• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Dual Descriptor

    2018-07-03 09:57:52FRANCOREZMarcoZQUEZJosAYERSPaulVELAAlberto
    物理化學(xué)學(xué)報(bào) 2018年6期

    FRANCO-PéREZ Marco , GáZQUEZ José L. , AYERS Paul W. , VELA Alberto

    1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México, 09340,México.

    2 Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.

    3 Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508,Ciudad de México, 07360, México.

    1 Introduction

    One of the most important tasks in chemistry is to establish new rules, concepts and principles adequate to enhance the understanding of the reactivity of chemical species. In recent decades, the description of chemical reactivity in density functional theory (CR-DFT) has provided theoretical support to some of these concepts and rules, which were previously elucidated, intuitively, by empirical observations1–7. The chemical potential1,8(μ) which is equal to minus the electronegativity8–10(χ), and the chemical hardness11–16(η) constitute important examples, together with the Fukui function17–19(f(r)) and the dual descriptor20,21(Δf(r)). The first two, μ and η, have been identified with the first and second derivatives of the energy with respect to the number of electrons (N) at constant external potential (v(r)). Thus if one makes use of a smooth quadratic interpolation between the energies of the N0 ? 1, N0 and N0 + 1 electron systems (N0is an integer) one finds that13

    and

    where I = EN0?1? EN0and A = EN0? EN0+1are the vertical first ionization potential and electron affinity, respectively, relative to the species with N0electrons.

    In the case of f(r) and Δf(r), these local reactivity descriptors have been defined as the first and second derivatives of the electron density with respect to the number of electrons, and if one also makes use of a smooth quadratic interpolation between the densities of the N0– 1, N0and N0+ 1 electron systems, one finds that

    and

    where f+= ρN0+1(r) ? ρN0(r) and f?(r) = ρN0(r) ? ρN0?1(r)correspond to the Fukui functions for nucleophilic and electrophilic attacks, respectively17.

    These relationships (Eqs. (1)–(4)) have been very useful to understand many aspects of chemical interactions at the global level with μ and η, and at the local level with f (r) and Δf (r). In particular, it is worth to mention that the dual descriptor as expressed in Eq. (4) has proven to be a very useful tool not only in the characterization of the regioselectivity of a broad amount of chemical systems but also, to reveal the amphiphilic features of atoms and molecules22–37. A positive value of the dual descriptor in a given point in the tridimensional molecular space indicates that such point is susceptible to undergo through a nucleophilic attack, while a negative value indicates that such point is susceptible to undergo through an electrophilic attack. In the special case when the dual descriptor equals zero, a molecular species will not exhibit any preference to react as a nucleophile or as electrophile.

    However, it has been demonstrated, using a three state gran canonical ensemble composed by the N0? 1, N0and N0+ 1 electron systems, that at a temperature of 0 K, the energy and the density are given by a series of straight lines connecting the integer values of the number of electrons38,39. Later Yang,Zhang and Ayers40reach the same result without invoking ensembles, showing that this result is general. This situation implies that the left and right derivatives of the energy and of the density are different, that is

    and

    while the second derivatives are given by41

    and

    Thus, the presence of the Dirac delta function in Eqs. (7) and(8) implies that these definitions of the chemical hardness and the dual descriptor are not appropriate for the analysis of chemical reactivity. One way to overcome this situation is to make use of the smooth quadratic interpolation that leads to Eqs. (2) and (4). However, recently, it has been established that smooth interpolations between integer number of electrons can not be represented in terms of grand canonical ensembles42,and it may present inconsistencies43. This situation indicates that it would be desirable to establish alternative definitions of the chemical hardness and the dual descriptor whose basic electronic contribution could be given by Eqs. (2) and (4),because it has been through these definitions that it has been possible to analyze at the global and local levels many important aspects of a wide variety of chemical interactions1–7,16,20,21,44,45.

    In recent reports46–61, it has been shown that very important aspects regarding the chemical reactivity of the species can be revealed if one introduces the temperature as a free variable in the CR-DFT, a generalization that has been denominated as the temperature dependent chemical reactivity theory or τ-CRT.The mathematical framework of the τ-CRT is the grand canonical ensemble (GCE), together with the grand canonical potential (GCP) expressed as a unique functional of the equilibrium electron density1,62,63. One of the most important features of this framework is that atoms and molecules are naturally considered as open quantum systems able to exchange energy and electrons with surroundings and it is thus adequate to study how chemical species interact with external agents.Using the τ-CRT framework it has been possible to determine the exact (average) energy and the exact (average) density as a function of the (average) number of electrons, at any temperature, allowing us to establish exact generalizations for important CR-DFT chemical reactivity descriptors, as the electronic chemical potential8and the Fukui function17, to the temperature dependent situation48,49. Moreover, using the τ-CRT formalism we have recently56suggested that a maximum hardness principle14,64is strongly coupled with a minimum electronic fractional charge principle developed by Chattaraj, Cedillo and Parr65, indicating that the most stable chemical species are those that have an integer (average)number of electrons, or more explicitly, species with a fractional amount of electrons always tend to react with an external agent or to evolve towards the next most stable integer electrons number thermodynamic state56,58.

    The analysis of the maximum hardness principle just mentioned was done by introducing a new definition of hardness based on the GCE, called the thermodynamic hardness, that retains the essential features of the Parr and Pearson hardness (Eq. (2)), without the use of a smooth interpolation, but it avoids the Dirac delta function. The object of the present work is to perform a similar analysis for the dual descriptor.

    2 Theoretical framework

    2.1 The temperature dependent chemical reactivity theory formalism.

    In the GCE formulation, any equilibrium thermodynamic state is fully determined once the temperature T, the external potential υ(r) and the chemical potential of the reservoir μBathhave well-defined values66,67. The relationship between this GC free variables and the equilibrium electron density was formally demonstrated by Mermin and properly reformulated by Kohn and Vashishta1,62,63. At a given temperature T and modified potential u(r) = υ(r) ? μBath, the grand potential is a unique functional of the equilibrium electron density <ρ(r)>,

    where E[<ρ(r)>], ST[<ρ(r)>] and N[<ρ(r)>] are density functionals for the average electronic energy, the entropy and the average number of electrons, respectively (see48for detailed definitions of these quantities), while,

    where,

    and

    are the density and the grand canonical density operators,respectively. In Eq. (11) the sum runs over the N electrons that constitute the electronic system, while in Eq. (12) ?N represents the electron-number operator, ?H is the Hamiltonian, β =1/kBT, and the trace (tr) is over all the electronic (ground and excited) states consistent with the external potential under consideration (including the continuum).

    The GCP electron density in Eq. (10) has the following integration property,

    where N0is a reference integer number of electrons, and ?1 ≤ω[<ρ(r)>] ≤ 1 is the fractional part of the electron number. Eq.(13) constitutes one of the most important features of the GCE formalism, since systems exhibiting a fractional amount of electronic charge appear naturally as a consequence of the particular values of the GCE free variables T, υ(r) and μBath.

    In practice one cannot handle the full set of possible electronic states and the size of our ensemble must be delimitated. It is known that the ensemble model constituted by the three contiguous fundamental electronic states, ψN0, ψN0+1 and ψN0?1, reliably captures the reactivity features of substances at temperatures of chemical interest57. For this ensemble model, the equilibrium electron density and the fractional charge appearing in Eqs. (10) and (13) respectively, are expressed as follows48,49,

    It can be easily corroborated that Eq. (15) is bounded between?1 ≤ ω ≤ 1, while Eq. (14) between –f?(r) ≤Δ<ρ(r)> ≤ f+(r).

    To obtain a density expression that explicitly depends on the fractional charge ω, one must obtain first an expression for μbathfrom Eq. (15), that leads to the following two roots49,

    and

    where,

    Eqs. (16) and (17) provide results only for non-positive and non-negative values of ω, respectively, and consequently, both equations are needed in order to describe the chemical potential of the bath over the full range of fractional charge and temperature values. Eqs. (16) and (17) can be equivalently expressed as,

    and

    Inserting Eqs. (19) and (20) into Eq. (14) and after some algebraic manipulations one finally gets,

    Eq. (21) provides the exact dependence of the equilibrium electron density with respect to the average number of electrons(fractional charge), valid for the three states ensemble model under consideration at any temperature (even in the zero temperature limit).

    Through a similar strategy, we have also reported the exact average electronic energy dependence with respect to the number of electrons68,

    showing that Eq. (22) is a continuous and infinitely differentiable function (this feature is provided by the α quantity) in the average number of electrons (fractional charge). Evidently, these important results can be extended to the average electron density expression given in Eq. (21).

    2.2 Temperature dependent local chemical reactivity descriptors from the equilibrium electron density

    Given the local (spatial dependent) nature of the equilibrium electron density, it is possible to get insights about the regioselectivity features of a chemical species by removing one of the three GCE thermodynamic constraints, allowing our system to interact with the surroundings. Therefore, there are three possible kinds of interactions in the GCE framework,either by exchanging electrons or energy with the reservoir, or by modifying the external potential generated by the nuclei,which is often associated with an infinitesimal variation in the molecular geometry (although other external potential perturbations might also be considered). Electrons transfer is one of the most important phenomena in a chemical process and constitutes the main focus in this study.

    In the GCE formalism, the responses of a chemical system towards the donation and the acceptation of a certain amount of electronic charge may be determined through two different strategies. At first instance, one must recall that in the GCE framework, the chemical potential of the reservoir, μBath, is a free variable and if the temperature and the external potential are kept constant, it modulates the amount of the average number electrons exhibited by an electronic species at a given equilibrium state. Thus, one may quantify the response of the electron density towards electron transfer using the local softness69,70, which is defined as the partial derivative of the equilibrium electron density with respect to μBath, keeping constant the temperature and the external potential,

    where the term inside square brackets are the thermal fluctuations between the average electrons number and the equilibrium electron density.

    The main inconvenient of the local softness given in Eq.(23), is that it behaves as a Dirac delta function in μBathas the temperature approaches zero, and is thus not suitable for chemical reactivity analysis purposes48. In the second strategy one directly performs partial derivatives of the equilibrium electron density with respect to the average number of electrons, that corresponds to the finite temperature definition of the electronic Fukui function48,

    which can be expressed, according to the following chain rule,as

    where the first derivative in the right-hand side of Eq. (25) is given by Eq. (23), while

    is the thermodynamic softness65,69and therefore,

    It is interesting to note that as the local softness, the thermodynamic softness given in Eq. (26) also behaves as a Dirac delta function in μBath as the temperature approaches zero.However, if one considers the ratio of this two fluctuating quantities (Eqs. (23) and (26)), the Dirac delta behavior cancels out, leading to a well-behaved chemical reactivity descriptor, the electronic Fukui function. In the case of the three states ensemble model mentioned above, the electronic Fukui function in Eq. (27)can be compactly expressed as (one may corroborate that the same result is obtained if one performs the partial derivative of Eq. (21) with respect to the fractional charge ω),

    where ω and α are given by Eqs. (15) and (18), respectively.For any temperature value of chemical interest, Eq. (28)displays the following three possible results,

    recovering thus the well-known zero-temperature working equations for the Fukui function17,18.

    As mentioned in the precedent section, the equilibrium electron density given in Eq. (21) is infinitely differentiable with respect to the average number of electrons and is therefore suitable to formulate higher order reactivity descriptors. Taking the second order partial derivative of Eq. (21) with respect to the average number of electrons, we get the finite temperature generalization of the dual descriptor20,21,44,

    which is known as the electronic dual descriptor48. The term in square brackets at the right-hand side of the third equality in Eq. (30) is precisely the dual descriptor obtained by using the smooth quadratic interpolation (Eq. (4)). However, one can prove that the term outside the square brackets resembles a Dirac delta function in the fractional charge ω (or equivalently in the average number of electrons) as the temperature approaches zero, making Eq. (30) not suitable to describe the chemical reactivity of a species at the local level. In fact, this function becomes exactly equal to the Dirac delta function at T = 0, leading to Eq. (7).

    3 Theoretical development

    3.1 The thermodynamic dual descriptor

    The Dirac delta behavior exhibited by the finite temperature dual descriptor in Eq. (30) is basically due to the fact that when the temperature tends to 0 K, and even at temperatures of chemical interest, like room temperature, the electronic Fukui function given by Eq. (27) reduces to the expression given in Eq. (29), which can be interpreted as a Heaviside step function in the fractional charge ω, and therefore, when taking the derivative of Eq. (28) with respect to <N>, or ω = <N> ? N0, to obtain Eq. (30), one is taking the derivative of a Heaviside step function, which leads to the Dirac delta function.

    The definition of the dual descriptor as the second derivative of the average electron density with respect to <N>, or alternatively, the first derivative of the electronic Fukui function with respect to <N>, implies that the definition of the electronic dual descriptor given in Eq. (30), actually captures the response of the Fukui function fe(r) to changes in the number of electrons. As mentioned in the precedent section,there are two strategies to compute the response of an ensemble property in relation with an electron transfer process, one is to take derivatives with respect to the number of electrons, which in the case of the electronic Fukui function, leads to the Dirac delta result (the electronic dual descriptor in Eq. (30)), while the other one, is to consider the partial derivative of the electronic Fukui function but with respect to a GCE free variable, the chemical potential of the reservoir, since, as mentioned above, any variation of μBath will modify the equilibrium value of the average number of electrons through an electron flux from or to the surroundings. In this context,one may get a new alternative definition for the dual descriptor,which we will call the thermodynamic dual descriptor56,

    which captures essentially the same physical process (second order response of the average electron density with respect to an exchange of electrons) as Δfe(r). The subscript T in ΔfT(r) is used to indicate that through Eq. (31) one defines a“thermodynamic dual descriptor”, which is different from the electronic dual descriptor Δfe(r) defined through Eq. (30).

    By making use of the chain rule, one can express Eq. (31) in the form,

    where it can be observed that our definition of thermodynamic dual descriptor is expressed as the product of two quantities that behave as a Dirac delta function but in conjugated variables, in μBathfor thermodynamic softness S, and in <N> for the electronic dual descriptor Δfe(r). Likewise, using a Maxwell type of relation,

    and comparing with Eq. (23), it is easy to see that,

    that is, our definition of thermodynamic dual descriptor contains information regarding the response of the local softness or the electronic Fukui function, towards and electron transfer process, i.e., the variation of the electronic Fukui function with respect the chemical potential of the reservoir is equivalent to the response of the local softness to variations in the average number of electrons.

    In order to evaluate the partial derivatives in the right-hand side of Eq. (32) we will consider the chemically reliable three states ensemble model mentioned above. The thermodynamic softness for this ensemble model is given by49,68,

    Combining Eq. (30) with Eq. (35) one obtains,

    After some algebraic manipulations, Eq. (36) can be rewritten as,

    where Δ μ = μBath+ ( I + A)/2.

    To get a better understanding of the values of this property,we analyze some limiting conditions. At first instance, given that the hyperbolic secant function is equal to one at Δμ = 0,then Eq. (37) becomes in this case

    which for T ≠ 0 in the low temperature regime (up to temperatures of chemical interest) reduces to the simpler result,

    On the other hand, when Δμ ≠ 0 all the terms within the square brackets in Eq. (37) become very small, so that in the low temperature regime (up to temperatures of chemical interest) this expression can be written as

    where Cω> 0 is very close to zero for T ≠ 0. Although it becomes exactly equal to zero at T = 0, because the terms in square brackets in Eq. (37) decay to zero faster than T. It is important to mention that the results in Eqs. (39) and (40) were obtained by setting first Δμ = 0 or Δμ ≠ 0 in Eq. (37) and taking afterwards the limit when T → 0.

    Thus, the first important result to emphasize is that according to this expression, Eq. (37), the thermodynamic dual descriptor thus obtained has the form (β/2)C[f+(r) ? f?(r)], where C (the term in square brackets in Eq. (37)) is a quantity that depends on the temperature and on global electronic properties of the molecule (I and A). That is, the local terms, which are the ones that contain the regioselectivity information, are equal to those of the dual descriptor given by Eq. (4), so that ΔfT(r) has the same regioselectivity information than Δf (r), but scaled by the value of the quantity (β/2)C. This situation implies that the definition of the thermodynamic dual descriptor given by Eq.(31) is equivalent to the definition given in Eq. (30), but avoids the Dirac delta function behavior at low temperatures (up to temperatures of chemical interest), without the use of a smooth interpolation.

    On the other hand, one may observe from Eqs. (39) and (40)that the scaling quantity C shows important differences for systems with an average integer number of electrons (ω = 0),than those displaying fractional amounts of electronic charge(ω ≠ 0) . In the first case C = 1, as can be seen from Eq. (39), in the second case C = Cω > 0, but very close to zero, Eq. (40),leading to values that are practically zero, but different from zero, at low temperatures and up to temperatures of chemical interest. However, despite these big differences in the value of C the character of the different sites for nucleophilic or electrophilic attacks, ΔfT(r) ≥ 0 or ΔfT(r) ≤ 0, respectively, will be the same as those of the dual descriptor (Eq. (4)) at any temperature. That is, even if the values at the different positions within the molecule are all very small, the regions with positive and negative values, and the relative values for the different sites will be the same as those of the dual descriptor in both cases ω = 0 or ω ≠ 0, at any temperature. This situation implies that the regioselectivity information contained in the dual descriptor of Eq. (4) is never lost, at any temperature different from zero. At T = 0, in the case of systems with fractional charge Cω= 0 and the thermodynamic dual descriptor is exactly equal to zero, while in the case of systems with zero fractional charge the thermodynamic dual descriptor diverges as(1/2kB/T), according to Eq. (39).

    As mentioned in the introduction section, recently, we have also proposed an alternative definition of hardness, namely the thermodynamic hardness56, defined as the partial derivative of the electronic chemical potential with respect to variations on the thermodynamic chemical potential of the reservoir,

    that leads to the expression

    where, as previously mentioned, C is the term in square brackets in Eq. (37).

    This definition of hardness recovers the Parr and Pearson original approximation, (Eq. (2)), without the use of a smooth interpolation, and it also avoids the Dirac delta behavior exhibited by the standard definition (partial derivative of the electronic chemical potential with respect to the average number of electrons), Eq. (7). The thermodynamic hardness has the following behavior with respect to the fractional occupancy,

    where, as previously established, Cω > 0 is very close to zero,so that ηT≈ 0.

    The relationships given in this expression indicate that the most stable chemical systems are those that display an integer value in the average number of electrons while the maximum reactivity is achieved for systems with fractional electron charge. When coupled together, the thermodynamic hardness and the minimum softness principle65indicates that any chemical system able to exchange electrons with the surroundings will tend to exchange the excess or deficiency of fractional charge and evolve towards the next most stable average integer electron number thermodynamic state.

    If one rationalizes the results obtained for the thermodynamic dual descriptor conjunctly with the thermodynamic hardness, one can infer important features. In both cases, according to Eqs. (37) and (42), one is multiplying the original definitions based on the smooth quadratic interpolation, Eq. (2) for the hardness and Eq. (4) for the dual descriptor, by the same quantity, (β/2)C. However, in the case of the thermodynamic hardness, the quantity (I ? A) is a global“positive” quantity that does not depend on the position within the molecule, so that the product (β/2)C(I ? A) is a global positive quantity that characterizes the molecules as a whole.Thus, in this case the large difference between the values of C for ω = 0 or ω ≠ 0, lead directly to large differences in the thermodynamic hardness of systems with an integer average number of electrons, with respect to those with fractional charge. For the latter, one may consider that their thermodynamic hardness is zero. On the other hand, for the thermodynamic dual descriptor the product (β/2)C(f+(r) ? f?(r))has a global and a local component. The latter is the one that comprises the information on the regioselectivity features contained in the dual descriptor and whatever the value of C,large or small, the signs and the relative values at every point in space will be preserved for ω = 0 or ω ≠ 0, at any temperature different from zero.

    3.2 The electronic Fukui function dependence with respect to the bath parameters

    In this last section we want to explore the role of the thermodynamic dual descriptor in the overall chemical reactivity of a species within the GCE formalism. To do it we write the exact differential of the electronic Fukui function in terms of the grand canonical bath parameters,

    where the first derivative at the right hand side of Eq. (44)corresponds to our definition of thermodynamic dual descriptor. For the second derivative we use the identity,

    to obtain

    where we have used Eq. (32). The functional derivative at the right-hand side of Eq. (46) can be equivalently expressed as follows,

    where χe(r, r’) is the linear response density function70–74.Introducing Eqs. (46) and (47) in Eq. (44) one finally finds that

    This relationship confirms ΔfT(r) to be the corresponding response coefficient of fe(r) with respect to μBath, but furthermore, from this exact differential one can observe that the response of the electronic Fukui function with respect to perturbations on the external potential can be split into two contributions. The first one, which contains our definition of thermodynamic dual descriptor times the electronic Fukui function (second term in Eq. (48)) and the second one (third term in Eq. (48)) the variation of the linear response density function with respect to the number of electrons, which appears as a response coefficient.

    4 Conclusions

    In this work we have made use of the GCE mathematical framework to develop a new definition of the dual descriptor,the thermodynamic dual descriptor, which is given by the crossed second order derivative of the average electron density with respect the average number of electrons and with respect to the chemical potential of the electrons reservoir, or equivalently given by the first order derivative of the electronic Fukui function with respect to the chemical potential of the electrons reservoir. Since the chemical potential of the electrons reservoir control the average number of electrons in the GCE,the derivatives with respect to it retain similar physical features as those that arise from the derivative with respect to the average number of electrons, avoiding in this way the Dirac delta behavior observed in the “exact” definition of the standard dual descriptor (second order partial derivative of the average electron density with respect the average number of electrons).

    It is pertinent to remark that since in the GCE formalism, any variation of the chemical potential of the reservoir leads to an electrons transfer, the thermodynamic dual descriptor keeps the same philosophy than the original dual descriptor, Eq. (4), that is, a second order (local) chemical reactivity descriptor related with electrons transfer.

    In fact, the results obtained show that the thermodynamic dual descriptor contains the same regioselectivity information that the one contained in the dual descriptor based on the smooth quadratic interpolation of the energy as a function of the number of electrons, because the only contribution at the local level in ΔfT(r) comes from Δf(r). An important consequence of this result is that the regioselectivity information enclosed in the dual descriptor is never lost at any temperature different from zero.

    (1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    (2) Chermette, H. J. Comp. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    (3) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029p

    (4) Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    (5) Chattaraj, P. K. Chemical Reactivity Theory: A Density Functional View; CRC Press: Boca Raton, FL, USA, 2009.

    (6) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.doi: 10.3866/PKU.WHXB20090332

    (7) Johnson, P. A.; Bartolotti, L.; Ayers, P. W.; Fievez, T.; Geerlings, P.Charge Density and Chemical Reactions: A Unified View from Conceptual DFT. In Modern Charge-Density Analysis; Gatti, C.,Macchi, P., Eds.; Springer: Dordrecht, The Netherlands, 2012;pp. 715–764.

    (8) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys.1978, 68, 3801. doi: 10.1063/1.436185

    (9) Mulliken, R. S. J. Chem. Phys. 1934, 2, 782. doi: 10.1063/1.1749394(10) Iczkowski, R.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547.doi: 10.1021/ja01478a001

    (11) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.doi: 10.1021/ja00905a001

    (12) Pearson, R. G. Science 1966, 151, 172.doi: 10.1126/science.151.3707.172

    (13) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005

    (14) Pearson, R. G. J. Chem. Educ. 1987, 64, 561.doi: 10.1021/ed064p561

    (15) Pearson, R. G. Inorg. Chim. Acta 1995, 240, 93.doi: 10.1016/0020-1693(95)04648-8

    (16) Pearson, R. G., Chemical Hardness: Applications from Molecules to Solids; Wiley-VCH: Oxford, UK, 1997.

    (17) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (18) Yang, W. T.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862.doi: 10.1063/1.447964

    (19) Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353.doi: 10.1007/s002149900093

    (20) Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109,205. doi: 10.1021/jp046577a

    (21) Morell, C.; Grand, A.; Toro-Labbe, A. Chem. Phys. Lett. 2006, 425,342. doi: 10.1016/j.cplett.2006.05.003

    (22) Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.;Ayers, P. W. J. Chem. Phys. 2009, 130, 244105.doi: 10.1063/1.3151599

    (23) De Proft, F.; Ayers, P. W.; Fias, S.; Geerlings, P. J. Chem. Phys.2006, 125, 214101. doi: 10.1063/1.2387953

    (24) Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur.J. 2007, 13, 8240. doi: 10.1002/chem.200700365

    (25) De Proft, F.; Chattaraj, P. K.; Ayers, P. W.; Torrent-Sucarrat, M.;Elango, M.; Subramanian, V.; Giri, S.; Geerlings, P. J. Chem. Theory Comput. 2008, 4, 595. doi: 10.1021/ct700289p

    (26) Morell, C.; Ayers, P. W.; Grand, A.; Gutierrez-Oliva, S.; Toro-Labbe,A. Phys. Chem. Chem. Phys. 2008, 10, 7239. doi: 10.1039/b810343g

    (27) Chamorro, E.; Pérez, P.; Duque, M.; De Proft, F.; Geerlings, P.J. Chem. Phys. 2008, 129, 064117. doi: 10.1063/1.2965594

    (28) Cárdenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.;Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660.doi: 10.1021/jp902792n

    (29) Araya, J. I. M. Chem. Phys. Lett. 2011, 506, 104.doi: 10.1016/j.cplett.2011.02.051

    (30) Morell, C.; Ayers, P. W.; Grand, A.; Chermette, H. Phys. Chem.Chem. Phys. 2011, 13, 9601. doi: 10.1039/c0cp02083d

    (31) Geerlings, P.; Ayers, P. W.; Toro-Labbe, A.; Chattaraj, P. K.; De Proft, F. Accounts Chem. Res. 2012, 45, 683. doi: 10.1021/ar200192t

    (32) Tognetti, V.; Morell, C.; Ayers, P. W.; Joubert, L.; Chermette, H.Phys. Chem. Chem. Phys. 2013, 15, 14465. doi: 10.1039/c3cp51169c

    (33) Morell, C.; Gázquez, J. L.; Vela, A.; Guegan, F.; Chermette, H. Phys.Chem. Chem. Phys. 2014, 16, 26832. doi: 10.1039/c4cp03167a

    (34) Guegan, F.; Mignon, P.; Tognetti, V.; Joubert, L.; Morell, C. Phys.Chem. Chem. Phys. 2014, 16, 15558. doi: 10.1039/c4cp01613k

    (35) Tognetti, V.; Morell, C.; Joubert, L. J. Comp. Chem. 2015, 36, 649.doi: 10.1002/jcc.23840

    (36) De Proft, F.; Forquet, V.; Ourri, B.; Chermette, H.; Geerlings, P.;Morell, C. Phys. Chem. Chem. Phys. 2015, 17, 9359.doi: 10.1039/c4cp05454g

    (37) Guegan, F.; Tognetti, V.; Joubert, L.; Chermette, H.; Luneau, D.;Morell, C. Phys. Chem. Chem. Phys. 2016, 18, 982.doi: 10.1039/c5cp04982b

    (38) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett.1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    (39) Zhang, Y. K.; Yang, W. T. Theor. Chem. Acc. 2000, 103, 346.doi: 10.1007/s002149900021

    (40) Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84,5172. doi: 10.1103/PhysRevLett.84.5172

    (41) Ayers, P. W. J. Math. Chem. 2008, 43, 285.doi: 10.1007/s10910-006-9195-5

    (42) Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144,244112. doi: 10.1063/1.4953557

    (43) Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck,P.; Ayers, P. W. J. Chem. Theory Comput. 2016, 12, 5777.doi: 10.1021/acs.jctc.6b00494

    (44) Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J.2007, 13 8240. doi: 10.1002/chem.200700365

    (45) Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.;Gázquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19,12355. doi: 10.1039/c7cp00691h

    (46) Kaplan, T. A. J. Statist. Phys. 2006, 122, 1237.doi: 10.1007/s10955-005-8067-x

    (47) Ayers, P. W. Theor. Chem. Acc. 2007, 118, 371.doi: 10.1007/s00214-007-0277-7

    (48) Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem.Phys. 2015, 143, 244117. doi: 10.1063/1.4938422

    (49) Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem.Phys. 2015, 143, 154103. doi: 10.1063/1.4932539

    (50) Franco-Pérez, M.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143,024112. doi: 10.1063/1.4923260

    (51) Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104.doi: 10.1063/1.4906555

    (52) Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L. Theor. Chem. Acc.2016, 135, 199. doi: 10.1007/s00214-016-1961-2

    (53) Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys.2016, 18, 15070. doi: 10.1039/c6cp00939e

    (54) Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys.Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/c7cp00692f

    (55) Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem.Phys. 2017, 147, 094105. doi: 10.1063/1.4999761

    (56) Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem.Phys. 2017, 147, 074113. doi: 10.1063/1.4998701

    (57) Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gázquez, J. L.;Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588.doi: 10.1039/c7cp00224f

    (58) Franco-Pérez, M.; Polanco-Ramirez, C. A.; Ayers, P. W.; Gázquez, J.L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 16095.doi: 10.1039/c7cp02613g

    (59) Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113.doi: 10.1063/1.4984611

    (60) Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem.Phys. 2017, 147, 124103. doi: 10.1063/1.4996443

    (61) Miranda-Quintana, R. A.; Kim, T. D.; Cardenas, C.; Ayers, P. W.Theor. Chem. Acc. 2017, 136, 135. doi: 10.1007/s00214-017-2167-y

    (62) Mermin, N. D. Phys. Rev. 1965, 137, A1441.

    (63) Kohn, W.; Vashishta, P. Theory of the Inhomogeneous Electron Gas;March, N. H., Ed.; Plenum: New York, NY, USA, 1983; p. 124.

    (64) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854.doi: 10.1021/ja00005a072

    (65) Chattaraj, P. K.; Cedillo, A.; Parr, R. G. Chem. Phys. 1996, 204, 429.doi: 10.1016/0301-0104(95)00276-6

    (66) Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: New York, NY, USA, 1987; p. 288.

    (67) Landau, L. D.; Lifshitz, E. M. Statistical Physics; Pergamon Press:Elmsford, NY, USA, 1959.

    (68) Franco-Pérez, M.; Gázquez, J. L.; Ayers, P.; Vela, A. J. Chem.Theory Comput. 2017, doi: 10.1021/acs.jctc.7b00940

    (69) Yang, W. T.; Parr, R. G. Proc. Nat. Acad. Sci. 1985, 82, 6723.doi: 10.1073/pnas.82.20.6723

    (70) Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554.doi: 10.1063/1.454034

    (71) Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007.doi: 10.1021/ja002966g

    (72) Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577

    (73) Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1,1228. doi: 10.1021/jz1002132

    (74) Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc.Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j

    亚洲天堂国产精品一区在线| 亚洲国产精品合色在线| 狂野欧美白嫩少妇大欣赏| 88av欧美| 99国产精品一区二区三区| a在线观看视频网站| 99热只有精品国产| 97碰自拍视频| 一个人看的www免费观看视频| 国产色爽女视频免费观看| 亚洲成a人片在线一区二区| 一区福利在线观看| 亚洲第一电影网av| 最近在线观看免费完整版| 美女xxoo啪啪120秒动态图 | 久久久久久久久大av| 欧美在线黄色| 亚洲电影在线观看av| 啦啦啦观看免费观看视频高清| 国产单亲对白刺激| 两人在一起打扑克的视频| 亚洲五月婷婷丁香| 欧美成人性av电影在线观看| 性色av乱码一区二区三区2| 国产一区二区在线av高清观看| 高清日韩中文字幕在线| 香蕉av资源在线| 国产欧美日韩精品亚洲av| 淫秽高清视频在线观看| 偷拍熟女少妇极品色| 99在线人妻在线中文字幕| 日韩免费av在线播放| 婷婷精品国产亚洲av| 啦啦啦韩国在线观看视频| 日韩 亚洲 欧美在线| 男女之事视频高清在线观看| 丰满的人妻完整版| 成人av一区二区三区在线看| 欧美不卡视频在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 美女被艹到高潮喷水动态| 高清在线国产一区| 校园春色视频在线观看| 成人亚洲精品av一区二区| 精品欧美国产一区二区三| 国产精品久久视频播放| 亚洲无线在线观看| 色吧在线观看| 国产爱豆传媒在线观看| 国产黄片美女视频| 在线播放无遮挡| 日本一本二区三区精品| 亚洲精品456在线播放app | 免费观看人在逋| 亚洲熟妇中文字幕五十中出| 亚洲国产精品999在线| 91字幕亚洲| 亚洲成人久久性| av在线蜜桃| 亚洲 欧美 日韩 在线 免费| h日本视频在线播放| 伦理电影大哥的女人| 亚洲,欧美,日韩| 内射极品少妇av片p| 老司机深夜福利视频在线观看| 成人永久免费在线观看视频| 18+在线观看网站| 国产大屁股一区二区在线视频| 国产精品久久电影中文字幕| 亚洲精品456在线播放app | 亚洲五月天丁香| 国产高清有码在线观看视频| 国产精品一区二区三区四区久久| 一级a爱片免费观看的视频| 精品一区二区三区人妻视频| 欧美区成人在线视频| 国产伦一二天堂av在线观看| 一本综合久久免费| 99久久精品一区二区三区| 久久人妻av系列| www.熟女人妻精品国产| 校园春色视频在线观看| 夜夜夜夜夜久久久久| 亚洲成av人片免费观看| 十八禁人妻一区二区| 女人十人毛片免费观看3o分钟| 精品久久国产蜜桃| 国产蜜桃级精品一区二区三区| 人人妻人人澡欧美一区二区| 成人特级黄色片久久久久久久| 久久国产精品影院| 国产毛片a区久久久久| 小说图片视频综合网站| 久久精品91蜜桃| 欧美激情久久久久久爽电影| 成人高潮视频无遮挡免费网站| 久久久久久久久久成人| 18+在线观看网站| av专区在线播放| 久久伊人香网站| 变态另类成人亚洲欧美熟女| 18+在线观看网站| 午夜日韩欧美国产| 国产亚洲精品久久久久久毛片| 婷婷亚洲欧美| 日日摸夜夜添夜夜添av毛片 | 欧美丝袜亚洲另类 | 久久精品国产自在天天线| 国内精品一区二区在线观看| 国内精品一区二区在线观看| 婷婷亚洲欧美| 国产精品电影一区二区三区| 欧美国产日韩亚洲一区| 国产视频内射| 国产亚洲欧美98| 美女 人体艺术 gogo| 成人av在线播放网站| 国模一区二区三区四区视频| 99久久无色码亚洲精品果冻| 亚洲最大成人手机在线| 91在线精品国自产拍蜜月| 嫩草影院新地址| 亚洲国产欧美人成| 哪里可以看免费的av片| 我的女老师完整版在线观看| 亚洲成人中文字幕在线播放| 精品人妻1区二区| 免费在线观看影片大全网站| 亚洲中文字幕日韩| 757午夜福利合集在线观看| 啦啦啦韩国在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 老司机福利观看| 日本一二三区视频观看| 中亚洲国语对白在线视频| 好男人在线观看高清免费视频| 国产欧美日韩一区二区精品| 熟女人妻精品中文字幕| 欧美丝袜亚洲另类 | 欧美性猛交╳xxx乱大交人| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| a在线观看视频网站| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清专用| 国产真实乱freesex| 97超级碰碰碰精品色视频在线观看| 内地一区二区视频在线| 国产 一区 欧美 日韩| 99久久成人亚洲精品观看| 亚洲久久久久久中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 在线播放国产精品三级| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av天美| 国产精品不卡视频一区二区 | 一区福利在线观看| 深夜a级毛片| 亚洲,欧美精品.| 国产精品,欧美在线| 少妇的逼好多水| 欧美黄色片欧美黄色片| 亚洲自偷自拍三级| 露出奶头的视频| 制服丝袜大香蕉在线| 两个人视频免费观看高清| 中国美女看黄片| 国产亚洲精品久久久com| 国产精品美女特级片免费视频播放器| 精品一区二区三区视频在线| 一区二区三区免费毛片| 一边摸一边抽搐一进一小说| 欧美日韩福利视频一区二区| 久久99热6这里只有精品| 成年女人毛片免费观看观看9| 欧美另类亚洲清纯唯美| 啦啦啦韩国在线观看视频| 成人国产综合亚洲| 好男人电影高清在线观看| 中文字幕人成人乱码亚洲影| 久久国产乱子免费精品| 搡女人真爽免费视频火全软件 | 国产欧美日韩一区二区精品| 国产亚洲av嫩草精品影院| 一级毛片我不卡| 99九九线精品视频在线观看视频| 亚洲色图综合在线观看| 国产69精品久久久久777片| 久久99蜜桃精品久久| 神马国产精品三级电影在线观看| 国产高潮美女av| 亚洲欧美精品自产自拍| 人人妻人人澡人人爽人人夜夜| 伊人久久精品亚洲午夜| 久久精品国产鲁丝片午夜精品| 亚洲在线观看片| 青春草视频在线免费观看| 欧美潮喷喷水| 熟女av电影| 精品国产露脸久久av麻豆| 国产黄片美女视频| 大香蕉久久网| 高清午夜精品一区二区三区| 久久久午夜欧美精品| 国产精品国产三级国产av玫瑰| 亚洲精品乱久久久久久| 成人国产av品久久久| 亚洲av日韩在线播放| 18禁动态无遮挡网站| 国产爽快片一区二区三区| 涩涩av久久男人的天堂| 高清在线视频一区二区三区| 少妇熟女欧美另类| 在现免费观看毛片| 国产精品99久久99久久久不卡 | 在现免费观看毛片| 卡戴珊不雅视频在线播放| 69人妻影院| 精品久久久精品久久久| 久久久久网色| 午夜激情福利司机影院| 水蜜桃什么品种好| 婷婷色av中文字幕| 男人狂女人下面高潮的视频| 最近的中文字幕免费完整| 亚洲人与动物交配视频| 日本一二三区视频观看| 国产精品嫩草影院av在线观看| 国产精品久久久久久精品古装| 日本三级黄在线观看| 亚洲三级黄色毛片| 内射极品少妇av片p| 亚洲欧美精品自产自拍| 只有这里有精品99| 国产午夜精品久久久久久一区二区三区| 免费观看a级毛片全部| 亚洲av.av天堂| 搡老乐熟女国产| 性插视频无遮挡在线免费观看| 男人和女人高潮做爰伦理| 免费黄色在线免费观看| 国产91av在线免费观看| 国产淫语在线视频| 日韩国内少妇激情av| 免费观看在线日韩| 日日啪夜夜撸| 亚洲av成人精品一二三区| 97在线视频观看| 高清欧美精品videossex| 女人被狂操c到高潮| 亚洲丝袜综合中文字幕| 国产有黄有色有爽视频| 欧美日韩视频精品一区| 久久久久久久久大av| 嫩草影院新地址| 狂野欧美白嫩少妇大欣赏| 亚洲美女搞黄在线观看| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 精品国产一区二区三区久久久樱花 | 亚洲av成人精品一区久久| 黄色配什么色好看| 天堂中文最新版在线下载 | 男女下面进入的视频免费午夜| 最近最新中文字幕免费大全7| 精品久久久久久久久av| 在线观看国产h片| 日本av手机在线免费观看| 老司机影院成人| 成人亚洲精品av一区二区| 少妇的逼水好多| 大话2 男鬼变身卡| 精品酒店卫生间| 看十八女毛片水多多多| 在线a可以看的网站| 国产黄色免费在线视频| 国产成人91sexporn| 超碰av人人做人人爽久久| 极品教师在线视频| 2021少妇久久久久久久久久久| 五月天丁香电影| 一级黄片播放器| 免费黄网站久久成人精品| 国产精品国产av在线观看| 亚洲国产高清在线一区二区三| 亚洲欧美日韩卡通动漫| 在线观看美女被高潮喷水网站| 国产成人aa在线观看| 精品视频人人做人人爽| 岛国毛片在线播放| 免费av毛片视频| 欧美性猛交╳xxx乱大交人| 成年人午夜在线观看视频| 高清在线视频一区二区三区| 国产毛片在线视频| 人人妻人人澡人人爽人人夜夜| 国产黄频视频在线观看| 国产精品无大码| 一边亲一边摸免费视频| 久久人人爽av亚洲精品天堂 | 免费av毛片视频| 王馨瑶露胸无遮挡在线观看| 国产69精品久久久久777片| 国产免费又黄又爽又色| 国产白丝娇喘喷水9色精品| 免费看a级黄色片| 亚洲精品色激情综合| av卡一久久| 国产精品一二三区在线看| 秋霞伦理黄片| 夜夜看夜夜爽夜夜摸| 成人国产av品久久久| 99九九线精品视频在线观看视频| 嫩草影院入口| 久久久久国产精品人妻一区二区| 国产乱人偷精品视频| 欧美变态另类bdsm刘玥| 插逼视频在线观看| 精品国产三级普通话版| 国产黄片视频在线免费观看| 精品99又大又爽又粗少妇毛片| 成人午夜精彩视频在线观看| 国产女主播在线喷水免费视频网站| 久久久成人免费电影| 免费观看性生交大片5| 国产v大片淫在线免费观看| 可以在线观看毛片的网站| 日本-黄色视频高清免费观看| 国产成人91sexporn| 性插视频无遮挡在线免费观看| 内地一区二区视频在线| 不卡视频在线观看欧美| 2021天堂中文幕一二区在线观| 国产亚洲午夜精品一区二区久久 | 国产在线男女| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 国产人妻一区二区三区在| 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 99久久精品热视频| 好男人视频免费观看在线| 在线亚洲精品国产二区图片欧美 | 中文字幕亚洲精品专区| 欧美潮喷喷水| 国产午夜福利久久久久久| 在线观看一区二区三区| 校园人妻丝袜中文字幕| 国产乱来视频区| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| a级毛片免费高清观看在线播放| 一级毛片我不卡| 乱码一卡2卡4卡精品| 九草在线视频观看| 日本wwww免费看| 偷拍熟女少妇极品色| 青春草国产在线视频| 中文资源天堂在线| 2021天堂中文幕一二区在线观| 欧美性感艳星| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 国产黄色免费在线视频| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av天美| 网址你懂的国产日韩在线| 亚洲怡红院男人天堂| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆| 人体艺术视频欧美日本| 免费av毛片视频| 午夜爱爱视频在线播放| 熟女av电影| 亚洲精品日韩av片在线观看| 大片免费播放器 马上看| 亚洲美女搞黄在线观看| 亚洲成色77777| 日韩三级伦理在线观看| 在线 av 中文字幕| 亚洲在线观看片| 成人毛片60女人毛片免费| 久久久久久久午夜电影| 蜜桃亚洲精品一区二区三区| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 国产日韩欧美亚洲二区| 夜夜看夜夜爽夜夜摸| 一边亲一边摸免费视频| 色视频www国产| 99视频精品全部免费 在线| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 欧美精品国产亚洲| 国产精品嫩草影院av在线观看| 日韩电影二区| 久久久亚洲精品成人影院| av免费在线看不卡| 午夜老司机福利剧场| 久久精品熟女亚洲av麻豆精品| 日韩不卡一区二区三区视频在线| av国产精品久久久久影院| 美女高潮的动态| 熟女av电影| 人人妻人人澡人人爽人人夜夜| 色吧在线观看| 一本一本综合久久| 免费看不卡的av| 深夜a级毛片| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 久久久亚洲精品成人影院| 偷拍熟女少妇极品色| 欧美3d第一页| 波野结衣二区三区在线| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| av福利片在线观看| 男女边吃奶边做爰视频| 免费看av在线观看网站| av福利片在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲无线观看免费| 国产成人91sexporn| 国产 精品1| 伊人久久精品亚洲午夜| 各种免费的搞黄视频| 国产精品99久久99久久久不卡 | 嫩草影院精品99| 亚洲精品456在线播放app| 老司机影院毛片| 国产av不卡久久| 热re99久久精品国产66热6| 白带黄色成豆腐渣| 日韩三级伦理在线观看| 亚洲精品成人av观看孕妇| 亚洲最大成人中文| 日韩大片免费观看网站| 99热全是精品| 99视频精品全部免费 在线| 男女国产视频网站| 中文字幕亚洲精品专区| 亚洲av日韩在线播放| 久久人人爽av亚洲精品天堂 | 亚洲精品中文字幕在线视频 | 最新中文字幕久久久久| 简卡轻食公司| 岛国毛片在线播放| 九色成人免费人妻av| 久久精品国产亚洲av天美| 91精品一卡2卡3卡4卡| 涩涩av久久男人的天堂| 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| tube8黄色片| 2021天堂中文幕一二区在线观| 一本久久精品| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看 | 人体艺术视频欧美日本| 欧美国产精品一级二级三级 | 亚洲成人中文字幕在线播放| 美女cb高潮喷水在线观看| 中文资源天堂在线| 中国三级夫妇交换| 99热这里只有是精品在线观看| 女人久久www免费人成看片| 激情 狠狠 欧美| 国产色爽女视频免费观看| 神马国产精品三级电影在线观看| av国产久精品久网站免费入址| 日本一本二区三区精品| 日韩一本色道免费dvd| 丝袜美腿在线中文| 人妻 亚洲 视频| 99久久精品热视频| 国产中年淑女户外野战色| 精品国产一区二区三区久久久樱花 | 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 男女下面进入的视频免费午夜| 在线免费十八禁| 成人免费观看视频高清| 欧美另类一区| 国产 一区 欧美 日韩| av播播在线观看一区| 日韩免费高清中文字幕av| 欧美+日韩+精品| 亚洲自偷自拍三级| 在线亚洲精品国产二区图片欧美 | 亚洲成色77777| 亚洲内射少妇av| 亚洲国产精品国产精品| 久久久久久久精品精品| 极品少妇高潮喷水抽搐| 亚洲精品,欧美精品| 在现免费观看毛片| 亚洲成色77777| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 日韩中字成人| 色视频www国产| 欧美精品人与动牲交sv欧美| 久久6这里有精品| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 美女内射精品一级片tv| 国产毛片a区久久久久| 欧美一区二区亚洲| 亚洲美女搞黄在线观看| 男人舔奶头视频| 国产亚洲精品久久久com| 国产一区二区三区综合在线观看 | 欧美xxxx性猛交bbbb| 特级一级黄色大片| 国产成人福利小说| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 精品少妇黑人巨大在线播放| 欧美精品国产亚洲| 涩涩av久久男人的天堂| 久久精品国产自在天天线| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 能在线免费看毛片的网站| 伦精品一区二区三区| 久久久久久国产a免费观看| 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 成人鲁丝片一二三区免费| 中文字幕av成人在线电影| 国产精品久久久久久精品电影小说 | 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 久久6这里有精品| 久久久久久久久久人人人人人人| 亚洲综合精品二区| 国产免费福利视频在线观看| 亚洲成人久久爱视频| 久久99蜜桃精品久久| 亚洲,一卡二卡三卡| 免费看av在线观看网站| 亚洲精品,欧美精品| 蜜桃久久精品国产亚洲av| 国产一区亚洲一区在线观看| 免费少妇av软件| 国产爱豆传媒在线观看| 国内精品宾馆在线| 男的添女的下面高潮视频| 国产av国产精品国产| 国产有黄有色有爽视频| 水蜜桃什么品种好| 亚洲精品,欧美精品| 国产91av在线免费观看| 国产精品一及| 国产精品麻豆人妻色哟哟久久| 国产亚洲午夜精品一区二区久久 | 七月丁香在线播放| 精品久久久噜噜| 成人漫画全彩无遮挡| 一个人看的www免费观看视频| 国内精品宾馆在线| 日日啪夜夜撸| 欧美高清性xxxxhd video| 草草在线视频免费看| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 成人欧美大片| 成人漫画全彩无遮挡| 色综合色国产| 亚洲精品国产av成人精品| 欧美日本视频| 亚洲国产高清在线一区二区三| 成人无遮挡网站| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 日韩,欧美,国产一区二区三区| 色视频在线一区二区三区| 在线精品无人区一区二区三 | av国产免费在线观看| 女人被狂操c到高潮| 亚洲一区二区三区欧美精品 | 国产精品久久久久久久电影| 日韩欧美精品免费久久| 久久久久久久久久人人人人人人| 久久午夜福利片| 欧美区成人在线视频| 成人无遮挡网站| 国产av码专区亚洲av| 日本欧美国产在线视频| 国产精品久久久久久久电影| 一本一本综合久久| 中文字幕av成人在线电影| 国产视频内射| 黄片wwwwww| 国产综合懂色| 亚洲内射少妇av| 亚洲三级黄色毛片| 欧美另类一区| 人人妻人人爽人人添夜夜欢视频 | 97在线人人人人妻| 国产成人精品婷婷| 国产精品人妻久久久久久| 我要看日韩黄色一级片| av在线亚洲专区| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡免费网站照片| 免费观看av网站的网址| 毛片女人毛片| 身体一侧抽搐|