• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Poly(bis-3,4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization

    2018-01-15 08:04:58PEITongPENGKaiCAIXinYiYUANLiangJieXIAJiangBin
    物理化學(xué)學(xué)報 2017年12期
    關(guān)鍵詞:咔唑江濱噻吩

    PEI Tong PENG Kai CAI Xin-Yi YUAN Liang-Jie XIA Jiang-Bin

    ?

    Synthesis of Poly(bis-3,4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization

    PEI Tong PENG Kai CAI Xin-Yi YUAN Liang-Jie*XIA Jiang-Bin*

    ()

    New poly(bis-3,4-ethylenedioxythiophene methine)s derivatives with typical electro-optical moieties of thiophene, carbazole and fluorene as the side chains are obtained by facile solid state polymerization (SSP) or melt state polymerization (MSP). Detail characterizations of these polymers are carried out and some key monomers? crystals are obtained for structures analysis. It is found that existence of alkyl chains decrease monomers onset temperatures for SSP (onset) due to the weakening of the intermolecular interaction in crystals.

    Poly(bis-3,4-ethylenedioxythiophene methine)s derivatives; Solid and melt state polymerization; Alkyl chain effect

    1 Introduction

    Through rational design, polythiophene can be easily tailored, synthesized and be endowed with special and multi-functional properties for different applications1,2. Recently, a promising method of solid state polymerization (SSP)3–9including self-acid-assisted polymerization (SAAP)10–12, attracts much attention from academia due to its special features of solvent, oxidant or noble metal catalyzers free. For instance, the well-known poly(3,4-ethylenedioxythiophene) through SSP has been employed for photovoltaic devices of dye-sensitized solar cell13–15.

    In addition, it is known that solid state polymerization (SSP) is a widely used method in industry16. Taking this into consideration, necessary investigation in this field is needed especially for the conjugated polythiophene synthesis. Though dozens of monomers5–12have been developed so far by longitudinal design strategy based on 3,4-ethylenedioxythio- phene (EDOT) or 3,4-ethylenedioxyselenophene molecule (EDOS), they need multiple synthesis steps due to the difficulty of modification on EDOT or EDOS molecules. Recently, we17–19and others20proposed a parallel design strategy with the substantial modification of polymer properties through main-chain, which may shed light on design and on the development of numerous monomers for SSP. Thus, a facile platform of EDOT-()-EDOT17is developed and corresponding quinonoid conjugated poly(3,4-ethylenedioxy- thiophene methine)s derivatives21–26would be obtained with excellent optical-electronic properties. However, some key issues are not clear, such as the accurate structures requirements for SSP, themonitoring of SSP process, rearrangement of repeat units conformation in polymer chains, the relationship between solid & melt state polymerization and so on.

    Scheme 1 Synthesis of the monomers, corresponding polymers and digital imagines of SSP process.

    In order to further broaden SSP?s scope and explore related application, it is necessary to effectively tune these conjugated polymers? photo-physical and chemical properties based on EDOT-()-EDOT platform. Moreover, through the modification on the side chain of CH2linker, the substitutions of R show their great effect on electrochemical and optical properties for the corresponding polymers19, which is not a common phenomenon for those traditional conjugated polymers. In addition, in order to obtain high molecular weight poly(3,4-ethylenedioxythiophene methine)s, alkyl chains are introduced and then these monomers are investigated under melt-state polymerization.

    In this study, among optical-electronic fields & applications common moieties such as thiophene, carbazole and fluorene are introduced as the side chains and their corresponding poly(3,4-ethylenedioxythiophene methine)s derivatives’ photo- physical and electrochemical properties are carefully investigated as well. In addition, the alkyl chain effect on SSP and their molecule weight distribution under reaction conditions are investigated further.

    2 Materials and methods

    2.1 Materials

    EDOT, thiophene-2-carbaldehyde, were purchased from J & K. 5-Iodo-2,3-dihydro-thieno[3,4-b][1,4]dioxine17–20,27, 5- butylthiophene-2-carbaldehyde28, 9-butyl-9H-carbazole-3- carbaldehyde29, 9,9-dibutyl-9H-fluorene-2-carbaldehyde30were synthesized according to previous reports.

    2.2 Monomer synthesis

    Monomers of I2-CH(R)-EDOT were synthesized in accordance to previous method31as shown in Scheme 1.

    2.2.1 I2-Th-EDOT

    White solid(37%),1H NMR:(CDCl3) 6.58 (d, 1H, thiophene―H), 6.57 (d, 1H, thiophene―H), 5.99 (s, 1H, ―CH), 4.25 (d, 2H, ―CH2), 4.18 (d, 2H, ―CH2), 2.74 (t, 2H, ―CH2), 1.59 (m, 2H, ―CH2), 1.36 (m, 2H, ―CH2), 0.92 (t, 3H, ―CH3).13C NMR:(CDCl3) 145.7, 144.1, 141.7, 137.5, 125.5, 124.4, 123.6, 65.5, 64.8, 47.8, 36.1, 33.85, 30.1, 22.5, 14.1.

    2.2.2 I2-BuTh-EDOT

    Yellow solid (35%),1H NMR:(CDCl3) 6.58 (d, 1H, thiophene―H), 6.57 (d, 1H, thiophene―H), 5.99 (s, 1H, ―CH), 4.25 (d, 2H, ―CH2), 4.18 (d, 2H, ―CH2), 2.74 (t, 2H, ―CH2), 1.59 (m, 2H, ―CH2), 1.36 (m, 2H, ―CH2),0.92 (t, 3H, ―CH3).13C NMR:(CDCl3) 145.7, 144.1, 141.7, 137.5, 125. 5, 124.4, 123.6, 65.5, 64.8, 47.8, 36.1, 33.85, 30.1, 22.5, 14.1. Anal. Calcd for C21H20I2O4S3: C, 36.75%; H, 2.94%; Found: C, 38.12%; H, 2.41%

    2.2.3 I2-Carb-EDOT

    Light yellow solid (40%),1H NMR:(DMSO-d6) 8.11 (d, 1H, Ar―H) , 7.96 (s, 1H, Ar―H), 7.56 (d, 1H, Ar―H), 7.52 (d, 1H, Ar―H), 7.44 (t, 1H, Ar―H), 7.27 (d, 1H, Ar―H), 7.16 (t, 1H, Ar―H), 5.92 (s, 1H, ―CH), 4.35 (t, 2H, ―CH2), 4.20 (d, 2H, ―CH2), 4.16 (d, 2H, ―CH2), 1.71 (m, 2H, ―CH2), 1.30 (m, 2H, ―CH2), 0.88 (t, 3H, ―CH3).13C NMR:(CDCl3) 143.7, 140.4, 139.3, 136.7, 131.1, 125.3, 125.1, 122.4, 122.3, 120.1, 119.1, 118.3, 108.3, 108.2, 64.9, 64.2, 46.8, 42.5, 40.4, 30.8, 20.2, 13.5. Anal. Calcd for C29H25I2NO4S2: C, 45.27%; H, 3.27%; N, 1.82%. Found: C, 46.85%; H, 3.412%; N, 1.75%.

    2.2.4 I2-Carb-EDOT

    Light yellow solid (40%),1H NMR:(DMSO-d6) 8.11 (d, 1H, Ar―H) , 7.96 (s, 1H, Ar―H), 7.56 (d, 1H, Ar―H), 7.52 (d, 1H, Ar―H), 7.44 (t, 1H, Ar―H), 7.27 (d, 1H, Ar―H), 7.16 (t, 1H, Ar―H), 5.92 (s, 1H, ―CH), 4.35 (t, 2H, ―CH2), 4.20 (d, 2H, ―CH2), 4.16 (d,2H, ―CH2), 1.71 (m, 2H, ―CH2), 1.30 (m, 2H, ―CH2), 0.88 (t, 3H, ―CH3).13C NMR:(CDCl3) 143.7, 140.4, 139.3, 136.7, 131.1, 125.3, 125.1, 122.4, 122.3, 120.1, 119.1, 118.3, 108.3, 108.2, 64.9, 64.2, 46.8, 42.5, 40.4, 30.8, 20.2, 13.5. Anal. Calcd for C29H25I2NO4S2: C, 45.27%; H, 3.27%; N, 1.82%. Found: C, 46.85%; H, 3.412%; N, 1.75%.

    2.2.5 I2-Carb-C16-EDOT

    Light yellow solid (40%),1H NMR:(CDCl3) 8.05 (d, 1H, Ar―H), 7.95 (s, 1H, Ar―H), 7.42 (d, 1H, Ar―H), 7.31–7.38 (m, 3H, Ar―H), 7.20 (d, 1H, Ar―H), 6.02 (s, 1H, ―CH), 4.25 (d, 2H, ―CH2), 4.16 (d, 2H, ―CH2), 4.14 (d, 2H, ―CH2), 1.85 (m, 2H, ―CH2), 1.24 (m, 26H, ―CH2), 0.86 (t, 3H, ―CH3).13C NMR:(CDCl3) 144.0, 140.7, 139.6, 137.0, 131.4, 125.6, 125.4, 122.7, 122.6, 120.4, 119.5, 118.6, 108.6, 108.5, 65.2, 64.5, 47.2, 43.1, 40.7, 31.8, 29.6, 29.5, 29.4, 29.3, 29.2, 28.9, 27.3, 22.6, 14.0.

    2.2.6 I2-Flu-EDOT

    Yellow solid (25%),1H NMR:(CDCl3) 7.66 (d, 1H, Ar―H), 7.61 (d, 1H, Ar―H), 7.29–7.31 (m, 3H, Ar―H), 7.21 (d, 1H, Ar―H), 7.18 (s, 1H, Ar―H), 5.86 (s, 1H, ―CH), 4.22 (d, 2H, ―CH2), 4.12 (d, 2H, ―CH2), 1.96 (m, 4H, ―CH2), 1.07 (m, 4H, ―CH2), 0.86 (m, 4H, ―CH2), 0.68 (m, 6H, ―CH3).13C NMR:(CDCl3) 150.9, 150.8, 143.9, 140.7, 140.3, 139.7, 137.2, 126.9, 126.6, 126.5, 124.6, 122.7, 122.4, 119.5, 65.2, 64.4, 54.8, 47.3, 41.1, 40.0, 26.8, 25.8, 22.9, 22.4, 14.1, 12.9.

    2.3 General solid or melt state polymerization

    The SSP procedure was followed according to previous method5–9,17–20. Due to the fact that hydrogenatom in CH2bridge was easily removed by the oxidant of iodine, the conjugated poly(bis-ethylenedioxythiophene methine)s with quinoidal structure were obtained. These polymers were further treated with hydrazine hydrate and afforded nearly fully dedoped respective polymers.

    2.4 Crystal structure determination

    Intensity data for all four crystals were collected using MoKradiation (= 0.07107 nm) on a Bruker SMART APEX diffractometer equipped with a CCD area detector at rt. Data sets reduction and integration were performed using the software package SAINT PLUS32. The crystal structure is solved by direct methods and refined using the SHELXTL 97 software package33.

    2.5 Other characterizations

    IR spectra for the characterization of the resulted polymers were recorded on a Perkin-Elmer FTIR spectrometer. Absorption spectra were measured on a Unicam UV 300 spectrophotometer at wavelengths from 300 to 1000 nm.Monomers were deposited by spin-coated or drop-casted with 0.5%–3% (mass fraction) of CHCl3monomers solution on fluorine doped tin oxide (FTO) substrate or slide glasses. These monomers coated substrate were employed for SSP and then resulted polymers or polymer/FTO substrates. These products were used for XRD, UV-Vis or as working electrode for electrochemical measurements. For the three-electrode electrochemical measurements in 0.1 mol?L?1LiClO4in acetonitrile, a 1 cm2area of FTO/Polymer substrate, platinum foil, and Ag/AgCl were served as the working, counter, and reference electrodes, respectively (CH Instruments 604D electrochemical system).X-ray diffraction (XRD) patterns were obtained by Bruker D8 advanced X-ray diffractometer by using Cu-Kradiation at room temperature. The molecular weight and molecular weight distribution of the polymers were determined by gel permeation chromatography (GPC) equipped with a Waters 2690 separation module and a Waters 2410 refractive index detector (Waters Co., Milford, MA).,-Dimethylformamide (DMF) was used as eluent at a flow rate of 0.5 mL?min?1with the temperature maintained at 30 °C, and the results were calibrated against polystyrene standards.

    3 Results and discussion

    3.1 Solid state polymerization results

    According to the SSP results, all monomers can change into corresponding polymers smoothly and their SSP onset temperatures (onset) are not very high around 40–80 °C. It is interesting that after introducing butyl group, I2-BuTh-EDOT requires lower temperature of 48°C to trigger SSP while I2-Th-EDOT needsonsetof 62 °C. On the other hand, carbazole and fluorene substituted monomers have theironsetof 72 °C, 64 °C respectively. In addition, the introduction of longest hexadecyl chain results in a little bit higheronsetof 78°C. Though thiophene, carbazole and fluorene are rigid aromatic rings, theironsetare quite lower than those of benzene or naphene rings containing monomers based on the same platform19, which may due to the existence of alkyl chains. This interesting phenomenon is beneficial for the synthesis of those soluble polymers to meet the facile processibility and application requirements. Becauseonsetare definitely sensitive to corresponding monomers? structures, the detailed discussion will be done in the crystal analysis section as follows. In addition, taking similar properties for P(Carb-EDOT) and P(Carb-C16-EDOT) into account, P(Carb-EDOT) is chosen to measure its electro-optical properties while solubleP(Carb-C16-EDOT) is selected for its molecular weight information.

    3.2 FTIR spectroscopy

    FTIR spectra of the poly(3,4-ethylenedioxythiophene methine)s derivatives is shown in Fig.1. The absorption at 1475, 1434, 1360, and 1259 cm?1are signed to the stretching of C=C and C―C in the thiophene ring34,35.Meanwhile, typical peaks around 704 cm?1, which are related to in-plane deformation of C―S―C of thiophene ring, are observed34. In addition, all polymers show distinct strong sharp peaks at 2956, 2926 and 2870 cm?1, which are assigned to CH3or CH2stretching modes36. In the case of P(Carb-EDOT), stretching mode at 1099 cm?1is observed due to the existence of C―N bond37.

    Fig.1 FTIR spectra for these polymers.

    3.3 XRD analysis

    As we can see, I2-Th-EDOT shows typical crystalline phase with lots of sharp peaks at the range of 10°–40° and its XRD pattern is in consistent with its simulated results. However, other monomers show broad peaks at the scanned range. We attribute this interesting phenomenon to their amorphous phase at room temperature with the existence of alkyl chains. And it would show more crystal phase under low temperature.After SSP, polymers show broad peak around 25°, 23° and 24° for P(BuTh-EDOT), P(Carb-EDOT) and P(Flu-EDOT) respectively, which reflect their–stacking26distance of 0.356–0.386 nm between polymer chains. While in the case of P(Th-EDOT), it shows poor resolution peak in its XRD pattern as shown in Fig.2(a). It appears that alkyl chains of aromatic substitutions attached on CH(R) bridge are beneficial to chain packing in polymers matrix.

    3.4 Absorption of polymers by SSP and hydrazine treated polymers

    The dilute solution is prepared due to its small solubility of P(Th-EDOT). And all polymers? solutions absorption spectra are presented in Fig.3. As we can see, in the case of fresh made polymers solutions absorption spectra, most of them show peaks at 740–760 nm except that P(Carb-EDOT) exhibits a peak at shorter wave length of 670 nm, indicating of-type featured character. According to the observation of drastic drop of intensity at near-IR region around 600–1000 nm38,39, we obtained their neutral type polymers after hydrazine treatment. Briefly, compared with P(Th-EDOT) treated with hydrazine, the existence of butyl leads to the disappearance of peak at about 580 nm. At this moment, we cannot understand this interesting phenomenon, which may due to the poor conjugation by the steric effect. However, the introduction of carbazole and fluorene moieties result in a bathochromic peaks at longer wave length which is 612 nm and 640 nm respectively. Their detailed parameters of optical properties are summarized in Table 1. These results indicate that the modification on side chain in poly(bis-3,4-ethylenedioxy- thiophene methine)s matrix can change their optical properties, revealing these polymers’ great potential application in future optical-electronic devices application.

    3.5 Cyclic voltammetry behavior of the polymers

    As shown in Fig.4, the onset of oxidation potentials are 0.93, 0.57, 0.27 and 0.21 V (Ag/AgCl) for P(Th-EDOT), P(Th-Bu- EDOT), P(Carb-EDOT) and P(Flu-EDOT) respectively, indicating that the substitution moieties on CH2bridge have great influence on their electrochemical properties. It is noted that the introduction of butyl on thiophene results in the shift up of HOMO energy level because of the decrease of the initial onset potential of 0.36 V when compared with that of P(Th-EDOT).

    Due to the observation of large reduction currents, we attribute these to the reduction process of oxidized polymer, i.e., these polymers can undergo a two-electron non-reversible oxidation processes40. In addition, except for P(Th-EDOT), other polymers show stable CV behaviors. In the case of P(Th-EDOT), as shown in Fig.4(a), its oxidation currents are not proportional to the scan rates. This special phenomenon indicates that additional electrochemical reaction occurs during the CV measurements. Taking the existence of non-conjugation parts41in the polymer chains into consideration, we believe CV measurements, especially during the anode scans, will result in the enhancement of conjugation parts in polymer chains. And this explanation is well supported by the fact that P(Th-EDOT) can show high initial oxidation potentials. Thus, in the existence of iodine under SSP, there are more non-conjugated parts in P(Th-EDOT) when compared with those carbazole or fluorene moieties containing polymers.

    3.6 Crystallographic X-ray analysis

    Monomers of I2-Th-EDOT and I2-Flu-EDOT structures and corresponding SSP pathways are presented in Figs.5–7. Interestingly, though alkyl fluorene moiety has bulkier size, I2-Flu-EDOT has similar molecule structure with I2-Th-EDOT, especially concerning of its intramolecular I/I, S/S distances and corresponding angles, as shown in Fig.5 and Table 2. We attribute this result to the fact that the fused ring of fluorene and its alkyl chains are far away from EDOT units, which has little steric effect on the ring of fluorene and its alkyl chains are far away from EDOT units, which has little steric effect on the single molecule framework.

    As shown in Fig.6, monomer of I2-Th-EDOT has the first and the second closest Hal/Hal distance of 0.4397 and 0.4425 nm respectively (Table 3) with corresponding C13―C1 and C13―C1 contact distances of 0.5424 and 0.5244 nm respectively. And the third closest Hal/Hal distance of 0.6191 nm is observed with the shortest C―C (C13―C13) contact distance of 0.4910 nm. Thus, the first polymerization pathway along with-axil direction (formation of a helix between two columns of monomers, shown in Fig.6(c)) involves sole I/I distance of 0.4397 nm while the second polymerization pathway along with-axil direction (shown in Fig.6(d)) involves sole I/I distance of 0.4425 nm. Because these two pathways have similar key I/I distance and their corresponding C/C distances are 0.5424 nm and 0.5244 nm respectively. At this moment, we cannot determine which the preferred way is. For comparison, the shorter distance of 0.4397 nm is selected as the effective I/I distance as shown in Table 1.

    Fig.2 XRD spectra of monomers and corresponding polymers.

    Fig.3 Absorbance spectra of these polymers obtained by SSP and dedoped polymers by hydrazine treatment in CH2Cl2 solution.

    (a) P(Th-EDOT), (b) P(BuTh-EDOT), (c) P(Carb-EDOT), (d) P(Flu-EDOT).

    Table 1 Optical and electrochemical data of the obtained poly(bis-3,4-ethylenedioxythiophene methine)s.

    aDetermined from the onset wavelength in the absorption spectra of solution samples (hydrazine treated) according to Fig.3, calculated bygap=1240/Abs.edge.bHOMO calculated byHOMO= ?(ox,onsetd+ 4.36) eV,cDetermined from HOMO levels and optical bandgaps.LUMO=HOMO+gap.dMake two tangents of the spinodal of oxidation curve, the value of intersection point isox,onset.

    Fig.4 CVs of polymers films in acetonitrile solution containing 0.1 mol?L?1 Bu4NClO4 taken at various scan rates.

    Fig.5 Intramolecular atoms distances and different angles in the monomers of I2-Th-EDOT and I2-Flu-EDOT.

    While in the case of I2-Flu-EDOT (Fig.7(a)), the important Hal/Hal and related C―C contact distances are marked in the Fig.7(a, b). It is obvious that the first polymerization pathway along with-axil direction (Fig.7(c)) involves sole halogen distance of 0.5391 nm with the formation of a helix between sole columns of monomers. Though helix structures are observed by us19and other SSP system of quinodimethanes42, such polymerization pathway involving one column monomers is not very common among reported thiophene monomers. In this case, it may help to facilitate their helix formation. In addition, the second polymerization pathway is observed along with the same axil direction as shown in Fig.7(d) and it involves two I/I distance of 0.5650 nm and 0.8424 nm. Thus, the first pathway is the preferred one with the effective halogen distance of 0.5391 nm, which is quite long19among reported thiophene derivatives. It appears that the bulkier substitution can increase its effective halogen distances and also the C―C contact distance.

    Table 2 Intramolecular atoms distances and angles.

    Table 3 Selected I/I and C―C contact distances (nm) for the Reported Crystals.

    aEffective Hal/Hal distance;b2of iodine: double van der Waals radius of iodine: 0.4 nm

    Table 4 Effect of reaction condition on the molecular weight and PDI.

    aMolecular weights and PDI were determined by GPC with respect to polystyrene standards.bDegree of polymerization (DP) was calculated based on thenvalues.cFraction soluble in DMF

    It should be pointed out that taking SSP thermal requirement into consideration, such heat energy drives molecule reaction groups close together and construct corresponding C―C bond. Meanwhile, it drives molecule conformation, i.e. to reach repeat units equilibrium state. Therefore, we mainly discuss the effective halogen distance and ignore their inter-ring torsion angles between neighboring repeat units.

    3.7 Dependence of effective I/I distances for alkyl-containing samples with their onset temperature of SSP

    Though we failed to obtain I2-BuTh-EDOT crystal information, it shows loweronsetwhen compared with that of non-alkyl substituted I2-Th-EDOT. Moreover, as its effective halogen distance is up to 0.5391 nm, I2-Flu-EDOT shows quite lowonsetof 64 °C. Furthermore, our previous report20showed that I2-Pr-EDOT has a little bit loweronsetof 70 °C with its effective halogen distance of 0.4878 nm. Therefore, it appears that long alkyl chain would decreaseonsetdrastically. According to these interesting results, our previously proposed equation19of linear dependence of effective I/I distance withonsetneeds to be modified or refined. As for the fitted dotted line from those alkyl-chain samples, it gives an equation of= 19.4? 32.8 as shown in Fig.8 (data derived from those samples is presented in Table S2). Due to the lacking of enough crystals data at present, moderate R of 0.75 is obtained. Therefore, we can primitively deduce that the increasing 0.1 nm of effective I/I distance needs the elevatedonsetof 19 °C. It is lower than that from those non-alkyl chain samples19(0.1 nm for elevatedonsetof 26 °C). We noticed that I2-Carb(C16)- EDOT with hexadecyl chain shows a little bit higheronsetthan that of I2-Carb-EDOT with butyl chain, which might due to the larger effective halogen distance of the former.

    In addition, alkyl chain would loweronsetaround 30 °C, revealing that non-harsh SSP condition is needed for monomers with alkyl chains. We think that this interesting phenomenon is from the possibility that alkyl chain will weaken molecule interaction especially those–stacking in crystal, which results in the decreasing ofonset. Furthermore, though it is generally accepted that the organic solid reaction usually occurs within 0.42 nm26between reaction groups distances, we have got several samples with quite long effective halogen/halogen distances over 0.5 nm. These exciting observations and their SSP success encourage us and reveal that SSP would be a very powerful means in the synthesis of conjugated polythiophene.

    Fig.6 Single-crystal X-ray structure of compound I2-Th-EDOT.

    (a) view of I/I distances (b) view of corresponding C/C contact distances (c) crystal packing viewed along the-axis, proposed the first polymerization pathway and involved I/I and C/C contact distances. (d) proposed the second polymerization pathway. The numbers indicate the corresponding distances in Angstrom. I, purple; S, yellow and C, gray.

    Fig.7 Single-crystal X-ray structure of compound I2-Flu-EDOT.

    (a) view of I/I distances; (b) view of corresponding C/C contact distances; (c–d) crystal packing viewed along the-axis, proposed the first and second polymerization pathways and involved I/I and C/C contact distances. The numbers indicate the corresponding distances in Angstrom. I, purple; S, yellow and C, gray.

    Fig.8 Linear dependence of effective I/I distance with Tonset of SSP and the effect of alkyl chains.

    Data of those non-alkyl chain samples derived from Ref.19.

    3.8 Molecule weight information

    Due to the poor solubility of other polymers, P(Flu-EDOT) and P(Carb-C16-EDOT) are selected for the detection of molecular weight and the results are listed in Table 4. Oligomers areobtained at low temperature under SSP. Previous studies18,19showed that SSP produces low molecular weight distribution because of the difficulty of the contact and reaction between their terminal groups of iodine atoms in oligomers during SSP procedure. However, large molecular weight of 19 K can be obtained for P(Carb-C16-EDOT) at 150 °C for three days under melt-state polymerization. It is noticed that high molecular weight of polythiophene derivatives are frequently obtained by melt state polymerization12,44. Therefore, low to high molecular weight can be well controlled through melt state polymerization, which is very important for their future application in other optical-electron fields.

    4 Conclusions

    In this work, typical electro-optical moieties of thiophene, carbazole and fluorene moieties are introduced to EDOT-()-EDOT platform and successfully employed in SSP. The results indicate that incorporation of desire moieties is a general means in fine tuning their corresponding polymers properties and paving their future application in photo-electronic devices. In addition, the introduction of alkyl chains would weaken intermolecular interaction and result in the drastically decrease ofonset. Furthermore, high molecular weight can be obtained through melt state polymerization.

    Supporting Information:available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R.; Marcel Dekker Inc.: New York, 1998.

    (2) Hadziioannou, G.; Hutten, P. F. v., 2nd ed.; Wiley-VCH: Weinheim, 2007.

    (3) Meng, H.; Perepichka, D. F.; Bendikov, M.; Wudl, F.; Pan, G. Z;. Yu, W.; Dong, W.; Brown, S.2003,, 15151. doi: 10.1021/ja037115y

    (4) Spencer, H. J.; Berridge, R.; Crouch, D. J.; Wright, S. P.; Giles, M. McCulloch, I.; Coles, S. J.; Hursthouse, M. B.; Skabara, P. J.2003,, 2075. doi: 10.1039/B307575N

    (5) Patra, A.; Wijsboom, Y. H.; Zade, S. S.; Li, M.; Sheynin, Y.; Leitus, G.; Bendikov, M.2008,, 6734. doi: 10.1021/ja8018675

    (6) Lepeltier,M.; Hiltz, J.; Lockwood, T.; Bélanger-Gariépy, F.; Perepichka, D. F.2009,, 5167. doi: 10.1039/B822997J

    (7) Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M.2011,, 896. doi: 10.1021/cm102395v

    (8) Chen, S.; Xu, J.; Lu, B.; Duan, X.; Kong, F.2011,, 924. doi: 10.4028/www.scientific.net/AMR.239-242.924

    (9) Gulprasertrat, N.; Chapromma, J.; Aree, T.; Sritana-anant, Y.2015,, 42233/1. doi: 10.1002/app.42233

    (10) Wagner, P.; Jolley, K. W.; Officer, D. L. Aust.2011,, 335. doi: 10.1071/CH10413

    (11) Yin, Y.; Li, Z.; Jin, J.; Tusy, C.; Xia, J.2013,, 97. doi: 10.1016/j.synthmet.2013.05.001

    (12) Tusy, C.; Jiang, K.; Xia, J.2015,, 1014. doi: 10.1039/C4PY01070A

    (13) Koh, J. K.; Kim, J.; Kim, B.; Kim, J. H.; Kim, E.2011,, 1641. doi: 10.1002/adma.201004715

    (14) Chen, L.; Jin, J.; Shu, X.; Xia, J.2014,, 1234. doi: 10.1016/j.jpowsour.2013.09.139

    (15) Yin, X.; Wu, F.; Fu, N.; Han, J.; Chen, D.; Xu, P.; He, M.; Lin, Y.2013,, 8423. doi: 10.1021/am401719e

    (16) Papaspyrides, C. D.; Vouyiouka, S. N. Solid State Polymerization, John Wiley & Sons, Inc., 2009.

    (17) Tusy, C.; Huang, L.; Jin,J.; Xia,2014,, 8011. doi: 10.1039/C3RA45014G

    (18) Tusy, C.; Peng, K.; Huang, L.; Xia,2015,, 16292. doi: 10.1039/C4RA14915G

    (19) Peng, K.; Pei, T.; Li, Z.; Huang, L.; Xia,2015,, 103841. doi: 10.1039/C5RA21122K

    (20) Barres, A. L.; Allain, M.; Frere, P.; Batail, P.2014,, 689. doi: 10.1002/ijch.201400068

    (21) Jenekhe, S. A.1986,, 345. doi: 10.1038/322345a0

    (22) Benincori, T.; Rizzo, S.; Sannicolo, F., Schiavon, G.; Zecchin, S.; Zotti, G.2003,, 5114. doi: 10.1021/ma025919c

    (23) Chen, W. C.; Liu, C. L.; Yen, C. T.; Tsai, F. C.; Tonzola, C. J.; Olson, N.; Jenekhe, S. A.2004,, 5959. doi: 10.1021/ma049557f

    (24) Zaman, M. B.; Perepichka, D. F.2005, 4187. doi: 10.1039/B506138E

    (25) Umeyama, T.; Watanabe, Y.; Oodoi, M.; Evgenia, D.; Shishido, T.; Imahori, H.2012,, 24394. doi: 10.1039/C2JM33637E

    (26) Ahn, S.; Yabumoto, K.; Jeong, Y.; Akagi, K.2014,, 6977. doi: 10.1039/C4PY00849A

    (27) Lemau de Talance, V.; Hissler, M.; Zhang, L-Z.; Karpati, T.; Nyulaszi, L.; Caras-Quintero, D.; Baeuerle, P.; Reau, R.2008,, 2200. doi: 10.1039/B801335G

    (28) Zheng, C.; Pu, S.; Xu, J.; Luo, M.; Huang, D.; Shen, L.2007,, 5437. doi: 10.1016/j.tet.2007.04.049

    (29) Wang,H.; Chen, G.; Xu, X.; Chen, H.; Ji, S.2010,, 238. doi: 10.1016/j.dyepig.2010.01.010

    (30) Zhang, D.; Martín, V.; García-Moreno, I.; Costela, A.; Pérez-Ojeda, M. E.; Xiao, Y.2011,, 13026. doi: 10.1039/C1CP21038F

    (31) Hoffmann, K. J.; Knudsen, L.; Samuelsen, E. J.; Carlsen, P. H. J.2000,, 161. doi: 10.1016/S0379-6779(00)00244-7

    (32) Sheldrick, G. M. SHELXTL, Version 6.14, Bruker Analytical X-ray Instruments, Inc, Madison, WI, USA, 2003.

    (33) Sheldrick, G. M. Acta Crystallogr. Sect. A, 2008,, 112. doi: 10.1107/S0108767307043930

    (34) Kvarnstr?m,C.; Neugebauer, H.; Blomquist, S.; Ahonen, H. J.; Kankare, J.; Ivaska, A.1999,, 2739. doi: 10.1016/S0013-4686(98)00405-8

    (35) Louarn, G.; Kruszka, J.; Lefrant, S.; Zagorska, M.; Kulszewicz-Bayer, I.; Pron, A.1993,, 233. doi: 10.1016/0379-6779(93)91267-6

    (36) Agashe, M. S.; Jose, C. I.1977,, 1232. doi: 10.1039/F29797500733

    (37) Paul, A.; Gigueère, I.; Liu, D.1952,, 136. doi: 10.1063/1.1700155

    (38) Xia, Y.; MacDiarmid, A. G.; Epstein, A.1994,, 7212. doi: 10.1021/ma00102a033

    (39) Hohnholz, D.; MacDiarmid, A. G.; Sarno, D. M.; Jones, J. W. E.2001, 2444. doi: 10.1039/B107130K

    (40) Benincori, T.; Rizzo, S.; Sannicoloò, F.; Schiavon, G.; Zecchin, S.; Zotti, G.2003,, 5114. doi: 10.1021/ma025919c

    (41) Chen, W. C.; Liu, C. L.; Yen, C. T.; Tsai, F. C.; Tonzola, C. J.; Olson, N.; Jenekhe, S. A.2004,, 5959. doi: 10.1021/ma049557f

    (42) Itoh, T.; Tachino, K.; Akira, N.; Uno, T.; Kubo, M.; Tohnai, N.; Miyata, M.2015,, 2935. doi: 10.1021/ma502606s

    (43) Williams, J. O.1980,, 63. doi: 10.1039/PC9807700063

    (44) Lauher, J. W.; Fowler, F. W.; Goroff, N. S.2008,, 1215. doi: 10.1021/ar8001427

    固相聚合合成聚噻吩衍生物及烷基鏈對固相聚合的影響

    裴 童 彭 凱 蔡心怡 袁良杰*夏江濱*

    (武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072)

    本文以EDOT--EDOT為基本模型,向側(cè)鏈引入噻吩、咔唑、芴等幾種典型的光電基團,并通過固相/熔融聚合得到相應(yīng)的聚合物。詳細探討了聚合物的相關(guān)性質(zhì)和幾種典型單體的晶體結(jié)構(gòu),同時發(fā)現(xiàn)烷基鏈的引入降低了分子間的作用力,使得單體的初始聚合溫度(onset)降低。

    聚噻吩衍生物;固相/熔融聚合;烷基鏈影響

    O646

    10.3866/PKU.WHXB201706071

    May 8, 2017;

    June 6, 2017;

    June 9, 2017.

    Corresponding authors.XIA Jiang-Bin, Email: jbxia@whu.edu.cn. YUAN Liang-Jie, Email: ljyuan@whu.edu.cn; Tel/Fax: +86-27-68756707.

    The project was supported by the National Natural Science Foundation of China (21371138), the Funds for Creative Research Groups of Hubei Province, China (2014CFA007) and the Fundamental Research Funds for the Central Universities, China (2042015kf0180).

    國家自然科學(xué)基金(21371138),湖北省創(chuàng)新團隊科研基金(2014CFA007)及中央高?;究蒲袠I(yè)務(wù)費專項資金(2042015kf0180)資助項目

    猜你喜歡
    咔唑江濱噻吩
    2-溴咔唑的合成研究進展
    遼寧化工(2022年8期)2022-08-27 06:03:04
    深度加氫柴油中咔唑類化合物的測定
    Geometry of time-dependent PT-symmetric quantum mechanics?
    休妻用狠招
    百家講壇(2020年8期)2020-09-26 10:38:54
    吃蝦記
    丙烯基咔唑合成與表征
    塑料助劑(2018年6期)2018-03-25 05:59:16
    咔唑及其衍生物的合成方法研究
    山東化工(2018年1期)2018-03-10 02:56:49
    探討醫(yī)藥中間體合成中噻吩的應(yīng)用
    4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
    暗戀桃花源
    xxx大片免费视频| 久久精品久久久久久久性| 美女主播在线视频| 国产黄色免费在线视频| 国产毛片在线视频| 久久久久久人妻| 精品人妻熟女av久视频| 六月丁香七月| 成人影院久久| 菩萨蛮人人尽说江南好唐韦庄| 1000部很黄的大片| 高清午夜精品一区二区三区| 中文资源天堂在线| 亚洲丝袜综合中文字幕| 97在线人人人人妻| 91精品国产九色| 中文乱码字字幕精品一区二区三区| 亚洲内射少妇av| 久久99热这里只有精品18| 蜜臀久久99精品久久宅男| 永久网站在线| 成人免费观看视频高清| 午夜免费男女啪啪视频观看| tube8黄色片| 久久精品夜色国产| 丰满少妇做爰视频| 欧美一区二区亚洲| 精品久久国产蜜桃| www.色视频.com| 国产 一区精品| 日日啪夜夜撸| 日本黄大片高清| 成人亚洲精品一区在线观看 | 亚洲精品第二区| 久久97久久精品| 国国产精品蜜臀av免费| 精品一区二区免费观看| 亚洲精品视频女| 亚洲av日韩在线播放| 肉色欧美久久久久久久蜜桃| 大话2 男鬼变身卡| 我的老师免费观看完整版| 97超碰精品成人国产| 亚洲人成网站高清观看| 91精品国产九色| av女优亚洲男人天堂| 日日摸夜夜添夜夜爱| a级毛片免费高清观看在线播放| 久久久久视频综合| 久久精品久久久久久噜噜老黄| 亚洲欧美精品自产自拍| 内射极品少妇av片p| 男女无遮挡免费网站观看| 伊人久久国产一区二区| 亚洲精品中文字幕在线视频 | 欧美亚洲 丝袜 人妻 在线| 在线天堂最新版资源| 成人高潮视频无遮挡免费网站| 免费看不卡的av| 99热这里只有是精品50| 午夜精品国产一区二区电影| 久久精品久久久久久久性| 狂野欧美白嫩少妇大欣赏| 性色avwww在线观看| 免费大片18禁| 久久久国产一区二区| 久久久久久久久大av| 日韩中字成人| 91午夜精品亚洲一区二区三区| 色网站视频免费| 成人高潮视频无遮挡免费网站| 国产伦在线观看视频一区| 99久久精品一区二区三区| 欧美一级a爱片免费观看看| 熟妇人妻不卡中文字幕| 水蜜桃什么品种好| 国产成人a∨麻豆精品| 日本av手机在线免费观看| 久久影院123| 一级a做视频免费观看| 国产精品人妻久久久影院| xxx大片免费视频| 久久久久精品久久久久真实原创| 看非洲黑人一级黄片| 精品人妻偷拍中文字幕| 99精国产麻豆久久婷婷| 久久久久国产网址| 亚洲三级黄色毛片| 久久97久久精品| 噜噜噜噜噜久久久久久91| 十分钟在线观看高清视频www | 伦精品一区二区三区| 99久久精品一区二区三区| 欧美97在线视频| 免费人成在线观看视频色| 免费人成在线观看视频色| 免费看不卡的av| 久久亚洲国产成人精品v| 人妻 亚洲 视频| 免费看不卡的av| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲一区二区精品| 亚洲精品第二区| 超碰97精品在线观看| 欧美极品一区二区三区四区| 色视频www国产| 欧美日韩亚洲高清精品| 亚洲av不卡在线观看| 极品教师在线视频| 在线亚洲精品国产二区图片欧美 | 国产精品国产三级专区第一集| 午夜福利网站1000一区二区三区| 午夜福利高清视频| 蜜臀久久99精品久久宅男| 五月伊人婷婷丁香| 九九久久精品国产亚洲av麻豆| 99久久中文字幕三级久久日本| 国产欧美另类精品又又久久亚洲欧美| 丰满人妻一区二区三区视频av| 国产亚洲欧美精品永久| av一本久久久久| 日日摸夜夜添夜夜爱| av国产精品久久久久影院| 嫩草影院入口| 国内精品宾馆在线| 18禁裸乳无遮挡免费网站照片| 欧美日韩国产mv在线观看视频 | 免费大片黄手机在线观看| 久久久久国产网址| 国产精品久久久久久久电影| 午夜日本视频在线| 少妇人妻久久综合中文| 欧美亚洲 丝袜 人妻 在线| 精华霜和精华液先用哪个| 国产 一区精品| 十分钟在线观看高清视频www | av天堂中文字幕网| 女人久久www免费人成看片| 网址你懂的国产日韩在线| 国产免费一级a男人的天堂| 亚洲激情五月婷婷啪啪| 男女免费视频国产| 午夜日本视频在线| 一区在线观看完整版| 久久精品国产自在天天线| 视频区图区小说| 国产男人的电影天堂91| 成人特级av手机在线观看| 国产综合精华液| 嫩草影院入口| 国产精品一区www在线观看| 国产乱来视频区| 狠狠精品人妻久久久久久综合| 蜜桃亚洲精品一区二区三区| 内地一区二区视频在线| 精品亚洲成国产av| 久久精品熟女亚洲av麻豆精品| 亚洲,欧美,日韩| 国产午夜精品一二区理论片| av专区在线播放| 亚洲欧美成人精品一区二区| 亚洲av二区三区四区| 成年美女黄网站色视频大全免费 | 夜夜骑夜夜射夜夜干| 毛片女人毛片| 欧美xxxx性猛交bbbb| 狠狠精品人妻久久久久久综合| 香蕉精品网在线| 天天躁日日操中文字幕| 99久久精品国产国产毛片| 91aial.com中文字幕在线观看| 欧美+日韩+精品| 久久久久久久大尺度免费视频| 韩国av在线不卡| 免费黄网站久久成人精品| 一个人免费看片子| 欧美老熟妇乱子伦牲交| 五月开心婷婷网| 久久99精品国语久久久| 在线观看av片永久免费下载| 最新中文字幕久久久久| 七月丁香在线播放| 精品一区在线观看国产| av卡一久久| 亚洲av免费高清在线观看| 国产精品一区www在线观看| 亚洲成人一二三区av| 欧美成人精品欧美一级黄| 成人美女网站在线观看视频| 国产伦理片在线播放av一区| av天堂中文字幕网| 精品熟女少妇av免费看| av在线观看视频网站免费| 亚洲成人中文字幕在线播放| 少妇丰满av| 精品久久国产蜜桃| 天美传媒精品一区二区| 最后的刺客免费高清国语| 久久国内精品自在自线图片| 国产黄色视频一区二区在线观看| 天堂俺去俺来也www色官网| 亚洲美女搞黄在线观看| 久久这里有精品视频免费| 欧美+日韩+精品| 亚洲av日韩在线播放| 久久精品国产自在天天线| 2018国产大陆天天弄谢| av一本久久久久| 亚洲aⅴ乱码一区二区在线播放| 热99国产精品久久久久久7| 嘟嘟电影网在线观看| 少妇精品久久久久久久| 国产精品国产av在线观看| 久久女婷五月综合色啪小说| 精品人妻偷拍中文字幕| 九九久久精品国产亚洲av麻豆| 一级二级三级毛片免费看| 六月丁香七月| a级毛色黄片| 久久婷婷青草| 伦理电影大哥的女人| 日日啪夜夜撸| 午夜福利高清视频| 18禁裸乳无遮挡动漫免费视频| 午夜激情久久久久久久| 免费av中文字幕在线| 能在线免费看毛片的网站| 韩国高清视频一区二区三区| 在线观看人妻少妇| 国产精品国产av在线观看| 肉色欧美久久久久久久蜜桃| 国产精品无大码| 国产国拍精品亚洲av在线观看| 国精品久久久久久国模美| 少妇人妻精品综合一区二区| av线在线观看网站| 国产在线视频一区二区| 高清黄色对白视频在线免费看 | 欧美精品人与动牲交sv欧美| 成人国产av品久久久| 欧美极品一区二区三区四区| 中文字幕久久专区| 人人妻人人爽人人添夜夜欢视频 | 观看免费一级毛片| 日韩,欧美,国产一区二区三区| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡动漫免费视频| 久久 成人 亚洲| 免费看av在线观看网站| 成人午夜精彩视频在线观看| 免费观看av网站的网址| 国内揄拍国产精品人妻在线| 久久人人爽av亚洲精品天堂 | 精品熟女少妇av免费看| 亚洲av成人精品一二三区| 久久综合国产亚洲精品| a 毛片基地| 一个人免费看片子| 久久女婷五月综合色啪小说| 亚洲真实伦在线观看| 九色成人免费人妻av| 日韩免费高清中文字幕av| 蜜桃久久精品国产亚洲av| 免费看光身美女| 男人舔奶头视频| 日本猛色少妇xxxxx猛交久久| 亚洲欧美清纯卡通| 高清在线视频一区二区三区| 国产精品.久久久| 久久99蜜桃精品久久| 欧美性感艳星| 最近的中文字幕免费完整| 国产欧美日韩精品一区二区| 欧美xxⅹ黑人| 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| 亚洲av综合色区一区| 18+在线观看网站| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 狂野欧美白嫩少妇大欣赏| 成人综合一区亚洲| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 99九九线精品视频在线观看视频| 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| 人妻夜夜爽99麻豆av| 国产男女内射视频| 国产淫片久久久久久久久| 国产色爽女视频免费观看| 国产永久视频网站| 色哟哟·www| 男人爽女人下面视频在线观看| 青春草视频在线免费观看| 寂寞人妻少妇视频99o| 国产成人免费观看mmmm| 欧美成人一区二区免费高清观看| 免费黄频网站在线观看国产| 成人免费观看视频高清| 免费观看a级毛片全部| 色视频在线一区二区三区| 韩国av在线不卡| 97超碰精品成人国产| 国产极品天堂在线| 国国产精品蜜臀av免费| 水蜜桃什么品种好| av专区在线播放| 亚洲精品aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 99九九线精品视频在线观看视频| 乱系列少妇在线播放| 国产av一区二区精品久久 | 亚洲av福利一区| 热99国产精品久久久久久7| 欧美一级a爱片免费观看看| 亚洲第一区二区三区不卡| 亚洲av.av天堂| 最近手机中文字幕大全| videos熟女内射| 在线天堂最新版资源| 97超视频在线观看视频| 2021少妇久久久久久久久久久| 精品久久久噜噜| 纵有疾风起免费观看全集完整版| 一级片'在线观看视频| 简卡轻食公司| 亚洲精华国产精华液的使用体验| 亚洲精品自拍成人| 国产高清国产精品国产三级 | 高清黄色对白视频在线免费看 | 日韩av免费高清视频| 国产69精品久久久久777片| 麻豆成人av视频| 亚洲天堂av无毛| 观看美女的网站| 极品少妇高潮喷水抽搐| 夫妻性生交免费视频一级片| av免费观看日本| 亚洲色图综合在线观看| 亚洲图色成人| 亚洲成人av在线免费| 日韩制服骚丝袜av| 成人无遮挡网站| 国产成人精品一,二区| 国产有黄有色有爽视频| 国产成人精品婷婷| 亚洲国产精品成人久久小说| 国产在线男女| 自拍偷自拍亚洲精品老妇| 中国国产av一级| 一级av片app| 亚洲av二区三区四区| 亚洲av男天堂| 美女cb高潮喷水在线观看| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 一级毛片久久久久久久久女| 18禁动态无遮挡网站| 黄色一级大片看看| 国产成人免费观看mmmm| 亚洲国产色片| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 欧美日韩国产mv在线观看视频 | 五月伊人婷婷丁香| videossex国产| 国产 一区 欧美 日韩| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 99视频精品全部免费 在线| 国产亚洲91精品色在线| 日韩一区二区三区影片| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 久久久久网色| 18+在线观看网站| 欧美日韩视频精品一区| 久久韩国三级中文字幕| 又黄又爽又刺激的免费视频.| 午夜福利高清视频| 综合色丁香网| 国产乱人偷精品视频| 1000部很黄的大片| 一级二级三级毛片免费看| 国产v大片淫在线免费观看| 色网站视频免费| 国产亚洲91精品色在线| 欧美xxxx性猛交bbbb| 一个人看视频在线观看www免费| 看非洲黑人一级黄片| 一级毛片我不卡| 在线播放无遮挡| 黄片无遮挡物在线观看| 亚洲婷婷狠狠爱综合网| 99久久精品一区二区三区| 一区在线观看完整版| 午夜福利影视在线免费观看| 国产伦精品一区二区三区四那| 99热国产这里只有精品6| 亚洲四区av| 亚洲性久久影院| 日日撸夜夜添| 秋霞在线观看毛片| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 午夜激情福利司机影院| 人人妻人人澡人人爽人人夜夜| 久久久国产一区二区| 99热6这里只有精品| 各种免费的搞黄视频| 人妻少妇偷人精品九色| 欧美激情极品国产一区二区三区 | 春色校园在线视频观看| 亚洲久久久国产精品| 中文精品一卡2卡3卡4更新| 丝瓜视频免费看黄片| 久久99精品国语久久久| 在线 av 中文字幕| 亚洲中文av在线| 国产精品女同一区二区软件| 精品视频人人做人人爽| 欧美bdsm另类| 国产精品99久久99久久久不卡 | 久久99精品国语久久久| 特大巨黑吊av在线直播| 一区二区av电影网| 久久久久久人妻| 日韩制服骚丝袜av| 亚洲人成网站高清观看| 色哟哟·www| 日韩欧美一区视频在线观看 | 日本一二三区视频观看| 国产高潮美女av| 国产中年淑女户外野战色| 国产亚洲5aaaaa淫片| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 欧美极品一区二区三区四区| 亚洲av男天堂| 亚洲三级黄色毛片| 国产高清国产精品国产三级 | 91精品国产国语对白视频| 国产在线免费精品| 精品久久久精品久久久| 男女免费视频国产| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播| 色婷婷av一区二区三区视频| 欧美97在线视频| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 久久影院123| 国产在线视频一区二区| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在| 色婷婷久久久亚洲欧美| 午夜福利高清视频| 热re99久久精品国产66热6| 欧美bdsm另类| 最近最新中文字幕大全电影3| 欧美另类一区| 91精品一卡2卡3卡4卡| 亚洲,一卡二卡三卡| 国产有黄有色有爽视频| 在线免费观看不下载黄p国产| 亚洲欧美日韩无卡精品| 涩涩av久久男人的天堂| av一本久久久久| 日韩,欧美,国产一区二区三区| 能在线免费看毛片的网站| 91久久精品电影网| 久热久热在线精品观看| 日本vs欧美在线观看视频 | av福利片在线观看| 精品人妻熟女av久视频| 国产一区二区在线观看日韩| 精品久久久噜噜| 青春草亚洲视频在线观看| 成人免费观看视频高清| 国产淫片久久久久久久久| 中文欧美无线码| 国产乱人偷精品视频| 色哟哟·www| 日本黄色日本黄色录像| 久久国内精品自在自线图片| 一区二区三区精品91| 丝瓜视频免费看黄片| 大片电影免费在线观看免费| 久久精品国产亚洲av涩爱| 插阴视频在线观看视频| 亚洲精品久久久久久婷婷小说| 久久久久久人妻| 一级片'在线观看视频| 久久久久久久久久成人| 最后的刺客免费高清国语| 男女啪啪激烈高潮av片| 免费黄网站久久成人精品| 久久久国产一区二区| 亚洲在久久综合| 亚洲精品国产av成人精品| 这个男人来自地球电影免费观看 | 久久久久性生活片| 精品久久久久久电影网| 少妇的逼水好多| 久久国产亚洲av麻豆专区| 我的老师免费观看完整版| 超碰97精品在线观看| 最近最新中文字幕免费大全7| 蜜桃在线观看..| 99久久综合免费| 在线观看av片永久免费下载| 熟妇人妻不卡中文字幕| 色哟哟·www| 九草在线视频观看| 国产精品久久久久久精品电影小说 | 高清av免费在线| 国产伦在线观看视频一区| 最后的刺客免费高清国语| 久久久午夜欧美精品| 亚洲av在线观看美女高潮| 多毛熟女@视频| 女性生殖器流出的白浆| 日韩 亚洲 欧美在线| 精品国产三级普通话版| 80岁老熟妇乱子伦牲交| 男男h啪啪无遮挡| 欧美精品一区二区大全| 精品99又大又爽又粗少妇毛片| 一边亲一边摸免费视频| 色综合色国产| 亚洲人与动物交配视频| 九九久久精品国产亚洲av麻豆| 午夜视频国产福利| 好男人视频免费观看在线| 午夜日本视频在线| 又爽又黄a免费视频| 舔av片在线| 国产男女超爽视频在线观看| 国产乱来视频区| 色吧在线观看| 久久久久久久久久成人| 在线 av 中文字幕| 99热国产这里只有精品6| 日韩一区二区视频免费看| 少妇猛男粗大的猛烈进出视频| 精品人妻偷拍中文字幕| 亚洲精品一区蜜桃| 亚洲国产精品一区三区| 午夜福利在线观看免费完整高清在| 一级av片app| 又粗又硬又长又爽又黄的视频| 九草在线视频观看| 国产黄色视频一区二区在线观看| 精品久久久久久电影网| 欧美日本视频| 夜夜骑夜夜射夜夜干| 深夜a级毛片| 大又大粗又爽又黄少妇毛片口| 亚洲aⅴ乱码一区二区在线播放| 国产永久视频网站| 精品亚洲乱码少妇综合久久| 成人漫画全彩无遮挡| 日本免费在线观看一区| 香蕉精品网在线| 有码 亚洲区| 欧美最新免费一区二区三区| 99热这里只有是精品在线观看| 久久久久视频综合| 国产欧美亚洲国产| 欧美xxxx性猛交bbbb| 日日撸夜夜添| 十八禁网站网址无遮挡 | 国产av一区二区精品久久 | 黄色配什么色好看| 最近的中文字幕免费完整| 亚洲av.av天堂| 久久久久久久久久成人| 麻豆成人午夜福利视频| 日本wwww免费看| 日日摸夜夜添夜夜添av毛片| 国产精品嫩草影院av在线观看| 日本午夜av视频| a级一级毛片免费在线观看| 大片免费播放器 马上看| 免费人妻精品一区二区三区视频| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 日日啪夜夜撸| 国产日韩欧美在线精品| 卡戴珊不雅视频在线播放| 国产极品天堂在线| 精品久久久噜噜| 午夜福利视频精品| 亚洲精品,欧美精品| 精品一区二区三卡| 国产精品久久久久久av不卡| 国产精品偷伦视频观看了| 男人添女人高潮全过程视频| 美女内射精品一级片tv| 亚洲美女黄色视频免费看| 精品一品国产午夜福利视频| 午夜老司机福利剧场| 观看av在线不卡| 高清黄色对白视频在线免费看 | av天堂中文字幕网| 国产无遮挡羞羞视频在线观看| 日本猛色少妇xxxxx猛交久久| 欧美日韩综合久久久久久| 国产无遮挡羞羞视频在线观看| 国产精品三级大全| 一级毛片黄色毛片免费观看视频|