• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative Electrophilicity Measures

    2018-07-03 09:57:46GONZLEZMarcoMartnezRDENASCarlosRODRGUEZJuanLIUShubinHEIDARZADEHFarnazMIRANDAQUINTANARamAlainAYERSPaul
    物理化學(xué)學(xué)報 2018年6期

    GONZáLEZ Marco Martínez, CáRDENAS Carlos, RODRíGUEZ Juan I., LIU Shubin,HEIDAR-ZADEH Farnaz, MIRANDA-QUINTANA Ramón Alain, AYERS Paul W.

    1 Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba.

    2 Departamento de Química, and Centro de Química Universidade de Coimbra, 3004-535 Coimbra, Portugal.

    3 Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago, Chile.

    4 Centro para el desarrollo de la Nanociencias y Nanotecnología, CEDENNA, Av. Ecuador 3493, Santiago, Chile.

    5 Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, U.P. A.L.M., Col. San Pedro Zacatenco,C.P. 07738, Ciudad de México, México.

    6 Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA.

    7 Department of Chemistry & Chemical Biology; McMaster University; Hamilton, Ontario L8S 4M1, Canada.

    8 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium.

    9 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium.

    1 Introduction

    The concepts of electrophilicity and nucleophilicity are cornerstones of our understanding of chemical reactivity1,2.Usually, they are merely considered in a qualitative way,together with the notions of electron accepting/donating groups, to rationalize chemical reactivity trends. However, their remarkable utility has also inspired researchers to find ways to quantify the electrophilic and nucleophilic character of a given molecule. These efforts have deepened our understanding of what makes a compound a better or worse electrophile/nucleophile, how these properties could be tuned,and how they relate to other quantities. We view the work of Mayr et al.3–7as especially important. These authors have established electrophilicity and nucleophilicity scales by means of extensive experimental tests. The defining element of these studies is the following expression:

    where k20 °C is the rate constant of the reaction (at 20 °C)between the nucleophile and the electrophile, while s and N Mayr are parameters specific to the former, and E Mayr to the latter.Analyzing several combinations of electrophile-nucleophile pairs, the corresponding parameters can be determined. These definitions of the nucleophilicity and electrophilicity is clearly based on the concept that strong electrophiles react with strong nucleophiles rapidly and vigorously, while weak electrophiles and weak nucleophiles react slowly and reluctantly, if at all.

    Parallel to these experimental determinations, there is steadfast interest in finding mathematical equations to quantify the electrophilicity of a molecule8–10. Perhaps the best example of this is the early work of Maynard et al.11, which proposed a simple expression for the electrophilicity in terms of electron attachment/removal energies. Parr et al.12then provided a theoretical justification for Maynard’s proposal within the framework of conceptual density functional theory (c-DFT)13–23.This landmark contribution gave chemists a simple, yet powerful, tool that has been successfully applied to the analysis of regioselectivity of cycloaddition reactions24–27, the study of leaving groups28,29, transition states30–32, and redox reactions33–35.This c-DFT electrophilicity measure has also been used as a descriptor in several quantitative structure activity relationship(QSAR) studies36–39. But arguably the biggest impact of the precise quantitative definition of the electrophilicity is that it provided a way to prove the minimum electrophilicity principle(MEP)40–44. Expanding on Parr’s work, and also within the c-DFT formalism, Gázquez et al.45, and Chamorro et al.46,47have generalized this index. Recently, new working expressions for this index has been proposed, which are free from some inconsistencies found in previous versions48,49.

    The proliferation of theoretical electrophilicity measures makes it desirable to assess their performance. This is main goal of this work. As a reference for comparison, we will use Mayr’s parameter. Since the theoretical and experimental measures of electrophilicity refer to different effects, we do not expect them to be exactly the same. However, we believe that a good theoretical measure of electrophilicity must capture the trends from Mayr’s work. In addition to testing existing theoretical definitions, we will also attempt to use machine learning techniques to find a mathematical expression that reproduces the Mayr electrophilicity.

    2 Conceptual DFT electrophilicity measures

    Parr et al.12defined the electrophilicity, ω, as the stabilization energy associated with the electronic saturation of the system (e.g., molecule). In other words, how the energy of a system changes when it reaches equilibrium with a perfect electron donor. Evaluating this definition requires a model for how the electronic energy, E, changes with respect to the number of electrons, N. If we neglect the changes in the external potential (e.g., molecular geometry) during the electron saturation process, we can estimate energy variation in terms of the following (truncated) Taylor expansion50:

    Within the c-DFT framework is customary to identify the coefficients of this expansion with different reactivity descriptors. For example, Parr et al.51proposed to identify the coefficient of the linear term with the (electronic) chemical potential of the system, μ, which is in turn defined as the additive inverse of the electronegativity, χ:

    In a similar way, Parr and Pearson50identified the coefficient of the quadratic term with the chemical hardness, η,which is in turn defined as the multiplicative inverse of the chemical softness, S:

    In c-DFT, a perfect electron donor is defined as a system with zero electronegativity (e.g., zero chemical potential). This means that Parr’s electrophilicity definition can be written as:

    where μ0is the chemical potential of the isolated system.

    The standard way to approximate this index is to notice that,according to Sanderson’s electronegativity equalization principle52, the system will reach electronic saturation when:

    Substituting Eq. (2) in this expression we can calculate the maximum number of bound electrons, ΔNmax:

    From this it is now easy to see that:

    Notice that we have explicitly indicated that this expression corresponds to the quadratic energy model used in Eq. (2). (It is possible to generalize this expression to differentiate between the electrophilicity of spin up and spin down electrons53–60, but this will not be considered here.)

    To obtain a working expression for the electrophilicity we need to express the chemical potential and chemical hardness in terms of quantities from electronic structure theory that can be computed using standard quantum chemistry software. This can be done by viewing Eq. (2) as a parabolic interpolation of the electronic energy of the system with N0, N0+ 1, and N0? 1 electrons or, equivalently, using a three-point finite differences approximation with ΔN = 161:

    here, I and A are the ionization energy and electron affinity,respectively. Substituting these expressions in Eq. (8) we obtain:

    Motivated by the success of the parabolic model, Gázquez,Cedillo, and Vela (GCV) proposed a two-parabolas model that allowed them to describe electron transfer processes in a more realistic way45. The key insight in their work was to distinguish between the electron-accepting and the electron-donating processes. (Since we will be only concerned here with the ability of a system to incorporate electron, we will neglect the latter.) In their formulation, the electron-rich and electron-poor regimes are described by different parabolas(e.g., different E vs N models) with the same curvature.Imposing different conditions on this simple model, they obtained the expressions for the chemical potentials of the system when is gaining, μ+GCVelectrons:

    Their model is completed with the assumption that the chemical hardness for both electron-accepting and electron-donating processes is equal:

    These new expressions can be substituted in the general working equation obtained by Parr (cf. Eq. (8)), resulting in the following electroaccepting, ω+GCV, power45:

    Inspired by the work of GCV, Chamorro, Duque, and Pérez(CDP)46,47rewrote Eq. (8) using the electron accepting, μ+,chemical potential obtained from the piecewise linear interpolation of Perdew, Parr, Levy, and Balduz62:

    Therefore, they obtained:

    Additionally, these authors also proposed a simpler ansatz,where the chemical hardness of a system gaining electrons could be related to the chemical potential of the inverse process. In other words, making46,47:

    Recently, it has been pointed out that there are several problems with the classical way to calculate the electrophilicity,Eq. (11)49. Most notably, this formula gives unreasonable results for polycations (where ΔNmax>> 1) and for species with small electron affinities (where ΔN max should be close to zero,but may not be). These, and other, problems could be traced back to the fact that while the parabolic interpolation is mathematically consistent63, it lacks a rigorous physical justification64,65(except for some cases)66,67. This situation motivated the analysis of the electrophilicity index using a finite temperature formulation of the grand-canonical ensemble(an approach that has provided rigorous foundations to several c-DFT results)48,68–75. Within this formulation, it is easy to obtain an exact working expression that preserves the physical meaning of Parr’s definition. This thermodynamic electrophilicity, ωTD, is simply given by49:

    From here results:

    whereis the k th electron affinity of the system with M0particles, and θ(x) is Heaviside (step) function. If we are only considering the same three states used in the parabolic model(e.g., “neutral”, “cationic”, and “anionic” states), this result is reduced to:

    This merely takes the electrophilicity to be equal to A when A > 0, and zero in the other cases. This is the simplified expression that we will be using in the following.

    Finally, it has been also shown that a consistent description of chemical reactivity within c-DFT requires the descriptors to incorporate the effects of the molecular surroundings75–79. The simplest way to do so is using the insights obtained from the Klopman-Salem frontier molecular orbital treatment80–86,which allows us to obtain model expressions for the perturbed chemical potential, μP, and the perturbed chemical hardness,ηP76:

    where γ and ζ are non-negative parameters that model the interaction with the environment. Including these modified descriptors in Eq. (8) we obtain a more general, perturbed electrophilicity, ωP:

    In the following, we will analyze how the previously discussed electrophilicity measures correlate with Mayr’s electrophilicity parameter. To do this, we will work with a simple linear correlation:

    Since the effect of thefactor in Eq. (23) can be included in the slope, m, of the linear regression, we will work with a simplified version of the perturbed electrophilicity,namely:

    3 Electrophilicity measures from symbolic regression (SR)

    The indices presented in the previous section are chemically motivated and, as such, they help us determine the factors which govern the acceptance of electrons by an electrophile.While this is a valuable approach, sometimes we are more interested in obtaining an accurate estimate of the electrophilicity, regardless of the insight, it might provide. An attractive alternative in this respect is the use of machine learning (ML) tools87–91.

    Here, we will work with a very powerful data mining tool:symbolic regression (SR)92–100. SR is a supervised method,which means that we provide the algorithm with a “training set” in order to find correlations between different descriptors and a property of interest. The goal of SR is to use a training set to obtain a mathematical function that relates the desired properties to the data. In this way, SR gives the best functional form (of a given pre-specified complexity), along with the best numerical parameters, for a given training set. In more technical terms, given a set of data values(training set),withrepresenting a vector of independent variables (e.g.,descriptors), and→ y the dependent variable (which will be predicted from x), SR finds the function y = fthat best describes the overall data. The optimization process takes place over a function space, expanded by mathematical operators and constants100. If the function space includes all possible functional forms, that is, the length of the mathematical expression can go up to infinity and there is no restriction on the operators used, the method will find many different functions which fit all the data exactly. However, this might cause problems when describing points/observations outside the training set. It is therefore common to enforce some constraints during the SR procedure (e.g., the length of the functions, the number of operands and numerical parameters used, etc.)

    Once we restrict the accessible function space, an intuitive choice would be to select a set of basis functions to expand it.However, while this will turn the SR problem into a more familiar linear regression, the size of the basis needed makes this impractical in most cases. This demands the use of different optimization methods, with evolutionary algorithms being a popular choice. Here we will focus on two such algorithms: genetic programming (GP)100–103and grammatical evolution (GE)104–106.

    3.1 Genetic programming (GP)

    Genetic programming (GP)100–102draws inspiration from the mechanism of DNA replication, with new “generations” (e.g.,functional forms) leading towards better solutions. On this algorithm, each possible solution is referred to as an“individual”. In the case of an SR, these are functions proposed to fit the data. These individuals are commonly represented as a tree (see Fig. 1). The leaves represent constants or data variables, and the nodes represent the allowed mathematical operators. It is important to remark that it is possible if desired,to use basically any function as an operator, and not only the four basic arithmetic operators.

    The algorithm starts with a random generation of possible solutions (trees) that fulfill the restrictions imposed (e.g., the operators allowed and the maximum length of the solution).Then, a new generation of solutions is created, following three steps: breeding, evaluation, and selection. The breeding involves the creation of a new set of alternative solutions. This can be done in several ways107: copying a solution to the new generation; combining two solutions to produce two new ones by exchanging two randomly selected subtrees between the parents (crossover)108; changing part of a solution (subtree) for a new, randomly generated, one (mutation)103(see Figs. 2 and 3). The crossover operator ensures that the individuals of the new generation share characteristics of their parents; while the mutation process prevents premature convergence of the algorithm by adding randomness. These changes occur in an uncontrolled way. Then, the evaluation step consists in the evaluation of the fitness function for each of the newly created candidate solutions. The last step consists of the selection of some of the newly created solutions in order to conform the population of the new generation. The probability to select an individual increases with the quality of the fitness calculated in the evaluation step. This process is repeated until a termination criterion is fulfilled (typically given by the number of iterations or a fitness threshold).

    Fig. 1 Tree representation of Parr’s electrophilicity equation.

    Fig. 2 Effect of the mutation operator on a tree.

    Fig. 3 Effect of the crossover operator on two trees.

    3.2 Grammatical evolution (GE)

    Grammatical evolution (GE)104–106, a more recent evolutionary algorithm, uses a grammar to map an integer array into a program (in the case of an SR, into a function). To do the mapping, GE uses a context-free grammar109–111, which along with an alphabet of terminal symbols, a set of non-terminal symbols, production rules, and a start symbol, is capable of deriving a model from an integer string. These integer strings are then optimized by an evolutionary technique. At every step,the composition rules are used to map from the array to the corresponding model, in order to evaluate the fitness of the latter. This resembles the natural process in which the genotype is separated from the phenotype. The optimization procedure can mimic the steps used in the GP case, but other algorithms such as particle swarm optimization112can also be used.

    4 Model systems and computational tools

    The different electrophilicity measures were tested over a set of 58 molecules for which Mayr’s EMayrparameter is known113(see Table 1). This global set includes several families of electrophiles, grouped following Mayr’s “star classification system”114. According to this criterion, we have a group of 3 1-star electrophiles, 21 3-stars electrophiles, 22 5-stars electrophiles, and 12 neutral electrophiles.

    The structures of all the molecules were optimized at the HF/6-31g(d) level of theory. Then, single-point calculations were performed for these geometries after adding one electron,and after removing one electron. In this way, we obtain the necessary data to calculate the vertical ionization potentials and electron affinities (see Table 1). All the calculations were performed using Gaussian 09115.

    Table 1 Studied molecules, their classification according to Mayr’s system, their experimental E Mayr values 113, and their calculated I and A (given in eV).

    continued Table 1

    The SR calculations were performed using GP and GE algorithms, with different “tree lengths”. The mutation probability was set to 15%, and the maximum number of generations was set to 50. For each case, three runs were performed, as a way to check the stability of the SR results. The final expressions were simplified, when possible. These calculations were performed using the HeuristicLab-3.3.12 software package116.

    5 Results

    5.1 Conceptual DFT results

    In Table 2 we show the values of the fitted parameters for every tested model. We have performed 5 different fits, one for each of the 4 separate families of compounds, and one that takes into account all the molecules. It is interesting to note that in the case of the 1-star family the slope of the linear regression(cf. Eq. (24)) is negative when we use the ωparabolic, ωTD, and Pω~ indices. This is a surprising result since these are precisely the electrophilicity measures that have the strongest theoretical justification. This implies that these indices can even give qualitatively wrong results, namely, they are in some cases incapable of predicting the relative order of electrophilicity observed experimentally. This is a reminder that these simple electronic structure-based indices miss many of the factors that govern the tendency of a system to gain electrons during the course of an actual chemical reaction. Nonetheless, it is reassuring that when we work with bigger datasets, all the studied models have positive slopes. This means that, overall,these indices are able to recover the rough trends in Mayr’s electrophilicity parameter.

    With the parameters given in Table 1, it is easy to evaluate the quality of the different fits (see Table 3). In general, good correlations are obtained in all cases, with the exception of the 3-stars family. This is probably because the 3-star family is themost structurally diverse group. For example, here we can find heterosubstituted carbocations (like flavylium and 1,3-dithianylium), methal-stabilized carbocations (like the 1,3-diphenylpropyn-1-ylium-Cr(CO)3), benzhydril cations (like pop(tol)CH+and (pfp)2CH+), cyclic conjugated carbocations(like the tropylium ion), and other π-delocalized carbocations(like 1,1,3-triphenylallylium and 1-(4-chlorophenyl) cyclopent-2-enylium). In this case, even the best fit (given by ωTD) still results in an RMSD of 2.950, and a correlation coefficient lower than 0.6. This is a strong indication that to predict the electrophilicity of a given compound we should use a model trained on a set of molecules with similar characteristics. An alternative, in the case we are especially interested in structurally diverse sets, could be to include information regarding condensed local reactivity descriptors117–120.

    Table 2 Fit parameters for all the c-DFT-based electrophilicity measures studied.

    Table 3 Average error (AE), mean absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R2) for all the c-DFT-based electrophilicity measures studied.

    This insight is supported by the very good fits obtained for the 5-stars and neutral groups (particularly, when we consider the values of R2). These families are mostly formed by structurally similar compounds: benzhydryl cations in the 5-star case, and quinone methides (with a few alkenes substituted with electron-withdrawing groups) in the neutral case. The structural variety of the neutral family is reflected instead in the RMSD values, which are significantly higher than those found in the 5-star case. Overall, all the electrophilicity measures studied have very similar performances over these sets.Nonetheless, in terms of RMSD and R2, the ω+CDP1 and ω+CDP2 indices are outperformed by others. These trends are preserved when we perform the fits including all the studied molecules.Finally, we should note that the simple model based on ωTDconsistently ranks among the best. Recall that is simply equal to the electron affinity; it is not surprising that the electrophilicity and the electron affinity are closely related.

    5.2 SR results

    In Tables 4 and 5 we show the expressions obtained using GE and GP for all families, respectively. In cases where the optimization algorithm resulted in more than one expression,we will only consider the two that have the highest correlation coefficient values. All the solutions with tree lengths up to 4 are explicitly presented. Additionally, we will also discuss some examples of more complex expressions obtained with greater tree lengths.

    Unsurprisingly, given the choice to select between I or A to construct a function to fit EMayr, both algorithms choose the latter. However, here we see much more general functional forms including the electron affinity. For example, now we have a greater variety of terms with different powers of A(ranging from ?1 to +3). In all these cases (except in the pathological 1-star family), the final equations are monotonically increasing functions of A.

    The results of the different statistical measures corresponding to the SR fits can be found in Table 6. Overall,the performance of these methods is very similar to the c-DFT electrophilicity measures. For example, for the 3-stars family,the RMSD and R2values obtained both by GE and GP algorithms are virtually identical to those corresponding to the best c-DFT indices (ωTDandPω~). For this family, the quality of the fit remains essentially unaltered if we increase the tree length using the GE algorithm (increasing the tree length up to 7 only increases R2up to 0.539182). On the other hand,increasing the tree length does improve the fit quality when we use GP. In this case, a tree length of 7 gave an R2of 0.703165.The corresponding expression (which, in our notation, would be equation gp_73a) is:·

    Table 4 Equations obtained using grammatical evolution.

    Table 5 Equations obtained using genetic programming.

    Nonetheless, requiring an extremely complicated expression to get a semi-quantitative fit is a reminder of the difficulty of predicting experimental electrophilicities with a single expression over a structurally diverse set of compounds.

    For the 5-stars family the SR results are excellent, and increasing the tree length in the latter case does not produce a noticeable improvement in the quality of the fit. On the other hand, it is interesting to note that when we work with all the molecules at the same time, the c-DFT indices perform slightly better than the SR expressions. However, when we increase the tree length both GP and GE algorithms provide significantly better solutions. For example, the equation ge_A7a would be:

    Table 6 Average error (AE), mean absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R2) for all the SR-based electrophilicity measures studied.

    and it corresponds to an R2of 0.85897. Its GP analog, namely,equation gp_A7a is:

    which in turn has an R2of 0.87667.

    These results indicate that we need to increase the flexibility of SR methods when the complexity of the system under study increases. This is to be expected since these methods need to“l(fā)earn” the physical insights that are already built in the c-DFT descriptors.

    6 Conclusions

    In this work we have assessed how different theoretical electrophilicity measures can be used to predict the experimental values of this index determined by Mayr et al.The different c-DFT indices used provided acceptable results,as long as they were applied to molecules with similar structures. From a quantitative point of view, it is reassuring that a measure as simple as the electron affinity, ωTD, provides results of comparable (if not better) quality than models based on more complex indices. This means that we can predict experimental electrophilicity values without computing the ionization energy, which reduces the computational effort.

    Perhaps the biggest appealing of the c-DFT approach is that one uses simple expressions, with chemically-motivated terms.In this way, we gain valuable insights into the factors that determinate the electrophilicity at a molecular level. However,we noticed that there are cases when the c-DFT measures were unable to provide the correct qualitative ordering corresponding to the experimental electrophilicity. This serves as an indication that still more effort is needed to improve the c-DFT descriptors, so they can provide a more realistic description of the electron uptake processes. For example, local reactivity indicators are probably needed in order to compare the electrophilicities of diverse families of molecules that include several different types of electrophilic reactive sites (A similar observation has been made for quantitative studies of the quality of leaving groups28).

    To the best of our knowledge, we are reporting the first application of symbolic regression techniques to the prediction of experimental electrophilicity values and the first study of symbolic regression within the conceptual DFT framework.Symbolic regression has the advantage that the resulting models can be improved systematically, by removing restrictions from the optimization process. We showed that this is a key factor for making adequate predictions over relatively complex sets. The simplest models once again proved that the best way to predict the electrophilicity, which often only requires calculating the electron affinity. In general, the expressions obtained using GE are simpler than those obtained using GP, but in most cases the corresponding fits are equivalent. Finally, it should be remarked that, while attractive,these models could be prone to overfitting.

    In general, when used carefully, the different theoretical methods studied here provide adequate predictions of the experimental electrophilicity. Further studies are necessary,however, to assess their utility over a broader range of compounds, including their validation using independent “test”sets of molecules. It is also interesting to check whether using the exact electrophilicity formula given in Eq. (19) will improve the quantitative predictions.

    (1) Miller, B. Advanced Organic Chemistry: Reactions and Mechanisms;Prentice-Hall: Upper Saddle River, NJ, USA, 1998.doi: 10.1021/ed075p1558

    (2) March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, NY, USA, 1992. doi: 10.1002/0470084960

    (3) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.doi: 10.1021/ar020094c

    (4) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.;Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; et al. J. Am.Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y

    (5) Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938.doi: 10.1002/anie.199409381

    (6) Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584.doi: 10.1002/poc.1325

    (7) Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807.doi: 10.1351/pac200577111807

    (8) Liu, S. B. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL,USA, 2009; p. 179.

    (9) Chattaraj, P. K.; Giri, S. Ann. Rep. Prog. Chem. C 2009, 105, 13.doi: 10.1039/B802832J

    (10) Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43.doi: 10.1021/cr100149p

    (11) Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl.Acad. Sci. USA 1998, 95, 11578. doi: 10.1073/pnas.95.20.11578

    (12) Parr, R. G.; von Szentpály, L.; Liu, S. B. J. Am. Chem. Soc. 1999,121, 1922. doi: 10.1021/ja983494x

    (13) Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    (14) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    (15) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029

    (16) Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings,P. Modern Charge Density Analysis; Gatti, C., Macchi, P., Eds.;Springer: New York, NY, USA, 2012; p. 715.

    (17) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    (18) Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.doi: 10.1021/ja9924039

    (19) Miranda-Quintana, R. A. Conceptual Density Functional Theory and its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.;Apple Academic Press: NJ, USA, in press.

    (20) Chemical Reactivity Theory: A Density Functional View; Chattaraj,P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009.

    (21) Fuentealba, P.; Cárdenas, C. Chemical Modelling; Springborg, M.,Ed.; The Royal Society of Chemistry: London, UK, 2015; Vol. 11, p.151.

    (22) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.doi: 10.3866/PKU.WHXB20090332

    (23) Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    (24) Domingo, L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486.doi: 10.1039/C2RA22886F

    (25) Domingo, L. R.; Zaragoza, R. J.; Saez, J. A.; Arno, M. Molecules 2012, 17, 1335. doi: 10.3390/molecules17021335

    (26) Domingo, L. R.; Perez, P.; Contreras, R. Tetrahedron 2004, 60,6585. doi: 10.1016/j.tet.2004.06.003

    (27) Domingo, L. R.; Aurell, M. J.; Perez, P.; Contreras, R. J. Phys.Chem. A 2002, 106, 6871. doi: 10.1021/jp020715j

    (28) Anderson, J. S. M.; Liu, Y. L.; Thomson, J. W.; Ayers, P. W. J. Mol.Struct.: THEOCHEM 2010, 943, 168.doi: 10.1016/j.theochem.2009.12.013

    (29) Ayers, P. W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys.Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/B500996K

    (30) Chamorro, E.; Chattaraj, P. K.; Fuentealba, P. J. Phys. Chem. A 2003, 107, 7068. doi: 10.1021/jp035435y

    (31) Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P. K.Theor. Chem. Acc. 2005, 113, 257. doi: 10.1007/s00214-005-0634-3

    (32) González, M. M.; Hernández-Castillo, D.; Montero-Cabrera, L. A.;Miranda-Quintana, R. A. Int. J. Quantum Chem. 2017, e25444.doi: 10.1002/qua.25444

    (33) Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A 2008, 112, 6023. doi: 10.1021/jp711652a

    (34) Moens, J.; Geerlings, P.; Roos, G. Chem. -A Eur. J. 2007, 13, 8174.doi: 10.1002/chem.200601896

    (35) Moens, J.; Roos, G.; Jaque, P.; Proft, F.; Geerlings, P. Chem. -A Eur.J. 2007, 13, 9331. doi: 10.1002/chem.200700547

    (36) Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.;Chattaraj, P. K. Curr. Sci. 2004, 86, 535.

    (37) Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K.Biorg. Med. Chem. 2004, 12, 5533. doi: 10.1016/j.bmc.2004.08.013

    (38) Rétey, J. Biochim. Biophys. Acta 2003, 1647, 179.doi: 10.1016/S1570-9639(03)00091-8

    (39) Rosenkranz, H. S.; Klopman, G.; Zhang, Y.; Graham, C.; Karol, M.H. Environ. Health Perspect. 1999, 107, 129.

    (40) Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 046101.doi: 10.1063/1.4974987

    (41) Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843.doi: 10.1021/jp312750n

    (42) Morell, C.; Labet, V.; Grand, A.; Chermette, H. Phys. Chem. Chem.Phys. 2009, 11, 3414. doi: 10.1039/B818534D

    (43) Chattaraj, P. K. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 2007,81, 871

    (44) Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem.Phys. 2017, 147, 124103. doi: 10.1063/1.4996443

    (45) Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111,1966. doi: 10.1021/jp065459f

    (46) Chamorro, E.; Duque-Nore?a, M.; Perez, P. J. Mol. Struct. 2009,896, 73. doi: 10.1016/j.theochem.2008.11.009

    (47) Chamorro, E.; Duque-Nore?a, M.; Perez, P. J. Mol. Struct. 2009,901, 145. doi: 10.1016/j.theochem.2009.01.014

    (48) Franco-Pérez, M.; Gazquez, J. L.; Ayers, P. W. Acta Phys. -Chim.Sin. 2018, submitted.

    (49) Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113.doi: 10.1063/1.4984611

    (50) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005

    (51) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys.1978, 68, 3801. doi: 10.1063/1.436185

    (52) Sanderson, R. T. Science 1951, 114, 670.doi: 10.1126/science.114.2973.670

    (53) Galvan, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92, 6470.doi: 10.1021/j100333a056

    (54) Vargas, R.; Galvan, M.; Vela, A. J. Phys. Chem. A 1998, 102, 3134.doi: 10.1021/jp972984t

    (55) Galvan, M.; Vargas, R. J. Phys. Chem. 1992, 96, 1625.doi: 10.1021/j100183a026

    (56) Ghanty, T. K.; Ghosh, S. K. J. Am. Chem. Soc. 1994, 116, 3943.doi: 10.1021/ja00088a033

    (57) Chamorro, E.; Santos, J. C.; Escobar, C. A.; Perez, P. Chem. Phys.Lett. 2006, 431, 210. doi: 10.1016/j.cplett.2006.09.072

    (58) Chamorro, E.; Perez, P.; De Proft, F.; Geerlings, P. J. Chem. Phys.2006, 124, 044105. doi: 10.1063/1.2161187

    (59) Perez, P.; Chamorro, E.; Ayers, P. W. J. Chem. Phys. 2008, 128,204108. doi: 10.1063/1.2916714

    (60) Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016,135, 239. doi: 10.1007/s00214-016-1995-5

    (61) Cardenas, C.; Heidar Zadeh, F.; Ayers, P. W. Phys. Chem. Chem.Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B

    (62) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett.1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    (63) Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.;Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12, 5777.doi: 10.1021/acs.jctc.6b00494

    (64) Miranda-Quintana, R. A.; Ayers, P. W. Conceptual Density Functional Theory and Its Applications in the Chemical Domain;Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.

    (65) Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144,244112. doi: 10.1063/1.4953557

    (66) Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 129, 054111.doi: 10.1063/1.2957900

    (67) Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108.doi: 10.1063/1.2918731

    (68) Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem.Phys. 2017, 147, 094105. doi: 10.1063/1.4999761

    (69) Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.;Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588.doi: 10.1039/C7CP00224F

    (70) Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys.Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/C7CP00692F

    (71) Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.;Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19,12355. doi: 10.1039/C7CP00691H

    (72) Franco-Pérez, M.; Ayers, P.; Gazquez, J. L.; Vela, A. J. Chem. Phys.2015, 143, 244117. doi: 10.1063/1.4938422

    (73) Franco-Pérez, M.; Gazquez, J. L.; Ayers, P.; Vela, A. J. Chem. Phys.2015, 143, 154103. doi: 10.1063/1.4932539

    (74) Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104.doi: 10.1063/1.4906555

    (75) Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys.2016, 18, 15070. doi: 10.1039/c6cp00939e

    (76) Miranda-Quintana, R. A. Theor. Chem. Acc. 2017, 136, 76.doi: 10.1007/s00214-017-2109-8

    (77) Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016,135, 172. doi: 10.1007/s00214-016-1924-7

    (78) Miranda-Quintana, R. A. Theor. Chem. Acc. 2016, 135, 189.doi: 10.1007/s00214-016-1945-2

    (79) Miranda-Quintana, R. A.; González, M. M.; Ayers, P. W. Phys.Chem. Chem. Phys. 2016, 18, 22235. doi: 10.1039/c6cp03213c

    (80) Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.doi: 10.1021/ja01004a002

    (81) Klopman, G.; Hudson, R. F. Theor. Chim. Act. 1967, 8, 165.doi: 10.1007/bf00526373

    (82) Klopman, G.; Klopman, G. Chemical Reactivity and Reaction Paths;Wiley-Interscience: New York, NY, USA, 1974; p. 55.

    (83) Hudson, R. F.; Klopman, G. Tetrahedron Lett. 1967, 12, 1103.doi: 10.1016/S0040-4039(00)90645-2

    (84) Salem, L. J. Am. Chem. Soc. 1968, 90, 553.doi: 10.1021/ja01005a002

    (85) Salem, L. J. Am. Chem. Soc. 1968, 90, 543.doi: 10.1021/ja01005a001

    (86) Salem, L. Chem. Br. 1969, 5, 449.

    (87) Witten, I. H.; Frank, E.; Hall, M. A.; Pal, C. J. Data Mining:Practical Machine Learning Tools and Techniques, 4th ed.; Elsevier:Cambridge, MA, USA, 2017.

    (88) Gertrudes, J. C.; Maltarollo, V. G.; Silva, R. A.; Oliveira, P. R.;Honorio, K. M.; da Silva, A. B. F. Curr. Med. Chem. 2012, 19, 4289.doi: 10.2174/092986712802884259

    (89) Carrera, G.; Gupta, S.; Aires-de-Sousa, J. J. Comput. Aided Mol.Des. 2009, 23, 419. doi: 10.1007/s10822-009-9275-2

    (90) Dietterich, T. G. Ai Mag. 1997, 18, 97.doi: 10.1609/aimag.v18i4.1324

    (91) Carbonell, J. G.; Michalski, R. S.; Mitchell, T. M. Machine Learning: an Artificial Intelligence Approach; Michalski, R. S.,Carbonell, J. G., Mitchell, T. M., Eds.; Springer Berlin Heidelberg:Berlin, Heidelberg, Germany, 1983; p. 3.doi: 10.1007/978-3-662-12405-5_1

    (92) Lino, A.; Rocha, A.; Sizo, A. J. Intell. Fuzzy Syst. 2016, 31, 2061.doi: 10.3233/JIFS-169045

    (93) Affenzeller, M.; Winkler, S. M.; Kronberger, G.; Kommenda, M.;Burlacu, B.; Wagner, S. Genetic Programming Theory and Practice XI; Riolo, R., Moore, J. H., Kotanchek, M., Eds.; Springer New York: New York, NY, USA, 2014; p. 175.doi: 10.1007/978-1-4939-0375-7_10

    (94) Billard, L.; Diday, E. Classification, Clustering, and Data Analysis:Recent Advances and Applications; Jajuga, K., Sokolowski, A.,Bock, H. H., Eds.; Springer-Verlag: Berlin, Germany, 2012.

    (95) Billard, L.; Diday, E. J. Am. Stat. Assoc. 2003, 98, 470.doi: 10.1198/016214503000242

    (96) Billard, L.; Diday, E. Data Analysis, Classification, and Related Methods; Kiers, H. A. L., Rasson, J.-P., Groenen, P. J. F., Schader,M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany,2000; p. 369. doi: 10.1007/978-3-642-59789-3_58

    (97) Schmidt, M. D.; Vallabhajosyula, R. R.; Jenkins, J. W.; Hood, J. E.;Soni, A. S.; Wikswo, J. P.; Lipson, H. Phys. Biol. 2011, 8, 055011.doi: 10.1088/1478-3975/8/5/055011

    (98) Schmidt, M. W.; Lipson, H. Science 2009, 324, 81.doi: 10.1126/science.1165893

    (99) Bongard, J.; Lipson, H. Proc. Natl. Acad. Sci. USA 2007, 104, 9943.doi: 10.1073/pnas.0609476104

    (100) Quade, M.; Abel, M.; Shafi, K.; Niven, R. K. Phys. Rev. B 2016, 94,012214. doi: 10.1103/PhysRevE.94.012214

    (101) Koza, J. R. 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990; p. 819.

    (102) Sharma, S.; Tambe, S. S. Biochem. Eng. J. 2014, 85, 89.doi: 10.1016/j.bej.2014.02.007

    (103) Langdon, W. B.; Poli, R. Found. Genet. Program.; Springer-Verlag:Berlin, Germany, 2013.

    (104) O’Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US:Boston, MA, USA, 2003; p. 33. doi: 10.1007/978-1-4615-0447-4_4

    (105) O’Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US:Boston, MA, USA, 2003; p. 79. doi: 10.1007/978-1-4615-0447-4_7

    (106) Ryan, C.; Collins, J.; Neill, M. O. Genetic Programming: First European Workshop, EuroGP’98 Paris, France, April 14–15, 1998 Proceedings; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T. C.,Eds.; Springer: Berlin, Heidelberg, Germany, 1998;, p. 83.doi: 10.1007/BFb0055930

    (107) Luke, S.; Spector, L. Genetic Programming 1997: Proceedings of the Second Annual Conference (GP97); Koza, J., Ed.; San Francisco,CA, USA, 1997; p. 240.

    (108) Spears, W. M.; Anand, V. Methodologies for Intelligent Systems: 6th International Symposium, ISMIS '91 Charlotte, N. C., USA, October 16–19, 1991 Proceedings; Ras, Z. W., Zemankova, M., Eds.;Springer: Berlin, Heidelberg, Germany, 1991; p. 409.doi: 10.1007/3-540-54563-8_104

    (109) Chomsky, N. IRE Trans. Inf. Theory 1956, 2, 113.doi: 10.1109/TIT.1956.1056813

    (110) Ginsburg, S. The Mathematical Theory of Context Free Languages;McGraw-Hill, New York, NY, USA, 1966.

    (111) Temkin, J. M.; Gilder, M. R. Bioinformatics 2003, 19, 2046.doi: 10.1093/bioinformatics/btg279

    (112) Trelea, I. C. Inf. Proc. Lett. 2003, 85, 317.doi: 10.1016/S0020-0190(02)00447-7

    (113) Mayr, H. http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/; Vol.2017 (accessed Oct 30, 2017).

    (114) Mayr, H. http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html;Vol. 2017 (accessed Oct 30, 2017).

    (115) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;Petersson, G. A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT,USA, 2009.

    (116) Wagner, S.; Kronberger, G.; Beham, A.; Kommenda, M.;Scheibenpflug, A.; Pitzer, E.; Vonolfen, S.; Kofler, M.; Winkler, S.;Dorfer, V.; et al. Advanced Methods and Applications in Computational Intelligence; Klempous, R., Nikodem, J., Jacak, W.,Chaczko, Z., Eds.; Springer International Publishing: Heidelberg,Germany, 2014; p. 197. doi: 10.1007/978-3-319-01436-4_10

    (117) Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008

    (118) Miranda-Quintana, R. A. Chem. Phys. Lett. 2016, 658, 328.doi: 10.1016/j.cplett.2016.06.068

    (119) Zielinski, F.; Tognetti, V.; Joubert, L. Chem. Phys. Lett. 2012, 527,67. doi: 10.1016/j.cplett.2012.01.011

    (120) Bultinck, P.; Fias, S.; Alsenoy, C. V.; Ayers, P. W.; Carbó-Dorca, R.J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518

    一级毛片电影观看| 新久久久久国产一级毛片| 亚洲欧美成人精品一区二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品,欧美精品| 日韩制服骚丝袜av| 欧美日韩视频精品一区| 国产成人午夜福利电影在线观看| 精品亚洲成国产av| 中文字幕人妻熟人妻熟丝袜美| 高清毛片免费看| 熟妇人妻不卡中文字幕| 亚洲美女黄色视频免费看| 国产伦在线观看视频一区| 国产色婷婷99| 人妻制服诱惑在线中文字幕| 桃花免费在线播放| 一边亲一边摸免费视频| 久久午夜综合久久蜜桃| 99九九线精品视频在线观看视频| 亚洲人成网站在线观看播放| 男女无遮挡免费网站观看| 狠狠精品人妻久久久久久综合| 日本黄色片子视频| 狂野欧美激情性xxxx在线观看| 成人毛片60女人毛片免费| 免费人成在线观看视频色| 国产高清国产精品国产三级| 黄色怎么调成土黄色| 婷婷色综合www| 日产精品乱码卡一卡2卡三| 国产又色又爽无遮挡免| 午夜免费观看性视频| 大陆偷拍与自拍| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 亚洲欧洲日产国产| 丰满迷人的少妇在线观看| 又爽又黄a免费视频| 久久久久久久久久久丰满| 精品视频人人做人人爽| 国产在线视频一区二区| 免费观看在线日韩| av播播在线观看一区| 国产欧美另类精品又又久久亚洲欧美| 一级二级三级毛片免费看| 春色校园在线视频观看| 热re99久久精品国产66热6| 欧美成人午夜免费资源| 国产午夜精品一二区理论片| 人人妻人人澡人人爽人人夜夜| 日本黄大片高清| 欧美日韩精品成人综合77777| 亚洲精品色激情综合| 9色porny在线观看| 大香蕉97超碰在线| a级毛色黄片| 伊人久久国产一区二区| a级一级毛片免费在线观看| 国产在线视频一区二区| 午夜福利网站1000一区二区三区| 国产真实伦视频高清在线观看| 亚洲av男天堂| 伦理电影免费视频| 男男h啪啪无遮挡| 老司机影院成人| 国产视频内射| 国产深夜福利视频在线观看| 日韩电影二区| 亚洲国产日韩一区二区| 久久99一区二区三区| 国产真实伦视频高清在线观看| 桃花免费在线播放| 久久午夜综合久久蜜桃| 精品国产国语对白av| 亚洲欧美日韩另类电影网站| 日日啪夜夜爽| a级片在线免费高清观看视频| 99re6热这里在线精品视频| 亚洲成人av在线免费| 久久免费观看电影| 国产免费一级a男人的天堂| 免费人妻精品一区二区三区视频| 九九久久精品国产亚洲av麻豆| 国产精品三级大全| 搡老乐熟女国产| 卡戴珊不雅视频在线播放| 久久国内精品自在自线图片| 性色av一级| 观看免费一级毛片| a级一级毛片免费在线观看| 亚洲无线观看免费| 久久鲁丝午夜福利片| 久久久久国产网址| 久久女婷五月综合色啪小说| 精品熟女少妇av免费看| 亚洲精品自拍成人| 国产午夜精品久久久久久一区二区三区| 精华霜和精华液先用哪个| 亚洲怡红院男人天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 人人妻人人添人人爽欧美一区卜| av在线播放精品| 成人无遮挡网站| 99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 久久国产精品男人的天堂亚洲 | 精品国产乱码久久久久久小说| www.色视频.com| 最近最新中文字幕免费大全7| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看一区二区三区激情| 秋霞伦理黄片| 国产白丝娇喘喷水9色精品| 国内精品宾馆在线| 亚洲av综合色区一区| 乱码一卡2卡4卡精品| 亚洲久久久国产精品| 日韩欧美 国产精品| 少妇人妻 视频| 成人影院久久| 国产亚洲精品久久久com| 免费看日本二区| tube8黄色片| 欧美激情国产日韩精品一区| 免费观看av网站的网址| 深夜a级毛片| 亚洲国产欧美在线一区| 精品少妇内射三级| 亚洲成人一二三区av| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区四那| 插逼视频在线观看| 日本午夜av视频| 国产男人的电影天堂91| 黄色毛片三级朝国网站 | 熟女电影av网| 成人黄色视频免费在线看| 午夜激情久久久久久久| 啦啦啦视频在线资源免费观看| 国产美女午夜福利| 免费黄频网站在线观看国产| 伦精品一区二区三区| 午夜福利在线观看免费完整高清在| 只有这里有精品99| 亚洲内射少妇av| 91久久精品国产一区二区成人| a 毛片基地| 乱人伦中国视频| 丝袜在线中文字幕| 国产av一区二区精品久久| 五月开心婷婷网| 国产精品国产三级专区第一集| 日日撸夜夜添| 人人澡人人妻人| 最近手机中文字幕大全| 晚上一个人看的免费电影| 青春草视频在线免费观看| 亚洲欧美日韩东京热| 亚洲激情五月婷婷啪啪| 我的女老师完整版在线观看| 久久精品久久精品一区二区三区| 99热这里只有是精品在线观看| 国产一区有黄有色的免费视频| 免费大片黄手机在线观看| 汤姆久久久久久久影院中文字幕| 女人精品久久久久毛片| 久久99热这里只频精品6学生| 欧美精品亚洲一区二区| 成人美女网站在线观看视频| 欧美日韩综合久久久久久| 少妇人妻 视频| 午夜福利视频精品| 久久久久网色| 日本av手机在线免费观看| 一区二区三区乱码不卡18| 久久久久国产精品人妻一区二区| 国产免费又黄又爽又色| 色网站视频免费| 少妇人妻久久综合中文| 赤兔流量卡办理| 美女中出高潮动态图| 在线精品无人区一区二区三| 国产黄色免费在线视频| 日本vs欧美在线观看视频 | 亚洲成色77777| 十八禁高潮呻吟视频 | 九九爱精品视频在线观看| 观看免费一级毛片| 大香蕉久久网| 免费高清在线观看视频在线观看| 国产精品人妻久久久影院| 国产免费视频播放在线视频| 国产69精品久久久久777片| 亚洲精华国产精华液的使用体验| 永久免费av网站大全| 在线观看三级黄色| 高清欧美精品videossex| 亚洲精品一区蜜桃| 国产成人午夜福利电影在线观看| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡动漫免费视频| av卡一久久| 精品亚洲乱码少妇综合久久| 亚洲中文av在线| 久久99一区二区三区| 我的女老师完整版在线观看| 91精品伊人久久大香线蕉| 特大巨黑吊av在线直播| 久久久久久久久久成人| 如日韩欧美国产精品一区二区三区 | 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 人妻 亚洲 视频| 欧美精品一区二区大全| 久久人人爽人人爽人人片va| 中文字幕精品免费在线观看视频 | 国产精品三级大全| 国产淫片久久久久久久久| 99久久人妻综合| 黄色配什么色好看| 亚洲天堂av无毛| 岛国毛片在线播放| 日韩av不卡免费在线播放| 爱豆传媒免费全集在线观看| 日日爽夜夜爽网站| 纯流量卡能插随身wifi吗| kizo精华| 精品人妻偷拍中文字幕| 日韩大片免费观看网站| 丰满少妇做爰视频| 国产精品久久久久久久久免| 国产又色又爽无遮挡免| 午夜日本视频在线| 多毛熟女@视频| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 精品国产国语对白av| 天堂俺去俺来也www色官网| 久热这里只有精品99| 我的老师免费观看完整版| xxx大片免费视频| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 久久免费观看电影| 又大又黄又爽视频免费| 久久99精品国语久久久| 男女国产视频网站| 高清不卡的av网站| 久久久久久久大尺度免费视频| 亚洲欧美日韩东京热| 日韩中字成人| 啦啦啦中文免费视频观看日本| 黑人巨大精品欧美一区二区蜜桃 | av卡一久久| 国产欧美日韩精品一区二区| av在线观看视频网站免费| 国产亚洲91精品色在线| 一区二区三区四区激情视频| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 国产女主播在线喷水免费视频网站| 国产精品一区二区在线不卡| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| 日本午夜av视频| 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 欧美人与善性xxx| 精品一区二区免费观看| 亚洲国产精品成人久久小说| 少妇被粗大的猛进出69影院 | 丝瓜视频免费看黄片| 欧美区成人在线视频| 国产视频首页在线观看| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 美女xxoo啪啪120秒动态图| 国产高清有码在线观看视频| 亚洲精品乱码久久久v下载方式| 中文字幕人妻丝袜制服| 在线观看国产h片| 狠狠精品人妻久久久久久综合| 观看免费一级毛片| 午夜福利在线观看免费完整高清在| 大码成人一级视频| 中文乱码字字幕精品一区二区三区| 午夜视频国产福利| 国产一区二区三区av在线| 91精品国产国语对白视频| 亚洲美女搞黄在线观看| 黑丝袜美女国产一区| 爱豆传媒免费全集在线观看| 曰老女人黄片| 国产成人精品一,二区| 夫妻性生交免费视频一级片| 99热网站在线观看| 精品一区二区三区视频在线| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 中文字幕av电影在线播放| 日本91视频免费播放| 人妻夜夜爽99麻豆av| 搡老乐熟女国产| 91精品国产九色| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 久久久久国产精品人妻一区二区| 亚洲,欧美,日韩| 少妇人妻 视频| 2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 久久久久久久久久久久大奶| 美女xxoo啪啪120秒动态图| 欧美日韩亚洲高清精品| 三级经典国产精品| 亚洲av.av天堂| 女性被躁到高潮视频| 秋霞伦理黄片| 街头女战士在线观看网站| 观看美女的网站| 精品亚洲成a人片在线观看| 制服丝袜香蕉在线| 九色成人免费人妻av| 99热这里只有是精品在线观看| 十八禁网站网址无遮挡 | av国产久精品久网站免费入址| 精品99又大又爽又粗少妇毛片| 伦理电影大哥的女人| 日韩三级伦理在线观看| 国产片特级美女逼逼视频| 伦精品一区二区三区| 精品一区二区免费观看| 一本大道久久a久久精品| 国产精品国产av在线观看| 熟女电影av网| 亚洲精品aⅴ在线观看| 天堂中文最新版在线下载| 最近中文字幕2019免费版| 亚洲av日韩在线播放| 亚洲av日韩在线播放| 高清黄色对白视频在线免费看 | 嫩草影院新地址| 在线 av 中文字幕| 十八禁网站网址无遮挡 | 一级二级三级毛片免费看| 另类精品久久| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 国产亚洲一区二区精品| 在线天堂最新版资源| 日韩av免费高清视频| 最近2019中文字幕mv第一页| a级片在线免费高清观看视频| 日韩不卡一区二区三区视频在线| 欧美日韩av久久| 日日摸夜夜添夜夜添av毛片| 日韩不卡一区二区三区视频在线| 热re99久久国产66热| 久久这里有精品视频免费| 在线观看免费日韩欧美大片 | 日本wwww免费看| 91精品国产国语对白视频| 国产欧美日韩精品一区二区| 亚洲天堂av无毛| 最近手机中文字幕大全| 免费人成在线观看视频色| 男的添女的下面高潮视频| 国产av国产精品国产| 日韩视频在线欧美| 免费观看a级毛片全部| 国产亚洲精品久久久com| 99国产精品免费福利视频| 国产伦精品一区二区三区视频9| 精品国产国语对白av| 熟女av电影| 少妇人妻久久综合中文| 熟女人妻精品中文字幕| 欧美区成人在线视频| 中国国产av一级| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 一本久久精品| 蜜桃在线观看..| 26uuu在线亚洲综合色| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 少妇的逼好多水| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 久久精品国产自在天天线| 亚洲国产精品成人久久小说| 久久久久国产网址| 多毛熟女@视频| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 男男h啪啪无遮挡| 免费看不卡的av| 十分钟在线观看高清视频www | 精品少妇黑人巨大在线播放| 啦啦啦在线观看免费高清www| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 80岁老熟妇乱子伦牲交| 日日撸夜夜添| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 人人妻人人看人人澡| 一级毛片 在线播放| 亚洲国产欧美日韩在线播放 | 国产精品一区www在线观看| 内射极品少妇av片p| 18禁裸乳无遮挡动漫免费视频| 特大巨黑吊av在线直播| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 久久亚洲国产成人精品v| 久久久久视频综合| 中文字幕免费在线视频6| 这个男人来自地球电影免费观看 | 国产黄频视频在线观看| av不卡在线播放| .国产精品久久| 日韩成人av中文字幕在线观看| 另类亚洲欧美激情| av又黄又爽大尺度在线免费看| 欧美成人午夜免费资源| 街头女战士在线观看网站| 国产 精品1| 国产av码专区亚洲av| 一区二区三区四区激情视频| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 久久久久久久精品精品| 精品一品国产午夜福利视频| 久久久久久久国产电影| 日韩欧美一区视频在线观看 | 亚洲成人一二三区av| 夜夜看夜夜爽夜夜摸| 一二三四中文在线观看免费高清| a级片在线免费高清观看视频| 中国三级夫妇交换| 亚洲精品国产av蜜桃| 中文天堂在线官网| 婷婷色综合www| 看免费成人av毛片| 成人特级av手机在线观看| 日本欧美视频一区| 国产成人免费观看mmmm| 三上悠亚av全集在线观看 | 亚洲精品第二区| 日韩欧美 国产精品| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 伦理电影免费视频| 久久狼人影院| 国产一区二区在线观看av| 亚洲精品456在线播放app| 久久久午夜欧美精品| 乱系列少妇在线播放| 免费观看在线日韩| 亚洲高清免费不卡视频| 欧美日本中文国产一区发布| 18禁在线播放成人免费| 大又大粗又爽又黄少妇毛片口| 成人国产av品久久久| av天堂中文字幕网| 18禁在线播放成人免费| 成人午夜精彩视频在线观看| 亚州av有码| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 国产免费福利视频在线观看| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| av国产精品久久久久影院| 亚洲性久久影院| 久久影院123| 国产精品国产av在线观看| 一边亲一边摸免费视频| 99热这里只有是精品50| 七月丁香在线播放| av线在线观看网站| 久久久久精品久久久久真实原创| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 曰老女人黄片| 成年美女黄网站色视频大全免费 | 热re99久久国产66热| 人妻制服诱惑在线中文字幕| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 爱豆传媒免费全集在线观看| 中文在线观看免费www的网站| 日韩制服骚丝袜av| 自线自在国产av| 草草在线视频免费看| 国产91av在线免费观看| 深夜a级毛片| 美女视频免费永久观看网站| 国产亚洲5aaaaa淫片| 99热全是精品| 国产精品国产三级专区第一集| 国产成人aa在线观看| 两个人的视频大全免费| 男人和女人高潮做爰伦理| av.在线天堂| 久久午夜福利片| av福利片在线观看| 欧美性感艳星| 亚洲性久久影院| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 在线观看国产h片| 少妇的逼水好多| 国产精品一区二区在线不卡| 亚洲精品一二三| 亚洲情色 制服丝袜| 久久av网站| 9色porny在线观看| 亚洲久久久国产精品| 黄色怎么调成土黄色| 亚洲国产日韩一区二区| 高清不卡的av网站| 三级经典国产精品| 99久久综合免费| 国产高清不卡午夜福利| 热re99久久国产66热| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 亚洲av二区三区四区| 天美传媒精品一区二区| 中文资源天堂在线| 国产综合精华液| 日韩,欧美,国产一区二区三区| 国产黄片视频在线免费观看| 久久久久国产网址| av在线播放精品| 免费大片黄手机在线观看| 免费观看性生交大片5| 国产欧美亚洲国产| 中文字幕av电影在线播放| 久久久久国产网址| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 99久久精品国产国产毛片| 国产成人精品无人区| 国产片特级美女逼逼视频| 伊人亚洲综合成人网| 秋霞在线观看毛片| 深夜a级毛片| 国产91av在线免费观看| 99久久精品热视频| 国产乱人偷精品视频| 日韩大片免费观看网站| 黄色欧美视频在线观看| 国产精品三级大全| kizo精华| 国产高清有码在线观看视频| 精品酒店卫生间| 精品久久久精品久久久| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 韩国av在线不卡| 亚洲天堂av无毛| 18禁动态无遮挡网站| 少妇丰满av| 91成人精品电影| 国产男女内射视频| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 九草在线视频观看| av国产久精品久网站免费入址| 国产av码专区亚洲av| 国产淫片久久久久久久久| 男人舔奶头视频| 欧美3d第一页| 国内揄拍国产精品人妻在线| 在线观看人妻少妇| 国产亚洲欧美精品永久| 欧美高清成人免费视频www| 亚洲色图综合在线观看| 三级经典国产精品| 一区二区三区乱码不卡18| 寂寞人妻少妇视频99o| 久久精品夜色国产| 日本色播在线视频| 中文在线观看免费www的网站| 精品久久久久久久久av| 另类亚洲欧美激情| 一级毛片久久久久久久久女| 国产精品.久久久| 最近手机中文字幕大全| 亚洲激情五月婷婷啪啪| 亚洲成人一二三区av| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美视频一区| 久久午夜综合久久蜜桃| 国产成人freesex在线| 久久97久久精品| 你懂的网址亚洲精品在线观看|