱豆传媒免费全集在线观看| 大片免费播放器 马上看| 国产亚洲一区二区精品| 久久久国产欧美日韩av| 国产一区二区三区综合在线观看 | 国产精品人妻久久久影院| 在线观看美女被高潮喷水网站| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 91成人精品电影| 伦精品一区二区三区| 国产成人精品久久久久久| 五月伊人婷婷丁香| 亚洲内射少妇av| 免费观看无遮挡的男女| 国产精品久久久久久精品电影小说| 纯流量卡能插随身wifi吗| 精品一品国产午夜福利视频| 亚洲经典国产精华液单| 亚洲一区二区三区欧美精品| 精品一区在线观看国产| 色视频www国产| 又黄又爽又刺激的免费视频.| 国产在线免费精品| 日韩av在线免费看完整版不卡| 97超视频在线观看视频| 免费观看性生交大片5| 51国产日韩欧美| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 日产精品乱码卡一卡2卡三| 欧美精品国产亚洲| 精品久久久精品久久久| 国产一级毛片在线| 中文资源天堂在线| 伊人亚洲综合成人网| 女人精品久久久久毛片| 青春草亚洲视频在线观看| 2021少妇久久久久久久久久久| 国产一区有黄有色的免费视频| 精品少妇黑人巨大在线播放| freevideosex欧美| 成人漫画全彩无遮挡| 成年人午夜在线观看视频| 人妻 亚洲 视频| 最新的欧美精品一区二区| 国产精品秋霞免费鲁丝片| 99九九线精品视频在线观看视频| 简卡轻食公司| 大又大粗又爽又黄少妇毛片口| .国产精品久久| 人人妻人人澡人人看| 午夜免费鲁丝| 亚洲精品中文字幕在线视频 | 伦精品一区二区三区| 一级,二级,三级黄色视频| 夫妻午夜视频| 国产精品99久久99久久久不卡 | 97超视频在线观看视频| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 午夜福利,免费看| 亚洲精品亚洲一区二区| 2018国产大陆天天弄谢| 国内精品宾馆在线| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| av播播在线观看一区| 日韩强制内射视频| 日韩 亚洲 欧美在线| 99热这里只有是精品50| 国产av精品麻豆| 亚洲国产精品专区欧美| 亚洲va在线va天堂va国产| 丝瓜视频免费看黄片| 亚洲av二区三区四区| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 水蜜桃什么品种好| 久久狼人影院| 亚洲精品aⅴ在线观看| 国产亚洲91精品色在线| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 成人二区视频| 插逼视频在线观看| 亚洲精品乱久久久久久| 久久久久国产精品人妻一区二区| 久久av网站| 国产真实伦视频高清在线观看| 精品久久久久久久久av| 大香蕉97超碰在线| 国产色爽女视频免费观看| 少妇被粗大的猛进出69影院 | 亚洲精品日韩av片在线观看| 男男h啪啪无遮挡| 日日啪夜夜爽| 日本-黄色视频高清免费观看| 中文精品一卡2卡3卡4更新| 黄色视频在线播放观看不卡| 午夜视频国产福利| 精品人妻偷拍中文字幕| 国产综合精华液| 亚洲av在线观看美女高潮| 美女脱内裤让男人舔精品视频| 亚洲自偷自拍三级| 人妻少妇偷人精品九色| av视频免费观看在线观看| 亚洲真实伦在线观看| 观看美女的网站| 如何舔出高潮| 少妇高潮的动态图| 亚洲国产av新网站| 亚洲欧美清纯卡通| 黄色欧美视频在线观看| 精品人妻偷拍中文字幕| 一级毛片电影观看| 久久99热6这里只有精品| 免费看光身美女| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩卡通动漫| 久久久久久人妻| 国产男女超爽视频在线观看| 色吧在线观看| 国产淫片久久久久久久久| 国产精品国产av在线观看| 亚洲欧美精品专区久久| 亚洲婷婷狠狠爱综合网| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲精品国产色婷婷电影| 啦啦啦啦在线视频资源| 人人妻人人澡人人爽人人夜夜| 日韩中文字幕视频在线看片| 国产精品一区www在线观看| a级片在线免费高清观看视频| 深夜a级毛片| 国产精品久久久久久av不卡| 精品亚洲成a人片在线观看| 亚洲国产精品一区二区三区在线| 噜噜噜噜噜久久久久久91| 久久99热6这里只有精品| 免费大片黄手机在线观看| 十分钟在线观看高清视频www | 欧美日韩亚洲高清精品| 久久久久久久久久人人人人人人| 国产男人的电影天堂91| 久久99热6这里只有精品| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频 | 国产成人免费无遮挡视频| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看 | 色视频www国产| 国产探花极品一区二区| 久久久久久久久大av| 99热全是精品| 黄色一级大片看看| 国产成人精品婷婷| 嫩草影院入口| 久久久精品免费免费高清| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频 | av又黄又爽大尺度在线免费看| 精品人妻熟女av久视频| 人妻制服诱惑在线中文字幕| 一级片'在线观看视频| 在线亚洲精品国产二区图片欧美 | 色94色欧美一区二区| 啦啦啦在线观看免费高清www| 99热全是精品| 伦理电影大哥的女人| 国产成人精品婷婷| 国产无遮挡羞羞视频在线观看| 免费av不卡在线播放| xxx大片免费视频| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱| 丰满人妻一区二区三区视频av| 水蜜桃什么品种好| 日韩,欧美,国产一区二区三区| 男女边摸边吃奶| 桃花免费在线播放| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 免费高清在线观看视频在线观看| 精品少妇内射三级| 亚洲精品一二三| 精品国产一区二区久久| 一本大道久久a久久精品| 中国美白少妇内射xxxbb| 日韩三级伦理在线观看| 韩国高清视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 啦啦啦在线观看免费高清www| 91精品国产九色| 成年美女黄网站色视频大全免费 | 欧美精品国产亚洲| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 久久青草综合色| av视频免费观看在线观看| 极品人妻少妇av视频| 亚洲成人一二三区av| 男女免费视频国产| 国产av国产精品国产| 黄色欧美视频在线观看| 中文欧美无线码| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 色哟哟·www| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 一级二级三级毛片免费看| 免费少妇av软件| 一区二区av电影网| 午夜激情福利司机影院| .国产精品久久| 视频中文字幕在线观看| 成年女人在线观看亚洲视频| 国产成人91sexporn| 国产69精品久久久久777片| 制服丝袜香蕉在线| 中文字幕av电影在线播放| 97超碰精品成人国产| 国产一区亚洲一区在线观看| 亚洲人成网站在线播| 日产精品乱码卡一卡2卡三| 精品人妻熟女av久视频| 日本-黄色视频高清免费观看| 毛片一级片免费看久久久久| 免费看不卡的av| xxx大片免费视频| 伊人久久国产一区二区| 欧美亚洲 丝袜 人妻 在线| 日本欧美国产在线视频| 你懂的网址亚洲精品在线观看| av在线播放精品| 国产毛片在线视频| 噜噜噜噜噜久久久久久91| 日韩视频在线欧美| 极品人妻少妇av视频| 亚洲精品456在线播放app| 亚洲一区二区三区欧美精品| 婷婷色综合www| 久久久国产精品麻豆| 少妇裸体淫交视频免费看高清| 人妻 亚洲 视频| 精品午夜福利在线看| 97在线人人人人妻| 日本av免费视频播放| 久久精品夜色国产| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| .国产精品久久| 日日摸夜夜添夜夜爱| 日韩在线高清观看一区二区三区| 最近最新中文字幕免费大全7| 中文字幕制服av| 日韩一本色道免费dvd| 女性被躁到高潮视频| 天堂中文最新版在线下载| 性色avwww在线观看| 国产男女超爽视频在线观看| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 久久午夜福利片| kizo精华| 久久人人爽人人爽人人片va| 亚洲精品国产av蜜桃| 国产免费福利视频在线观看| 美女福利国产在线| 免费看光身美女| 国产免费视频播放在线视频| av福利片在线观看| 春色校园在线视频观看| 久久人妻熟女aⅴ| 久久久久网色| 男人舔奶头视频| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 国产精品熟女久久久久浪| 国产精品久久久久久久电影| 大片免费播放器 马上看| 日本黄色日本黄色录像| 偷拍熟女少妇极品色| 久久国产精品男人的天堂亚洲 | 97精品久久久久久久久久精品| 国产免费福利视频在线观看| 亚洲va在线va天堂va国产| 国产男女超爽视频在线观看| 久久韩国三级中文字幕| www.av在线官网国产| 亚洲精品久久午夜乱码| a级片在线免费高清观看视频| 欧美少妇被猛烈插入视频| 亚洲三级黄色毛片| 国产欧美另类精品又又久久亚洲欧美| 熟妇人妻不卡中文字幕| 国产精品福利在线免费观看| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 精品少妇内射三级| 看十八女毛片水多多多| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| 久久6这里有精品| 国产精品.久久久| 国产精品久久久久久av不卡| 岛国毛片在线播放| 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| av在线app专区| 菩萨蛮人人尽说江南好唐韦庄| 涩涩av久久男人的天堂| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 观看av在线不卡| 如何舔出高潮| 美女主播在线视频| 最近的中文字幕免费完整| 国产永久视频网站| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 最近2019中文字幕mv第一页| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 这个男人来自地球电影免费观看 | 永久网站在线| 国产亚洲精品久久久com| 大话2 男鬼变身卡| 亚洲国产色片| 久久久亚洲精品成人影院| 最近的中文字幕免费完整| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 欧美日韩在线观看h| 亚洲av综合色区一区| 亚洲伊人久久精品综合| 乱码一卡2卡4卡精品| 亚洲自偷自拍三级| 久久婷婷青草| 搡老乐熟女国产| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 免费看光身美女| 久久 成人 亚洲| 国产av精品麻豆|