• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions

    2018-07-03 09:57:56GEERLINGSPaulDEPROFTFrankFIASStijn
    物理化學學報 2018年6期

    GEERLINGS Paul,DE PROFT Frank,FIAS Stijn

    General Chemistry(ALGC),Free University Brussels(VUB),Pleinlaan 2,1050 Brussel,Belgium.

    1 Introduction

    Within thecontext of Conceptual Density Functional Theory(CDFT,sometimes also referred to as chemical reactivity DFT)1–7,the quantifi cation of various previously well known chemical concepts,which lacked a strong formal basis,has become possible.This is done through so-called response functions of the energy functional E[N,v]where N is the number of electrons of the system and v is the external potential acting on the electrons.Since chemical reactions can be thought of as perturbations in the number of electrons and/or the external potential of a system,it should in theory be possible to study the reactivity of a system through the investigation of the response of its energy.Rather than studying the response of the energy in its entirety,we can look at the functional Taylor expansion of the energy and identify the(mixed)functional derivatives of E with respect to N and v(r),(δn+mE/?Nnδvm),as response functions or reactivity indices.The two fi rst order derivatives,the electronic density ρ(r)and theelectronic chemical potentialμ,havebeen studied intensively as well as two of the second order derivatives,the chemical hardnessand the Fukuifunction f(r)3.

    The third one,the linear response kernel,χ(r,r′),is well known in theoretical physics and in the chemical physics literature,however essentially in its frequency dependent form χ(r,r′,ω).In time dependent DFT8its use is ubiquitous as its poles correspond to the system’s excitation energies9.Until recently its frequency independent or static analogue,though initiated already for example in Parr and Yang’s book10,received little attention as compared to other conceptual DFT based reactivity descriptors.Recent studies by the present authors provided computational and interpretational strategies for its study and revealed the rich chemical information hidden in this six-variable kernel11–21,up to its connection with the conductance properties of molecular electronic devices22.

    It is well known that diあerent ensemble representations can be used in density-functional theory.The most common,based on the E[N,v]functional,istheso called canonical ensembleof thetotal energy E asafunction of thetotal number of electrons,N,and theexternal potential,v:

    Legendre transformations can be used to fi nd other ensemble representations for the ground state23.This yields the grand canonical,isomorphic and grand isomorphic ensembles,for which the respective Legendre transformations are:

    In each of these representations a non-local second order derivative or kernel can be defined,namely the linear response function(for E),the softness kernel(for?)and the hardness kernel(for F).

    Looking at the literature some kernels received more attention than others.As stated above,the linear response kernel,although already discussed by Parr and Berkowitz24in thelateeightiesremained somewhat unexplored except in more formal works mainly by Senet,Ayers and Liu25–28until the recent studies mentioned above.The softness kernel was introduced by Berkowitz and Parr24and its relationship with the local softness s(r)proposed by Yang and Parr29was discussed.This integrated form of the softness kernel gained widespread use in the literature,e.g.in applying the HSAB principle at local level30–32.Though,the kernel’s properties,and its ab initio evaluation have been discussed only rarely,an example being some recent work on its ab initio evaluation by some of the present authors33and its role in the quantitative testing,at molecular level,of Kohn’s nearsightedness of electronic matter principle34–36.The hardness kernel on the other hand received much more attention often in view of the non-univocal defi nition of its local counterpart,the local hardness,at fi rst sight the natural companion of the local softness24.A complete bibliography on this issue is beyond the scope of this paper,but for early work we refer to Ghosh et al.37–39,Harbola40,Langenaeker,Torrent-Sucarrat and some of the present authors41–43;for an intermediate status report to Chattaraj’s 2003 critical account44and for very recent work to Polanco-Ramirez,containing references to the very recent literature45.The R kernel received very little attention except in the study by Liu and Parr46,the reason becoming obvious later on in this paper.

    The large majority of these studies on the kernels mentioned above,as natural in the context of conceptual or chemical reactivity DFT,concentrated on the role of the kernels on describing chemical reactivity.In the present paper a diあerent aspect of these kernels is highlighted based on the analogy of these functionals with thermodynamic state functions and their properties.The apparent parallelism between classical thermodynamics and DFT has already been addressed in the eighties by Nalewajski and Parr by reformulating the basic variational problem of DFT in terms of various Legendre transformed representations23.

    In the present paper which is partly of a perspective-type we thought to be interesting for this Special Issue,we elaborate further on these analogies starting from the convexity/concavity properties of the DFT functionals with respect toρ and v,where the E =E(v)case goes back to Lieb47,Eschrig48,with recent work by Helgaker et al.49and our group21connecting it with the properties of the associated kernels(Note that the convexity of the E=E(N)functional and itspiecewiselinearity havealready been deeply analysed in the seminal contribution by Perdew,Parr,Levy and Balduz50.A companion paper51will be devoted to the more purely mathematical properties of the kernels.Note that we will not concentrate on thermodynamic transcriptions of DFT leading to local thermodynamics(see Ghosh,Parr,Nagy et al.52–55,...)but that westick to theoriginal functionalsof DFT(E and its Legendre transforms-vide infra).

    We fi rst restate the formal analogy between the diあerent DFT functionals and the thermodynamic functions,analyzing the type and combinations of variables,using the Legendre transform approach(Section 2.1).In Section 2.2 we consider the positive and negative semidefi niteness of the kernels starting from the convexity/concavity property of the functionals.In Section 2.3 we concentrate on the analogies between thestability analysisof thermodynamic functions56–58and the convexity/concavity analysis of the DFT functionals and the repercussions on the relationship between thermodynamical derivatives and DFT reactivity descriptors,placing the Berkowitz Parr relationship in abroader context and highlighting in the Grand Canonical Ensemble an inequality involving global softness,local softnessand the softness kernel which can be seen as an analogue between a thermodynamic inequality involving the Gibbsfreeenergy derivatives.

    2 Results and discussion

    2.1 The different ensemble representations and the analogy with thermodynamics:thermodynamic potentials and DFT functionals

    Starting fromthecanonical ensembleof thetotal energy E as a function of thetotal number of electrons,N,and theexternal potential,v,

    Legendre transformations can be used to fi nd other ensemble representationsfor theground state,namely thegrand canonical,isomorphic and grand isomorphic ensembles,with the defining equation(see for example reference56)

    The Legendre transformation connects two ways of specifying the same physics,via functions of two related(“conjugate”)variables.In this case the conjugate pairs of variables are the number of electrons N and the chemical potentialμ,on onehand and theexternal potential v(r)and the electron densityρ(r)on the other hand.The analogy with classical thermodynamics is apparent,where,at constant particle number,the Legendre transformations are used to convert between the internal energy U(as a function of the entropy S and the volume V),Helmholtz free energy F,enthalpy H,and Gibbs free energy G state functions of the system:

    Here,the two conjugate pairs of variables are pressure p and volume V on one hand,and temperature T and entropy S on the other hand.S and V are so-called extensive variables,while p and T are intensive.One of the statefunctions(U)thus depends on two extensive variables,two(F and H)depend on both an intensive and extensive variable and one(G)depends on two intensive variables.The Legendre transformations,as written above,can be seen as the gradual replacement of extensivevariablesby intensiveones.Pleasenotethat all of the above mentioned thermodynamic functions are also depending on thenumber of particles N;ashowever itsdependenceisnot considered explicitly in the remaining text(N is kept constant)wewill not denoteit explicitly in order to simplify thenotation.Nalewajski and Parr23extended the notion of “extensive”variables to the microscopic world as“properties additive with respect to any partitioning of the electronic densityρ(r)=ρA(r)+ ρB(r)”.v(r)and μ are clearly not additive with respect to such partitioning of the density and are intensive as opposed toρ(r)and N which are clearly extensive,the former by defi nition,the latter as can be seen by integrating the defi ning equation ofρ(r)to N = NA+NB.These observations will be of importance when discussing concavity and convexity of the functionals and their repercussion on the response functions.Note that in DFT besides intensive and extensive variables one also distinguishes between global and local quantities1,3varying from point to point(local)or not(global);global and local softness(S and s(r))are typical examples(vide infra).In the variablesmentioned above there is no one-to-one correspondence between intensive/extensive character on onehand and local/global on theother hand.N for exampleisextensiveand global,ρisextensivebut local.

    In thecontext of density functional theory,theappearanceof the four Legendre transformations is thus analogous to the thermodynamicscase,beit,(1)that oneworkswith functionals instead of functions,(2)that one now “starts” from a functional,E,with one intensive and oneextensive variable(v and N)instead of U(S,V)containing two extensive variables and(3)that the third functional,F being nothing else than the Hohenberg-Kohn functional,actually only depends on the density,ρ(r):the expected dependency on N drops since ρ(r)obviously also determines N.It would be interesting to investigate in more detail if there is not an inherent diきculty in using the Legendre Transform procedure at zero temperature,(see59,footnote 85).Note that also in this case two functionals(E and R)are dependent on one extensive and one intensive variable/function(as in the thermodynamic case)and one is dependent on two intensive variables(?),in analogy with G in thermodynamics.

    2.2 Convexity/concavity of the functionals and positive/negative semidefi niteness of the kernels

    Each diあerent functional,corresponding to a diあerent representation,gives rise to one non-local second order response function,a kernel,in v orρ.Explicitly written,they are

    where we recognise the linear response function χ(r,r′),the softnessand hardnesskernels s(r,r′)and η(r,r′)whereasthe fi nal kernel t(r,r′)has not been given a particular name,for reasonsthatwillbecomeobviouslater.Allkernelsaresymmetric in r and r′.Note that in the hardness kernel no constraints are imposed when performing the functional diあerentiation in view of the absence of the expected explicit N dependence discussed before.Note also the ? sign in front of s(r,r′).The analogy between χ(r,r′)and s(r,r′)is striking:they both involve the functional derivative ofρ(r)with respect to v(r′),however with a diあerent constraint:constant N for χ and constant μ for s.The importance of this diあerence has already been stressed in early work by Berkowitz and Parr24,its repercussions when quantifying Kohn’s nearsightedness of electronic matter principle34,35havebeenatstakeinrecentwork by someof thepresent authors36.

    We now investigate the positive or negative semidefi niteness of the kernels,as resulting from the convexity/concavity of the functionals.

    Using a functional Taylor series of the electronic energy E for which the initial(or unperturbed)external potential v(r)is perturbed by w(r),the next expression,up to second order is obtained:

    It is well established that E[v]functional is concave,following Jensen’s inequality(see for example Lieb47,Eschrig48,Helgaker et al.49):

    This concavity implies the linear response to be negative semidefi nite:

    for any continuous functionθ.This can be seen from:

    and by recognizing that 19 implies that

    Passing now to the grand canonical ensemble,similar to the convexity of the E[v]functional,it can be shown that?[v]=E[v]? μN isconcave(for acompleteproof,see51):

    From thisconcavity it followsagain that

    implying that the softness kernel s(r,r′)is positive semidefi nite.This positive semidefi niteness is also evident when using the Berkowitz-Parr relation for s(r,r′):

    since the hardness,ηis positive.

    In the isomorphic ensemble we remind that the Hohenberg-Kohn functional,F,actually only depends on the density,ρ(r),since thisobviously also determines N.Keeping,however,the spirit of the Legendre transformation of E[N,v(r)]to F[N,ρ(r)]in mind,it is tempting to look at variations inρwhile fixing the number of electrons.

    This kernel q(r,r′),which can be viewed as a special case of the hardness kernel under constant N variations ofρ,and has the interesting corollary of being the inverse of the linear response kernel:

    In what follows,we will restrict however our discussion to the “classical”hardness kernel,defined in Eq.(17)without constraint.We now consider the convexity of F[ρ(r)]concentrating on the case of v-representable densities,at stake in the type of studies in conceptual DFT(for a more detailed discussion,see Eschrig48,Lieb47,Ayers60).Its convexity follows from the variational principle.Indeed,ifρ0and ρ1are pure state v-representable densities and if we suppose that the convex sum ρλ= λρ0+(1? λ)ρ1also belongsto thedomain of pure state v-representable densities,then due to the variational principle F[ρλ] ≤ λF[ρ0]+(1 ? λ)F[ρ1],or in other words F isaconvex functional(see51for moredetails).

    From thisconvexity it followsthat

    implying that the hardness kernel η(r,r′)is positive semidefi nite.

    Finally,we consider the grand isomorphic ensemble.Discussions/use of this functional are less prominent in the literature despite the analysis made already in literature46by Parr and Liu.As its convexity/concavity inρhas not been discussed explicitly at that place we show below that R is convex inρ.

    Indeed R(ρ)can be written for a given μ as

    Suppose we define,just as in the F case,the density

    we now prove that

    Indeed

    As F[ρ]wasconvex,thisresult yieldsa convex R[ρ].On this basis the corresponding functional derivativeis positivesemidefi nite.

    In fact this could be expected by the mere fact that t(r,r′)turns out to be equal to the hardness kernel(cf.reference46).Indeed starting from

    onehas

    2.3 The analogy with thermodynamic functions

    As stated above,when looking at the second order derivatives of the four functionals with respect to the global variables N andμ,only the derivatives of E and? have any signifi cance.(?2F/?2N)ρhas no signifi cance,since the number of electrons can not change when keeping the density fi xed,as is also the reason why(?2R/?2μ)ρ= ?(?N/?μ)ρ=0(see also46).The global hardness(?2E/?2N)v= η is alwayspositive,while(?2?/?2μ)v,equaling minustheglobal softness is always negative.As discussed above,both the derivativeswith respect to v(r)arenegative semidefi nite(with(δ2?/δv(r)δv(r′))μ= ?s(r,r′)and the softness kernel thus being positive definite)and the hardness kernel corresponding to both the second functional derivative with respect toρof F(without constraint)and R(withμ-constraint)is positive semi defi nite.Summarizing,second order(functional)derivatives with respect to extensive variables(N andρ)are positive or positive semi definite,while derivatives with respect to intensive variables(μand v)are negative or negative semi defi nite.This behavior of DFT functionals completely parallels the second derivative behavior of the functionsin macroscopic thermodynamics56assummarized in Table 1,where the sign alternation when passing from extensive to intensive quantities is clear.Thermodynamical potentials and DFT functionals are convex in extensive variables and concave in intensive variables.

    In macroscopic thermodynamics second derivatives of state functions play an important role in stability analysis(see e.g.56–58for an extensive treatment).Take for example the entropy,S written as S=S(U,V)where the number of particles is kept constant,the quantity for which the basic extremum principle of thermodynamics can be formulated,namely that for S=S(U,V)d S=0 and d2S≤0 at equilibrium.Thestability condition can then bewritten as56

    Table1 Analogy between thesign of thesecond order derivatives of thethermodynamic functions and thoseof the DFT functionals(positiveor negativesemidefi nitenessin thecaseof functional derivatives).

    SUU(ΔU)2+2SUV(ΔU)(ΔV)+SVV(ΔV)2≤ 0(37)with obvious notations for the second order derivatives SUU,SUVand SVV.Multiplying by SUU(which is negative in view of the maximum entropy postulate)and adding and subtracting S2UV(ΔV)2,one obtains

    which,after rearrangement of the terms,becomes,

    leading to the condition that

    Together with thefactthat SUUand SVVarenegative56,this condition of stability expresses the concavity of S(U,V)in all directions.This third condition yields additional conditions for physical quantities that should be obeyed57,58,on top of those for SUUand SVV

    expressing that the molecular heat capacity Cvshould be positive in a stable system.The stability conditions are thus identical to the conditions of convexity/concavity and as the latter have been formulated above for the DFT functionals in the diあerent ensembles,it is tempting to see how these conditions,supplemented with the third condition equivalent to asking concavity/convexity in all directions,could be extended to DFT and which conditions can be derived from it at the electronic structurelevel,taking again into account thedivision of variables into intensive and extensive ones as in thermodynamics.

    The analogy to S(U,V)is,however,diきcult to draw,as no DFTfunctional isdepending on two extensivevariables.Taking the opposite situation of a thermodynamic function and DFT functional depending on two intensive variables,the analogy between G(T,p)and ?[μ,v(r)]can be drawn.

    G is concave in p and T(this can be traced back to the maximum entropy postulate,its equivalence to the minimum energy(U)principle,and the properties of the Legendre transformations of transforming U into G).The Legendre transformations replace the two extensive variables S and V by their conjugates T and p,turning the convex behavior into a concave one.Concavity along all directions implies

    and

    The fi rst two conditions express that the isothermal compressibilityand the heat capacity at constant pressure Cpshould be positive.The third condition yields the inequality

    as= αV,whereα is the coeきcient of thermal expansion

    Thisis the same inequality derived by Rice,Ross and Berry for the U(S,V)stability58.

    Let us now look at the analogy of G(T,p)with ?[μ,v(r)],which isknown to yield=?S3,or minusthe global softness,which is always negative,showing the concavity of?inμ.As shown above? is also concave in v(r)with associated thepositivesemidefi nite softnesskernel(s(r,r′)=The third condition imposing concavity in all directions can be derived from the second(functional)diあerential asfollows.

    The condition for concavity in all directions for?can be written as follows,extending Callen’s56approach for the S(U,V)function to the?functional,leading to single or doublefunctional derivativesinstead of partial derivatives.

    By multiplying withminus the softness,?S)and adding and subtractingv,which is negative(as it isΔv(r′)d r′the following inequality arises:

    Collecting thefirst threetermsand thelast two,oneobtains

    As the fi rst term is larger than or equal to zero,the condition onthesecond termto belarger than or equal tozero,for arbitrary ΔμandΔv(r)becomes

    which,by filling inthedefi nitionsof theglobal softness S,local softness s(r)and softnesskernel s(r,r′)becomes

    which is the extra condition for concavity of?in all directions combining global and local softness and the softness kernel in a single inequality.

    Taking the particular choice of a dirac delta function,Δv(r)= δ(r? r1)andΔv(r′)= δ(r′? r1),asΔv(r)is arbitrary,one obtains

    or

    Thisinequality showsthat the third condition implies that all diagonal elements of the softness kernel should be positive,as opposed to the linear response function,where they are negative20,21.Remark that thistype of inequality isalso unique as in only one of the four diあerent representations the third condition is at stake and that on top of that the passage from non-local to local and global quantity corresponds in this case to simple integration which is not the case in the other representations.The formal analogy with the F=F(N,ρ)case is left out of consideration in view of the above discussed peculiaritieswith theρdependenceof N.

    Eq.(52)puts a restriction on the relative values of the softness descriptors S,s(r)and s(r,r)and is an analogue to the thermodynamic expression involvingκ,α and Cp.This result is compatible with the famous Berkowitz-Parr formula24,relating theρversus v functional derivative for two diあerent constraints(constant N,leading to χ and constantμ,leading to the softness kernel)

    and our fi nding thatχ(r,r)≤ 021,converting(53)in the r=r′caseto an inequality

    retrieving our conclusionsabove.

    Two of the other DFT functionals,E=E[N,v]and R=R[μ,ρ]combinean extensiveand an intensivevariableand thus have both a positive and a negative second order(functional)derivative(Table 1)but no third condition for concavity and convexity in all directions:For E the well-known result for the convexity of E(N)yieldsa positive hardness

    whereas the linear response function is negative semidefi nite as already mentioned above

    For R,onegets

    Theconditionon R withrespecttoμhasnophysicalmeaning,sinceit would requireachangein thenumber of electrons N at constant densityρ,which isobviously impossible:

    Due to the mixed behaviour of these functionals,depending on both an extensive and an intensive variable,this situation is analogues to the thermodynamic potentials H and F.The fourth DFT functional F=F[ρ]can not be considered in a similar way since it is only dependent on one variable,ρ.It should be noticed that in this paper zero temperature DFT was at stake.It would be nice in the future to explore the analogies between the more realistic fi nite temperature dependent DFT,which recently gained much interest also in the context of conceptual DFT(see for example references61,62),and its thermodynamic counterparts.

    Finally note that in thermodynamics a second Legendre transform series of quantities was defi ned,now starting from the entropy, leading to four entropy dimensioned thermodynamic functions:the Massieu function(s)useful in the theory of irreversible thermodynamics and statistical thermodynamics56.It would be tempting to see,if starting from theconvexity/concavity properties of thesefunctionsand an appropriately defined DFT analogue of the entropy,supplementary conditions on the electronic structure properties of atomic or molecular systems could be derived.

    3 Conclusions

    In this study the convexity/concavity of the functionals E,?,F and R of thefour diあerent ensemblerepresentationsused in(conceptual)density functional theory is scrutinized and connected with the positive/negative semidefiniteness of the associated kernels.A comparison with the four energy dimensioned thermodynamical state-functions U,F,H,G,just as the DFT functionals interrelated by Legendre transformations,along the lines set out by Nalewajski and Parr shows that stability conditions in Thermodynamics are similar in structure to convexity/concavity conditions for DFT functionals.In the case of functionals which are twice convex or twice concave in their variables,the condition for concavity/convexity in all directions yields a inequality involving the three second order(functional)derivatives of the functional considered.In case of?(the only functional obeying both the aforementioned conditions and the condition of non-interdependency of its variables),an inequality involving global softness,local softness and the softness kernel then results,which is shown to be compatible with the Berkowitz-Parr relationship.It might betempting to extend this study to fi nite temperature DFT and to see if analogous relationships might be put forward for DFT functionals which are the analogues of the entropy dimensioned thermodynamic functions as the Massieu function,demanding an entropy analogue in DFT.

    (1)Parr,R.G.;Yang,W.Ann.Rev.Phys.Chem.1995,46,701.doi:10.1146/annurev.pc.46.100195.003413

    (2)Chermette,H.J.Comput.Chem.1999,20,129.doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A

    (3)Geerlings,P.;De Proft,F.;Langenaeker,W.Chem.Rev.2003,103,1793.doi:10.1021/cr990029p

    (4)De Proft,F.;Geerlings,P.Chem.Rev.2001,101,1451.doi:10.1021/cr9903205

    (5)Ayers,P.W.;Anderson,J.S.M.;Bartolotti,L.J.Int.J.Quantum Chem.2005,101,520.doi:10.1002/qua.20307

    (6)Gazquez,J.L.J.Mex.Chem.Soc.2008,52,3.

    (7)Liu,S.B.Acta Phys.-Chim.Sin.2009,25,590.doi:10.3866/PKU.WHXB20090332

    (8)Gross,E.K.U.;Kohn,W.Phys.Rev.Lett.1985,55,2850.doi:10.1103/PhysRevLett.55.2850

    (9)Casida,M.E.Recent Advancesin Density Functional Methods;Chong,D.P.Ed.;World Scientifi c Pub.Co.Inc.:Singapore,1995;p.155.

    (10)Parr,R.G.;Yang,W.Density-Functional Theory of Atomsand Molecules;Oxford University Press:New York,NY,USA,1989.

    (11)Ayers,P.W.;De Proft,F.;Borgoo,A.;Geerlings,P.J.Chem.Phys.2007,126,224107.doi:10.1063/1.2736697

    (12)Sablon,N.;De Proft,F.;Geerlings,P.J.Phys.Chem.Lett.2010,1,1228.doi:10.1021/jz1002132

    (13)Sablon,N.;De Proft,F.;Ayers,P.W.;Geerlings,P.J.Chem.Theory Comput.2010,6,3671.doi:10.1021/ct1004577

    (14)Fias,S.;Boisdenghien,Z.;Stuyver,T.;Audiあred,M.;Merino,G.;Geerlings,P.;De Proft,F.J.Phys.Chem.A 2013,117,3556.doi:10.1021/jp401760j

    (15)Fias,S.;Geerlings,P.;Ayers,P.;De Proft,F.Phys.Chem.Chem.Phys.2013,15,2882.doi:10.1039/c2cp43612d

    (16)Boisdenghien,Z.;Van Alsenoy,C.;De Proft,F.;Geerlings,P.J.Chem.Theory Comp.2013,9,1007.doi:10.1021/ct300861r

    (17)Yang,W.;Cohen,A.J.;De Proft,F.;Geerlings,P.J.Chem.Phys.2012,136,144110.doi:10.1063/1.3701562

    (18)Boisenghien,Z.;Fias,S.;Van Alsenoy,C.;De Proft,F.;Geerlings,P.Phys.Chem.Chem.Phys.2014,16,14614.doi:10.1039/c4cp01331j

    (19)Fias,S.;Boisdenghien,Z.;De Proft,F.;Geerlings,P.J.Chem.Phys.2014,141,184107.doi:10.1063/1.4900513

    (20)Geerlings,P.;Fias,S.;Boisdenghien,Z.;De Proft,F.Chem.Soc.Rev.2014,43,4989.doi:10.1039/c3cs60456j

    (21)Geerlings,P.;Boisdenghien,Z.;De Proft,F.;Fias,S.Theor.Chem.Acc.2016,135,213.doi:10.1007/s00214-016-1967-9

    (22)Stuyver,T.;Fias,S.;De Proft,F.;Fowler,P.;Geerlings,P.J.Chem.Phys.2015,142,094103.doi:10.1063/1.4913415

    (23)Nalewajski,R.F.;Parr,R.G.J.Chem.Phys.1982,77,399.doi:10.1063/1.443620

    (24)Berkowitz,M.;Parr,R.G.J.Chem.Phys.1988,88,2554.doi:10.1063/1.454034

    (25)Senet,P.J.Chem.Phys.1996,105,6471.doi:10.1063/1.472498

    (26)Ayers,P.W.;Parr,R.G.J.Am.Chem.Soc.2001,123,2007.doi:10.1021/ja002966g

    (27)Ayers,P.W.Theor.Chem.Acc.2001,106,271.doi:10.1007/PL00012385

    (28)Liu,S.;Li,T.;Ayers,P.W.J.Chem.Phys.2009,131,114106.doi:10.1063/1.3231687

    (29)Yang,W.;Parr,R.Proc.Natl.Acad.Sci.USA 1985,82,6723.doi:10.1073/pnas.82.20.6723

    (30)Mendez,F.;Gazquez,J.L.J.Am.Chem.Soc.1994,116,9298.doi:10.1021/ja00099a055

    (31)Damoun,S.;Van de Woude,G.;Mendez,F.;Geerlings,P.J.Phys.Chem.1997,101,886.doi:10.1021/jp9611840

    (32)Geerlings,P.;De Proft,F.Int.J.Quantum Chem.2000,80,227.doi:10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.3.CO;2-E

    (33)Heidar-Zadeh,F.;Richer,M.;Fias,S.;Miranda-Quintana,R.A.;Chan,M.;Franco-Perez,M.;Gonzalez-Espinoza,C.E.;Kim,T.D.;Lanssens,C.;Patel,A.H.G.;et al.Chem.Phys.Lett.2016,660,307.doi:10.1016/j.cplett.2016.07.039

    (34)Kohn,W.Phys.Rev.Lett.1996,76,3168.doi:10.1103/PhysRevLett.76.3168

    (35)Prodan,E.;Kohn,W.Proc.Natl.Acad.Sci.USA 2005,102,11635.doi:10.1073/pnas.0505436102

    (36)Fias,S.;Heidar-Zadeh,F.;Geerlings,P.;Ayers,P.W.Proc.Natl.Acad.Sci.USA 2017,114,11633.doi:10.1073/pnas.1615053114

    (37)Berkowitz,M.;Ghosh,S.K.;Parr,R.J.Am.Chem.Soc.1985,107,6811.doi:10.1021/ja00310a011

    (38)Ghosh,S.K.;Berkowitz,M.J.Chem.Phys.1985,83,2976.doi:10.1063/1.449846

    (39)Ghosh,S.K.Chem.Phys.Lett.1990,172,77.doi:10.1016/0009-2614(90)87220-L

    (40)Harbola,M.K.;Chattaraj,P.K.;Parr,R.G.Isr.J.Chem.1991,31,395.

    (41)Langenaeker,W.;De Proft,F.;Geerlings,P.J.Phys.Chem.1995,99,6424.doi:10.1021/j100017a022

    (42)Chamorro,E.;De Proft,F.;Geerlings,P.J.Chem.Phys.2005,123,154104.doi:10.1063/1.2072907

    (43)Torrent-Sucarrat,M.;Salvador,P.;Sola,M.;Geerlings,P.J.Comp.Chem.2007,28,574.doi:10.1002/jcc.20535

    (44)Chattaraj,P.;Roy,D.R.;Geerlings,P.;Torrent-Sucarrat,M.Theor.Chem.Acc.2007,118,923.doi:10.1007/s00214-007-0373-8

    (45)Polanco-Ramirez,C.A.;Franco-Perez,M.;Carmona-Espindola,J.;Gazquez,J.L.;Ayers,P.W.Phys.Chem.Chem.Phys.2017,19,12355.doi:10.1039/c7cp00691h

    (46)Liu,S.;Parr,R.G.J.Chem.Phys.1997,106,5578.doi:10.1063/1.473580

    (47)Lieb,E.H.Int.J.Quantum Chem.1983,24,243.doi:10.1002/qua.560240302

    (48)Eschrig,H.The Fundamentalsof Density Functional Theory;Teubner:Stuttgart-Leipzig,Germany,1996.

    (49)Kvaal,S.;Ekstrom,U.;Teale,A.M.;Helgaker,T.J.Chem.Phys.2014,140,18A518.doi:10.1063/1.4867005

    (50)Perdew,J.;Parr,R.;Levy,M.;Balduz,J.L.J.Phys.Rev.Lett.1982,49,1691.doi:10.1103/PhysRevLett.49.1691

    (51)Fias,S.;Geerlings,P.;De Proft,F.;Ayers,P.W.in preparation.

    (52)Ghosh,S.K.;Berkowitz,M.;Parr,R.G.Proc.Natl.Acad.Sci.USA 1984,81,8028.doi:10.1073/pnas.81.24.8028

    (53)Nagy,A.;Parr,R.G.Proc.Indian Acad.Sci.1994,106,217.

    (54)Nagy,A.;Parr,R.G.J.Mol.Struct.THEOCHEM 2000,501–502,101.doi:10.1016/S0166-1280(99)00418-2

    (55)Nagy,A.Int.J.Quantum Chem.2017,117,e25396.doi:10.1002/qua.25396

    (56)Callen,H.B.Thermodynamicsand an Introduction to Thermostatistics;John Wiley:New York,NY,USA,1985.

    (57)Prigogine,I.;Defay,R.Chemical Thermodynamics;Longman:London,UK,1954.

    (58)Berry,R.S.;Rice,S.A.;Ross,J.Physical Chemistry;Wiley:New York,NY,USA,1980.

    (59)Cardenas,C.;Echegaray,E.;Chakraborty,D.;Anderson,J.S.M.;Ayers,P.W.J.Chem.Phys.2009,130,244105.doi:10.1063/1.3151599

    (60)Ayers,P.W.Phys.Rev.A 2006,73,012513.doi:10.1103/PhysRevA.73.012513

    (61)Franco-Perez,M.;Ayers,P.W.;Gazquez,J.L.;Vela,A.J.Chem.Phys.2015,143,244117.doi:10.1063/1.4938422

    (62)Franco-Perez,M.;Gazquez,J.L.;Ayers,P.W.;Vela,A.J.Chem.Phys.2015,143,154103.doi:10.1063/1.4932539

    亚洲伊人色综图| 日韩高清综合在线| 国产精品九九99| 亚洲激情在线av| 亚洲精品久久成人aⅴ小说| 成人av一区二区三区在线看| 色老头精品视频在线观看| 亚洲专区字幕在线| 热re99久久国产66热| 久久影院123| 精品日产1卡2卡| 欧美丝袜亚洲另类 | 亚洲人成网站在线播放欧美日韩| 曰老女人黄片| 一本综合久久免费| 人妻丰满熟妇av一区二区三区| 欧美久久黑人一区二区| 亚洲精品国产一区二区精华液| 免费在线观看亚洲国产| 一级作爱视频免费观看| 国产av又大| tocl精华| tocl精华| a在线观看视频网站| 1024视频免费在线观看| 久久精品91无色码中文字幕| 色播亚洲综合网| 男女之事视频高清在线观看| 99国产极品粉嫩在线观看| 韩国精品一区二区三区| 午夜免费成人在线视频| 亚洲全国av大片| 亚洲电影在线观看av| 黄色成人免费大全| 久久精品亚洲熟妇少妇任你| 精品国产国语对白av| 精品久久久久久久人妻蜜臀av | 国产精品国产高清国产av| 又黄又爽又免费观看的视频| 欧美性长视频在线观看| av电影中文网址| 免费一级毛片在线播放高清视频 | 男女下面进入的视频免费午夜 | 免费一级毛片在线播放高清视频 | avwww免费| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣av一区二区av| 国产野战对白在线观看| 亚洲人成网站在线播放欧美日韩| 成人国产综合亚洲| 激情在线观看视频在线高清| 亚洲色图av天堂| 老司机在亚洲福利影院| 久久久久国产精品人妻aⅴ院| 又黄又爽又免费观看的视频| 欧美乱码精品一区二区三区| 91九色精品人成在线观看| 日日摸夜夜添夜夜添小说| 亚洲精品国产色婷婷电影| 亚洲男人的天堂狠狠| 国产精品 欧美亚洲| 91老司机精品| 脱女人内裤的视频| 亚洲 欧美一区二区三区| 窝窝影院91人妻| 成人精品一区二区免费| 我的亚洲天堂| 99精品在免费线老司机午夜| 中文字幕久久专区| 亚洲av片天天在线观看| 看黄色毛片网站| 50天的宝宝边吃奶边哭怎么回事| 欧美一级a爱片免费观看看 | 国产成年人精品一区二区| 国产91精品成人一区二区三区| 视频区欧美日本亚洲| 亚洲中文av在线| 中国美女看黄片| 中文字幕最新亚洲高清| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文av在线| 热99re8久久精品国产| netflix在线观看网站| 国产一级毛片七仙女欲春2 | 电影成人av| 亚洲国产中文字幕在线视频| 国产一级毛片七仙女欲春2 | 日本一区二区免费在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| av网站免费在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 亚洲成av片中文字幕在线观看| 欧美乱妇无乱码| 我的亚洲天堂| 亚洲伊人色综图| 91av网站免费观看| 老司机午夜福利在线观看视频| 成人永久免费在线观看视频| 在线永久观看黄色视频| 国产欧美日韩一区二区精品| 国产熟女xx| 亚洲国产毛片av蜜桃av| 大香蕉久久成人网| 国产在线精品亚洲第一网站| 91字幕亚洲| videosex国产| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 久9热在线精品视频| 中文字幕高清在线视频| av欧美777| 国产精品久久视频播放| 精品国内亚洲2022精品成人| 午夜福利18| 亚洲av第一区精品v没综合| 国产激情久久老熟女| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区 | 俄罗斯特黄特色一大片| 亚洲第一电影网av| 国产一级毛片七仙女欲春2 | 成年女人毛片免费观看观看9| 欧美国产精品va在线观看不卡| 国产一区在线观看成人免费| 真人一进一出gif抽搐免费| 日日爽夜夜爽网站| 亚洲自拍偷在线| 夜夜爽天天搞| 黄色毛片三级朝国网站| 中文字幕人成人乱码亚洲影| 久久九九热精品免费| 一级毛片精品| 亚洲第一av免费看| 如日韩欧美国产精品一区二区三区| 一级毛片高清免费大全| 久久婷婷人人爽人人干人人爱 | 女人高潮潮喷娇喘18禁视频| 免费搜索国产男女视频| 久久热在线av| 亚洲精品在线观看二区| 亚洲国产欧美一区二区综合| 真人做人爱边吃奶动态| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 91九色精品人成在线观看| 丁香欧美五月| 又大又爽又粗| 国产免费男女视频| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 满18在线观看网站| 免费观看精品视频网站| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 亚洲一区二区三区不卡视频| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 精品午夜福利视频在线观看一区| 身体一侧抽搐| 大型av网站在线播放| 午夜久久久久精精品| 12—13女人毛片做爰片一| 国内毛片毛片毛片毛片毛片| 午夜久久久在线观看| 精品一区二区三区视频在线观看免费| 免费高清在线观看日韩| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 18美女黄网站色大片免费观看| 国产99久久九九免费精品| 波多野结衣av一区二区av| 丝袜人妻中文字幕| 又黄又粗又硬又大视频| 黄色视频不卡| 一卡2卡三卡四卡精品乱码亚洲| 国产99白浆流出| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 亚洲av第一区精品v没综合| 久久人妻av系列| 自线自在国产av| 国产成人精品无人区| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区| 国产国语露脸激情在线看| 亚洲午夜精品一区,二区,三区| 亚洲久久久国产精品| www国产在线视频色| 亚洲国产高清在线一区二区三 | 国产精品av久久久久免费| 国产高清videossex| 日本黄色视频三级网站网址| 黑丝袜美女国产一区| 久久久国产成人精品二区| 国产精品99久久99久久久不卡| 国产精品日韩av在线免费观看 | 99国产精品免费福利视频| 性少妇av在线| 在线观看免费视频日本深夜| 国内毛片毛片毛片毛片毛片| av天堂久久9| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 久久国产亚洲av麻豆专区| 亚洲片人在线观看| 久久香蕉激情| 麻豆成人av在线观看| 视频区欧美日本亚洲| 精品欧美一区二区三区在线| 亚洲国产欧美日韩在线播放| 日本 欧美在线| av在线天堂中文字幕| 最近最新中文字幕大全电影3 | 精品久久久久久,| 久久久久九九精品影院| 不卡av一区二区三区| 岛国视频午夜一区免费看| www国产在线视频色| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| 黄色a级毛片大全视频| 最好的美女福利视频网| 久9热在线精品视频| 亚洲一区中文字幕在线| 99国产综合亚洲精品| 两个人看的免费小视频| 日韩 欧美 亚洲 中文字幕| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 久久精品人人爽人人爽视色| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 美女 人体艺术 gogo| 在线观看免费视频日本深夜| 亚洲av熟女| 麻豆一二三区av精品| 国产欧美日韩一区二区三| 国产麻豆69| 精品不卡国产一区二区三区| 久久中文字幕人妻熟女| 99国产精品99久久久久| 国产精品,欧美在线| 久久精品国产99精品国产亚洲性色 | 在线观看一区二区三区| 国产单亲对白刺激| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器 | 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 丁香欧美五月| 日本一区二区免费在线视频| 亚洲国产高清在线一区二区三 | 青草久久国产| 欧美精品亚洲一区二区| 搡老妇女老女人老熟妇| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一青青草原| 亚洲avbb在线观看| 村上凉子中文字幕在线| 国产成人av教育| 久久国产精品影院| 俄罗斯特黄特色一大片| 亚洲国产欧美网| 深夜精品福利| svipshipincom国产片| 久久久久亚洲av毛片大全| 一区二区三区精品91| 又黄又爽又免费观看的视频| 国产亚洲精品久久久久5区| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 欧美国产日韩亚洲一区| 中文字幕人成人乱码亚洲影| 国内精品久久久久久久电影| 男人舔女人的私密视频| 精品欧美国产一区二区三| 老司机在亚洲福利影院| 69av精品久久久久久| 精品卡一卡二卡四卡免费| 午夜福利,免费看| 人妻久久中文字幕网| 伊人久久大香线蕉亚洲五| 18禁裸乳无遮挡免费网站照片 | 国产精品国产高清国产av| 亚洲av电影在线进入| 国产精品一区二区在线不卡| 日韩欧美一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 大型黄色视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲欧美精品综合一区二区三区| 满18在线观看网站| 在线十欧美十亚洲十日本专区| 亚洲中文av在线| 精品一区二区三区av网在线观看| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 波多野结衣高清无吗| 国产精华一区二区三区| 一级黄色大片毛片| 国产精品 国内视频| 亚洲一区二区三区不卡视频| 国产av精品麻豆| 国产1区2区3区精品| 日韩欧美三级三区| 9色porny在线观看| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 国产男靠女视频免费网站| 香蕉国产在线看| 亚洲色图av天堂| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 长腿黑丝高跟| 脱女人内裤的视频| 日韩三级视频一区二区三区| 最新美女视频免费是黄的| 在线观看一区二区三区| 国产精品久久电影中文字幕| 国产主播在线观看一区二区| 首页视频小说图片口味搜索| 国产av在哪里看| bbb黄色大片| 精品一区二区三区视频在线观看免费| 黄片大片在线免费观看| 精品国产亚洲在线| 日韩高清综合在线| 午夜两性在线视频| 在线观看免费日韩欧美大片| 在线观看www视频免费| 18禁裸乳无遮挡免费网站照片 | 欧美精品亚洲一区二区| 国产精品 国内视频| 超碰成人久久| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 久久久国产精品麻豆| 日日夜夜操网爽| 久久精品影院6| 精品第一国产精品| 亚洲久久久国产精品| xxx96com| 宅男免费午夜| 91老司机精品| 久久久水蜜桃国产精品网| 欧美一级a爱片免费观看看 | 在线永久观看黄色视频| 色尼玛亚洲综合影院| 男人舔女人下体高潮全视频| www.精华液| avwww免费| 免费久久久久久久精品成人欧美视频| 国产主播在线观看一区二区| 欧美中文综合在线视频| 免费av毛片视频| 国产成人啪精品午夜网站| 成人三级黄色视频| 久久久久国产一级毛片高清牌| 亚洲国产精品999在线| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 搡老岳熟女国产| 精品欧美一区二区三区在线| 在线观看免费视频网站a站| 国产激情久久老熟女| 国产精品香港三级国产av潘金莲| 成人18禁在线播放| 黄色女人牲交| 久久国产精品人妻蜜桃| 老汉色av国产亚洲站长工具| 啦啦啦韩国在线观看视频| 欧美日本中文国产一区发布| 99国产精品99久久久久| 黑丝袜美女国产一区| 91九色精品人成在线观看| 丝袜美腿诱惑在线| 亚洲国产精品合色在线| 免费人成视频x8x8入口观看| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放 | 一本大道久久a久久精品| 日韩欧美免费精品| 日韩精品中文字幕看吧| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 香蕉丝袜av| 搞女人的毛片| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 亚洲人成电影观看| 亚洲成人久久性| 精品熟女少妇八av免费久了| av中文乱码字幕在线| 女人被狂操c到高潮| 搡老岳熟女国产| 一卡2卡三卡四卡精品乱码亚洲| av欧美777| www.熟女人妻精品国产| 深夜精品福利| 麻豆一二三区av精品| 久久久国产精品麻豆| 91在线观看av| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| 99riav亚洲国产免费| 欧美日韩黄片免| 欧美日韩福利视频一区二区| 久久久久亚洲av毛片大全| 十分钟在线观看高清视频www| 精品久久久久久,| 色av中文字幕| 精品国产美女av久久久久小说| 9色porny在线观看| 国产亚洲欧美在线一区二区| 欧美乱色亚洲激情| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| 天天躁夜夜躁狠狠躁躁| 99久久精品国产亚洲精品| 在线视频色国产色| 日本三级黄在线观看| 久久天堂一区二区三区四区| netflix在线观看网站| 国产精品一区二区三区四区久久 | 黄片播放在线免费| 国产成人精品在线电影| 岛国在线观看网站| 久久亚洲真实| 色哟哟哟哟哟哟| bbb黄色大片| 午夜福利18| 国产精品久久电影中文字幕| 亚洲男人天堂网一区| 国产激情欧美一区二区| 久久久国产精品麻豆| 成人永久免费在线观看视频| 麻豆av在线久日| 色哟哟哟哟哟哟| x7x7x7水蜜桃| 搡老岳熟女国产| 在线播放国产精品三级| 日本精品一区二区三区蜜桃| 精品卡一卡二卡四卡免费| 精品免费久久久久久久清纯| 亚洲五月色婷婷综合| 午夜精品久久久久久毛片777| av天堂在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷六月久久综合丁香| 看免费av毛片| 黄色视频,在线免费观看| 老熟妇乱子伦视频在线观看| 国产午夜福利久久久久久| 免费搜索国产男女视频| 亚洲一区二区三区色噜噜| 精品国产一区二区久久| av欧美777| 精品第一国产精品| 免费高清在线观看日韩| 亚洲色图av天堂| 成年人黄色毛片网站| 精品电影一区二区在线| 91麻豆av在线| 日本精品一区二区三区蜜桃| 国产熟女xx| 中亚洲国语对白在线视频| 999精品在线视频| av片东京热男人的天堂| 国产免费av片在线观看野外av| 啦啦啦观看免费观看视频高清 | 亚洲欧美精品综合一区二区三区| 中文字幕人妻熟女乱码| 亚洲自拍偷在线| 高清在线国产一区| 亚洲av日韩精品久久久久久密| 又黄又粗又硬又大视频| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品粉嫩美女一区| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 久久久国产欧美日韩av| 伦理电影免费视频| 国产一区二区激情短视频| 超碰成人久久| 久久性视频一级片| 亚洲精品在线观看二区| 国产av一区在线观看免费| 亚洲精品粉嫩美女一区| 岛国在线观看网站| 久久香蕉激情| 啦啦啦免费观看视频1| 精品久久久久久久久久免费视频| 亚洲九九香蕉| 成人特级黄色片久久久久久久| 精品一区二区三区四区五区乱码| 一区二区日韩欧美中文字幕| 窝窝影院91人妻| 亚洲七黄色美女视频| 999久久久精品免费观看国产| 操美女的视频在线观看| 久久精品国产亚洲av香蕉五月| 国产99久久九九免费精品| 日本a在线网址| 久久久久久免费高清国产稀缺| 免费不卡黄色视频| 久久天堂一区二区三区四区| 亚洲av片天天在线观看| 欧美成人一区二区免费高清观看 | 欧美成人免费av一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲国产欧美网| 久久精品91无色码中文字幕| 97碰自拍视频| 国产高清videossex| 免费高清视频大片| 亚洲国产精品合色在线| 中文字幕人妻熟女乱码| 美女午夜性视频免费| 脱女人内裤的视频| 午夜福利免费观看在线| 欧美乱色亚洲激情| 久久久久久久久久久久大奶| 日本免费一区二区三区高清不卡 | 久久欧美精品欧美久久欧美| 操美女的视频在线观看| 欧美老熟妇乱子伦牲交| 美国免费a级毛片| 禁无遮挡网站| 国产精品久久久av美女十八| 免费观看精品视频网站| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 欧美另类亚洲清纯唯美| 国产一区二区在线av高清观看| 免费无遮挡裸体视频| 在线观看免费午夜福利视频| 亚洲片人在线观看| 亚洲中文日韩欧美视频| 久久精品成人免费网站| 国产av在哪里看| xxx96com| 亚洲av第一区精品v没综合| 精品一区二区三区视频在线观看免费| 国产单亲对白刺激| 欧美日本中文国产一区发布| 9热在线视频观看99| tocl精华| 在线观看免费视频网站a站| 91精品国产国语对白视频| 久久天躁狠狠躁夜夜2o2o| 97碰自拍视频| 国产精品一区二区在线不卡| 黄频高清免费视频| 99久久久亚洲精品蜜臀av| 午夜久久久在线观看| 亚洲av电影在线进入| 欧美成人午夜精品| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区久久 | 999久久久精品免费观看国产| 欧美一级毛片孕妇| 国产三级黄色录像| 国产亚洲av高清不卡| 亚洲成国产人片在线观看| 天堂动漫精品| 精品福利观看| 一级毛片高清免费大全| 日韩大码丰满熟妇| 国产在线观看jvid| 真人做人爱边吃奶动态| 久久久久国内视频| 日韩成人在线观看一区二区三区| 一级毛片女人18水好多| 最近最新免费中文字幕在线| 91成人精品电影| 黑人欧美特级aaaaaa片| 99国产精品一区二区蜜桃av| 日韩精品青青久久久久久| 九色国产91popny在线| 欧美成人性av电影在线观看| 久久人人97超碰香蕉20202| 91大片在线观看| 日日干狠狠操夜夜爽| 18禁观看日本| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 国产高清视频在线播放一区| 法律面前人人平等表现在哪些方面| 91成年电影在线观看| 妹子高潮喷水视频| 欧美一级毛片孕妇| 久久精品人人爽人人爽视色| 精品少妇一区二区三区视频日本电影| e午夜精品久久久久久久| 亚洲熟妇中文字幕五十中出| 国产精品1区2区在线观看.| 欧美丝袜亚洲另类 | 一级毛片精品| 18禁裸乳无遮挡免费网站照片 | 亚洲激情在线av| 欧美精品啪啪一区二区三区| 精品无人区乱码1区二区|