• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kohn-Sham Density Matrix and the Kernel Energy Method

    2018-07-03 09:57:46POLKOSNIKWalterMASSALou
    物理化學(xué)學(xué)報(bào) 2018年6期
    關(guān)鍵詞:氣缸套內(nèi)孔公差

    POLKOSNIK Walter,MASSA Lou

    1The Graduate Center of the City University of New York,Physics Department,365 5th Avenue,New York,NY 10016,USA.

    2 Hunter College of the City University of New York,Chemistry Department,695 Park Avenue,New York,NY 10065,USA.

    3 The Graduate Center of the City University of New York,Physicsand Chemistry Departments,365 5th Avenue,New York,NY 10016,USA.

    1 Introduction

    In quantum chemisty the computational diきculty of solving the Schrodinger equationincreasesdramatically withthenumber of basis functions1.The computational diきculty of the kernel energy method scalesmoresoftly and hasbeen shown to provide accurate energy results over a wide range of systems at their equilibrium geometries2–9.In the kernel energy method the molecule is cut into subsets called kernels.The KEM energy is defi ned as

    where EKEMis the full molecule energy,Eiand Eijare the energiesof single and double kernels respectively,and K is the total number of single kernels.Double kernels consist of the union of atoms in the single kernels.While KEM is known to generally give energies close to full molecule ab-initio energies it does not deliver the density matrix of the full molecule,nor thecorresponding orbitals.

    In this paper we use a generalization of KEM that provides the full molecule KS orbitals and KS density matrix from KS/DFT calculations on individual kernels.The kernel expansion of thedensity matrix is defi ned for the full molecule and then the conditions of idempotency and normalization are imposed on it by an algorithm due to Clinton.The resulting density matrix,because it is factorizable into a product of LCAO coeきcient matrices,maps to a set of full molecule KS orbitals.Those orbitals and density allow calculation of all KS expectation values.In particular,the KS density allows calculation of coherent X-ray scattering structure factors of crystallized molecules.

    2 Discussion

    Here we review the fundamental ideas related to the use of KEM to obtain a normalized idempotent density matrix from KS/DFT results10.

    Thematrix R=C?C isthedensity matrix expressed in the ψbasis.The KEM version of this density matrix is defi ned by analogy to the KEM energy expression.

    The matrices Riand Rijare constructed from the individual single and double kernel density matrices to represent their contribution to the full molecule density.The KEM density matrix RKEMcontains contributions from all the single and double kernels that constitute the full molecule.The union of the single kernels represents all the atoms in the full molecule.The double kernels include the interactions between all pairs of single kernels.In this way,RKEMis an approximation to the global density matrix for the full molecule. While RKEMis not N-representable,N-representability will beimposed by the Clinton algorithm as decribed below to provide a N-representable global density matrix for thefull system.

    Each kernel density matrix must be adapted to the full molecule basis to represent the contribution of that kernel to the full molecule.This is done by augmenting the kernel matrices as we now indicate.

    For asinglekernel density matrix,denoted by ri,theform of the corresponding augmented matrix is

    where riisthe entiresinglekernel density matrix set asa block into theappropriateposition in a matrix which is the size of the full molecule matrix.

    For a double kernel density matrix,rij,the corresponding augmented matrix is of the form

    3.1.4 提高氣缸套維修質(zhì)量。保證氣缸套的內(nèi)孔表面粗糙度較高,尺寸精確,保證形狀及位置都能夠符合位置公差。同時(shí)氣缸套及機(jī)體要有足夠的剛度,從而降低氣缸套在工作中的變形問(wèn)題。

    where(rij)iiistheblock from thedoublekernel density matrix that corresponds to basis function products for atoms only in kernel i and(rij)jjis the block referring to basis function products for atoms only in kernel j.The oあ-diagonal blocks(rij)ijand(rij)jiare elements of the double kernel density matrix which multiply basis function products from atoms in kernels i and j.The remaining elments of the matrix are set to zero.

    The density matrix P is defined in terms of the R density matrix through thesquareroot of theoverlap matrix S.

    The overlap matrix S in the full molecule basis is obtained from the single and double kernel matrices through a process similar to the construction of the augmented kernel density matrices.In the case of S,however,the matrix elements from the kernel overlap matrices are simply placed in their appropriate positions.

    The normalized projector condition will be imposed by the Clinton equations11.In termsof P,thenormalization condition for double occupied orbitals is tr P=N/2 and the projector condition is P2=P.The Clinton equationsare obtained from extremizing

    where tr(P2?P)2= ‖P2? P‖2is the square of the Frobeniusnorm of thediあerencebetween P2and P and λ isa Lagrange multiplier that enforces the normalization constraint.The Clinton equations are

    As the iteration number n increases,the Lagrangian multiplier λn,used to impose normalization,goesto zero,and the matrix P goes to a normalized projector.The resulting projector determines a set of full molecule KSorbitals which deliver the KSelectron density12.

    3 Results

    To illustrate the formalism discussed in the previous section we study a simple proof of concept system consisting of three helium atoms in a linear confi guration symmetric about a plane through the middleatom.Calculations for avariety of distances separating the atoms were done to explore the accuracy of both the KEM energy and theenergy associated with thenormalized projector KS/KEM density matrix.The range of the distances separating theatomswastaken to be0.4RvdW<R<2.0 RvdW,where RvdW=1.4?(1?=0.1 nm)is the van der Waals radius of helium.At the minimum separation the atoms are heavily clashing.At distances smaller than 0.4RvdWKS/DFT calculations on the double kernels are not possible due to close contacts.The greatest separation used was twice the van der Waalsradiusof helium.Atthisdistanceeach atom isessentially independent of theothersand resultsarenot expected to change appreciably at larger distances.The three single kernels were taken to betheindividual helium atoms,thusthedoublekernels consist of the three pairings of those three single kernels.

    Thecalculationsfor theproof of conceptsystem areall based upon the chemical model KS/DFT B3LYP,using STO-3G and 6-31G(d,p)basissets.Resultsfor theenergy and density matrix elements were extracted from the Gaussian program.The KS energy E[P]associated with a given density matrix was also calculated using Gaussian13.

    The numerical results for EKEMover the range of distances considered are shown in Table 1 for the STO-3G basis and in Table 3 for the 6-31G(d,p)basis.The energies obtained from the KEM density matrix after imposing normalization and idempotency using the Clinton algorithm are presented in Table2 for the STO-3Gbasis and in Table4 for the6-31G(d,p)basis.In all these tables Efullis the energy of the full system,which is provided as a reference for comparison to the KEM results.

    For large R,i.e.R/RvdW> 1,Tables 1–4 show that the direct KEM energy,EKEM,and the KEM projector energy,E[Pprojector],are close to the full molecule energy in both the STO-3Gand 6-31G(d,p)basis.Asthedistanceof separation R decreases,however,the direct KEM energy values in the STO-3G basis(Table 1)begin to steadily diverge from the full molecule results while the normalized projector energy(Table 2)is accurate at all distances.At the minimum separation distance of 0.4RvdWthe energy diあerence EKEM? Efullhas risen to a very large magnitude of error, ?137kcal·mol?1,while E[Pprojector]? Efull=1.84 × 10?5kcal·mol?1,a very small error.Even at large separations the projector energy is much closer to thefull moleculeenergy.

    For calculations on the proof of concept system in the 6-31G(d,p)basis the KEM energy and the KEM projector energy both track the full molecule energy for R/RvdW>1.In contrast with the results for the STO-3G basis,the straightforward KEM energy and the projector energy bothdiverge from the full molecule energy as the separation between the atoms decreases.Also in contrast with the results in the STO-3Gbasis,in thecases R/RvdW=1.8,1.7,1.4,1.3,0.6,the straightforward KEM energy is more accurate than the projector energy.Theprojector energy in the majority of cases,however,ismoreaccuratethan the KEM energy.

    Table 1 KEM energy results,E KEM,compared to full molecule energies E full,both calculated in the STO-3G basis,for thelinear helium system over a range of atomic separations.

    Table2 Projector density matrix energies E[P projector]compared to full molecule energies E full,both calculated in the STO-3G basis,for thelinear helium system over a rangeof atomic separations.

    Thetrendswehavedescribed for theproof of concept system in the STO-3G basis are also presented in Fig.1.In Fig.1,for interatomic distances R/RvdW>1 the KEM energy,EKEMclearly closely tracks the full molecule energy,Efullwhile for R/RvdW<1,EKEMdiverges from Efull.The energy of the projector,E[Pprojector],isaccurateover thewholerangeof atomic separations.The energy obtained from the KS/KEM density matrix E[Pprojector]is very close to the full system energy evenin the extreme cases for which the atoms are strongly clashing.The KEM information hasbeen transformed into information on the KSorbitals pertaining to the full molecule accurately over thewholerangeof separation distanceswehaveconsidered.

    Table3 KEM energy results,E KEM,compared to full molecule energies,E full,both calculated in the6-31G(d,p)basis,for the linear helium system over a rangeof atomic separations.

    Fig.1 Diあerencesbetween thefull moleculeand both KEM and projector energiesfor thelinear helium system in the STO-3G basis.

    Table4 Projector density matrix energies E[P projector]compared to full moleculeenergies E full,both calculated in the 6-31G(d,p)basis,for thelinear helium system over a rangeof atomic separations.

    The results for the 6-31G(d,p)case are presented in Fig.2.Both the KEM and projector energies diverge astheseparation between the atoms decreases,while for physically reaonable separations both the KEM and projector energy give accurate results.

    Therearethreeimportant measuresto judgetheconvergence of the Clinton equations.Oneisthemeasureof thequality of the normalizationof P duringtheiterations,tr(Pn)?N/2.Another is the Lagrange multiplier for the normalization constraint,λn.The most important measure is the quality of the projector,as given by the square of the Frobenius norm of the diあerence between P2nand Pn,‖P2n? Pn‖2.Each one of these should decreaseasthenumber of iterations,n,of the Clinton equations increases.

    For the STO-3G basis,the Clinton equations converge to a normalized projector for all separations.Detailsof each step of the Clinton algorithm for 0.4RvdWare given in Table 5 along with the energy of the density matrix.The iteration number is denoted by n,with n=0 being the energy of the augmented density matrix sum in Eq.(3).As the iteration number,n increases,the parameters measuring the quality of the normalization,idempotency and normalization constraint converge to very small values even in this case,which is the most clashing.The criterion for convergence of the Clinton algorithm used in this paper was that‖P2? P‖2<1×10?28.For larger atomic separations for calculations in the STO-3G basis,R>0.4RvdW,the algorithm converges in fewer iterations.

    For the proof of concept system in the 6-31G(d,p)basis the Clintonequationsconvergeato normalized projector in all cases except R/RvdW=0.4,0.5.In the case for R/RvdW=0.4 the measure of the quality of the projector diverges.The initial value is‖P2? P‖2=2.8 which increases to 2.4×106in two steps while the density matrix remain normalized to high precisionateachstep.Our algorithmabandonsfurther iterations when‖P2?P‖2> 1.0×106.For the case R/RvdW=0.5 the Clinton algorithm gets caught in a local minimum after eight iterations.It remains at‖P2? P‖2=5.95×10?2with E[P]=?2.75a.u.for theremaining iterations.

    The measures of the quality of convergence for each step of the Clinton algorithm for the 0.6RvdW6-31G(d,p)case are given in Table6.Each column reportsthesameparametersasin the STO-3G case in Table 5.For larger atomic separations the algorithm convergesin fewer steps,as in the STO-3G basis.

    Fig.2 Diあerencesbetween thefull moleculeand both KEM and projector energiesfor thelinear helium system in the6-31G(d,p)basis.

    Table5 Clinton algorithm applied to theinitial P KEM for the linear helium system calculated in the STO-3G basisat an atomic separation of R=0.4 R vd W.

    Table6 Clinton algorithm applied to theinitial P KEM for the linear helium system calculated in the6-31G(d,p)basisat an atomic separation of R=0.6 R vd W.

    As a test of the KEM/KS procedure for a more chemically interesting system wecalculated the KEM energy and apply the KS/KEM procedureto obtain the KS/KEM density for acluster of twelvewater molecules at an energy minimized geometry14using KSDFTand the6-31G(d,p)basis.Theresultsfor thiscase arepresented in Tables7 and 8.Theconvergenceof the Clinton algorithm to a normalized projector is presented in Table 9.The Clinton equationsconvergerapidly and provideacalculated energy which iscloser to thefull molecule energy by afactor ofnearly four.

    Table7 KEM energy resultscompared to full moleculeenergies for thetwelvewater moleculecluster.

    Table8 Projector density matrix energiescompared to full moleculeenergiesfor thetwelvewater moleculecluster.

    Table9 Clinton algorithm applied to theinitial P kem for the twelvemuleculewater cluster

    4 Conclusions

    Thisisthefi rst study showing how full molecule KSorbitals can be extracted from KS/KEM calculations. The straightforward kernel energy expansion does not deliver full molecule orbitals.To address this gap in the application of the kernel expansion method to solutions of the KS equations we have shown how to construct an initial full molecule KEM density matrix and how to obtain a normalized projector from this initial matrix using the Clinton equations.The resulting matrix,because it is a projector,is factorizable into a product of matrices R=C?C whose factors C will deliver the full molecule KS molecular orbitalsφ =Cψexpanded in the atomic orbitals.After imposing the projector property upon the density matrix its KS/KEM energy is in the majority of cases closer to that of the full molecule than is the direct KEM energy,as has been shown in the numerical calculations of this paper.

    Applied to quantum crystallography15–17,analogously to what has been done here,one may also calculate the KS/DFT quantum mechanics of the kernels composing a molecular crystal.One can then put together the density matrix for entire crystal by properly summing the kernels,at the same time attaching experimental Debeye-Waller factors to the basis functions.The resulting density can then be used to calculate the X-ray scattering factors.The magnitude of the resulting crystallographic R-factor then becomes the measure of the accuracy of the KS/KEM orbitalsof themolecular crystal.This is important to quantum crystallography in as much as it means that true quantum mechanics,including the exact density KS orbitals can be extracted from the X-ray data.

    Acknowledgement:This paper is dedicated to the memory of Professor Robert G.Parr to celebrate his contributions to DFT.We thank Douglas Fox and Fernando R.Clemente of Guassian,Inc.for invaluable discussions.We thank CUNY for useof computer resources.

    (1)Weiss,S.N.;Huang,L.;Massa,L.J.Comput.Chem.2010,31,2889.doi:10.1002/jcc.21584

    (2)Huang,L.;Massa,L.;Karle,J.Biochemistry 2005,44,16747.doi:10.1021/bi051655l

    (3)Huang,L.;Massa,L.;Karle,J.Proc.Nat.Acad.Sci.USA 2006,103,1233.doi:10.1073/pnas.0510342103

    (4)Huang,L.;Massa,L.;Karle,J.Int.J.Quantum Chem.2005,103,808.doi:10.1002/qua.20542

    (5)Huang,L.;Massa,L.;Karle,J.Proc.Nat.Acad.Sci.USA 2005,102,12690.doi:10.1073/pnas.0506378102

    (6)Huang,L.;Matta,C.;Massa,L.Struct.Chem.2015,26,1433.doi:10.1007/s11224-015-0661-1

    (7)Timm,M.J.;Matta,C.F.;Massa,L.;Huang,L.J.Phys.Chem.A 2014,118,11304.doi:10.1021/jp508490p

    (8)Huang,L.;Massa,L.;Matta,C.F.Carbon 2014,76,310.doi:10.1016/j.carbon.2014.04.082

    (9)Huang,L.;Bohorquez,H.J.;Matta,C.F.;Massa,L.Int.J.Quantum Chem.2011,111,4150.doi:10.1002/qua.22975

    (10)Polkosnik,W.;Massa,L.J.Comput.Chem.2017,doi:10.1002/jcc.25064

    (11)Clinton,W.L.;Massa,L.J.Phys.Rev.Lett.1972,29,1363.doi:10.1103/PhysRevLett.29.1363

    (12)L?wdin,P.-O.Phys.Rev.1955,97,1474.doi:10.1103/PhysRev.97.1474

    (13)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.A.;et al.Gaussian 09,Revision D.01;Gaussian Inc.:Wallingford,CT,USA,2009.

    (14)Maheshwary,S.;Patel,N.;Sathyamurthy,N.;Kulkarni,A.D.;Gadre,S.R.J.Phys.Chem.A 2001,105,10525.doi:10.1021/jp013141b

    (15)Huang,L.;Massa,L.;Karle,J.;Matta,C.F.Quantum Biochemistry;Wiley-VCH,Verlag GmbH&Co.KGaA:Weinheim,Germany,2010;chap.1.

    (16)Grabowsky,S.;Genoni,A.;Bürgi,H.-B.Chem.Sci.2017,8,4159.doi:10.1039/C6SC05504D

    (17)Jayatilaka,D.;Gatti,C.;Piero,M.Modern Charge-Density Analysis;Springer:The Netherlands,2012;chap.6.

    猜你喜歡
    氣缸套內(nèi)孔公差
    彎管內(nèi)孔氧化皮的去除方法
    激光內(nèi)孔熔覆扁頭套工藝操作改進(jìn)研究
    柴油機(jī)氣缸套四點(diǎn)磨損分析及機(jī)體結(jié)構(gòu)優(yōu)化
    農(nóng)用柴油機(jī)汽缸套保護(hù)方法研究
    一種圓管內(nèi)孔自動(dòng)打磨機(jī)的設(shè)計(jì)
    套筒類零件內(nèi)孔精加工工藝分析
    帶有中心值的百分?jǐn)?shù)的公差表示方式
    具有最佳熱傳導(dǎo)性能的噴涂Al-Fe氣缸套
    汽車文摘(2016年4期)2016-12-08 08:09:50
    公差里的“五朵金花”
    帶有中心值的百分?jǐn)?shù)的公差表示方式
    韩国av一区二区三区四区| 午夜福利在线观看免费完整高清在 | 亚洲专区中文字幕在线| 成人永久免费在线观看视频| 亚洲精品粉嫩美女一区| 精品一区二区三区av网在线观看| 丁香欧美五月| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| tocl精华| 国产久久久一区二区三区| 岛国在线观看网站| 搡老妇女老女人老熟妇| 超碰成人久久| 亚洲九九香蕉| 久久久久国产精品人妻aⅴ院| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看 | 99久久国产精品久久久| 好男人电影高清在线观看| 国内精品久久久久久久电影| 欧美又色又爽又黄视频| xxxwww97欧美| 久久亚洲真实| 青草久久国产| 性色avwww在线观看| 熟女电影av网| 欧美色视频一区免费| 999久久久国产精品视频| x7x7x7水蜜桃| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| 99re在线观看精品视频| 色尼玛亚洲综合影院| 国产私拍福利视频在线观看| 国产高清有码在线观看视频| 九色成人免费人妻av| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| www.熟女人妻精品国产| 免费在线观看视频国产中文字幕亚洲| 亚洲一区二区三区色噜噜| 一区福利在线观看| 九色成人免费人妻av| 亚洲av熟女| 久久久久久久精品吃奶| 99精品久久久久人妻精品| 婷婷丁香在线五月| 中文字幕高清在线视频| 变态另类成人亚洲欧美熟女| 亚洲精品在线观看二区| 宅男免费午夜| 我要搜黄色片| 波多野结衣高清作品| avwww免费| 亚洲片人在线观看| 一个人免费在线观看电影 | 又黄又爽又免费观看的视频| av女优亚洲男人天堂 | 在线观看日韩欧美| 色噜噜av男人的天堂激情| 精品国产乱子伦一区二区三区| 免费看美女性在线毛片视频| 免费av不卡在线播放| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 亚洲av美国av| 国产高清激情床上av| 久久久久精品国产欧美久久久| 人妻丰满熟妇av一区二区三区| 一区二区三区国产精品乱码| 成人高潮视频无遮挡免费网站| 激情在线观看视频在线高清| 亚洲专区中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻,人人澡人人爽秒播| 黑人巨大精品欧美一区二区mp4| 又黄又粗又硬又大视频| www日本在线高清视频| 欧美日韩综合久久久久久 | 啦啦啦观看免费观看视频高清| 精品福利观看| 成人国产一区最新在线观看| 国产又黄又爽又无遮挡在线| 性色av乱码一区二区三区2| 成人av一区二区三区在线看| 美女扒开内裤让男人捅视频| 麻豆国产97在线/欧美| 国产精品乱码一区二三区的特点| 男女那种视频在线观看| 757午夜福利合集在线观看| 久久精品国产99精品国产亚洲性色| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看| 青草久久国产| 一区福利在线观看| 韩国av一区二区三区四区| 一本一本综合久久| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区免费| 久久久久国内视频| 美女午夜性视频免费| 亚洲中文日韩欧美视频| 丝袜人妻中文字幕| 精华霜和精华液先用哪个| 国产欧美日韩精品一区二区| 日本 欧美在线| 亚洲乱码一区二区免费版| 亚洲在线观看片| 国产精品 国内视频| 无遮挡黄片免费观看| 国产av麻豆久久久久久久| 久久久久九九精品影院| 午夜福利欧美成人| 亚洲一区二区三区不卡视频| 午夜精品久久久久久毛片777| 国产免费av片在线观看野外av| 搞女人的毛片| 亚洲人成伊人成综合网2020| 日本精品一区二区三区蜜桃| 亚洲色图av天堂| 久久久国产成人精品二区| 亚洲av日韩精品久久久久久密| 国产极品精品免费视频能看的| www.精华液| 日日干狠狠操夜夜爽| 亚洲乱码一区二区免费版| 人人妻人人看人人澡| 欧美成狂野欧美在线观看| 国产精品久久久久久精品电影| 88av欧美| 嫩草影院入口| 美女扒开内裤让男人捅视频| 国产伦人伦偷精品视频| 欧美又色又爽又黄视频| 免费一级毛片在线播放高清视频| 香蕉国产在线看| 美女黄网站色视频| 日本成人三级电影网站| 成人亚洲精品av一区二区| 日韩欧美免费精品| 亚洲美女黄片视频| 久久人人精品亚洲av| 午夜a级毛片| 欧美在线一区亚洲| 欧美中文综合在线视频| 国产午夜精品论理片| 日本与韩国留学比较| www.999成人在线观看| 男女之事视频高清在线观看| 亚洲乱码一区二区免费版| 黑人操中国人逼视频| x7x7x7水蜜桃| 成在线人永久免费视频| 亚洲精品在线观看二区| 亚洲国产欧美网| 很黄的视频免费| 精品久久久久久久毛片微露脸| 国产爱豆传媒在线观看| 亚洲av中文字字幕乱码综合| 久99久视频精品免费| 欧美日韩中文字幕国产精品一区二区三区| 国产高清视频在线播放一区| 日韩大尺度精品在线看网址| 亚洲色图 男人天堂 中文字幕| 美女高潮喷水抽搐中文字幕| 身体一侧抽搐| 99精品在免费线老司机午夜| 国产真实乱freesex| 琪琪午夜伦伦电影理论片6080| 他把我摸到了高潮在线观看| 欧美日韩瑟瑟在线播放| 色av中文字幕| 最近最新免费中文字幕在线| 久久精品国产亚洲av香蕉五月| 一级黄色大片毛片| xxx96com| 亚洲人成电影免费在线| 露出奶头的视频| 99re在线观看精品视频| 成在线人永久免费视频| 国产97色在线日韩免费| 特大巨黑吊av在线直播| 精品久久久久久成人av| 午夜成年电影在线免费观看| 99久久成人亚洲精品观看| 脱女人内裤的视频| 99久久精品国产亚洲精品| 91久久精品国产一区二区成人 | 欧美另类亚洲清纯唯美| 国产成人影院久久av| 天堂√8在线中文| 国产男靠女视频免费网站| 欧美乱色亚洲激情| 高清在线国产一区| 最近在线观看免费完整版| 亚洲无线在线观看| 18美女黄网站色大片免费观看| 久久这里只有精品19| 首页视频小说图片口味搜索| 成年女人毛片免费观看观看9| 精品久久久久久成人av| 黑人欧美特级aaaaaa片| 国产激情欧美一区二区| 搞女人的毛片| 国内精品久久久久精免费| 成年免费大片在线观看| 免费看十八禁软件| 色综合站精品国产| avwww免费| 国产精品综合久久久久久久免费| 国产午夜精品论理片| av黄色大香蕉| 免费在线观看亚洲国产| 日本 欧美在线| 国产三级黄色录像| 国产一区二区在线观看日韩 | 美女 人体艺术 gogo| 欧美在线一区亚洲| 亚洲熟妇熟女久久| 美女大奶头视频| 亚洲电影在线观看av| 亚洲无线观看免费| 久久午夜综合久久蜜桃| 国产麻豆成人av免费视频| 91在线精品国自产拍蜜月 | 亚洲av成人不卡在线观看播放网| www日本在线高清视频| 天堂网av新在线| 老司机午夜福利在线观看视频| 桃红色精品国产亚洲av| 99国产综合亚洲精品| 欧美黄色片欧美黄色片| 村上凉子中文字幕在线| 黑人巨大精品欧美一区二区mp4| 看黄色毛片网站| 国产人伦9x9x在线观看| 中文字幕精品亚洲无线码一区| 免费搜索国产男女视频| 成人特级av手机在线观看| 久久婷婷人人爽人人干人人爱| 亚洲专区中文字幕在线| 黄色成人免费大全| 亚洲av成人一区二区三| 亚洲欧洲精品一区二区精品久久久| 99热6这里只有精品| 性色avwww在线观看| 在线观看美女被高潮喷水网站 | 中文亚洲av片在线观看爽| 一级毛片精品| 亚洲第一电影网av| 国产97色在线日韩免费| 亚洲欧美日韩高清专用| 母亲3免费完整高清在线观看| 一个人免费在线观看的高清视频| 国产精品av视频在线免费观看| h日本视频在线播放| 亚洲精品在线观看二区| 成年女人看的毛片在线观看| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕日韩| 波多野结衣高清作品| 国产成人aa在线观看| 久久久久国内视频| 狠狠狠狠99中文字幕| 视频区欧美日本亚洲| 国产私拍福利视频在线观看| 美女免费视频网站| 日韩精品青青久久久久久| 成人特级黄色片久久久久久久| 日本熟妇午夜| 黑人操中国人逼视频| 脱女人内裤的视频| 最新美女视频免费是黄的| 亚洲第一欧美日韩一区二区三区| 亚洲国产中文字幕在线视频| 国语自产精品视频在线第100页| 99精品欧美一区二区三区四区| 美女午夜性视频免费| av天堂在线播放| 老熟妇仑乱视频hdxx| 中文亚洲av片在线观看爽| 婷婷亚洲欧美| 欧美绝顶高潮抽搐喷水| 欧美高清成人免费视频www| 99热精品在线国产| 亚洲在线自拍视频| 欧美国产日韩亚洲一区| 成人三级做爰电影| 两人在一起打扑克的视频| 一进一出抽搐动态| 欧美成狂野欧美在线观看| 一边摸一边抽搐一进一小说| 国产精品久久久久久人妻精品电影| 国产精品女同一区二区软件 | 午夜福利在线在线| 18禁观看日本| 999精品在线视频| 日本黄色视频三级网站网址| 亚洲欧美精品综合一区二区三区| 天天一区二区日本电影三级| 好看av亚洲va欧美ⅴa在| 久久久久久久久中文| 真人做人爱边吃奶动态| 国产激情欧美一区二区| 怎么达到女性高潮| 国内精品久久久久精免费| 日本黄大片高清| 国产精品自产拍在线观看55亚洲| 久久精品91无色码中文字幕| 亚洲一区高清亚洲精品| 亚洲 欧美一区二区三区| 小说图片视频综合网站| 午夜福利欧美成人| 90打野战视频偷拍视频| 国产精品av久久久久免费| 露出奶头的视频| 欧美日韩乱码在线| 日韩av在线大香蕉| 免费看十八禁软件| 免费观看的影片在线观看| 黄片大片在线免费观看| 好男人在线观看高清免费视频| 亚洲色图 男人天堂 中文字幕| 真人一进一出gif抽搐免费| 精品欧美国产一区二区三| 亚洲人成电影免费在线| 中文字幕精品亚洲无线码一区| 亚洲男人的天堂狠狠| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 国产亚洲精品一区二区www| 男女床上黄色一级片免费看| 久久精品国产99精品国产亚洲性色| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣高清作品| 美女 人体艺术 gogo| 白带黄色成豆腐渣| 美女免费视频网站| 日本 欧美在线| 免费观看精品视频网站| 在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 免费无遮挡裸体视频| 成人特级av手机在线观看| 久久久久精品国产欧美久久久| 久久欧美精品欧美久久欧美| 一本久久中文字幕| 亚洲av成人一区二区三| 婷婷六月久久综合丁香| 99久久国产精品久久久| 网址你懂的国产日韩在线| 国产午夜精品久久久久久| www.精华液| 亚洲美女黄片视频| 国产精品久久视频播放| 99国产精品99久久久久| 他把我摸到了高潮在线观看| 午夜激情福利司机影院| 国产黄片美女视频| 91av网站免费观看| 国产综合懂色| 一区福利在线观看| 美女 人体艺术 gogo| 精品一区二区三区视频在线观看免费| 免费看美女性在线毛片视频| 久久热在线av| 美女大奶头视频| 国产真实乱freesex| 亚洲中文字幕日韩| 极品教师在线免费播放| 最新美女视频免费是黄的| 亚洲国产看品久久| 亚洲中文字幕一区二区三区有码在线看 | 一个人免费在线观看电影 | 亚洲国产欧美人成| 真实男女啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产av国片精品| 日本熟妇午夜| 九九热线精品视视频播放| 老司机福利观看| 欧美又色又爽又黄视频| 高清毛片免费观看视频网站| 少妇熟女aⅴ在线视频| 露出奶头的视频| 夜夜躁狠狠躁天天躁| 久久99热这里只有精品18| 首页视频小说图片口味搜索| 久久欧美精品欧美久久欧美| 欧美日韩一级在线毛片| 成人特级黄色片久久久久久久| 欧美在线一区亚洲| 亚洲午夜理论影院| 亚洲精品国产精品久久久不卡| 久久国产精品人妻蜜桃| 国产免费av片在线观看野外av| 成人鲁丝片一二三区免费| 男人舔女人的私密视频| 日本一二三区视频观看| 老熟妇乱子伦视频在线观看| av在线天堂中文字幕| 天堂网av新在线| 美女大奶头视频| 精品熟女少妇八av免费久了| 白带黄色成豆腐渣| 国产亚洲欧美在线一区二区| 亚洲男人的天堂狠狠| 国产av在哪里看| 在线观看免费午夜福利视频| 女同久久另类99精品国产91| 精品国产乱码久久久久久男人| 欧美最黄视频在线播放免费| 亚洲片人在线观看| 亚洲欧美激情综合另类| 老汉色∧v一级毛片| 男女视频在线观看网站免费| 老司机深夜福利视频在线观看| 亚洲av日韩精品久久久久久密| 国产高清三级在线| 日本 av在线| 99久国产av精品| 91字幕亚洲| 男人的好看免费观看在线视频| 黄色成人免费大全| 国产欧美日韩一区二区精品| 99国产极品粉嫩在线观看| 狂野欧美激情性xxxx| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 99国产精品99久久久久| 亚洲av第一区精品v没综合| 精品福利观看| 1024手机看黄色片| 男女午夜视频在线观看| 亚洲国产精品久久男人天堂| 一二三四社区在线视频社区8| 波多野结衣巨乳人妻| 欧美日韩乱码在线| 一个人看视频在线观看www免费 | 亚洲avbb在线观看| 一区二区三区高清视频在线| 日本一二三区视频观看| 国产黄片美女视频| 国产伦人伦偷精品视频| 欧美日韩国产亚洲二区| 综合色av麻豆| 国产激情欧美一区二区| 岛国视频午夜一区免费看| 99热这里只有精品一区 | 日韩av在线大香蕉| 曰老女人黄片| 夜夜爽天天搞| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 不卡av一区二区三区| 99国产综合亚洲精品| 国产成人精品久久二区二区免费| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 亚洲激情在线av| 成熟少妇高潮喷水视频| 日韩成人在线观看一区二区三区| 午夜激情福利司机影院| 我的老师免费观看完整版| www.www免费av| 又黄又爽又免费观看的视频| 久久久久久大精品| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 亚洲精品乱码久久久v下载方式 | 在线永久观看黄色视频| 精品日产1卡2卡| 日韩欧美精品v在线| av片东京热男人的天堂| ponron亚洲| 在线观看日韩欧美| 一区二区三区高清视频在线| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 亚洲成av人片免费观看| 欧美日韩黄片免| 精品一区二区三区视频在线 | 中文字幕人成人乱码亚洲影| 91老司机精品| 制服丝袜大香蕉在线| 日本成人三级电影网站| 精品一区二区三区四区五区乱码| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影 | 精品无人区乱码1区二区| 少妇丰满av| 天堂网av新在线| 免费大片18禁| 亚洲 欧美 日韩 在线 免费| 日本黄色片子视频| 丰满人妻一区二区三区视频av | av天堂中文字幕网| 成人性生交大片免费视频hd| 欧美在线黄色| 亚洲 欧美一区二区三区| 男女之事视频高清在线观看| 午夜福利在线观看免费完整高清在 | 天堂√8在线中文| 搞女人的毛片| 成年人黄色毛片网站| 国产野战对白在线观看| 天堂影院成人在线观看| 黄色视频,在线免费观看| 日本成人三级电影网站| x7x7x7水蜜桃| 亚洲激情在线av| 亚洲国产欧美网| 麻豆av在线久日| 久久精品人妻少妇| 色尼玛亚洲综合影院| 久久精品综合一区二区三区| 国产精品99久久99久久久不卡| 成人av在线播放网站| 国产不卡一卡二| 成人一区二区视频在线观看| av视频在线观看入口| 亚洲成人久久性| 老司机午夜福利在线观看视频| 日本精品一区二区三区蜜桃| 日韩国内少妇激情av| 亚洲成av人片免费观看| 国产精品久久久av美女十八| 精品国产乱子伦一区二区三区| 国产精品免费一区二区三区在线| netflix在线观看网站| 又大又爽又粗| 精品人妻1区二区| 国产又黄又爽又无遮挡在线| 香蕉丝袜av| 国产极品精品免费视频能看的| 欧美中文日本在线观看视频| 亚洲精品美女久久久久99蜜臀| 特级一级黄色大片| 两性夫妻黄色片| 亚洲成人中文字幕在线播放| 亚洲 欧美一区二区三区| 久久久久久久精品吃奶| 18禁观看日本| 精品久久久久久久久久久久久| 国产黄a三级三级三级人| 欧美高清成人免费视频www| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 亚洲av熟女| 国产亚洲精品久久久久久毛片| www.www免费av| 日韩人妻高清精品专区| 亚洲精品456在线播放app | 这个男人来自地球电影免费观看| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频| 国产精品亚洲一级av第二区| 香蕉国产在线看| 此物有八面人人有两片| 免费看日本二区| 一区福利在线观看| 校园春色视频在线观看| 长腿黑丝高跟| 国产精品乱码一区二三区的特点| 久久久久九九精品影院| 亚洲 国产 在线| 日本黄色片子视频| 精华霜和精华液先用哪个| 天堂影院成人在线观看| 成人特级av手机在线观看| 欧美精品啪啪一区二区三区| 丝袜人妻中文字幕| ponron亚洲| 成年女人毛片免费观看观看9| 免费av毛片视频| 人妻丰满熟妇av一区二区三区| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 男人的好看免费观看在线视频| 亚洲 国产 在线| 最新在线观看一区二区三区| 1024香蕉在线观看| 久久久久免费精品人妻一区二区| 国产精品久久视频播放| 三级国产精品欧美在线观看 | 精品人妻1区二区| 亚洲精品456在线播放app | 精品一区二区三区四区五区乱码| 91av网一区二区| 久久热在线av| 国产一区二区三区在线臀色熟女| 欧美日韩瑟瑟在线播放| 真人一进一出gif抽搐免费| 日韩欧美精品v在线| 精品久久久久久久久久免费视频| 精品国产乱码久久久久久男人| 全区人妻精品视频| 色视频www国产| 婷婷六月久久综合丁香| 国内精品久久久久精免费| 俄罗斯特黄特色一大片| 国产精品1区2区在线观看.|