• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process

    2018-01-15 09:52:54CHENXinHUShaoZhengLIPingLIWeiMAHongFeiLUGuang
    物理化學學報 2017年12期
    關(guān)鍵詞:蒽醌熔鹽雙氧水

    CHEN Xin HU Shao-Zheng* LI Ping LI Wei MA Hong-Fei LU Guang

    ?

    Photocatalytic Production of Hydrogen Peroxide Using g-C3N4Coated MgO-Al2O3-Fe2O3Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process

    CHEN Xin HU Shao-Zheng* LI Ping LI Wei MA Hong-Fei LU Guang

    ()

    H2O2is industrially produced by the anthraquinone method, in which energy consumption is high because it involves multistep hydrogenation and oxidation reactions. Photocatalytic production of H2O2has received increasing attention as a sustainable and eco-friendly alternative to conventional anthraquinone-based and electrochemical production processes. Herein, we report a novel molten salt-assisted microwave process for the synthesis of a g-C3N4-coated MgO-Al2O3-Fe2O3(MAFO) heterojunction photocatalyst with outstanding H2O2production ability. The addition of a molten salt during synthesis changes the morphology of the as-prepared catalysts and influences the degree of polycondensation of melamine, leading to a change in the band gap energy. The cladding structure forms the maximum area of the heterojunction, leading to strong electronic coupling between the two components.This strong electronic coupling results in amoreeffective separation of the photogeneratedelectron-hole pairs and a faster interfacial charge transfer, leading to higher H2O2formation rate. The equilibrium concentration and formation rate of H2O2over the as-prepared heterojunction catalyst were 6.3 mmol·L?1and 1.42 mmol·L?1·h?1, which are much higher than that reported for g-C3N4and MAFO individually. In addition, the H2O2decomposition rate also decreases over the as-prepared heterojunction catalysts. A possible mechanism and the electron transfer routes have been proposed based on a free radical trapping experiment.

    g-C3N4; Cladding structure; Heterojunction; H2O2production; Molten salt-assisted microwave process

    1 Introduction

    Hydrogen peroxide (H2O2), as a highly efficient and green oxidant, has been widely used in bleaching and disinfectant applications, such as textile, paper pulp and medical industry. H2O2has the highest content of active oxygen (47%,/) and only H2O as the by-product1,2. Besides that, H2O2is also an ideal energy carrier alternative to hydrogen with the low volumetric energy3,4. The output potential of H2O2fuel cell is 1.09 V theoretically, which is comparable with that of hydrogen fuel cell (1.23 V)5–7. In the industry, H2O2is produced by the anthraquinone method, in which energy consumption is high because of the multistep hydrogenation and oxidation reactions. Recently, direct synthesis of H2O2from only water, oxygen and visible light through two-electron reduction from the conduction band has been widely studied using semiconductor as photocatalyst (Reaction (1))8–10. Holes in the valence band (VB) can directly oxidize water molecules to produce O2(Reaction (2)). But usually, hole scavenger such as alcohols are added to promote the electrons-holes separation rate (Reaction (3)). This method has many advantages such as green cleaning, mild conditions and low power consumption. However, the H2O2can be decomposed by the reduction with e-which causes the H2O2equilibrium concentration is not satisfactory till now (Reaction (4)).

    O2 + 2H+ + 2e?→ H2O2(1) H2O + 2h+→ 1/2 O2 + 2H+(2) R-OH + 2h+→ Oxidation product(3) H2O2 + e?→ ?OH + OH?(4)

    Recently, graphitic carbon nitride (g-C3N4), a metal-free visible light photocatalyst, has received increasing attention due to its suitable electric band-gap, good chemical stability, and unique electronic structure. Besides that, its conduction band potential is ~ ?1.3 V, more negative than the reduction potential of O2/H2O2(0.695 V). Thus g-C3N4can reduce O2to H2O2thermodynamically10. However, the low separation efficiency of photogenerated electron-hole pairs and the poor visible light utilization limits its practical applications. In order to improve the above situation, researchers have developed many strategies, including tailoring microstructures11,12, forming surface defects13,14, doping15,16and building heterojunctions17,18. These strategies mainly focus on shortening the distance of transfer paths, forming unique transmission channels, offering more active sites for trapping carriers, and facilitating the separation and transmission of photogenerated electron-hole pairs. Metal oxides and sulphides are widely used to build the heterojunction with g-C3N4. In addition to single metal sulfide, some multi-metal sulfides coupled g-C3N4composites are also reported19–21. However, few studies concerning multi-metal oxide (MMO) coupled g-C3N4composites are reported22,23. With the tunable composition, MMO possesses the special optical properties and electronic structure, leading to the formation of tunable band structure. This is beneficial to the energy level matching of two semiconductors, which is significant important to form the heterojunction.

    Molten salt method is widely used in the materials synthesis field in recent years because it can accelerate diffusion of constituent ions, control crystal growth and easily separate from the solid product by dissolving in water24–26. In general, molten salt can serve as a reaction medium for reactant dissolution and precipitation, as soft template for tailoring micro and mesoporosity of the materials, and as structure- directing agent in the polycondensation and deamination reaction to obtain graphitic materials. The features of this synthesis method are related to the surface and interface energies between the constituents and the salt, resulting in a tendency to minimize the energies by forming a specific morphology. Though the electric-resistance heating molten-salt method can be used to synthesize g-C3N4photocatalysts, the problems of long time consuming and high energy consumption in synthesis, large emission of harmful gas and low catalyst yield are still difficult to overcome27.

    Recently, microwave-assisted heating synthesis has also been widely used to prepare nanomaterials28–30. The microwave treatment can transfer energy from microwave to the microwave-absorber material which induces strong heating in minutes. When the microwave energy is absorbed by the raw material, the molecules are orderly arrangement in the electromagnetic field of the microwave. Then the high frequency reciprocating motion occurs inside the molecules of raw materials, causes the frequent collisions between molecules, leading to the generation of a lot of frictional heat. Under this heating method, the raw material is rapidly heated without the presence of temperature gradient. It is reported that g-C3N4can be synthesized by the microwave-assisted heating method in a few minutes, suggesting this is a potential way in rapid synthesis of carbon nitride based materials31. Besides that, the catalyst yield is high and the emission of harmful gas is also low with this method. It is known that the solid-state reaction system needs a uniform reaction medium to achieve a stable and reliable condition. The molten-salt process can offer a unique liquid condition that is stable and convenient for the solid-state reaction system. Thus, we hypothesize that combination two methods mentioned above should be an effective strategy to synthesize g-C3N4based materials with high performance. In this work, the g-C3N4coated MgO-Al2O3- Fe2O3(MgAlFeO) heterojunction catalysts were synthesized via a novel molten salt-assisted microwave process. The photocatalytic activities were evaluated in the photocatalytic H2O2production under visible light. The possible mechanism is proposed.

    2 Experimental

    2.1 Preparation and characterization

    All the chemicals used in this experiment were reagent gradeand without further treatment. Polymetallic oxide MgAlFeO was prepared as follow. Mixed salt solutions of Mg(NO3)2·6H2O, Al(NO3)3·6H2O and Fe(NO3)3·9H2O (molar ratio of Mg : Al : Fe is 5 : 2 : 1) were added into 80 mL deionized water under stirring. Then, desired amount of urea (molar ratio urea/total metal = 2) was added. The obtained solution was placed in a stainless autoclave, which has a 100 ml Teflon inner liner. The autoclave was sealed, placed in an oven and maintained at 120 °C for 8 h. The solid was collected by centrifugation, washed with deionized water fore three times, dried at 70 °C overnight and denoted as MAFO.

    In a typical process, eutectic mixture of KCl-LiCl (1 : 1 weight ratio) was selected as a solvent with the melting point of 350 °C. The mixture of eutectic salts, melamine and MAFO (with a weight ratio of 50 : 2 : 1) were finely ground in a mortar, then transferred to an alumina crucible and treated by microwave for 20 min in a normal microwave oven (G70D20CN1P-D2, Galanz). The input power of microwave oven is 1.0 kW·h?1. The obtained catalyst was denoted as MV-MS-CN/MAFO, in which MVand MSstand for microwave treatment and molten salt assistant respectively. For comparison, MV-CN, MV-MS-CN and MV-CN/MAFO were prepared following the same procedure as in the synthesis of MV-MS-CN/MAFO but in the absence of eutectic salts and MAFO, MAFO, and eutectic salts, respectively. Bulk g-C3N4was prepared by heating melamine at 550 °C for 4 h at the rate of 5 °C·min?1. The product was denoted as B-CN.

    The XRD patterns of the prepared samples were recorded on a Rigaku D/max-2400 instrument (Shimadzu, Japan) using Cu-Kradiation (= 0.154 nm). The scan rate, step size, voltage and current were 0.05 (°)·min?1, 0.01°, 40 kV and 30 mA, respectively. UV-Vis spectroscopy was carried out on a V-550 model UV-Vis spectrophotometer (JASCO Japan) using BaSO4as the reflectance sample. The morphologies of prepared catalyst were observed by using a scanning electron microscope (SEM, JSM 5600LV, JEOL Ltd. Japan). TEM images were taken on a Philips Tecnai G220 model microscope (Holand). Nitrogen adsorption was measured at ?196 °C on a Micromeritics 2010 analyser (USA). All the samples were degassed at 393 K prior to the measurement. The BET surface area (BET) was calculated based on the adsorption isotherm. The pore-size distributions were obtained from the desorption branches using the Barrett-Joyner-Halenda (BJH) method. ICP was performed on a Perkin-Elmer Optima 3300DV apparatus (USA). The photoluminescence (PL) spectra were measured at room temperature with a fluorospectrophotometer (JASCO FP-6300, Japan) using a Xe lamp as the excitation source. The electrochemical impedance spectra (EIS) were recorded using an EIS spectrometer (EC-Lab SP-150, BioLogic Science Instruments, USA) in a three electrode cell by applying a 10 mV alternative signal versus the reference electrode (SCE) over a frequency range of 1 MHz to 100 mHz. The cyclic voltammograms were measured in a 0.1 mol?L?1KCl solution containing 2.5 mmol?L?1K3[Fe(CN)6]/K4[Fe(CN)6] (1 : 1) as a redox probe at a scanning rate of 20 mV·s?1in the same three electrode cell as the EIS measurement.

    2.2 Photocatalytic reaction

    The photocatalytic H2O2production ability of the samples were evaluated by the reduction of molecular oxygen. For these experiments, 0.2 g of photocatalyst was added to 200 mL deionized water. The suspension was dispersed using an ultrasonicator for 10 min. During the photoreaction under visible light irradiation, the suspension was exposed to a 250 W high-pressure sodium lamp with main emission in the range of 400 to 800 nm, and O2was bubbled at 80 mL?min?1through the solution. The UV light portion of the sodium lamp was filtered by a 0.5 mol?L?1NaNO2solution. All runs were conducted at ambient pressure and 30 °C. At given time intervals, 5 mL aliquots of the suspension were collected and immediately centrifuged to separate the liquid samples from the solid catalyst. The concentration of H2O2was analyzed by normal iodometric method32,33.

    Fig.1 XRD patterns (a), N2 adsorption-desorption isotherms (b), UV-Vis spectra (c) and plots of the transformed Kubelka-Munk function versus the energy of light (d) of as-prepared catalyst.

    3 Results and discussion

    Fig.1(a) shows the XRD patterns of as-prepared catalysts. Two typical diffraction peaks of g-C3N4are present in the B-CN, MV-CN and MV-MS-CN. The peak at 13.1°corresponds to in-plane structural packing motif of tri-s-triazine units, which is indexed as (100) peak. The peak at 27.5° corresponds to interlayer stacking of aromatic segments with distance of 0.324 nm, which is indexed as (002) peak. For MAFO, six diffraction peaks are observed, which are assigned to MgO, Al2O3and Fe2O3, respectively34–36. In the case of as-prepared heterojunction catalysts, both diffraction peaks for g-C3N4and MAFO are observed. Neither diffraction peak of other species nor the diffraction peak shift is observed indicating that no doping occurs. To characterize the specific surface area of as-prepared catalysts, the nitrogen adsorption and desorption isotherms were measured (Fig.1(b)). The isotherms of all the catalysts are of classical type IV, suggesting the presence of mesopores. The BET specific surface areas (BET) of B-CN, MV-CN, MV-MS-CN, MAFO, MV-CN/MAFO and MV-MS-CN/ MAFO are calculated to be 6.5, 7.2, 14.9, 10.6, 8.8 and 13.7 m2·g?1. This hints that the morphology of MV-MS-CN could be changed by addition of molten salt in the synthesis process, leading to the significantly promotedBET. The largeBETcan promote adsorption, desorption and diffusion of reactants and products, which is favorable to the photocatalytic performance.

    Table 1 The components of as-prepared catalysts obtained by ICP.

    The UV-Vis spectra of the as-prepared photocatalysts are shown in Fig.1(c). The band gaps are estimated from the tangent lines in the plots of the square root of the Kubelka-Munk function as a function of the photon energy (Fig.1(d))37. B-CN displays an absorption edge at approximately 450 nm, corresponding to a band gap of 2.75 eV. The absorption edge for MV-CN and MV-MS-CN are 480 and 491 nm, and the corresponding band gap is estimated to be 2.58 and 2.52 eV. This reveals that both microwave and molten salt can influence the polycondensation degree of melamine, leading to the change of band gap energy. MAFO shows obviously improved visible light absorption ability compared with as-prepared g-C3N4catalysts. Its absorption edge is observed at 647 nm, and the corresponding band gap is estimated to be 1.92 eV. For the as-prepared heterojunction photocatalysts, the typical two absorption edges for g-C3N4and MgAlFeO are observed, hinting the heterojunction photocatalysts are composed of these two components. No intrinsical difference between MV-CN/MAFO and MV-MS-CN/ MAFO can be observed.

    The components of as-prepared catalysts were obtained by ICP (Table 1). The C and N contents for as-prepared g-C3N4catalysts are approximately 39% and 57% (, mass fraction), which is close to the theoretical values. For MAFO, the Mg, Al, Fe and O contents are 31.5%, 14.1%, 14.7% and 39.7% (), respectively. Both the as-prepared heterojunction photocatalysts show the similar element percentages, indicating that the addition of molten salt do not influence the component of catalyst. According to this element percentage, the mass ratio of g-C3N4to MgAlFeO is approximately 6 : 4 for the as-prepared heterojunction photocatalysts. In addition, no K, Li and Cl are detected in the as-prepared catalysts, confirming that no ion-doping occurs.

    Fig.2 SEM images of as-prepared B-CN (a), MAFO (b), MV-CN (c), MV-MS-CN (d), MV-CN/MAFO (e), MV-MS-CN/MAFO (f and g) and HRTEM of MV-MS-CN/MAFO (h).

    The morphologies of the representative samples were examined by using SEM analysis. Fig.2a indicates that as-prepared B-CN is composed of a large number of irregular particles. Those particles exhibit layer structure that is similar to its analogue graphite. In Fig.2b, the nanorod-like MAFO with ~2 μm long is observed. Besides that, it is noted that the surface of MAFO is smooth. For MV-CN, the catalyst with layered structure is still observed (Fig.2c). In the case of MV-MS-CN, the catalyst morphology changes to nanoparticles (Fig.2d). This confirms that the addition of molten salt significantly influence the morphology of as-prepared catalyst. Those nanoparticles could form more intra-aggregated pores, leading to the increasedBET(Fig.1b). Fig.2e clearly displays that the as-prepared MV-CN/MAFO is composed of layer structural MV-CN and nanorod-like MAFO. MAFO nanorods seem to stick to the MV-CN surface. This interaction between MV-CN and MAFO is poor. For MV-MS-CN/MAFO (Fig.2f), it can be seen that the nanorod-like MAFO is coated by the MV-MS-CN nanoparticles. The MAFO surface is not as smooth as shown in Fig.2b but very rough, confirming the MV-MS-CN coating (Fig.2g). High-resolution transmission electron microscopy (HRTEM) analysis was performed to get information on the microstructure of as-prepared MV-MS-CN/ MAFO (Fig.2h). The observed lattice fringe spacing of 0.324 nm corresponds to the (002) crystal plane of g-C3N4(JCPDS 87-1526). The lattice fringes of 0.373, 0.265 and 0.208 nm in the HRTEM image should be assigned to the (012), (006) and (200) planes of Al2O3, Fe2O3and MgO, respectively. Smooth and intimate interfaces are clearly observed between MV-MS-CN and MAFO, which confirms the formation of g-C3N4/MgAlFeO heterojunction. Such strong interaction can result in the higher interfacial charge transfer rate and H2O2production ability.

    XP spectra are used to investigate the structure of the as-prepared heterojunction catalyst. In Mg 2, Al 2and Fe 2regions (Fig.3(a–c)), the binding energies for MAFO located at 49.7, 73.8 and 711.4 eV are assigned to the Mg2+, Al3+and Fe3+respectively38–40. For MV-MS-CN/MAFO, the binding energies in Mg 2, Al 2and Fe 2regions exhibit obvious blue-shifts compared with that of MAFO. This is probably due to the electron transfer from electron-rich g-C3N4to MAFO, leading to the electron density change. In O 1region (Fig.3d), the MAFO displays a single peak at 531.5 eV, which is assigned to the O2?bond to the metal ions. For MV-MS-CN/MAFO, another peak located at 532.6 eV is observed. As reported by previous literatures, this peak should be assigned to the adsorbed oxygen species41–43.In Fig.3e, the spectra of both two catalystsin C 1regions can be fitted with two contributions which located at 284.6, and 287.8 eV. The sharp peak around 284.6 eV is attributed to the pure graphitic species in the CN matrix. The peak with binding energy of 287.8 eV indicates the presence of2C atoms bonded to aliphatic amine (―NH2or ―NH―) in the aromatic rings44.In Fig.3(f), the main N 1peak of MV-MS- CN located at 398.3 eV can be assigned to2-hybridized nitrogen (C=N―C), thus confirming the presence of2-bonded graphitic carbon nitride. The peak at a higher binding energy of 400.1 eV is attributed to tertiary nitrogen (N―(C)3) groups45. For MV-MS-CN/MAFO, the 0.2 eV shift to higher binding energy is observed, indicating the decreased electron density of nitrogen atoms. Combined with the phenomenon of binding energy shift in Mg 2, Al 2and Fe 2regions, it is deduced that the strong electronic interaction between the MV-MS-CN and MAFO is formed in MV-MS-CN/ MAFO.

    The energy level positions of MV-MS-CN and MAFO are confirmed by VB XPS. In Fig.4a, the VB positions of MV-MS-CN and MAFO are +1.29 and +2.08 V. It is obtained from the UV-Vis results that the band gaps for CN and MgAlFeO are 2.52 and 1.92 eV. Thus theCBfor MV-MS-CN and MAFO is ?1.23 and +0.16 V, respectively. Once MV-MS- CN and MAFO are electronically coupled together, the band alignment between the two components results in the formation of heterojunction with well-matched band structure. The potential difference is the main driving force for efficient charge separation and transfer. These two charge transfer processes are beneficial for overcoming the high dissociation barrier of the Frenkel exciton and stabilizing electrons and holes. As the photogenerated electrons and holes are spatially separated into two components, the charge recombination is drastically inhibited, which is of great benefit for enhancing the photocatalytic activity. In addition, with effective separation of electron/hole pairs, the lifetime of photogenerated charge carriers is expected to be prolonged. The prolonged lifetime allows the fast charge transfer to the reactive substrates on the photocatalyst surface, promoting the photocatalysis reaction.

    EIS was used to characterize charge-carrier migration and confirm the interfacial charge transfer effect of the as-prepared heterojunction catalysts. As shown in Fig.4b, the as-prepared heterojunction catalysts exhibit a decreased arc radius compared to that of MV-MS-CN and MAFO. In general, the radius of the arc in the EIS spectra reflects the reaction rate on the surface of the electrode46.The reduced arc radius indicates a diminished resistance of the working electrodes, suggesting a decrease in the solid-state interface layer resistance and the charge transfer resistance across the solid-liquid junction on the surface between g-C3N4and MgAlFeO47,48.MV-MS-CN/ MAFO displays the smallest arc radius, confirming that a more effective separation of photogenerated electron-hole pairs and a faster interfacial charge transfer occur on the MV-MS-CN/ MAFO surface compared with MV-CN/MAFO. PL spectra are shown in Fig.4c. In general, the higher PL intensity, the lower separation rate of electrons-holes. Obviously, the PL intensity follows the order: MAFO > MV-MS-CN > MV-CN/MAFO > MV-MS-CN/MAFO, which is consistent with the order of arc radius of EIS spectra.MV-MS-CN/MAFO exhibits a significant fluorescence quenching phenomenon, indicating its significantly improved separation efficiency. This confirms the existence of strong interaction between MV-MS-CN and MAFO.

    Fig.4 VB XPS (a), EIS (b) and PL (c) of as-prepared catalysts.

    Table 2 Influences of molar ratio of Mg : Al : Fe and mass ratio of melamine to MAFO on the H2O2 production performance.

    Fig.5 H2O2 production ability of MV-MS-CN/MAFO under different reaction conditions (a) and the H2O2 production ability over as-prepared catalysts (b).

    Table 3 H2O2 concentration and the kinetic parameters of as-prepared catalysts.

    The catalytic stability of MV-MS-CN/MAFO is shown in Fig.6. It is clearly seen that the H2O2concentration reaches a constant level at 6 h. After 48 h, the equilibrium concentration of H2O2is almost unchanged, hinting its excellent catalytic stability. Fig.6 inset shows the XRD results of fresh and reused MV-MS-CN/MAFO. No obvious difference between them is shown, confirming its outstanding structure stability.

    The catalytic stability of MV-MS-CN/MAFO is shown in Fig.6. It is clearly seen that the H2O2concentration reaches a constant level at 6 h. After 48 h, the equilibrium concentration of H2O2is almost unchanged, hinting its excellent catalytic stability. Fig.6 inset shows the XRD results of fresh and reused MV-MS-CN/MAFO. No obvious difference between them is shown, confirming its outstanding structure stability.

    Fig.6 Catalytic stability of MV-MS-CN/MAFO.

    Fig.7 Photocatalytic RhB degradation performance (a) and the possible electrons transfer route (b) over MV-MS-CN/MAFO.

    In order to clarify the type of heterojunction, photocatalytic RhB degradation performance over MV-MS-CN/MAFO is investigated (Fig.7(a)).-BuOH was used as hydroxyl radical (?OH) scavenger. The results indicate that the photocatalytic degradation rate of RhB is over 80% within 4 h. When t-BuOH is added, the degradation rate of RhB sharply decreases to approximately 50%. This hints hydroxyl radical is one of the main oxidative species for RhB degradation. It is known that the redox potentials for ?OH/OH?is +1.99 V51. TheVBof MV-MS-CN and MAFO is +1.29 and +2.08 V, respectively. Thus, the holes in valence band of MAFO are positive enough to generate ?OH but MV-MS-CN cannot. It is deduced that the holes are in the valence band of MAFO but not MV-MS-CN. Accordingly, the heterojunction should be “Z” type. The possible electron transfer mechanism is shown in Fig.7(b). Under visible light irradiation, the electrons-holes are formed. The electrons in the conduction band of MAFO transfer to the valence band of MV-MS-CN to combine with the holes. Thus, the electrons in the conduction band of MV-MS-CN will reduce oxygen to form H2O2: O2+ 2H++ 2e?→ H2O2. Holes in the VB of MAFO can oxidize water to form oxygen as follow:

    H2O + 2h+→ 1/2 O2+ 2H+52.

    4 Conclusions

    In this work, the g-C3N4coated MgAlFeO heterojunction catalyst was synthesized via a novel molten salt-assisted microwave process. The addition of molten salt into synthesis process not only changes the morphology of as-prepared catalysts but also influence the polycondensation degree of melamine, leading to the change of band gap energy. SEM and HRTEM results show that the MgAlFeO nanorods are coated by the g-C3N4nanoparticles, leading to the strong electronic coupling between two components. This strong electronic coupling results inmore effective separation of photogenerated electron-hole pairs and faster interfacial charge transfer, causing the higher H2O2formation rate (f). In addition, the VB holes of MAFO are positive enough to generate ?OH which is the H2O2decomposition product, leading to the lower H2O2decomposition rate (d) over as-prepared heterojunction catalysts. This work provides a novel method to prepare heterojunction catalyst with high electron-hole separation rate and photocatalytic performance.

    (1) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G.. 2006,, 6962. doi: 10.1002/anie.200503779

    (2) Samanta, C.2008,, 133. doi: 10.1016/j.apcata.2008.07.043

    (3) Yamazaki, S.; Siroma, Z.; Senoh, H.; Ioroi T.; Fujiwara, N.; Yasuda, K.2008,, 20. doi: 10.1016/j.jpowsour.2007.12.013

    (4) Shaegh, S. A. M.; Nguyen, N. T.; Ehteshami, S. M. M.; Chan, S. H.. 2012,, 8225. doi: 10.1039/C2EE21806B

    (5) Yamada, Y.; Fukunishi, Y.; Yamazaki, S.; Fukuzumi, S.. 2010,, 7334. doi: 10.1039/c0cc01797c

    (6) Yamada, Y.; Yoshida, S.; Honda, T.; Fukuzumi, S.. 2011,, 2822. doi: 10.1039/C1EE01587G

    (7) Kato, S.; Jung, J.; Suenobua, T.; Fukuzumi, S.. 2013,, 3756. doi: 10.1039/C3EE42815J

    (8) Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T.. 2012,, 599. doi: 10.1021/cs2006873

    (9) Diesen, V.; Jonsson, M.. 2014,, 10083. doi: 10.1021/jp500315u

    (10) Li, S.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y.. 2016,, 26. doi: 10.1016/j.apcatb.2016.03.004

    (11) Kong, H. J.; Won, D. H.; Kim, J.; Woo, S. I.. 2016,, 1318. doi: 10.1021/acs.chemmater.5b04178

    (12) Wang, Z.; Guan, W.; Sun, Y.; Dong, F.; Zhou, Y.; Ho, W. K.2015,, 2471. doi: 10.1039/c4nr05732e

    (13) Yang, P.; Zhao, J.; Qiao, W.; Li, L.; Zhu, Z.2015,, 18887. doi: 10.1039/c5nr05570a

    (14) Kang, Y.; Yang, Y.; Yin, L. C.; Kang, X.; Liu, G.; Cheng, H. M.. 2015,, 4572. doi: 10.1002/adma.201501939

    (15) Hu, S. Z.; Chen, X.; Li, Q.; Li, F. Y.; Fan, Z. P.; Wang, H.; Wang, Y. J. Zheng, B. H.; Wu, G.. 2017,, 58. doi: 10.1016/j.apcatb.2016.08.002

    (16) Fan, X.; Zhang, L.; Wang, M.; Huang, W.; Zhou, Y.; Li, M.; Cheng, R.; Shi, J.. 2016,, 68. doi: 10.1016/j.apcatb.2015.09.006

    (17) Zhang, Q.; Hu, S. Z.; Fan, Z. P.; Liu, D. S.; Zhao, Y. F.; Ma, H. F.; Li, F. Y.. 2016,, 3497. doi: 10.1039/c5dt04901f

    (18) Zhu, Z.; Lu, Z.; Wang, D.; Tang, X.; Yan, Y.; Shi, W.; Wang, Y.; Gao, N.; Yao, X.; Dong, H.. 2016,, 115. doi: 10.1016/j.apcatb.2015.09.029

    (19) Hu, S. Z.; Li, Y. M.; Li, F. Y.; Fan, Z. P.; Ma, H. F.; Li, W.; Kang, X. X., 2269. doi: 10.1021/acssuschemeng.5b01742

    (20) Nie, Q.;Yuan, Q.; Wang, Q.. 2004,, 5611. doi: 10.1023/B:JMSC.0000039301.70811.a4

    (21) Fu, X. L.; Wang, X. X.; Chen, Z. X.; Zhang, Z. Z.; Li, Z. H.; Leung, D. Y. C.; Wu, L.; Fu, X. Z.. 2010,, 393. doi: 10.1016/j.apcatb.2010.01.018

    (22) Chen, J.; Shen, S. H.; Guo, P. H.; Wu, P.; Guo, L. J.2014,, 4605. doi: 10.1039/C3TA14811D

    (23) Lan, M.; Fan, G. L.; Yang, L.; Li, F..2015,, 5725. doi: 10.1039/C4RA07073A

    (24) Bojdys, M. J.; Muller, J.; Antonietti, M.; Thomas, A.. 2008,, 8177. doi: 10.1002/chem.200800190

    (25) Wirnhier, E.; Doblinger, M.; Gunzelmann, D.; Senker, J.; Lotsch, B. V.; Schnick, W..2011,, 3213. doi: 10.1002/chem.201002462

    (26) Zhao, J. N.; Ma, L.; Wang, H. Y.; Zhao, Y. F.; Zhang, J.; Hu, S. Z.. 2015,, 625. doi: 10.1016/j.apsusc.2015.01.233

    (27) Li, S. J.; Chen, X.; Hu, S. Z.; Li, Q.; Bai, J.; Wang, F.. 2016,, 45931. doi: 10.1039/C6RA08817A

    (28) Babu, G. A.; Ravi, G.; Mahalingam, T.; Kumaresavanji, M.; Hayakawa, Y..2015,, 4485. doi: 10.1039/C4DT03483J

    (29) Schwenke, A. M.; Hoeppener, S.; Schubert, U. S.2015,, 23778. doi: 10.1039/C5TA06937H

    (30) Dom, R.; Subasri, R.; Hebalkar, N. Y.; Chary, A. S.; Borse, P. H.. 2012,, 12782. doi: 10.1039/C2RA21910G

    (31) Yuan, Y. P.; Yin, L. S.; Cao, S. W.; Gu, L. N.; Xu, G. S.; Du, P.; Chai, H.; Liao, Y. S.; Xue, C.. 2014,, 4663. doi: 10.1039/C4GC01517G

    (32) Ding, Y.; Zhao, W.; Hu, H.; Ma, B. C..2008,, 910. doi: 10.1039/B808404A

    (33) Saha, M.; Das, M.; Nasani, R.; Choudhuri, I.; Yousufuddin, M.; Nayek, H. P.; Shaikh, M. M.; Pathak, B.; Mukhopadhyay, S.. 2015,, 20154. doi: 10.1039/C5DT01471A

    (34) Choi, J.; Zhang, S. H.; Hill, J. M.. 2012,, 179. doi: 10.1039/C1CY00301A

    (35) Ding, Y. D.; Song, G.; Zhu, X.; Chen, R.; Liao, Q.. 2015,, 30929. doi: 10.1039/C4RA15127E

    (36) Gu, Z. H.; Li, K. Z.; Qing, S.; Zhu, X.; Wei, Y. G.; Li, Y. T.; Wang, H.. 2014,, 47191. doi: 10.1039/C4RA06715K

    (37) Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E.. 1993,, 11802. doi: 10.1021/j100147a038

    (38) Kannapu, H. P. R.; Neeli, C. K. P.; Rao, K. S. R.; Kalevaru, V. N.; Martin, A.; Burri, D. R.. 2016,, 5494. doi: 10.1039/C6CY00397D

    (39) Lee, S. W.; Heo, J.; Gordon, R. G.2013,, 8940. doi: 10.1039/c3nr03082b

    (40) Zhou, X. S.; Jin, B.; Chen, R. Q.; Peng, F.; Fang, Y. P.. 2013,, 1447. doi:10.1016/j.materresbull.2012.12.038

    (41) Xu, H.; Yan, J.; She, X. J.; Xu, L.; Xia, J. X.; Xu, Y. G.; Song, Y. H.; Huang, L. Y.; Li, H. M.2014,, 1406. doi: 10.1039/C3NR04759H

    (42) Li, K. X.; Yan, L. S.; Zeng, Z. X.; Luo, S. L.; Luo; X. B.; Liu, X. M.; Guo, H. Q.; Guo, Y. H.. 2014,, 141. doi:10.1016/j.apcatb.2014.03.010

    (43) Niu, P.; Yang, Y. Q.; Yu, J. C.; Liu, G.; Cheng, H. M..2014,, 10837. doi:10.1039/c4cc03060e

    (44) Ge, L.; Han, C.. 2012,,268.doi: 10.1016/j.apcatb.2012.01.021

    (45) Zhang, Y. W.; Liu, J. H.; Wu, G.; Chen, W.2012,, 5300. doi: 10.1039/c2nr30948c

    (46) Xu, Y.; Xu, H.; Wang, L.; Yan, J.; Li, H.; Song, Y.; Huang, L.; Cai, G.. 2013,, 7604. doi: 10.1039/c3dt32871f

    (47) He, B. L.; Dong, B.; Li, H. L.. 2007,, 425. doi: 10.1016/j.mseb.2007.06.017

    (48) Huang, Q. W.;Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.;Li, Y. Y.;Xiao, W.; Xie, C. S.. 2013,, 1477. doi: 10.1021/cs400080w

    (49) Teranishi, M.; Naya, S.; Tada, H..2010,, 7850. doi: 10.1021/ja102651g

    (50) Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E.. 2005,, 2627. doi: 10.1039/b418789j

    (51) Liu, G.; Niu, P.; Yin, L. C.; Cheng, H. M.. 2012,, 9070. doi: 10.1021/ja302897b

    (52) Kim,H.; Kwon,O. S.; Kim,S.; Choi,W.; Kim, J. H.2016,, 1063.doi: 10.1039/c5ee03115j

    熔鹽輔助微波法制備g-C3N4包覆MgO-Al2O3-Fe2O3異質(zhì)結(jié)催化劑及其光催化制過氧化氫性能

    陳 鑫 胡紹爭*李 萍 李 薇 馬宏飛 陸 光

    (遼寧石油化工大學化學化工與環(huán)境學部,遼寧 撫順 113001)

    工業(yè)上,雙氧水的生產(chǎn)采用的是蒽醌法。此方法采用多步加氫和氧化過程,因此能耗很大。光催化制過氧化氫技術(shù)作為可持續(xù)和環(huán)境友好的新工藝,是傳統(tǒng)蒽醌和電化學法的優(yōu)秀替代者。本文采用熔鹽輔助微波法制備了g-C3N4包覆MgO-Al2O3-Fe2O3異質(zhì)結(jié)催化劑。制備的異質(zhì)結(jié)催化劑在可見光下表現(xiàn)出優(yōu)異的光催化制過氧化氫性能。熔鹽的引入改變催化劑形貌的同時也影響了原料三聚氰胺的縮聚度,進而影響了其能帶結(jié)構(gòu)。制備的包覆結(jié)構(gòu)能使兩組分形成最大面積的異質(zhì)結(jié)和強相互作用。這種強相互作用有利于光生電子-空穴對的分離和界面遷移,進而提高了過氧化氫的生成速率。制備的異質(zhì)結(jié)催化劑的雙氧水平衡濃度和生成速率分別為6.3 mmol·L?1和1.42 mmol·L?1·h?1,遠高于兩個單組份。不僅如此,制備的異質(zhì)結(jié)催化劑還能抑制過氧化氫的分解。本文通過自由基捕獲實驗探討了可能的反應機理和電子轉(zhuǎn)移路徑。

    石墨相氮化碳;包覆結(jié)構(gòu);異質(zhì)結(jié);制過氧化氫;熔鹽輔助微波法

    O643

    10.3866/PKU.WHXB201706153

    May 9, 2017;

    June 13, 2017;

    June 15, 2017.

    Corresponding author. Email: hushaozhenglnpu@163.com; Tel: +86-13470570415.

    The project was supported by the National Natural Science Foundation of China (41571464), Education Department of Liaoning Province, China (L2014145), and Natural Science Foundation of Liaoning Province, China (201602467).

    國家自然科學基金(41571464),遼寧省教育廳項目(L2014145)及遼寧省自然科學基金項目(201602467)資助

    猜你喜歡
    蒽醌熔鹽雙氧水
    熔鹽在片堿生產(chǎn)中的應用
    NaF-KF熔鹽體系制備Ti2CTx材料的研究
    陶瓷學報(2019年6期)2019-10-27 01:18:42
    大孔吸附樹脂純化決明子總蒽醌工藝
    中成藥(2018年10期)2018-10-26 03:41:32
    超聲輔助雙水相提取大黃中蒽醌類成分
    大黃總蒽醌提取物對腦缺血再灌注損傷的保護作用及其機制
    中成藥(2018年4期)2018-04-26 07:12:34
    純鈦的熔鹽滲硼
    大型燃氣熔鹽爐的研發(fā)和工藝控制
    工業(yè)爐(2016年1期)2016-02-27 12:34:11
    富錸渣雙氧水浸出液錸鉬分離工藝研究
    雙氧水裝置氧化殘液精制的研究及應用
    新健胃包芯片中大黃總蒽醌類成分提取因素的優(yōu)化
    在线观看一区二区三区| 全区人妻精品视频| 免费观看精品视频网站| 真实男女啪啪啪动态图| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 我的老师免费观看完整版| 国产午夜福利久久久久久| 人妻夜夜爽99麻豆av| 亚洲专区中文字幕在线| 亚洲成人中文字幕在线播放| 日韩 欧美 亚洲 中文字幕| www日本黄色视频网| 欧美在线黄色| 1024香蕉在线观看| 亚洲性夜色夜夜综合| 欧美成人性av电影在线观看| 最近最新免费中文字幕在线| 毛片女人毛片| 久久久久九九精品影院| 午夜福利视频1000在线观看| 男人的好看免费观看在线视频| 成人性生交大片免费视频hd| 国产亚洲欧美98| 丰满人妻熟妇乱又伦精品不卡| 日韩大尺度精品在线看网址| 久久久久免费精品人妻一区二区| 国产伦一二天堂av在线观看| 色老头精品视频在线观看| 三级男女做爰猛烈吃奶摸视频| 日韩欧美 国产精品| 日本与韩国留学比较| 久久天堂一区二区三区四区| www.999成人在线观看| 91麻豆精品激情在线观看国产| 国产精品一及| tocl精华| 国产精品一区二区免费欧美| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| a级毛片a级免费在线| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| ponron亚洲| 久久久水蜜桃国产精品网| 欧美乱妇无乱码| 91老司机精品| 男人舔女人的私密视频| 欧美日韩乱码在线| 色av中文字幕| 九九在线视频观看精品| www.999成人在线观看| 男人和女人高潮做爰伦理| 天堂网av新在线| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 女警被强在线播放| 欧美日韩国产亚洲二区| 国产一区在线观看成人免费| cao死你这个sao货| 级片在线观看| 日本黄大片高清| 久久久成人免费电影| 天天躁日日操中文字幕| 伦理电影免费视频| 婷婷精品国产亚洲av| 国产一区在线观看成人免费| 久久久国产精品麻豆| 嫩草影院入口| 级片在线观看| 夜夜看夜夜爽夜夜摸| 1024香蕉在线观看| 别揉我奶头~嗯~啊~动态视频| 中文字幕最新亚洲高清| 99久久久亚洲精品蜜臀av| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 亚洲av片天天在线观看| 国产一区二区在线观看日韩 | 国产精品久久久久久亚洲av鲁大| 51午夜福利影视在线观看| 久久久久国产一级毛片高清牌| 免费看光身美女| 最新中文字幕久久久久 | 国产亚洲精品一区二区www| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 天堂影院成人在线观看| ponron亚洲| 噜噜噜噜噜久久久久久91| aaaaa片日本免费| 91九色精品人成在线观看| 日本与韩国留学比较| 亚洲七黄色美女视频| 免费看日本二区| 婷婷亚洲欧美| 99精品欧美一区二区三区四区| 一a级毛片在线观看| 啪啪无遮挡十八禁网站| 欧美一级a爱片免费观看看| 黄色 视频免费看| 国产一区二区激情短视频| 99热6这里只有精品| 欧美乱码精品一区二区三区| 亚洲国产精品999在线| 岛国在线免费视频观看| 级片在线观看| 99国产极品粉嫩在线观看| 免费观看人在逋| 成人三级做爰电影| 成年女人看的毛片在线观看| 亚洲国产欧美人成| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久久电影 | 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| avwww免费| www.www免费av| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 99久久无色码亚洲精品果冻| 日日夜夜操网爽| 亚洲美女黄片视频| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 在线观看美女被高潮喷水网站 | 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 亚洲国产精品999在线| 母亲3免费完整高清在线观看| 一本精品99久久精品77| 国产精品影院久久| 一边摸一边抽搐一进一小说| 亚洲av成人一区二区三| 91麻豆精品激情在线观看国产| 别揉我奶头~嗯~啊~动态视频| 韩国av一区二区三区四区| 亚洲国产看品久久| 成人性生交大片免费视频hd| 亚洲色图av天堂| 日本精品一区二区三区蜜桃| 亚洲一区高清亚洲精品| 99视频精品全部免费 在线 | 国产乱人伦免费视频| 岛国视频午夜一区免费看| 午夜激情欧美在线| 小说图片视频综合网站| 国产精品亚洲一级av第二区| 久久久久久大精品| 伦理电影免费视频| www.自偷自拍.com| 在线观看午夜福利视频| 国产欧美日韩精品一区二区| av欧美777| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 午夜精品在线福利| 欧美激情久久久久久爽电影| 国产亚洲欧美在线一区二区| 日本在线视频免费播放| 精品人妻1区二区| 亚洲黑人精品在线| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av在线| 亚洲欧美日韩卡通动漫| 看免费av毛片| 99久久精品热视频| 亚洲成a人片在线一区二区| 一个人看的www免费观看视频| 天堂√8在线中文| 色视频www国产| 亚洲欧美精品综合一区二区三区| 中文字幕熟女人妻在线| 最近最新中文字幕大全电影3| 日本免费一区二区三区高清不卡| 欧美在线一区亚洲| 99热这里只有是精品50| 美女午夜性视频免费| 国产亚洲精品久久久com| 日韩欧美在线乱码| 男女床上黄色一级片免费看| 亚洲国产中文字幕在线视频| 男女午夜视频在线观看| 久9热在线精品视频| 不卡av一区二区三区| 丰满人妻一区二区三区视频av | 国产精品永久免费网站| 午夜福利18| 成人无遮挡网站| 99国产精品99久久久久| 欧美黄色片欧美黄色片| 色av中文字幕| 婷婷精品国产亚洲av在线| 麻豆av在线久日| 人人妻人人看人人澡| 国产高清激情床上av| 久99久视频精品免费| 欧美激情久久久久久爽电影| 天天添夜夜摸| 两个人看的免费小视频| 国产一区二区在线观看日韩 | 精品久久蜜臀av无| 不卡一级毛片| 免费搜索国产男女视频| 欧美日本视频| 午夜免费观看网址| 色av中文字幕| 午夜影院日韩av| 高清毛片免费观看视频网站| 亚洲最大成人中文| 最近视频中文字幕2019在线8| 成人18禁在线播放| 啦啦啦免费观看视频1| 好男人在线观看高清免费视频| 亚洲欧美日韩东京热| 中文字幕人妻丝袜一区二区| 日韩欧美在线二视频| 嫩草影视91久久| 免费看十八禁软件| 亚洲成av人片在线播放无| 欧美午夜高清在线| 久久草成人影院| 国产一区二区三区视频了| 18禁美女被吸乳视频| 脱女人内裤的视频| 男人舔女人下体高潮全视频| 成年免费大片在线观看| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| 中文在线观看免费www的网站| 久久人人精品亚洲av| 日本一二三区视频观看| 曰老女人黄片| 久久久国产精品麻豆| 中文字幕最新亚洲高清| 亚洲片人在线观看| 国产成人一区二区三区免费视频网站| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 黑人操中国人逼视频| 丰满人妻一区二区三区视频av | 亚洲在线观看片| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 国产亚洲精品av在线| 久久久成人免费电影| 免费在线观看亚洲国产| 国产高清视频在线播放一区| 又大又爽又粗| 黄色日韩在线| cao死你这个sao货| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇熟女久久| 最近最新中文字幕大全电影3| 国产精品久久久av美女十八| 午夜激情欧美在线| 国产爱豆传媒在线观看| 久久九九热精品免费| 亚洲欧美日韩东京热| 欧美一区二区国产精品久久精品| 两个人看的免费小视频| 免费av毛片视频| 国产单亲对白刺激| 国产av在哪里看| 后天国语完整版免费观看| h日本视频在线播放| 成在线人永久免费视频| 看黄色毛片网站| 宅男免费午夜| 亚洲国产中文字幕在线视频| 99re在线观看精品视频| 国产日本99.免费观看| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 91老司机精品| 亚洲av美国av| 欧美大码av| 五月伊人婷婷丁香| www国产在线视频色| 精品电影一区二区在线| 午夜精品在线福利| 国产99白浆流出| 中亚洲国语对白在线视频| 亚洲专区字幕在线| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 欧美在线黄色| 精品日产1卡2卡| 日韩欧美国产一区二区入口| 狂野欧美白嫩少妇大欣赏| 一区二区三区激情视频| 亚洲五月婷婷丁香| 免费av不卡在线播放| 欧美日韩乱码在线| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 国产激情欧美一区二区| 亚洲精品国产精品久久久不卡| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 熟女少妇亚洲综合色aaa.| 午夜福利18| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 丝袜人妻中文字幕| 小说图片视频综合网站| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 午夜亚洲福利在线播放| 一个人看视频在线观看www免费 | 美女扒开内裤让男人捅视频| av欧美777| 老司机福利观看| 国产三级在线视频| 成人鲁丝片一二三区免费| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| 999久久久国产精品视频| 最近在线观看免费完整版| 亚洲电影在线观看av| 国模一区二区三区四区视频 | 久久久国产成人免费| 欧美三级亚洲精品| 俺也久久电影网| 三级男女做爰猛烈吃奶摸视频| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻久久中文字幕3abv| 视频区欧美日本亚洲| 国产精品电影一区二区三区| 成年女人永久免费观看视频| 中文字幕av在线有码专区| 久久香蕉国产精品| 久久久久久久久中文| 波多野结衣高清作品| 中文在线观看免费www的网站| 99久久精品热视频| 一本精品99久久精品77| 亚洲av免费在线观看| 久久午夜综合久久蜜桃| 黄色视频,在线免费观看| 一级毛片高清免费大全| 露出奶头的视频| 窝窝影院91人妻| 九色成人免费人妻av| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 91av网站免费观看| 超碰成人久久| 欧美zozozo另类| 99国产精品一区二区三区| 日韩欧美免费精品| 少妇熟女aⅴ在线视频| 搡老妇女老女人老熟妇| 白带黄色成豆腐渣| 欧美xxxx黑人xx丫x性爽| 变态另类成人亚洲欧美熟女| 久久精品91无色码中文字幕| 亚洲 欧美 日韩 在线 免费| 欧美色视频一区免费| 不卡一级毛片| 国产美女午夜福利| 免费看a级黄色片| 两人在一起打扑克的视频| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 亚洲自拍偷在线| 久久久国产成人精品二区| 亚洲自拍偷在线| 中出人妻视频一区二区| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 国产主播在线观看一区二区| 伦理电影免费视频| 中文字幕人妻丝袜一区二区| 看片在线看免费视频| 欧美性猛交黑人性爽| 亚洲中文日韩欧美视频| 91av网站免费观看| 白带黄色成豆腐渣| 嫁个100分男人电影在线观看| 九九在线视频观看精品| 国产淫片久久久久久久久 | 中文字幕高清在线视频| 极品教师在线免费播放| www日本在线高清视频| 日韩av在线大香蕉| 三级男女做爰猛烈吃奶摸视频| a在线观看视频网站| 亚洲电影在线观看av| 1024手机看黄色片| 午夜福利在线在线| 欧美一级毛片孕妇| 日韩欧美一区二区三区在线观看| 中文在线观看免费www的网站| 亚洲av免费在线观看| 99热精品在线国产| 嫩草影院精品99| 搞女人的毛片| 啪啪无遮挡十八禁网站| 久久精品91蜜桃| 麻豆成人午夜福利视频| 久久久久亚洲av毛片大全| 国产97色在线日韩免费| 少妇丰满av| 99久久成人亚洲精品观看| 美女黄网站色视频| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 激情在线观看视频在线高清| 中亚洲国语对白在线视频| 一区二区三区激情视频| av女优亚洲男人天堂 | 日本三级黄在线观看| 国产精品久久久久久精品电影| 国产在线精品亚洲第一网站| 国产成人福利小说| 特级一级黄色大片| 18美女黄网站色大片免费观看| 亚洲熟女毛片儿| 最近在线观看免费完整版| 亚洲av成人不卡在线观看播放网| 欧美丝袜亚洲另类 | 国产综合懂色| 琪琪午夜伦伦电影理论片6080| 9191精品国产免费久久| 91久久精品国产一区二区成人 | 在线十欧美十亚洲十日本专区| 99国产精品一区二区蜜桃av| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看| 久久精品91蜜桃| 国产精品美女特级片免费视频播放器 | 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 88av欧美| 在线观看舔阴道视频| 亚洲欧美日韩卡通动漫| 精品国产亚洲在线| 国产麻豆成人av免费视频| av中文乱码字幕在线| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 国产精品电影一区二区三区| av在线天堂中文字幕| 国产精品国产高清国产av| 俺也久久电影网| 日本免费一区二区三区高清不卡| 国产97色在线日韩免费| 欧美日本视频| 亚洲av美国av| 亚洲午夜理论影院| 一夜夜www| 国产亚洲av高清不卡| 麻豆国产av国片精品| 国产av在哪里看| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 嫩草影院入口| 黄色 视频免费看| 女警被强在线播放| 99re在线观看精品视频| 国产成人av激情在线播放| 国产精品爽爽va在线观看网站| 成人高潮视频无遮挡免费网站| 午夜福利在线观看吧| 人妻夜夜爽99麻豆av| 18禁黄网站禁片午夜丰满| av国产免费在线观看| 最新美女视频免费是黄的| 琪琪午夜伦伦电影理论片6080| 免费在线观看视频国产中文字幕亚洲| 欧美成人一区二区免费高清观看 | 97超级碰碰碰精品色视频在线观看| 亚洲国产看品久久| 亚洲天堂国产精品一区在线| 亚洲精品美女久久久久99蜜臀| 搡老熟女国产l中国老女人| 两个人视频免费观看高清| 日本黄色视频三级网站网址| 狂野欧美白嫩少妇大欣赏| 99re在线观看精品视频| 国产高清三级在线| 国产精品女同一区二区软件 | 性色avwww在线观看| 男人舔女人的私密视频| 国产精品久久电影中文字幕| 长腿黑丝高跟| 真人做人爱边吃奶动态| 观看美女的网站| 在线a可以看的网站| 在线观看日韩欧美| 99re在线观看精品视频| 免费在线观看日本一区| 两个人视频免费观看高清| 国产极品精品免费视频能看的| 成年免费大片在线观看| 色吧在线观看| 国产亚洲精品一区二区www| 久久久久国内视频| 国产av在哪里看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 精品一区二区三区视频在线 | 91久久精品国产一区二区成人 | 日韩 欧美 亚洲 中文字幕| 夜夜躁狠狠躁天天躁| 免费大片18禁| 久久精品91蜜桃| 桃色一区二区三区在线观看| 91麻豆精品激情在线观看国产| 欧美高清成人免费视频www| 男女视频在线观看网站免费| 伊人久久大香线蕉亚洲五| 午夜成年电影在线免费观看| 欧美一区二区国产精品久久精品| 亚洲最大成人中文| 成年人黄色毛片网站| 2021天堂中文幕一二区在线观| 伦理电影免费视频| 亚洲无线在线观看| 婷婷精品国产亚洲av| 欧美日韩一级在线毛片| 亚洲成人中文字幕在线播放| 精品一区二区三区av网在线观看| 99国产综合亚洲精品| 网址你懂的国产日韩在线| 欧美色视频一区免费| 国产成人系列免费观看| 两个人看的免费小视频| 国产精品女同一区二区软件 | 露出奶头的视频| 亚洲欧美精品综合一区二区三区| 国产精品美女特级片免费视频播放器 | 麻豆av在线久日| 91字幕亚洲| 亚洲男人的天堂狠狠| 黄色女人牲交| 中文字幕最新亚洲高清| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产| 首页视频小说图片口味搜索| 午夜影院日韩av| 亚洲欧美精品综合久久99| 午夜福利欧美成人| 欧洲精品卡2卡3卡4卡5卡区| 精品国产美女av久久久久小说| 国产久久久一区二区三区| 久久亚洲精品不卡| 日本在线视频免费播放| 黄色女人牲交| 俺也久久电影网| 小说图片视频综合网站| 国产高潮美女av| 久久久色成人| 一级黄色大片毛片| 免费大片18禁| 91在线观看av| 国产成人精品无人区| 小说图片视频综合网站| 99精品久久久久人妻精品| 亚洲精品一区av在线观看| 国产v大片淫在线免费观看| 久久这里只有精品中国| 欧美大码av| 成人特级av手机在线观看| 特级一级黄色大片| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| 999久久久精品免费观看国产| 欧美日韩福利视频一区二区| 亚洲精品一区av在线观看| 亚洲成a人片在线一区二区| 亚洲精品在线美女| 狂野欧美白嫩少妇大欣赏| 一级a爱片免费观看的视频| 国产久久久一区二区三区| 久久香蕉国产精品| 欧美精品啪啪一区二区三区| 高清毛片免费观看视频网站| 日本五十路高清| 久久久久精品国产欧美久久久| 九九热线精品视视频播放| 亚洲欧美精品综合一区二区三区| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 亚洲欧洲精品一区二区精品久久久| 欧美性猛交黑人性爽| 一个人看的www免费观看视频| 在线观看日韩欧美| 午夜福利欧美成人| 欧美一级a爱片免费观看看| 国产蜜桃级精品一区二区三区| 怎么达到女性高潮| 91在线精品国自产拍蜜月 | 小蜜桃在线观看免费完整版高清| 亚洲av电影在线进入| www日本在线高清视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品在线美女| 一二三四在线观看免费中文在|