• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometry of time-dependent PT-symmetric quantum mechanics?

    2021-10-28 07:02:06DaJianZhang張大劍QinghaiWang王清海andJiangbinGong龔江濱
    Chinese Physics B 2021年10期
    關(guān)鍵詞:江濱張大

    Da-Jian Zhang(張大劍) Qing-hai Wang(王清海) and Jiangbin Gong(龔江濱)

    1Department of Physics,Shandong University,Jinan 250100,China

    2 Department of Physics,National University of Singapore,117551,Singapore

    Keywords: time-dependent PT-symmetric quantum mechanics, geometry, time-varying inner product, unconventional geometric phase

    1. Introduction

    Standard quantum mechanics is built upon a fixed Hilbert space,with the associated inner product of two complex vectors being defined by the Dirac bra-ket notation. However,such a quantum theory may not consistently treat physical problems with time-varying Hilbert spaces. For example, it is not obvious how to depict the dynamics of a particle in an infinitely deep square-well potential with a moving boundary,of which the instantaneous Hilbert space changes with time.It is thus necessary and motivating to formulate new types of quantum theories that allow the inner product to change along a parameter path.

    Inspired by the pioneering work of Bender and Boettcher concerning time-independent parity-time-reversal-symmetric(PT-symmetric)quantum mechanics(PTQM),[1]Gong and Wang proposed a Schr¨odinger-like equation capable of explicitly accounting for a time-varying inner product.[2]Such a proposal was further enriched and developed into a conceptual framework applicable to generic non-Hermitian systems,[3]in which a series of notions like the time-dependent Hilbert space,the observable,and the measurement postulate are formulated. These results lead to a consistent quantum theory extending the time-independentPTQM into the time-dependent domain,referred to as time-dependentPTQM hereafter.

    The advent of time-dependentPTQM has spurred a renewed interest in the fundamentals of quantum mechanics.[4–10]In particular, how to construct the timevarying inner product was demonstrated in Refs.[5,6]and how to define the energy observable for a time-dependent Hilbert space was discussed in Refs.[3,9]. Further developments are witnessed by the reexaminations of some interesting issues in statistics mechanics,[11–15]such as the Jarzynski equality[11,13]and the Crooks fluctuation theorem.[3,12]

    In this work,we explore the geometrical aspects of timedependentPTQM, which is a fascinating topic for the following reasons. First,given the fact that a time-varying inner product is always excluded in standard quantum mechanics,its nontrivial interplay with other concepts in quantum physics,e.g., the Berry phase,[16]is still not well understood in a unified fashion. Second,even in the absence of a time-varying inner product, geometric aspects of standard quantum mechanics are known to be of profound importance in various frontier topics of quantum information science and condensed-matter physics. One thus anticipates that physics arising from a timevarying inner product shall advance our fundamental understanding of the profound role of geometry in time-dependentPTQM. Last but not least, there have been ongoing investigations of physical properties, especially topological properties,ofPT-symmetric systems recently.[17–38]In view of this,a systematic inspection of the geometry of time-dependentPTQM would be a useful, perhaps indispensible, reference point to tackle physical problems involving time-varying system’s parameters.

    The purpose of this work is to present comprehensive and rigorous results regarding the geometry of time-dependentPTQM. To this end, we start with the identification of a geometric phase(GP)that emerges naturally from a cyclic evolution of aPT-symmetric system. Then,with the motivation of revealing the geometry underlying the GP,we formulate,in succession,a series of related differential-geometry concepts,including connection,curvature,parallel transport,metric tensor, and quantum geometric tensor. Of particular interest is the metric tensor advocated here, which may be Riemannian or pseudo-Riemannian,depending on the physical context under consideration. Its pseudo-Riemannian feature is absent in standard quantum mechanics. As detailed below,the findings of this work are applicable to a rather general physical context and include the results of Refs.[4,10]as special cases.

    To exemplify the application of our findings, we revisit one well-known example displaying the so-called unconventional GP,[39]which is the sum of a GP and a dynamical phase(DP)proportional to the GP,and as such,may not be well understood within the geometric theory in standard quantum mechanics. Here,we show that the unconventional GP,instead of being the sum of a GP and a DP, can be expressed as a single GP found in this paper, with the associated metric tensor categorized as a pseudo-Riemannian metric. This provides an interesting interpretation of the geometric nature of the unconventional GP.

    This paper is organized as follows. In Section 2, we recapitulate some fundamentals ofPTQM. In Section 3, we identify the GP. In Section 4, we formulate a series of differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.Section 5 presents our interpretation of the unconventional GP.Section 6 provides a general formula for GP which unifies several real and gauge-invariant GPs in the literature,and Section 7 concludes this work.

    2. Fundamentals of PT QM

    To present our findings clearly,we recapitulate some notions in time-dependentPTQM,[2,3]such as the metric operator, the physical Hilbert space, the physical observable, the Schr¨odinger-like equation,and the density operator.

    A positive-definite operatorWis said to be the metric operator for aPT-symmetric systemSwith unbrokenPTsymmetry if it satisfies

    whereHdenotes the Hamiltonian of the systemS. Usually,Hdepends on some system’s parametersλ:=(λ1,...,λm),which belong to a parameter manifoldM[m=dim(M)]representing the classical configuration of control fields. In the following,we denote the metric operator and the Hamiltonian byW(λ)andH(λ),respectively,in order to indicate their dependence on the parametersλ.

    The physical Hilbert space ofS,denoted as?(λ),is defined to be the Hilbert space endowed with the following inner product:

    which is dependent onλ. It is worth noting that two states|ψ〉∈?(λ)and|φ〉∈?(λ′)are not comparable whenλ/=λ′,as they belong to two different physical Hilbert spaces.

    An operatorOis said to be a physical observable ofSif it is a Hermitian operator under the new inner product in Eq.(2),

    or equivalently,

    Apparently,H(λ)is a physical observable. It has been argued thatH(λ)can be regarded as the energy observable ofS.[3,9]

    An evolution ofSis associated with a parameter pathλt ∈Mover a time interval[0,τ]. For this,the physical Hilbert space moves with time,and the evolving state|ψ(t)〉at timetbelongs to?(λt).The Schr¨odinger-like equation guaranteeing the unitarity of the evolution is found to be(ˉh=1)[2]

    For a state|ψ〉∈N(λ), the associated density operatorρis defined to be[3,10]

    It is easy to see thatρis a positive operator with respect to the inner product (2) and satisfies tr(ρ)=1 andρ2=ρ; that is,it fulfills the conditions of being a density operator for a pure state. Similar to the two states|ψ〉∈N(λ)and|φ〉∈N(λ′),their associated density operatorsρ=|ψ〉〈ψ|W(λ) andσ=|φ〉〈φ|W(λ′)can be regarded as identical if and only ifλ=λ′and|ψ〉= ei?|φ〉for some? ∈R.

    3. Geometric phase

    Let us consider the situation that the evolving state|ψ(t)〉ofSreturns to its initial physical state,|ψ(τ)〉= eiα|ψ(0)〉,and moreover, the system’s parameters return to their initial values,λτ=λ0. This defines a curve of density operators

    Equation(14)indicates that the phaseβdepends explicitly on the Hamiltonian and thus represents a DP.On the contrary,the phaseγ,as a factor obtained by removing the DP from the total phase, depends solely upon the closed curveCin Eq. (9),as will be proved shortly. Therefore,γis our GP.It is interesting to note that DP and GP for non-Hermitian systems were usually defined to be complex in the previous works(see,e.g.,Refs.[40,41]). By contrast,both the DP and GP defined here are real phase factors. Indeed, sinceH(t) is a physical observable satisfying Eq. (3), the term?φa(t),H(t)φa(t)?λtappearing in Eq. (14) is real, which leads to the fact thatβis real. The fact thatγis real follows immediately from the operation of taking the imaginary part of a complex number in Eq.(15).

    To prove thatγis uniquely determined byC,we resort to the following gauge-invariant formula ofγ:

    Here,the term e∫t0dsRe?φb(s),˙φb(s)?λshas been neglected,since it is a real and positive number and thus makes no contribution.Equation(22)clearly shows thatγis uniquely determined byC.

    It is worth noting that the result just presented includes the results of Refs.[4,10]as special cases. Indeed,the GP obtained in Refs.[4,10]is for the eigenstate ofH(λ),and therefore,is a counterpart of Berry’s phase.[16]In contrast,the GPγobtained here is for a generic cyclic state which may or may not be the eigenstate ofH(λ). In this sence,γis a counterpart of Aharonov–Anandan’s phase.[42]Moreover,it has been shown[3]that the dynamics of a generic non-Hermitian system can be described by the Schr¨odinger-like equation (5)with Eq. (6). This implies that the GP found here is applicable to a much more general physical context compared with Refs.[4,10].

    4. Differential geometry concepts

    There is a one–one correspondence between rays inR(λ)and density operators over?(λ). Indeed, given a ray [|ψ〉]inR(λ), one can assign to it a unique density operatorρover?(λ), which isρ=|ψ〉〈ψ|/?ψ,ψ ?λ. Conversely,given a density operatorρover?(λ), one can express it asρ=|ψ〉〈ψ| for some|ψ〉∈N(λ). Then, the unique ray associated toρis[|ψ〉]. Under the effect of this one–one correspondence,a curve inRcan be simply understood as a curve of density operators. Now,it becomes clear thatCin Eq.(9)is actually a curve in the space of raysR.

    A coordinate system can be established by considering a local patch onRand the region ofP(R,U(1)) over the patch. Let (λ1,...,λm,λm+1,...,λm+n) be the local coordinates of a point ofRon the patch. Here,λμ,μ=1,...,m,are the system’s parameters as before, used to specify which subset,R(λ), the point belongs to. The remainderλμ,μ=m+1,...,m+n, are used to represent local coordinates parameterizing the manifoldR(λ) [n= dim(R(λ))]. Then,the local coordinates of a point ofP(R,U(1)) can be expressed as (θ,λ1,...,λm,λm+1,...,λm+n), whereθ ∈R is defined up to an integer multiple of 2π.[43]Using these local coordinates, we can express density operators and states in a coordinate-dependent form. Since a density operatorρis a point ofR, it can be represented asρ=ρ(λ1,...,λm+n).Likewise,a state|φ〉,as a point ofP(R,U(1)),can be written as|φ〉=|φ(θ,λ1,...,λm+n)〉.

    With these notions, we may now start to formulate differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.

    4.1. Connection

    Equation(23)implies that the horizontal part satisfies

    4.2. Curvature

    4.3. Parallel transport

    A choice of connection is equivalent to a notion of parallel transport. By definition,a curve|φ(t)〉is said to be parallel transported along a curve in the base manifold if the vertical part of its tangent vector,i.e.,|˙φv(t)〉,vanishes. Using Eq.(23)and noting the relation|˙φ(t)〉=|˙φv(t)〉+|˙φh(t)〉,we have

    Therefore,|˙φv(t)〉vanishes if and only if

    representing the parallel transport condition associated with the connectionA. Equation (37) is a counterpart of the Berry–Simon parallel transport condition.[44]It depicts a parallel way of transporting|φ(t)〉along a curve inR. Evidently,|φb(t)〉fulfills Eq. (37) and hence is parallel transported. This transport is along the closed curveCin Eq. (9),since|φb(t)〉〈φb(t)|=ρ(t). Starting at an initial point|φb(0)〉,the transport will end at a different point|φb(τ)〉= eiγ|φb(0)〉,as can be easily verified by using Eq. (18). The difference,known as holonomy,is precisely our GPγ.

    4.4. Metric tensor

    To obtain a metric tensor, we resort to the formula for the fidelity between two nearby density operatorsρ(λ1,...,λm+n) andρ(λ1+δλ1,...,λm+n+δλm+n).[10]It reads

    4.5. Quantum geometric tensor

    This point can be easily verified by comparing Eq. (42) with Eq.(43).

    From Eqs.(45)and(46), it follows immediately that the quantum geometric tensor (43) depicts a unified picture: Its imaginary part gives the Berry curvature(35)and thus further determines the GP(31),whereas its real part induces the metric tensor(42)and thereby further determines the fidelity(39).

    5. On the unconventional geometric phase

    So far,we have presented our main findings,consisting of a GP and a series of differential geometry concepts, namely,connection, curvature, parallel transport, metric tensor, and quantum geometric tensor.To exemplify the application of our findings,we revisit one well-known example that yields an interesting GP,called the unconventional GP in the literature.[39]

    The physical model studied in Ref.[39]is a harmonic oscillator. Its Hamiltonian reads

    and|z〉denotes a coherent state. At the timet=τ:=2π/δ,the evolving state|?(t)〉returns to its initial physical state,i.e.,|?(τ)〉= eiγ(τ)|0〉, and it acquires a total phaseγ(τ). A remarkable observation made in Ref. [39] is thatγ(τ) has a nonzero DP component but is still of geometric nature, i.e.,it is an unconventional GP. In showing this, the DP and GP components ofγ(τ), denoted respectively byγdandγg, were calculated, and found to satisfyγd=ηγg(η/=0,?1). So,γ(τ)=(1+η)γg, indicating thatγ(τ) is of geometric nature as it inherits geometric features fromγg. Despite this interesting observation, it remains an open question whether the unconventional GP itself admits a geometric interpretation or not.

    Physically speaking,thePT-symmetric system and its equivalent Hermitian system may be considered two different interpretations of the dynamics of a same physical system.

    Suppose now thatz1(t) = iΩD(e?iδt ?1)eiφL/δ, i.e.,z1(t)=z(t). For this, Eq. (52) reduces to Eq. (47). Hence,the evolution of the Hermitian system is simply the evolution process studied in Ref. [39]. As another interpretation of the dynamics of the same physical system, thePT-symmetric system undergos the corresponding evolution|ψ(t)〉= e?2z1(t)a?|?(t)〉. Sincez1(τ)=z1(0)=0 and|?(τ)〉= eiγ(τ)|?(0)〉,this evolution is cyclic,and the evolving state|ψ(t)〉of thePT-symmetric system acquires the same total phaseγ(τ) as that of the Hermitian system. Note that for thePT-symmetric system, the total phase accumulated in any cyclic evolution is simply the GPγin Eq.(15),due to the vanishing of its Hamiltonian. Hence,γ(τ)=γ,i.e.,the unconventional GP is precisely the GP expressed by Eq.(15).

    To shed more light on the unconventional GP, we calculate the quantum geometric tensor in Eq. (43), with which,we further obtain the curvatureΩand the metric ds2. To do this, we find the evolution operator of thePT-symmetric system. Using magnus expansion[47]and noting that the commutator ofK(t) at different time is a number, we have that the evolution operator reads e?2z1(t)a?D(z1(t)), up to a global phase factor,whereD(z1):= ez1a??z1?ais the displacement operator. So, starting at an arbitrary coherent state|“some complex number”〉, the evolving state|ψ(t)〉reads|ψ(t)〉= e?2z1(t)a?|z1(t)+“some complex number”〉, up to a phase factor. So,the evolving state is of the form e?2z1a?|z2〉,wherez2=z1(t)+“some complex number”. Substituting e?2z1a?|z2〉into Eq.(43),i.e.,setting|φ〉and|φ〉appearing in Eq.(43)as|φ〉= e?2z1a?|z2〉and|φ〉= e2z1?a|z2〉,we obtain,after tedious but straightforward calculations,

    That is,

    For the evolution process studied in Ref.[39],in which the initial state is|0〉,we havez1(t)=z2(t),leading to the constraintsλ1=λ3andλ2=λ4. Substitutingλ1=λ3andλ2=λ4into Eq.(55), we haveΩ=?2dλ1∧dλ2. From Eq. (45), it follows that

    6. A general geometric phase

    It may be an interesting topic for future work to generalize the GP found here to a more general setting,[48]like the non-cyclic case considered in Ref. [49]. This is a non-trivial problem, as the Hilbert space?(t) changes with timetin general.[3]To shed some light on the problem,we provide one possible way to achieve the generalization,

    where|ψ(t)〉is an (unnormalized) state in?(t) andW(t) is the(time-dependent)metric operator associated with?(t).[3]Mathematically, the GP is defined as a functional of a state and the metric operator,γ=γ[ψ(t),W(t)]. It is easy to see thatγdefined in Eq. (59) is gauge-invariant and reduces to the GP given by Eq. (15) in cyclic cases. With the choice of Dirac inner-product, i.e.,W(t)=1, Eq. (59) reproduces AA phase for the cyclic states in Ref.[48]and non-cyclic states in Ref. [50]. Thus, the GP defined in Eq. (59) unifies real and gauge-invariant geometric phases in non-Hermitian systems.

    7. Conclusion

    We have presented a series of results on the geometry of time-dependentPTQM.Specifically,they are the GP(15),the connection(28),the curvature(35),the parallel transport condition(37),the metric tensor(42),and the quantum geometric tensor(43). The GP emerges naturally from cyclic evolutions ofPT-symmetric systems,and it may be regarded as a counterpart of Aharonov–Anandan’s phase. The connection and curvature are responsible for the appearance of the GP,as expressed by Eqs.(30)and(31). The quantum geometric tensor is a unifying concept, of which the imaginary part gives the curvature and the real part induces the metric tensor, as described by Eqs.(45)and(46),respectively.

    These results constitute a useful, perhaps indispensible,tool to tackle geometric problems involvingPT-symmetric systems with time-varying system’s parameters. As an illustration of their usefulness, we have solved the open question whether the unconventional GP admits a geometric interpretation or not. Specifically,we have shown that the unconventional GP,instead of being the sum of a DP and a GP,can be expressed as the single GP in Eq. (15), thus making its geometric nature undoubtedly clear.

    Of particular interest is the finding that the metric tensor(42)may be pseudo-Riemannian,which is elusive in standard quantum mechanics. This leads to the intriguing fact that there can exist three types of evolutions for aPT-symmetric system, i.e., spacelike, lightlike, and timelike evolutions, as shown in the example involving the unconventional GP. Further studies on the implications/applications of the pseudo-Riemannian feature are highly desirable.

    猜你喜歡
    江濱張大
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    休妻用狠招
    百家講壇(2020年8期)2020-09-26 10:38:54
    吃蝦記
    張大林美術(shù)作品欣賞
    九旬老太越活越精彩
    新天地(2018年12期)2018-12-24 09:53:16
    張大春讓健康從業(yè)者偉大起來(lái)
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    心為濟(jì)世挽沉疴——訪廣西江濱醫(yī)院中醫(yī)皮膚科副主任醫(yī)師唐偉東
    金色年華(2016年13期)2016-02-28 01:43:05
    暗戀桃花源
    家長(zhǎng)會(huì)
    日韩成人在线观看一区二区三区| 在线观看午夜福利视频| 日本黄色片子视频| 欧美高清成人免费视频www| 三级男女做爰猛烈吃奶摸视频| 亚洲 国产 在线| 高清日韩中文字幕在线| 欧美成人a在线观看| 欧美日韩福利视频一区二区| 国产精品一区二区免费欧美| 不卡一级毛片| 九色成人免费人妻av| 久久久久九九精品影院| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 男人狂女人下面高潮的视频| 黄色配什么色好看| 草草在线视频免费看| 久久久久久大精品| 国产69精品久久久久777片| 麻豆一二三区av精品| 每晚都被弄得嗷嗷叫到高潮| 成年女人永久免费观看视频| 免费在线观看亚洲国产| 国产精品99久久久久久久久| 日韩人妻高清精品专区| 九九热线精品视视频播放| 最近在线观看免费完整版| 国产又黄又爽又无遮挡在线| 18+在线观看网站| 啦啦啦观看免费观看视频高清| 好男人在线观看高清免费视频| 狂野欧美白嫩少妇大欣赏| 免费在线观看成人毛片| 色av中文字幕| 怎么达到女性高潮| 国产精品99久久久久久久久| 国产乱人伦免费视频| 无遮挡黄片免费观看| 人妻久久中文字幕网| 国产视频内射| 日韩欧美在线二视频| 日日摸夜夜添夜夜添小说| 免费av观看视频| 免费看光身美女| 九九在线视频观看精品| 国产精品av视频在线免费观看| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 少妇熟女aⅴ在线视频| 亚洲自拍偷在线| 国产精品自产拍在线观看55亚洲| 性欧美人与动物交配| 久久久久久久久久成人| 最新中文字幕久久久久| 精品久久久久久久末码| 久久人妻av系列| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| a在线观看视频网站| 别揉我奶头 嗯啊视频| 一级黄色大片毛片| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 国内精品一区二区在线观看| 国产欧美日韩一区二区三| 一边摸一边抽搐一进一小说| 人妻丰满熟妇av一区二区三区| 精品一区二区三区人妻视频| 18禁在线播放成人免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 欧美午夜高清在线| 日韩有码中文字幕| 一个人看视频在线观看www免费| 久久国产乱子伦精品免费另类| 欧美性感艳星| 别揉我奶头 嗯啊视频| 国产欧美日韩精品一区二区| 久久精品91蜜桃| 欧美在线黄色| 亚洲无线在线观看| 色视频www国产| 欧美乱色亚洲激情| 免费av毛片视频| 男插女下体视频免费在线播放| 男女那种视频在线观看| 国产一级毛片七仙女欲春2| 久久人人爽人人爽人人片va | 午夜视频国产福利| 丁香六月欧美| 女人十人毛片免费观看3o分钟| 欧美日韩福利视频一区二区| 精品久久久久久久久久免费视频| 欧美日本视频| 12—13女人毛片做爰片一| 欧美在线黄色| 欧美一区二区国产精品久久精品| 99久久九九国产精品国产免费| 亚洲人成网站在线播放欧美日韩| 国产高清激情床上av| 午夜亚洲福利在线播放| av女优亚洲男人天堂| 国产久久久一区二区三区| 人人妻人人看人人澡| 欧美激情国产日韩精品一区| 午夜福利在线观看免费完整高清在 | 欧美zozozo另类| 久9热在线精品视频| 首页视频小说图片口味搜索| 久久国产精品人妻蜜桃| 天天一区二区日本电影三级| 国产精品影院久久| 日韩欧美一区二区三区在线观看| av在线天堂中文字幕| 亚洲最大成人手机在线| 国产单亲对白刺激| 可以在线观看毛片的网站| 久久国产精品影院| 中文字幕人成人乱码亚洲影| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看| 午夜两性在线视频| 天堂动漫精品| 99久国产av精品| 亚洲经典国产精华液单 | 成人欧美大片| 最好的美女福利视频网| 男人的好看免费观看在线视频| 怎么达到女性高潮| eeuss影院久久| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 午夜福利在线在线| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 深夜a级毛片| 毛片一级片免费看久久久久 | 国内精品久久久久久久电影| 又黄又爽又免费观看的视频| 欧美日本亚洲视频在线播放| 露出奶头的视频| 亚洲欧美精品综合久久99| 亚洲专区国产一区二区| 色综合站精品国产| 亚洲男人的天堂狠狠| 午夜两性在线视频| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 日韩中文字幕欧美一区二区| 久久国产乱子免费精品| 亚洲一区二区三区不卡视频| 91字幕亚洲| АⅤ资源中文在线天堂| 欧美黑人巨大hd| 夜夜夜夜夜久久久久| 尤物成人国产欧美一区二区三区| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 一卡2卡三卡四卡精品乱码亚洲| 婷婷六月久久综合丁香| 嫩草影院精品99| 简卡轻食公司| 国产高清三级在线| 人妻制服诱惑在线中文字幕| 国产白丝娇喘喷水9色精品| 国产不卡一卡二| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 日韩欧美在线乱码| 男人舔奶头视频| 色哟哟·www| 久9热在线精品视频| 国产色婷婷99| 欧美日韩黄片免| 欧美黑人欧美精品刺激| 禁无遮挡网站| 久久人妻av系列| 99视频精品全部免费 在线| 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 如何舔出高潮| 国内精品一区二区在线观看| av国产免费在线观看| 免费观看人在逋| 女人被狂操c到高潮| 欧美+日韩+精品| 亚洲 国产 在线| 国产av不卡久久| 日韩亚洲欧美综合| 欧美一级a爱片免费观看看| 亚洲精品在线美女| 亚洲精品色激情综合| 男人的好看免费观看在线视频| 国产综合懂色| 九九在线视频观看精品| 亚洲,欧美精品.| 午夜福利视频1000在线观看| 天堂网av新在线| 国产精品久久久久久久电影| 亚洲,欧美精品.| 午夜精品久久久久久毛片777| 99热这里只有是精品50| 久久久久久九九精品二区国产| 少妇被粗大猛烈的视频| 久久久久久大精品| 麻豆成人午夜福利视频| 99精品在免费线老司机午夜| 国产精品一区二区性色av| 精品午夜福利在线看| 在现免费观看毛片| 亚洲在线观看片| 九九在线视频观看精品| 久久久久久久久久黄片| 久久午夜亚洲精品久久| 免费在线观看日本一区| 日韩欧美 国产精品| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 看黄色毛片网站| 久久久成人免费电影| 国产美女午夜福利| 欧美最新免费一区二区三区 | 在现免费观看毛片| 又黄又爽又免费观看的视频| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 波多野结衣高清无吗| 亚洲精华国产精华精| 中文字幕高清在线视频| 国产私拍福利视频在线观看| 中文字幕免费在线视频6| 每晚都被弄得嗷嗷叫到高潮| 亚洲精华国产精华精| 午夜日韩欧美国产| 亚洲18禁久久av| 99热这里只有是精品在线观看 | 青草久久国产| 国产色爽女视频免费观看| 97热精品久久久久久| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 欧美区成人在线视频| 国产精品久久久久久精品电影| 99久久无色码亚洲精品果冻| 九色国产91popny在线| 久久热精品热| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| 婷婷精品国产亚洲av| 久久久久久久久久黄片| 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 丝袜美腿在线中文| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 久久久久久久午夜电影| 亚洲最大成人手机在线| 亚洲欧美日韩高清在线视频| 亚洲中文字幕日韩| 亚洲av美国av| 亚洲成人久久爱视频| 午夜视频国产福利| 免费在线观看影片大全网站| 精品一区二区免费观看| 搡老妇女老女人老熟妇| 国产成人啪精品午夜网站| 在线天堂最新版资源| 国产av不卡久久| 国产视频内射| 黄色配什么色好看| 日韩中字成人| 俺也久久电影网| 亚洲三级黄色毛片| 欧美三级亚洲精品| 久久精品国产自在天天线| or卡值多少钱| 久久久久性生活片| 窝窝影院91人妻| 欧美一区二区精品小视频在线| 一个人免费在线观看的高清视频| 亚洲一区高清亚洲精品| 伦理电影大哥的女人| 日韩欧美一区二区三区在线观看| 成年人黄色毛片网站| av专区在线播放| 久久人人精品亚洲av| 国产精品久久视频播放| 精品乱码久久久久久99久播| 亚洲欧美清纯卡通| 国产探花在线观看一区二区| 国产爱豆传媒在线观看| 国产精品自产拍在线观看55亚洲| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 日本 av在线| 在线观看午夜福利视频| 怎么达到女性高潮| 久久久久久久久久黄片| 国产又黄又爽又无遮挡在线| 国产蜜桃级精品一区二区三区| 久久精品国产99精品国产亚洲性色| 91午夜精品亚洲一区二区三区 | x7x7x7水蜜桃| 日韩欧美国产一区二区入口| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区视频了| 久久午夜福利片| 国产成+人综合+亚洲专区| 色综合站精品国产| 久久久久久久久中文| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 又爽又黄无遮挡网站| 亚洲真实伦在线观看| 熟女人妻精品中文字幕| 亚洲 国产 在线| 一级作爱视频免费观看| ponron亚洲| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 国产视频一区二区在线看| 亚洲精华国产精华精| 激情在线观看视频在线高清| 毛片一级片免费看久久久久 | 人妻夜夜爽99麻豆av| 婷婷色综合www| 最近中文字幕2019免费版| 亚洲婷婷狠狠爱综合网| 99精国产麻豆久久婷婷| 男插女下体视频免费在线播放| 99精国产麻豆久久婷婷| 禁无遮挡网站| 我的老师免费观看完整版| 美女cb高潮喷水在线观看| 色网站视频免费| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 国语对白做爰xxxⅹ性视频网站| 亚洲经典国产精华液单| 丰满少妇做爰视频| 国产精品久久久久久久电影| 国产精品熟女久久久久浪| 免费观看av网站的网址| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃 | 国产爱豆传媒在线观看| 51国产日韩欧美| 大陆偷拍与自拍| 免费大片18禁| 大又大粗又爽又黄少妇毛片口| 麻豆成人午夜福利视频| 人妻一区二区av| 久久久久精品久久久久真实原创| 最近手机中文字幕大全| 尾随美女入室| 少妇人妻久久综合中文| 久久久久国产精品人妻一区二区| 五月开心婷婷网| 国产成年人精品一区二区| 女人被狂操c到高潮| 国产男女超爽视频在线观看| 国产成人福利小说| 九九爱精品视频在线观看| 久久久久久九九精品二区国产| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 日韩伦理黄色片| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看| 少妇的逼好多水| 国产爽快片一区二区三区| 久久热精品热| 一级毛片我不卡| 不卡视频在线观看欧美| 一级片'在线观看视频| 直男gayav资源| 少妇人妻久久综合中文| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 80岁老熟妇乱子伦牲交| 免费大片18禁| 成人免费观看视频高清| 亚洲欧美清纯卡通| 欧美精品人与动牲交sv欧美| 青春草国产在线视频| 91aial.com中文字幕在线观看| 美女视频免费永久观看网站| 九九久久精品国产亚洲av麻豆| 亚洲av在线观看美女高潮| 我的女老师完整版在线观看| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| 男人添女人高潮全过程视频| 国产精品三级大全| 熟女av电影| 久久久久久久精品精品| av福利片在线观看| 五月天丁香电影| av网站免费在线观看视频| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 久久这里有精品视频免费| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说 | 大香蕉97超碰在线| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| 在线亚洲精品国产二区图片欧美 | av一本久久久久| 新久久久久国产一级毛片| 亚洲熟女精品中文字幕| 国产人妻一区二区三区在| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 男女那种视频在线观看| 草草在线视频免费看| 亚洲精品中文字幕在线视频 | 五月天丁香电影| 观看免费一级毛片| 男女那种视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲国产最新在线播放| 中国美白少妇内射xxxbb| 午夜激情久久久久久久| 亚洲天堂国产精品一区在线| 精品久久久久久久久亚洲| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| 男人和女人高潮做爰伦理| 国产熟女欧美一区二区| 亚洲成人精品中文字幕电影| 综合色av麻豆| 国产成人精品一,二区| 26uuu在线亚洲综合色| 国产乱来视频区| 亚洲国产高清在线一区二区三| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 少妇的逼好多水| 高清在线视频一区二区三区| 欧美日韩在线观看h| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 最近最新中文字幕免费大全7| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 伦精品一区二区三区| 2018国产大陆天天弄谢| av线在线观看网站| 精品久久久久久久久亚洲| 国产精品一区www在线观看| 国产老妇女一区| 91在线精品国自产拍蜜月| 精品久久久久久久人妻蜜臀av| 精品一区二区免费观看| 性色av一级| 男人舔奶头视频| 婷婷色av中文字幕| 国产精品久久久久久精品电影| 国产精品麻豆人妻色哟哟久久| 少妇的逼好多水| 熟女av电影| 免费观看无遮挡的男女| av.在线天堂| 国产美女午夜福利| 日本色播在线视频| 如何舔出高潮| 国产黄频视频在线观看| 精品久久久久久久久亚洲| 亚洲综合精品二区| 欧美最新免费一区二区三区| 91久久精品国产一区二区成人| 久久精品国产亚洲av涩爱| 久久ye,这里只有精品| 夜夜爽夜夜爽视频| 亚洲一级一片aⅴ在线观看| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 国产高潮美女av| 禁无遮挡网站| 插逼视频在线观看| 91久久精品国产一区二区成人| 在线精品无人区一区二区三 | 一级片'在线观看视频| 人人妻人人看人人澡| 久久97久久精品| 免费av不卡在线播放| 国产黄色视频一区二区在线观看| 26uuu在线亚洲综合色| 大又大粗又爽又黄少妇毛片口| 视频中文字幕在线观看| 在线天堂最新版资源| 久久久久性生活片| 七月丁香在线播放| 中文资源天堂在线| 免费大片18禁| 欧美人与善性xxx| 国产亚洲91精品色在线| 欧美性感艳星| 99久久精品一区二区三区| 日韩三级伦理在线观看| 国产一区有黄有色的免费视频| 国产一区亚洲一区在线观看| 久久久久久久久久成人| 2021少妇久久久久久久久久久| 日产精品乱码卡一卡2卡三| 直男gayav资源| 精品一区在线观看国产| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性bbbbbb| 国产精品av视频在线免费观看| 久久久精品免费免费高清| 欧美激情在线99| 成人毛片a级毛片在线播放| 日本黄色片子视频| 国产成年人精品一区二区| 搞女人的毛片| 国产精品嫩草影院av在线观看| 中文欧美无线码| 国产一区有黄有色的免费视频| 亚洲av一区综合| 欧美三级亚洲精品| 香蕉精品网在线| 少妇的逼好多水| 女人久久www免费人成看片| 亚洲成人久久爱视频| 日韩不卡一区二区三区视频在线| 少妇的逼水好多| 亚洲国产最新在线播放| av播播在线观看一区| 国产一区有黄有色的免费视频| 日韩成人av中文字幕在线观看| 国内精品美女久久久久久| 女的被弄到高潮叫床怎么办| 国产av不卡久久| 黄色配什么色好看| 亚洲人与动物交配视频| 亚洲av男天堂| 99re6热这里在线精品视频| 在线 av 中文字幕| 日韩伦理黄色片| 80岁老熟妇乱子伦牲交| 成人无遮挡网站| 亚洲真实伦在线观看| 国产一区有黄有色的免费视频| 精品少妇久久久久久888优播| 亚洲av日韩在线播放| 在线亚洲精品国产二区图片欧美 | 国产伦精品一区二区三区四那| 91精品伊人久久大香线蕉| 国产黄色免费在线视频| 久久久a久久爽久久v久久| 校园人妻丝袜中文字幕| 欧美精品一区二区大全| 直男gayav资源| 美女xxoo啪啪120秒动态图| 制服丝袜香蕉在线| 99热这里只有是精品在线观看| 99热国产这里只有精品6| 老女人水多毛片| 免费高清在线观看视频在线观看| 亚洲色图综合在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人综合色| 久久久久国产网址| 国产精品久久久久久av不卡| 成人毛片60女人毛片免费| 三级国产精品片| 少妇人妻久久综合中文| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 三级经典国产精品| 亚洲国产色片| 自拍偷自拍亚洲精品老妇| 女的被弄到高潮叫床怎么办| 丰满人妻一区二区三区视频av| 男人添女人高潮全过程视频| 偷拍熟女少妇极品色| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲一级一片aⅴ在线观看| 亚洲av免费高清在线观看| 亚洲第一区二区三区不卡| 久久久久性生活片| 九九久久精品国产亚洲av麻豆| 亚洲精品一区蜜桃| 18禁裸乳无遮挡动漫免费视频 | 丰满乱子伦码专区| 看免费成人av毛片| 国产在线男女| 午夜福利视频精品| av播播在线观看一区| 免费人成在线观看视频色| 国模一区二区三区四区视频| 日本色播在线视频| 人人妻人人看人人澡| 一本一本综合久久| 亚洲av成人精品一二三区| 国产精品99久久久久久久久| 国产黄色视频一区二区在线观看|