• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters

    2018-07-03 09:57:50VONSZENTPLYszl
    物理化學(xué)學(xué)報(bào) 2018年6期

    VON SZENTPáLY László

    Institut für Theoretische Chemie, Universit?t Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

    1 Introduction

    How many excess electrons can be bound by an arbitrary chemical system? In the gas-phase, the capacity of storing negative charge is severely limited, and even the singly charged anions of many common organic molecules are unstable1,2.The instability arises primarily from confining the excess negative charge to a small microscopic volume. Therefore,attaching several electrons to form gas-phase multiply charged anions, MCA’s, is a very challenging task, and requires sophisticated experiments3–5. On the other hand, stabilized MCA’s are ubiquitous in condensed phases, and important for the solid-state- and nano-sciences3–6,.plasma physics7, solution chemistry3,8, organic synthesis9, acid-base and redox reactions1.Dianions are essential even for the bio-regulation of many metabolic and cellular processes in vivo, e.g., sulfate, SO42?10,11.MCA’s also play a role in atmospheric chemistry12. Therefore the existence and properties of MCA’s have received massively growing attention in the last two decades. This is documented in reviews and research articles addressing fundamental questions about their intrinsic properties3–17. Theoretical calculations of gas-phase MCA properties are extremely demanding, thus the limits of computational feasibility have been frequently reached15. There has been no general method determining the maximum number of bound electrons in MCAs and expressing their electronic stability by calculating,rationalizing and predicting the Q th electron affinity, AQ, for arbitrary systems. By definition, the MCA, XQ?, carrying Q excess electrons is electronically stable, if AQis positive

    AQ(X) = E(X(Q?1)?) ? E(XQ?) > 0 (1)

    Note that the electronic stability of XQ?does not exclude its thermodynamic instability, because the MCA may decompose into smaller ionic fragments carrying the same total charge.

    We here consider neutral gas-phase systems, X, of arbitrary size and electron number, N0, and address two central questions:

    (i) What is the “maximum charge acceptance”, i.e., the maximum number of excess electrons, Qmax= Nmax? N0, that can be bound by the gas-phase species?

    (ii) Is there a simple method to calculate the higher electron affinities, AQ(X), with integer Q > 1, from properties of the“ancestor” system?

    In density-functional theory (DFT)18–21and concepts derived from electronegativity21–28the total energy, E(N, v ex), is a continuous function of the average electron number N, and the“external” potential, vex, of the nuclei. Take a chemical species of electron number N0with vertical first ionization energy, Iv=E(N0? 1) ? E(N0), and vertical first electron affinity, A1,v=E(N0) ? E(N0 + 1). The DFT energy, E DFT(N), consists of straight line segments connecting E(N0? 1), E(N0) and E(N0+1) with slope discontinuities at integer values of N18–29. For N0?1 < N < N0 the negative slope of the segment defines the DFT electronegativity as χDFT= Iv= ??EDFT/?N. For N > N0the value of χDFTchanges to A1,vand remains constant up to N0+1 = Nanion17–21,24,29. A direct method to calculate the energy of a dianion would be a straight line extrapolation of the total energy up to N0 + 2 = N dianion. However, the slope discontinuity at Nanionis unknown, unless A2itself is known beforehand. It remains a dilemma of the state-of-the-art DFT that the value of A2 is required as input for finding the continuation of E DFT(N)beyond the anion. Embarrassingly, most DFT exchangecorrelation functionals describe anions as having barely a fraction of the excess electron bound, with the remaining fraction auto-detaching, when the basis sets are increased30.Further limitations of DFT concerning anions have been discussed in17,24,30,31.

    At this state of the art, empirical concepts and approximations estimating MCA properties are helpful. Large A1values3,14–17or A1/I ratios21provide guidelines in seeking electronically stable MCA’s. The Wade-Mingos rule32,33on the significance of the number of skeletal bonding electron-pairs in cluster compounds is also useful34. Most current models, such as the homogeneous charged-sphere13,14,35, the liquid-drop36and stabilized-jellium models36,37assume that the difference between AQ?1and AQis determined by the repulsion energy between the two “outermost” electrons3–5,13–16,35–38.Unfortunately, they are not applicable to atoms and small molecules, but limited to large and preferably spherical clusters3–5,35–37. In addition to their AQ?1input data, these models introduce further species-specific parameters, viz.,adjustable diameters, ?, with electron spill-out corrections, δ,and dielectric constants, ε.

    Recently, the electronic stability of dianions, X2?, has been very successfully described by a universal method to calculate the second electron affinity, A2(X)17. Given the I and A1values of the neutral “grandparent” system, the 2nd electron affinity is modelled as A2,calc = A1 ? (7/12)(I ? A1)17. The equation seems valid for arbitrary gas-phase systems. The comparison with 37 literature reference data of atoms, molecules, and clusters yields A2,ref= 1.004A2,calc? 0.023 eV, the mean unsigned deviation, MUD = 0.095 eV, and the correlation coefficient of R = 0.9987. The aim here is to (i) update and extend the evidence for the simple method and (ii) test it also on very recently documented trianions34, X3?, and the appearance sizes of triply charged nano-clusters and superatoms. Starting from the Parr-Szentpály-Liu (PSzL) electrophilicity concept21,24, we develop a general method to determine the electronic stability of gas-phase MCA’s of arbitrary size without explicit computation or measurement. The excess negative charge is Q =N ? N0.

    2 Estimating the maximum charge acceptance by charge dependent electronegativity

    To overcome the DFT dilemma of slope discontinuities,second order polynomials, E(Q), together with charge dependent electronegativities, χ(Q), are needed to model the energy in systems, where electrons are transferred or exchanged17–26,28.We consider two types of second order polynomials in extending E(Q) to dianions in: the “valence-state-parabola”, VSP17,22–24,and the “ground-state-parabola”, GSP18–27. The VSP energy polynomial reads (Fig. 1)

    here J = I ? A1is a measure of the electron-pair repulsion energy and χ0= ?(I + A1) the Mulliken electronegativity.

    The GSP model is used by conceptual DFT18,20,21,24,26. The GSP energy polynomial is (Fig. 1)

    Fig. 1 Normalized energies E(Q)/A1 for the case A1/I = 1/3.

    In Fig. 1 we compare normalized VSP, GSP and DFT energies (each divided by A1) in the range ?1 < Q < 1, equivalent to N cation < N < N anion17,23?26. We plot E(Q)/A1 for species with A1/I = 1/3, the ratio observed for borderline cases of gas-phase dianion stability e.g., for the fullerene C70, or the cluster Ag223,17,35. All three curves coincide at Q = ?1 and Q = 1. In agreement with the variation principle, EVS(Q) is larger than EDFT(Q) in the present definition range, as EVS(Q) = EDFT(Q) + ?J(1 ? |Q|)2> EDFT(Q) is valid for |Q| < 1. The VSP starts at Ecation= E(?1), where its gradient, ?E VS/?Q = ?I, is in line with DFT theorems 18–21, 29. At N anion it reaches E anion = E(1) with the slope ?A1. The VSP model thus satisfies the DFT constraints on?E/?Q at both boundaries, Ncationand Nanion(Fig. 1).

    In Fig. 2, the valence-pair affinity27or charge dependent valence-state electronegativity, χVS(Q) = ??EVS/?Q, connects the exact DFT values χDFT(–1) = I and χDFT(1) = A1 by a straight line, and reproduces Mulliken’s value χ0= ? (I +A1) at Q = 0

    where ηVS= ?2EVS/?Q2= ?(I ? A1) is the valence-state hardness of the “ancestor” species17,21,23,24.

    Fig. 2 illustrates the PSzL argument by plotting different electronegativity functions, χ(Q), for species’ having A1/I = 1/3.According to the PSzL electrophilicity concept, a species, X,may be saturated with excess negative charge to the point Qmax,where the electronegativity χ(Qmax) becomes zero17,21,24. In Fig.2, the realistic molecular case A1/I = 1/3 gives a borderline dianion with Qmax,VS= 2 according to the VSP model, whereas the GSP model predicts Q max,GS = 1 only. For given input data, I and A1 the slope of χGS(Q) is twice that of χVS(Q), with the result

    Considering the GSP model we notice the emergence of unphysical solutions, EGS(Q) < EDFT(Q), where the parabola undercuts the line segments representing the exact EDFT(Fig. 1).The gradients ?E GS/?Q do not satisfy the DFT conditions at the boundaries N cation and N anion (Fig. 2). This is essentially due to an unphysical electron-electron attraction energy (“self-interaction error”) in Eq. (4) caused by the negative sign of ? Q(Q + 1) J < 0 in the range ?1 < Q < 0.23,24,27Similarly in the range 0 < Q < 1 the electron repulsion energy falls short of that required by exact DFT17,23,24,27. By differentiation of Eq. (3) Parr’s “absolute electronegativity” is obtained as a function of the excess negative charge18,21,24

    Fig. 2 Electronegativity functions normalized to χ/A1 versus excess negative charge Q, for the case A1/I = .

    For the reasons just discussed, the electronegativity χGS(Q)reaches zero at far too small Qmaxvalues. According to the GSP model and conceptual DFT the necessary condition for an electronically stable monoanion is A1(X) > 1/3 I(X) (Fig. 2). This requirement stands in striking contrast to the correct definition of stability that clearly requires A1(X) > 0 only. Unfortunately,conceptual DFT in combination with the PSzL concept generally leads to exaggerated and even unphysical restrictions on the stability of both mono-anions and MCA’s17,21,24. This failure of conceptual DFT has its equivalent in computational DFT, when electronically stable anions are calculated as partially auto-ionized30,31.

    The VSP model correctly describes the anion X?as electronically stable with a positive χVS(X?), if A1(X) > 0,because χVS(X?) = A1(X) (Fig. 2). This fact is important to justify extrapolations of χVS(Q) beyond monoanions. For A1/I = 1/3 the valence-state electronegativity χVS reaches zero at Q max,VS = 2(Fig. 2). Generally an MCA can be expected to become electronically stable with

    Thus the VSP model provides an MCA-stability criterion along with the maximum uptake of electrons17,21,24. For electronically stable MCA’s Q max,VS > Q is required,

    where is calculated from properties of the “ancestor” species. Eq(8) has been already used to estimate the maximum charge acceptance for atoms and molecules back in 199921,24, but then the list did not contain any stable gas-phase MCA, because unambiguous experimental data seemed lacking. Recent publications contain more data of anions with large A1, and both stable and unstable MCA’s3–6,8,17,34–79which may be compared to the predictions of Eq. (8).

    As shown in Fig. 2 and Eq. (5) the GSP model of conceptual DFT yields17,21only half the value of Qmax,VS

    3 Results and discussion

    Comparisons with available reference data, A2,lit, indicate that Qmax,VS> 2 is a necessary criterion for dianion stability. In fact,molecules with Qmax,VS> 2.17 are generally found to have electronically stable gas-phase dianions17. Eq. (8) also supplies a qualitative dianion-stability criterion A1 > η, that is ?(3A1 ?I) > 0, and expresses

    To account for the different and sometimes complex influences, we calibrate the model to molecules having the value A2≈ 017. Several molecules, such as C70, Au11, Ag24, or Cu24,could serve as “anchors”. The fine-tuning to the experimental reference value A2(C70) = 0.02(3) yields17.

    This is a highly efficient universal equation quantifying the electronic stability of dianions of arbitrary size17. Note that other anchor molecules also lead to the same equation. This anchoring further provides the improved maximum charge acceptance as

    Table 1 collates the significantly extended and updated Qmaxand A2,calcresults for large varieties of transition-metalcomplexes, ALn, fullerenes, clusters, super-halogens (with electron affinities larger than that of the chlorine atom),super-alkalies (with ionization energies smaller than that of the alkali atoms), and organic molecules. The sample significantly differs from those discussed in Refs. 17 and 21. Fig. 3 shows the correlation

    Table 1 Maximum charge acceptance, Q max = 1 + (6/7)A1/ηVS, calculated second electron affinity, A2,calc = A1 ? (7/6)ηVS, and literature reference values, A2,lit. Vertical first ionization energies, Iv, and electron affinities, A1,v, from 17,77–79,unless indicated.

    continued Table 1

    with the correlation coefficient R = 0.998. The mean signed deviation in Eq. (13) is MSD = 0.062 ? 0.057 = 0.005 eV, which is below the uncertainty of most of the literature reference data themselves.

    Table 2 lists some most recently highlighted super-pnictogens34of the type ABmLn, closo-boranes, B12X12, and other candidates for stable gas phase trianions.

    We now discuss selected MCA’s in Tables 1 and 2. The energy unit is eV. Silicon hexafluoride SiF6 is documented having large positive vertical A2,v= 2.3 and adiabatic A2,ad= 2.58 second electron affinities, and the vertical detachment energy,VDE(SiF62?) = 2.7938. With A1,v= 6.8138, A1,ad= 7.0438and Iv=14.5917, Eq. (11) reproduces both the vertical and the adiabatic second electron affinities, A2,v,calc= 2.27 and A2,ad,calc= 2.63. The ionic UO2+indicates that the model may be applied to calculate the 2nd electron affinity of cations. Inserting the computed I(UO2+) = 15.30 and A1(UO2+) = I(UO2) = 6.2747into Eq. (11)yields A2,calc(UO2+) = 1.00 in agreement with the equivalent A1,ref(UO2) = 1.1247. MnO4might be a borderline case, as the dianion is calculated unstable, or stable depending on the reported ionization energies.

    Fig. 3 Linear relationship between 38 calculated second electron affinities, A2,calc, and literature reference values, A2,lit, in eV units.

    Fullerenes, Cn, and heterofullerenes, CnXm, are frequently characterized as superatoms, for exhibiting properties of free atoms53?56. However, in contrast to atoms, superatoms may form stable dianions. We include ten fullerenes and C60F3455. Table 1 shows the very satisfactory agreement. The nanocluster (ZnO)60is shapewise fullerene like57. It is here predicted to accept an additional second electron. Recent computations on the diatomic dianion Cl22?give= ?5.82 and agree very well with the prediction A2,calc = ?5.61 by Eq. (11), where the appropriate valence-state ionization energy I VS,v(Cl2) = 16.08 is taken71.

    Table 2 includes the exciting new class of super-pnictogens,for which stable trianions have been theoretically predicted very recently34. The gas phase stabilities of BeB11(X)132?(X = CN,BO) have been reported as exceptionally high, and the third electron affinities computed, e.g., A3,ad(BeB11(CN)12) = 2.65.The results are here compared with our general model, by taking the monoanion as the ancestor system, since the ionization energy of the neutral system is not known.

    For ZrF6, the criterion Eq. (14) and the extremely high electronic stability of ZrF62?with A2,obsd(ZrF6) = 2.9(2)80and A1,calc(ZrF6) ≈ 7.181allow predicting ZrF63?as electronically stable, albeit highly reactive, and unstable thermodynamically.Note that already he ZrF62?dianion was observed to be metastable unstable against the loss of an F?with a half-life of 4 s80.

    Is the VSP equation generally transferable to MCA’s? The condition for the electronic stability of an anion XQ?is

    Table 2 Maximum charge acceptance beyond the anion, Q max = 1 + (12/7) A2/(A1 ? A2). Calculated and literature reference values of third electron affinity, A3, calc and A3, lit, respectively. First electron affinity, A1, second electron affinity, A2, from 17, 77–79 unless indicated. Values in eV.

    Estimates by Eq. (15) may be exemplified on clusters forming trianions. An electronically stable trianion, X3?, is predicted for A1> 2ηVS, which is equivalent to A1/I > ?. Note, however, that experimental appearance sizes, nQap?, indicate electronic and thermodynamic stability, and therefore tend to be larger than the cluster sizes just referring to electronically stable MCA’s.

    The experimental ionization energies and electron affinities of extended, spherical metal clusters34–36are proportional to the reciprocal cluster radius, r?1, and equivalently to n?1/3. The dependence of cluster hardness, η, as a function of n?1/3has been discussed by several groups36,37.

    Extended metal clusters, such as Csnwith n > 25, are candidates for trianions. The work by Assadollahzadeh et al.76on cesium clusters allows us to estimate the appearance size,,of a triply charged anionic cluster, Csn3?. These authors found simple linear dependencies of the vertical ionization potential,Iν, and electron affinity, A1,ν, on the inverse cluster size, n?1/3. In eV units the evolution of the properties is given as

    Eqs. (16) and (17) have been found by constrained linear regressions, where the intercept 1.93 eV denotes the experimental work function of bulk cesium metal. Somewhat different linear regressions were obtained without this physical constraint76

    Combining Eqs. (16) to (19) with Eq. (15) we obtain appearance sizes for which A1,ν(Csn)/Iν(Csn) >as nap3?= 29 by the constraint regression, and n ap3?= 69 by the unconstrained linear fit. On average our estimate is that cesium clusters with n > 50 may form stable triply charged anions Cs3n?. Note that the electronic stability of Cs213?has been predicted in Ref. 17.

    The data on [n]fullerenes, Cn, allow more confident estimates,because the experimental I and A1data for large fullerenes 78 ≤n ≤ 106, are well modelled by charged hollow spheres37,51.Accordingly I and A1are proportional to n?1/2and the slopes nearly symmetrical51. The Mulliken electronegativity becomes roughly independent of size and approximates χ0= 5.13 eV, the work function of graphene as the infinite reference system51,71.Unconstrained linear regressions without forced intercept at this work function have been performed for the [n]fullerenes, n ≥ 78,using the experimental I and A1 data of Seifert, Boltanina et al.51.The established work function value for an infinitely large fullerene, 5.13 eV, has been taken as a single point in the set of 17 experimental data points, and all data carried the same statistical weight71

    The correlation coefficients are R = 0.9941 and R = 0.9970,respectively.

    The results confirm earlier statements71,82that the hardness and the electrophilicity indices of [n]fullerenes cannot be calculated by averaging atomic hardness and electrophilicity increments, respectively. The [n]fullerene hardness converges to practically zero, and the electrophilicity rises towards infinity for n → ∞. Eqs. (20) and (21) are combined with Eq. (12) to obtain

    which in turn allows estimating MCA appearance sizes for large[n]fullerenes with n > 80

    This allows specific predictions, e.g., n3ap?> 138 for the[n]fullerenes. The estimates by Walsh83are 156 < n3ap?< 192.The molecular energy is also affected by structural changes and relaxations between the neutral, anionic and MCA species. This is manifested in significant differences between the vertical and adiabatic values of I, A1and A2. In clusters up to n ≈ 40, I and A1values frequently include prominent odd-even oscillations and shell effects83,84. Modelling such important structural relaxations and complex behaviors upon electron attachment is outside the scope of the present method. However, the anionic charging in larger size metal clusters and [n]fullerenes is known to induce moderate structural changes only3,4,51,83,84. In general, the odd-even effects are “washed” out by increasing sizes34?36,51,83,84.Thus the global minimum structures of alkali metal clusters with n > 55 are dominated by geometrical packing effects84.

    4 Conclusions

    The valence-state parabola model has been extended to higher negative charges beyond simple anions. The electronic stability of multiply charged anions, XQ?, is quantitatively expressed as functions of two properties, A1and I, of the “ancestor” species, X, which are easier to determine. The VSP model provides a stability criterion requiring χVS(X2?) > 0 and suggests A2,VS≈ A1– ηVS. A fine-tuning results in A2,calc= A1– (7/6)ηVS, and gives accurate results. The calculated third electron affinities, A3,calc,and estimates of nap3?, the appearance size of triply charged anionic clusters agree well with the literature values.

    Acknowledgment:I thank Prof. Hans-Joachim Werner for continued hospitality at the Institut für Theoretische Chemie,Universit?t Stuttgart, and Prof. Michael C. B?hm for many helpful discussions.

    (1) Pearson, R. G. Chemical Hardness; Wiley-VCH: Weinheim, Germany,1997. doi: 10.1002/3527606173

    (2) Sommerfeld, T.; Weber, R. J. J. Phys. Chem. A 2011, 115, 6675.doi: 10.1021/jp202817d

    (3) Walters, T.; Wang, X. B.; Wang, L. -S. Coord. Chem. Rev. 2007, 251,474. doi:10.1016/j.ccr.2006.04.010

    (4) Herlert, A.; Kruckeberg, S.; Schweikhard, L.; Vogel, M.; Walther, C.Phys. Scr 1999, T80, 200.doi: 10.1238/Physica.Topical.080a00200

    (5) Franzreb, K.; Wiliams, P. J. Chem. Phys. 2005, 123, 224312.doi: 10.1063/1.2136154

    (6) Walsh, N.; Martinez, F.; Marx, G., Schweikhard, L., Ziegler, F.J. Chem. Phys. 2010, 132, 014308. doi:10.1063/1.3270153

    (7) Wong, A. Y.; Mamas, D. L.; Arnush, D. Phys. Fluids 1975, 18, 1489.doi: 10.1063/1.861034

    (8) Wang, X. B.; Wang, L. S. Photoelectron Spectroscopy of Multiply Charged Anions. In Annual Review Physical Chemistry; Annual Reviews Inc.: Palo Alto, CA, USA, 2009; Vol. 60, pp. 105–126.

    (9) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125.doi: 10.1021/cr010203l

    (10) Tallgren, L. Acta Med. Scand. Suppl. 1980, 640, 1.

    (11) Lee, A.; Dawson, P. A.; Markovich, D. Int. J. Biochem. Cell Biol.2005, 37, 1350. doi: 10.1016/j.biocel.2005.02.013

    (12) Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science 2001, 294, 2119. doi: 10.1126/science.1064034

    (13) Scheller, M. K.; Compton, R. N.; Cederbaum, L. S. Science 1995,270, 1160. doi: 10.1126/science.270.5239.1160

    (14) Boldyrev, A. I.; Gutowski, M.; Simons, J. Acc. Chem. Res. 1996, 29,497. doi: 10.1021/ar960147o

    (15) Dreuw, A.; Cederbaum, L. S. Chem. Rev. 2002, 102, 181.doi: 10.1021/cr0104227

    (16) Feuerbacher, S.; Cederbaum, L. S. J. Phys. Chem. A 2005, 109, 11401.doi: 10.1021/jp053305e

    (17) von Szentpály, L. J. Phys. Chem. A 2010, 114, 10891.doi: 10.1021/jp107177d

    (18) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.

    (19) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005

    (20) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289.doi: 10.1021/cr200107z

    (21) Parr, R. G.; von Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999, 121,1922. doi: 10.1021/ja983494x

    (22) Bergmann, D.; Hinze, J. Angew. Chem. Int. Ed. 1996, 35, 150; with earlier references quoted therein. doi: 10.1002/anie.199601501

    (23) von Szentpály, L. J. Mol. Struct. THEOCHEM 1991, 233, 71.doi: 10.1016/0166-1280(91)85055-C

    (24) von Szentpály, L. Int. J. Quantum Chem. 2000, 76, 222.doi: 10.1002/(SICI)1097-461X(2000)76:2<222::AID-QUA11>3.0.CO;2-6

    (25) Glasser, L.; von Szentpály, L. J. Am. Chem. Soc. 2006, 128, 12314.doi: 10.1021/ja063812p

    (26) Datta, D.; Shee, N. K.; von Szentpály, L. J. Phys. Chem. A 2013, 117,200. doi: 10.1021/jp3103386

    (27) von Szentpály, L. J. Phys. Chem. A 2015, 119, 1715.doi: 10.1021/jp5084345

    (28) Sen, K. D.; Boehm, M. C.; Schmidt, P. C. Structure and Bonding;Springer-Verlag: Berlin, Germany, 1987; Vol. 66, p. 99.

    (29) Janak, J. F. Phys. Rev. B 1978, 18, 7165.doi: 10.1103/PhysRevB.18.7165

    (30) Jensen, F. J. Chem. Theory Comput. 2010, 6, 2736.doi: 10.1021/ct1003548

    (31) Kim, M. -C.; Sim, E.; Burke, K. J. Chem. Phys. 2011, 134, 171103.doi: 10.1063/1.3590364

    (32) Wade, K. Chem. Commun. 1971, 792. doi: 10.1039/c29710000792

    (33) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311.doi: 10.1021/ar00105a003

    (34) Zhao, T.; Zhou, J.; Wang, Q.; Jena, P. Angew. Chem. Int. Ed. 2017, 56,13421. doi: 10.1002/anie.201706764.

    (35) Herlert, A.; Schweighardt, L. Int. J. Mass Spectrom. 2003, 229, 19.doi: 10.1016/S1387-3806(03)00251-3

    (36) Yannouleas, C.; Landman, U. Chem. Phys. Lett. 1993, 210, 437.doi: 10.1016/0009-2614(93)87050-D

    (37) de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611.doi: 10.1103/RevModPhys.65.611

    (38) Gutsev, G. L. Chem. Phys. Lett. 1991, 184, 305.doi: 10.1016/0009-2614(91)85128-J

    (39) Pernpointner, M.; Cederbaum, L. S. J. Chem. Phys. 2007, 126,144310. doi: 10.1063/1.2721531

    (40) Wesendrup, R.; Schwerdtfeger, P. Inorg. Chem. 2001, 40, 3351.doi: 10.1021/ic010169t

    (41) Craciun, R.; Picone, D.; Long, R. T.; Li, S.; Dixon, D. A.;Peterson, K. A.; Christe, K. O. Inorg. Chem. 2010, 49, 1056.doi: 10.1021/ic901967h

    (42) Craciun, R.; Long, R. T.; Dixon, D. A.; Christe, K. O. J. Phys. Chem.A 2010, 114, 7571. doi: 10.1021/jp1022949

    (43) Macgregor, S.A.; Moock, K. H. Inorg. Chem. 1998, 37, 3284.doi: 10.1021/ic9605736

    (44) Seppelt, K. Chem. Rev. 2015, 115, 1296. doi: 10.1021/cr5001783

    (45) Pradhan, K.; Gutsev, G. L.; Weatherford, C. A.; Jena, P. J. Chem.Phys. 2011, 134, 144305. doi: 10.1063/1.3570578

    (46) Uzunova, E. L. J. Phys. Chem. A 2011, 115, 10665.doi: 10.1021/jp2034888

    (47) Zhou, M.; Andrews, L.; Ismail, N.; Marsden, C. J. Phys. Chem.2000, 104, 5495. doi: 10.1021/jp000292q

    (48) Zein, S.; Ortiz, J. V. J. Chem. Phys. 2011, 135, 164307.doi: 10.1063/1.3636082

    (49) Zein, S.; Ortiz, J. V. J. Chem. Phys. 2012, 136, 224305.doi: 10.1063/1.4728073

    (50) Anusiewicz, I.; Freza, S.; Sikorska, C.; Skurski, P. Chem. Phys. Lett.2010, 493, 234. doi: 10.1016/j.cplett.2010.05.058

    (51) Boltanina, O. V.; Ioffé, I. N.; Sidorov, L. N.; Seifert, G.; Vietze, K.J. Am. Chem. Soc. 2000, 122, 9745. doi: 10.1021/ja000734b

    (52) Hampe, O.; Neumaier, M.; Blom, M. N.; Kappes, M. M. Chem. Phys.Lett. 2002, 354, 303. doi: 10.1016/S0009-2614(02)00124-0

    (53) Wang, X. -B.; Woo, H. -K.; Yang, J.; Kappes, M. M.; Wang, L. -S.J. Phys. Chem. C 2007, 111, 17684. doi: 10.1021/jp0703861

    (54) Wang, X. -B.; Woo, H. -K.; Huang, X.; Kappes, M. M.; Wang, L. -S.Phys. Rev. Lett. 2006, 96, 143002.doi: 10.1103/PhysRevLett.96.143002

    (55) Nasibullaev, S. K.; Davletbaeva, G. D.; Vasil’ev, Z. V.; Nasibullayev,I. S. Fuller. Nanotub. Carbon Nanostruct. 2004, 12, 491.doi: 10.1081/FST-120027212

    (56) Wang, X. -B.; Chi, C.; Zhou, M.; Kuvychko, I. V.; Seppelt, K.;Popov, A. A.; Strauss, S. H., Boltalina, O.; Wang, L. -S. J. Phys.Chem. A 2010, 114, 1756. doi: 10.1021/jp9097364

    (57) Caddeo, C.; Malloci, G.; De Angelis, F.; Colombo, L.; Mattoni, A.Phys. Chem. Chem. Phys. 2012, 14, 14293. doi: 10.1039/c2cp42037f

    (58) Belau, L.; Wheeler, S. W.; Ticknor, B. W.; Ahmed, M.; Leone, S. R.;Allen, W. D., Schaefer, H. F.; Duncan, M. A. J. Am. Chem. Soc. 2007,129, 10229. doi: 10.1021/ja072526q

    (59) Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1994, 100, 6614.doi: 10.1063/1.467071

    (60) Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1995, 102, 294.doi: 10.1063/1.469402

    (61) Sommerfeld, T. J. Phys. Chem. A 2000, 104, 8806.doi: 10.1021/jp0017590

    (62) Wang, J.; Yang, M.; Jellinek, J.; Wang, G. Phys. Rev. 2006, A74,023202. doi: 10.1103/PhysRevA.74.023202

    (63) Kostko, O. Photoelectron Spectroscopy of Mass-selected Sodium,Coinage Metal and Divalent Metal Cluster Anions; Ph. D. Thesis,Universit?t Freiburg: Freiburg, Germany, 2007.www.freidok.uni-freiburg.de

    (64) Yannouleas, C.; Landman, U. Phys. Rev. B 2000, 61, R10587.doi: 10.1103/PhysRevB.61.15895

    (65) Berkowitz, J.; Lifshitz, G. J. Chem. Phys. 1968, 48, 4346.doi: 10.1063/1.1667997

    (66) Jin, Y.; Maroulis, G.; Kuang, X.; Ding, L.; Lu, C.; Wang, J.; Lv, J.;Zhang, C.; Ju, M. Phys. Chem. Chem. Phys. 2015, 17, 13590.doi: 10.1039/c5cp00728c

    (67) Zakrzewski, V. C.; von Niessen, W. Theor. Chim. Acta 1994, 88, 75.doi: 10.1007/BF01113735

    (68) Berghof, V; Sommerfeld, T; Cederbaum, L. S. J. Phys. Chem. A 1998, 102, 5100. doi: 10.1021/jp9808375

    (69) Kaplan, I. G.; Dolgounitcheva, O.; Watts, J. D.; Ortiz, J. V. J. Chem.Phys. 2002, 117, 3687. doi: 10.1063/1.1494801

    (70) Roy, D. R.; Chattaraj, P. K. J. Phys. Chem. A 2008, 112, 1612.doi: 10.1021/jp710820c

    (71) von Szentpály, L. J. Mol. Model 2017, 23, 217.doi: 10.1007/s00894-017-3383-z

    (72) Sabzyan, H.; Noorisafa, Z.; Keshavarz, E. Spectrochim. Acta A 2014,117, 95. doi: 10.1016/j.saa.2013.07.111

    (73) Zakrzewski, V. G.; Dolgounitcheva, O.; Ortiz, J. V. J. Chem. Phys.1996, 105, 5872. doi: 10.1063/1.472428

    (74) Zhu, G. -Z. Wang, L. -S. J. Chem. Phys. 2015, 143, 221102.doi: 10.1063/1.4937761

    (75) Nielsen, S. B.; Nielsen, M. B. J. Chem. Phys. 2003, 119, 10069.doi: 10.1063/1.1618216

    (76) Assadollahzadeh, B.; Thierfelder, C.; Schwerdtfeger, P. Phys. Rev. B 2008, 78, 245423. doi: 10.1103/PhysRevB.78.245423

    (77) Haynes, W. M.; Lide, R. D. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011–2012.

    (78) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R.D.; Mallard, W. G. Ion Energetics Data in NIST Chemistry Webbook;NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, Maryland, USA, 2015.

    (79) Richard, R. M.; Marshall, M. S.; Dolgounitcheva, O.; Ortiz, J. V.;Brédas, J. -L.; Marom, N.; Sherrill, C. D. J. Chem. Theory Comput.2016, 12, 595. doi: 10.1021/acs.jctc.5b00875

    (80) Wang, X. B.; Wang, L. -S. J. Phys. Chem. A 2000, 104, 4429.doi: 10.1021/jp000362t

    (81) Gutsev, G. L.; Boldyrev, A. I. Mol. Phys. 1984, 53, 23.doi: 10.1080/00268978400102111

    (82) von Szentpály, L. J. Phys. Chem. A 2011, 115, 8528.doi: 10.1021/jp203319y

    (83) Walsh, N. Multiply-Negatively Charged Aluminum Clusters and Fullerenes; Ph. D. Thesis, Universit?t Greifswald, Greifswald,Germany, 2008. ub-ed.ub.unigreifswald.de/opus/volltexte/2008/.../Diss_Walsh.pdf

    (84) Taylor, K. J.; Pettiette-Hall, C. L.; Chesnovsky, O.; Smalley, R. E.J. Chem. Phys. 1992, 96, 3319. doi: 10.1063/1.461927

    伦理电影免费视频| 黄频高清免费视频| 久久亚洲真实| 18禁裸乳无遮挡动漫免费视频| 脱女人内裤的视频| 少妇 在线观看| 久久国产乱子伦精品免费另类| av有码第一页| 国产极品粉嫩免费观看在线| 精品少妇久久久久久888优播| 激情在线观看视频在线高清 | 一级片免费观看大全| 久9热在线精品视频| 免费久久久久久久精品成人欧美视频| 久久久久国产精品人妻aⅴ院 | svipshipincom国产片| 国产精品久久久久成人av| 热re99久久精品国产66热6| 国产精品国产av在线观看| 午夜亚洲福利在线播放| 久久久久视频综合| 国产精品国产高清国产av | av一本久久久久| 曰老女人黄片| 国产精品久久久人人做人人爽| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频| 亚洲av成人一区二区三| 免费看a级黄色片| 91精品三级在线观看| a在线观看视频网站| 国产精品 欧美亚洲| 免费日韩欧美在线观看| 亚洲精品久久成人aⅴ小说| 一夜夜www| 国产成人欧美在线观看 | 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| 777久久人妻少妇嫩草av网站| avwww免费| 国产成人精品久久二区二区91| 欧美一级毛片孕妇| 久久久久国产精品人妻aⅴ院 | 亚洲在线自拍视频| 纯流量卡能插随身wifi吗| 91精品三级在线观看| 成年人黄色毛片网站| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 美女午夜性视频免费| 亚洲欧美一区二区三区黑人| 色尼玛亚洲综合影院| 下体分泌物呈黄色| 久久精品熟女亚洲av麻豆精品| 亚洲中文av在线| 免费观看人在逋| 国产成人av教育| 亚洲一区高清亚洲精品| 激情在线观看视频在线高清 | xxxhd国产人妻xxx| 国产深夜福利视频在线观看| 久久人妻福利社区极品人妻图片| 欧美丝袜亚洲另类 | 国产在线精品亚洲第一网站| 亚洲欧美激情在线| 亚洲熟妇熟女久久| 日韩一卡2卡3卡4卡2021年| 成人精品一区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线免费观看网站| 熟女少妇亚洲综合色aaa.| 岛国在线观看网站| a级片在线免费高清观看视频| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 一级a爱视频在线免费观看| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 啦啦啦在线免费观看视频4| 国产99白浆流出| 91精品三级在线观看| 久久香蕉激情| 日日摸夜夜添夜夜添小说| 午夜精品国产一区二区电影| 久久中文字幕一级| 色综合欧美亚洲国产小说| 欧美国产精品va在线观看不卡| 免费少妇av软件| 精品福利永久在线观看| 亚洲avbb在线观看| 热re99久久精品国产66热6| 久久久久精品人妻al黑| 两人在一起打扑克的视频| 超碰成人久久| 欧美午夜高清在线| 女警被强在线播放| 女性被躁到高潮视频| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美一区二区综合| 国精品久久久久久国模美| 999久久久国产精品视频| 国产男女超爽视频在线观看| 国产男女内射视频| 欧美成人午夜精品| 精品人妻熟女毛片av久久网站| 国产熟女午夜一区二区三区| 亚洲一区二区三区不卡视频| 国产不卡一卡二| 国产成人精品久久二区二区91| 成人18禁在线播放| 男人舔女人的私密视频| 欧美精品人与动牲交sv欧美| 久久午夜综合久久蜜桃| 久久国产精品影院| 丰满的人妻完整版| 国产成人一区二区三区免费视频网站| 欧美不卡视频在线免费观看 | 男人的好看免费观看在线视频 | ponron亚洲| 黄色视频,在线免费观看| 国产成人欧美在线观看 | 国产精品成人在线| 成人永久免费在线观看视频| 一a级毛片在线观看| 这个男人来自地球电影免费观看| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| 精品电影一区二区在线| 亚洲av欧美aⅴ国产| 搡老乐熟女国产| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 午夜免费鲁丝| 丁香欧美五月| 成人黄色视频免费在线看| 亚洲av成人一区二区三| 他把我摸到了高潮在线观看| 亚洲人成伊人成综合网2020| 成年人午夜在线观看视频| 国产免费av片在线观看野外av| 大香蕉久久成人网| 黑人操中国人逼视频| 欧美在线黄色| 一区在线观看完整版| netflix在线观看网站| 一级a爱片免费观看的视频| 这个男人来自地球电影免费观看| av电影中文网址| 成年动漫av网址| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 精品电影一区二区在线| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 日本五十路高清| 天天操日日干夜夜撸| 国产日韩一区二区三区精品不卡| 91字幕亚洲| 性色av乱码一区二区三区2| svipshipincom国产片| 悠悠久久av| 极品教师在线免费播放| 一级片免费观看大全| 亚洲综合色网址| 黑人巨大精品欧美一区二区mp4| 亚洲久久久国产精品| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 成人免费观看视频高清| 成人18禁在线播放| 国产深夜福利视频在线观看| 桃红色精品国产亚洲av| 欧美人与性动交α欧美软件| 久久香蕉国产精品| 亚洲精品国产一区二区精华液| 在线观看www视频免费| 色94色欧美一区二区| 欧美日韩亚洲国产一区二区在线观看 | 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 麻豆成人av在线观看| 欧美激情极品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频日本深夜| 国产av精品麻豆| 欧美国产精品一级二级三级| 亚洲少妇的诱惑av| 久久九九热精品免费| 91在线观看av| 日本黄色日本黄色录像| 亚洲精品国产一区二区精华液| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 精品福利永久在线观看| 精品久久久精品久久久| 日本精品一区二区三区蜜桃| 校园春色视频在线观看| 免费在线观看影片大全网站| cao死你这个sao货| 色综合婷婷激情| 久久久精品免费免费高清| 麻豆国产av国片精品| 老司机深夜福利视频在线观看| 宅男免费午夜| 老司机福利观看| 超碰97精品在线观看| 日本a在线网址| 午夜免费鲁丝| 在线永久观看黄色视频| 在线av久久热| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影| 久久青草综合色| 美女午夜性视频免费| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 亚洲精品久久成人aⅴ小说| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av | 女性被躁到高潮视频| 在线天堂中文资源库| 国产男女内射视频| 乱人伦中国视频| 99riav亚洲国产免费| 咕卡用的链子| 久热这里只有精品99| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 一级毛片精品| 一本一本久久a久久精品综合妖精| 久久久久久亚洲精品国产蜜桃av| 午夜视频精品福利| av超薄肉色丝袜交足视频| 亚洲国产欧美网| 国产不卡av网站在线观看| 夜夜夜夜夜久久久久| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 少妇猛男粗大的猛烈进出视频| 一区二区日韩欧美中文字幕| 久久久国产成人精品二区 | 亚洲精品国产精品久久久不卡| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 中文字幕人妻熟女乱码| 超碰97精品在线观看| 人成视频在线观看免费观看| 色播在线永久视频| 大香蕉久久网| 国产av精品麻豆| 国产男女内射视频| 免费少妇av软件| 午夜老司机福利片| 三上悠亚av全集在线观看| 电影成人av| 精品国产国语对白av| 99热只有精品国产| av一本久久久久| 国产精品久久久av美女十八| av片东京热男人的天堂| 又黄又爽又免费观看的视频| 欧美老熟妇乱子伦牲交| 久久久久久久精品吃奶| 欧美老熟妇乱子伦牲交| 一夜夜www| √禁漫天堂资源中文www| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网| 国产一区二区三区在线臀色熟女 | 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 在线av久久热| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产 | 午夜老司机福利片| 欧美乱色亚洲激情| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 欧美最黄视频在线播放免费 | 精品国产超薄肉色丝袜足j| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| 国产精品 欧美亚洲| 国产成人系列免费观看| 欧美丝袜亚洲另类 | 999久久久精品免费观看国产| 叶爱在线成人免费视频播放| 免费av中文字幕在线| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 欧美久久黑人一区二区| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 亚洲片人在线观看| 法律面前人人平等表现在哪些方面| tube8黄色片| 人人妻人人澡人人看| 美女视频免费永久观看网站| 久久九九热精品免费| 又紧又爽又黄一区二区| 日韩人妻精品一区2区三区| 老司机深夜福利视频在线观看| 国产免费现黄频在线看| 亚洲成人手机| 亚洲中文av在线| 怎么达到女性高潮| 捣出白浆h1v1| 精品少妇久久久久久888优播| 宅男免费午夜| 亚洲情色 制服丝袜| 国产精品久久久人人做人人爽| 大片电影免费在线观看免费| 丁香欧美五月| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 在线观看免费高清a一片| 美女午夜性视频免费| 中亚洲国语对白在线视频| 午夜老司机福利片| 亚洲色图av天堂| 91麻豆精品激情在线观看国产 | 高清在线国产一区| 999久久久国产精品视频| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| 欧美+亚洲+日韩+国产| 天天操日日干夜夜撸| 丁香六月欧美| 日韩 欧美 亚洲 中文字幕| 男人操女人黄网站| 国产成+人综合+亚洲专区| 他把我摸到了高潮在线观看| 三级毛片av免费| 午夜激情av网站| 国产亚洲欧美在线一区二区| 国产男女内射视频| 超碰97精品在线观看| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 高清黄色对白视频在线免费看| 老司机深夜福利视频在线观看| 久久中文字幕一级| 99国产精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久成人av| 欧美激情高清一区二区三区| av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 日韩视频一区二区在线观看| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 老司机影院毛片| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 脱女人内裤的视频| 成人亚洲精品一区在线观看| av电影中文网址| 久久人妻福利社区极品人妻图片| 欧美精品啪啪一区二区三区| 日韩人妻精品一区2区三区| 九色亚洲精品在线播放| 电影成人av| 黄色成人免费大全| 日韩大码丰满熟妇| 不卡一级毛片| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 啦啦啦免费观看视频1| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 精品久久久久久久久久免费视频 | 国产精品一区二区在线观看99| 91精品国产国语对白视频| 亚洲精品国产精品久久久不卡| 日日摸夜夜添夜夜添小说| 久久精品人人爽人人爽视色| 欧美乱色亚洲激情| av网站免费在线观看视频| 精品福利观看| 桃红色精品国产亚洲av| 女人被躁到高潮嗷嗷叫费观| 免费不卡黄色视频| 天天影视国产精品| www.熟女人妻精品国产| 深夜精品福利| 啦啦啦视频在线资源免费观看| 岛国毛片在线播放| 高潮久久久久久久久久久不卡| 国产一区有黄有色的免费视频| 国产精品 国内视频| 色婷婷av一区二区三区视频| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| 成人三级做爰电影| 亚洲第一av免费看| 免费不卡黄色视频| 自线自在国产av| 大香蕉久久成人网| 在线观看66精品国产| 亚洲精品中文字幕一二三四区| 热re99久久国产66热| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 在线视频色国产色| 黄色片一级片一级黄色片| 日韩中文字幕欧美一区二区| 超色免费av| 麻豆乱淫一区二区| 一级片免费观看大全| 成年版毛片免费区| 露出奶头的视频| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 亚洲色图综合在线观看| 天堂动漫精品| 黄色片一级片一级黄色片| 欧美 日韩 精品 国产| 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| videosex国产| 91老司机精品| 精品乱码久久久久久99久播| 日日摸夜夜添夜夜添小说| 99国产综合亚洲精品| 超碰成人久久| 丝袜人妻中文字幕| 亚洲精品国产区一区二| 亚洲成a人片在线一区二区| 99re在线观看精品视频| 久久热在线av| 久久久久久久午夜电影 | 侵犯人妻中文字幕一二三四区| 欧美日韩成人在线一区二区| 亚洲全国av大片| 亚洲成国产人片在线观看| 欧美黑人精品巨大| 免费观看精品视频网站| 精品国产一区二区三区久久久樱花| 欧美激情久久久久久爽电影 | 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 久久 成人 亚洲| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 午夜精品久久久久久毛片777| 国产男靠女视频免费网站| 高清av免费在线| 午夜免费观看网址| 在线观看免费高清a一片| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| bbb黄色大片| 免费少妇av软件| 搡老乐熟女国产| 久久久久久久午夜电影 | av欧美777| 国产成人av激情在线播放| 午夜福利在线免费观看网站| 欧美精品亚洲一区二区| 国产熟女午夜一区二区三区| 国产精品久久久av美女十八| 两个人看的免费小视频| 90打野战视频偷拍视频| 777久久人妻少妇嫩草av网站| 男人操女人黄网站| 天天躁狠狠躁夜夜躁狠狠躁| 黄色丝袜av网址大全| 久久香蕉国产精品| 又黄又爽又免费观看的视频| 国产av又大| av天堂在线播放| 夫妻午夜视频| 五月开心婷婷网| 老司机亚洲免费影院| 在线观看免费日韩欧美大片| 新久久久久国产一级毛片| 国产精品 欧美亚洲| 成年人免费黄色播放视频| 亚洲自偷自拍图片 自拍| 视频在线观看一区二区三区| 18禁观看日本| 国产精品免费大片| 日本黄色日本黄色录像| 免费日韩欧美在线观看| 男人操女人黄网站| 天天影视国产精品| 亚洲欧美日韩高清在线视频| 久久人妻熟女aⅴ| 久久久精品区二区三区| 成人国语在线视频| a级片在线免费高清观看视频| 91精品国产国语对白视频| 亚洲一码二码三码区别大吗| 免费在线观看影片大全网站| 777米奇影视久久| 国产91精品成人一区二区三区| 91大片在线观看| 国产一卡二卡三卡精品| 99国产精品99久久久久| 69av精品久久久久久| a级毛片黄视频| 国产精品 国内视频| 国产99白浆流出| 久久精品国产99精品国产亚洲性色 | 欧美成人免费av一区二区三区 | 人人妻人人澡人人爽人人夜夜| 亚洲精品自拍成人| 建设人人有责人人尽责人人享有的| 后天国语完整版免费观看| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 国产xxxxx性猛交| 黑人猛操日本美女一级片| 久久天堂一区二区三区四区| 黄片播放在线免费| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲精品中文字幕一二三四区| 老司机亚洲免费影院| 亚洲五月天丁香| 国产一区二区三区视频了| 久久香蕉激情| 久久精品国产a三级三级三级| 99热网站在线观看| 在线观看一区二区三区激情| 欧美中文综合在线视频| 欧美在线黄色| 色尼玛亚洲综合影院| 人妻 亚洲 视频| 两个人看的免费小视频| 午夜福利,免费看| 久久国产精品人妻蜜桃| 91精品三级在线观看| 亚洲欧美日韩高清在线视频| 大香蕉久久网| 好看av亚洲va欧美ⅴa在| 满18在线观看网站| 久热爱精品视频在线9| 久久性视频一级片| 久久久久久久国产电影| 99久久精品国产亚洲精品| tube8黄色片| 多毛熟女@视频| 人妻一区二区av| 国产成人免费无遮挡视频| 91成年电影在线观看| 国产精品久久久久成人av| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 国产精品成人在线| 纯流量卡能插随身wifi吗| 美女 人体艺术 gogo| 精品久久久久久,| av网站在线播放免费| 1024香蕉在线观看| 午夜福利影视在线免费观看| 久9热在线精品视频| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美网| 久久性视频一级片| 国产一区在线观看成人免费| 啦啦啦视频在线资源免费观看| 1024视频免费在线观看| 无遮挡黄片免费观看| 一级毛片女人18水好多| 亚洲黑人精品在线| 嫩草影视91久久| 制服人妻中文乱码| а√天堂www在线а√下载 | 久久久国产成人免费| 两个人免费观看高清视频| 欧美乱码精品一区二区三区| 男人操女人黄网站| 精品人妻在线不人妻| 美国免费a级毛片| 后天国语完整版免费观看| 久久亚洲精品不卡| 女人爽到高潮嗷嗷叫在线视频| 男人操女人黄网站| 午夜福利一区二区在线看| 咕卡用的链子| 久久久国产成人免费| 国产精品久久久人人做人人爽| 又黄又粗又硬又大视频| 欧美成狂野欧美在线观看| 国产野战对白在线观看| 高清在线国产一区| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 亚洲精品在线美女| www.精华液| 欧美激情高清一区二区三区| 国产精品综合久久久久久久免费 | 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 在线观看免费高清a一片| 大香蕉久久成人网| 一区福利在线观看|