• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometry of time-dependent PT-symmetric quantum mechanics?

    2021-10-28 07:02:06DaJianZhang張大劍QinghaiWang王清海andJiangbinGong龔江濱
    Chinese Physics B 2021年10期
    關(guān)鍵詞:江濱張大

    Da-Jian Zhang(張大劍) Qing-hai Wang(王清海) and Jiangbin Gong(龔江濱)

    1Department of Physics,Shandong University,Jinan 250100,China

    2 Department of Physics,National University of Singapore,117551,Singapore

    Keywords: time-dependent PT-symmetric quantum mechanics, geometry, time-varying inner product, unconventional geometric phase

    1. Introduction

    Standard quantum mechanics is built upon a fixed Hilbert space,with the associated inner product of two complex vectors being defined by the Dirac bra-ket notation. However,such a quantum theory may not consistently treat physical problems with time-varying Hilbert spaces. For example, it is not obvious how to depict the dynamics of a particle in an infinitely deep square-well potential with a moving boundary,of which the instantaneous Hilbert space changes with time.It is thus necessary and motivating to formulate new types of quantum theories that allow the inner product to change along a parameter path.

    Inspired by the pioneering work of Bender and Boettcher concerning time-independent parity-time-reversal-symmetric(PT-symmetric)quantum mechanics(PTQM),[1]Gong and Wang proposed a Schr¨odinger-like equation capable of explicitly accounting for a time-varying inner product.[2]Such a proposal was further enriched and developed into a conceptual framework applicable to generic non-Hermitian systems,[3]in which a series of notions like the time-dependent Hilbert space,the observable,and the measurement postulate are formulated. These results lead to a consistent quantum theory extending the time-independentPTQM into the time-dependent domain,referred to as time-dependentPTQM hereafter.

    The advent of time-dependentPTQM has spurred a renewed interest in the fundamentals of quantum mechanics.[4–10]In particular, how to construct the timevarying inner product was demonstrated in Refs.[5,6]and how to define the energy observable for a time-dependent Hilbert space was discussed in Refs.[3,9]. Further developments are witnessed by the reexaminations of some interesting issues in statistics mechanics,[11–15]such as the Jarzynski equality[11,13]and the Crooks fluctuation theorem.[3,12]

    In this work,we explore the geometrical aspects of timedependentPTQM, which is a fascinating topic for the following reasons. First,given the fact that a time-varying inner product is always excluded in standard quantum mechanics,its nontrivial interplay with other concepts in quantum physics,e.g., the Berry phase,[16]is still not well understood in a unified fashion. Second,even in the absence of a time-varying inner product, geometric aspects of standard quantum mechanics are known to be of profound importance in various frontier topics of quantum information science and condensed-matter physics. One thus anticipates that physics arising from a timevarying inner product shall advance our fundamental understanding of the profound role of geometry in time-dependentPTQM. Last but not least, there have been ongoing investigations of physical properties, especially topological properties,ofPT-symmetric systems recently.[17–38]In view of this,a systematic inspection of the geometry of time-dependentPTQM would be a useful, perhaps indispensible, reference point to tackle physical problems involving time-varying system’s parameters.

    The purpose of this work is to present comprehensive and rigorous results regarding the geometry of time-dependentPTQM. To this end, we start with the identification of a geometric phase(GP)that emerges naturally from a cyclic evolution of aPT-symmetric system. Then,with the motivation of revealing the geometry underlying the GP,we formulate,in succession,a series of related differential-geometry concepts,including connection,curvature,parallel transport,metric tensor, and quantum geometric tensor. Of particular interest is the metric tensor advocated here, which may be Riemannian or pseudo-Riemannian,depending on the physical context under consideration. Its pseudo-Riemannian feature is absent in standard quantum mechanics. As detailed below,the findings of this work are applicable to a rather general physical context and include the results of Refs.[4,10]as special cases.

    To exemplify the application of our findings, we revisit one well-known example displaying the so-called unconventional GP,[39]which is the sum of a GP and a dynamical phase(DP)proportional to the GP,and as such,may not be well understood within the geometric theory in standard quantum mechanics. Here,we show that the unconventional GP,instead of being the sum of a GP and a DP, can be expressed as a single GP found in this paper, with the associated metric tensor categorized as a pseudo-Riemannian metric. This provides an interesting interpretation of the geometric nature of the unconventional GP.

    This paper is organized as follows. In Section 2, we recapitulate some fundamentals ofPTQM. In Section 3, we identify the GP. In Section 4, we formulate a series of differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.Section 5 presents our interpretation of the unconventional GP.Section 6 provides a general formula for GP which unifies several real and gauge-invariant GPs in the literature,and Section 7 concludes this work.

    2. Fundamentals of PT QM

    To present our findings clearly,we recapitulate some notions in time-dependentPTQM,[2,3]such as the metric operator, the physical Hilbert space, the physical observable, the Schr¨odinger-like equation,and the density operator.

    A positive-definite operatorWis said to be the metric operator for aPT-symmetric systemSwith unbrokenPTsymmetry if it satisfies

    whereHdenotes the Hamiltonian of the systemS. Usually,Hdepends on some system’s parametersλ:=(λ1,...,λm),which belong to a parameter manifoldM[m=dim(M)]representing the classical configuration of control fields. In the following,we denote the metric operator and the Hamiltonian byW(λ)andH(λ),respectively,in order to indicate their dependence on the parametersλ.

    The physical Hilbert space ofS,denoted as?(λ),is defined to be the Hilbert space endowed with the following inner product:

    which is dependent onλ. It is worth noting that two states|ψ〉∈?(λ)and|φ〉∈?(λ′)are not comparable whenλ/=λ′,as they belong to two different physical Hilbert spaces.

    An operatorOis said to be a physical observable ofSif it is a Hermitian operator under the new inner product in Eq.(2),

    or equivalently,

    Apparently,H(λ)is a physical observable. It has been argued thatH(λ)can be regarded as the energy observable ofS.[3,9]

    An evolution ofSis associated with a parameter pathλt ∈Mover a time interval[0,τ]. For this,the physical Hilbert space moves with time,and the evolving state|ψ(t)〉at timetbelongs to?(λt).The Schr¨odinger-like equation guaranteeing the unitarity of the evolution is found to be(ˉh=1)[2]

    For a state|ψ〉∈N(λ), the associated density operatorρis defined to be[3,10]

    It is easy to see thatρis a positive operator with respect to the inner product (2) and satisfies tr(ρ)=1 andρ2=ρ; that is,it fulfills the conditions of being a density operator for a pure state. Similar to the two states|ψ〉∈N(λ)and|φ〉∈N(λ′),their associated density operatorsρ=|ψ〉〈ψ|W(λ) andσ=|φ〉〈φ|W(λ′)can be regarded as identical if and only ifλ=λ′and|ψ〉= ei?|φ〉for some? ∈R.

    3. Geometric phase

    Let us consider the situation that the evolving state|ψ(t)〉ofSreturns to its initial physical state,|ψ(τ)〉= eiα|ψ(0)〉,and moreover, the system’s parameters return to their initial values,λτ=λ0. This defines a curve of density operators

    Equation(14)indicates that the phaseβdepends explicitly on the Hamiltonian and thus represents a DP.On the contrary,the phaseγ,as a factor obtained by removing the DP from the total phase, depends solely upon the closed curveCin Eq. (9),as will be proved shortly. Therefore,γis our GP.It is interesting to note that DP and GP for non-Hermitian systems were usually defined to be complex in the previous works(see,e.g.,Refs.[40,41]). By contrast,both the DP and GP defined here are real phase factors. Indeed, sinceH(t) is a physical observable satisfying Eq. (3), the term?φa(t),H(t)φa(t)?λtappearing in Eq. (14) is real, which leads to the fact thatβis real. The fact thatγis real follows immediately from the operation of taking the imaginary part of a complex number in Eq.(15).

    To prove thatγis uniquely determined byC,we resort to the following gauge-invariant formula ofγ:

    Here,the term e∫t0dsRe?φb(s),˙φb(s)?λshas been neglected,since it is a real and positive number and thus makes no contribution.Equation(22)clearly shows thatγis uniquely determined byC.

    It is worth noting that the result just presented includes the results of Refs.[4,10]as special cases. Indeed,the GP obtained in Refs.[4,10]is for the eigenstate ofH(λ),and therefore,is a counterpart of Berry’s phase.[16]In contrast,the GPγobtained here is for a generic cyclic state which may or may not be the eigenstate ofH(λ). In this sence,γis a counterpart of Aharonov–Anandan’s phase.[42]Moreover,it has been shown[3]that the dynamics of a generic non-Hermitian system can be described by the Schr¨odinger-like equation (5)with Eq. (6). This implies that the GP found here is applicable to a much more general physical context compared with Refs.[4,10].

    4. Differential geometry concepts

    There is a one–one correspondence between rays inR(λ)and density operators over?(λ). Indeed, given a ray [|ψ〉]inR(λ), one can assign to it a unique density operatorρover?(λ), which isρ=|ψ〉〈ψ|/?ψ,ψ ?λ. Conversely,given a density operatorρover?(λ), one can express it asρ=|ψ〉〈ψ| for some|ψ〉∈N(λ). Then, the unique ray associated toρis[|ψ〉]. Under the effect of this one–one correspondence,a curve inRcan be simply understood as a curve of density operators. Now,it becomes clear thatCin Eq.(9)is actually a curve in the space of raysR.

    A coordinate system can be established by considering a local patch onRand the region ofP(R,U(1)) over the patch. Let (λ1,...,λm,λm+1,...,λm+n) be the local coordinates of a point ofRon the patch. Here,λμ,μ=1,...,m,are the system’s parameters as before, used to specify which subset,R(λ), the point belongs to. The remainderλμ,μ=m+1,...,m+n, are used to represent local coordinates parameterizing the manifoldR(λ) [n= dim(R(λ))]. Then,the local coordinates of a point ofP(R,U(1)) can be expressed as (θ,λ1,...,λm,λm+1,...,λm+n), whereθ ∈R is defined up to an integer multiple of 2π.[43]Using these local coordinates, we can express density operators and states in a coordinate-dependent form. Since a density operatorρis a point ofR, it can be represented asρ=ρ(λ1,...,λm+n).Likewise,a state|φ〉,as a point ofP(R,U(1)),can be written as|φ〉=|φ(θ,λ1,...,λm+n)〉.

    With these notions, we may now start to formulate differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.

    4.1. Connection

    Equation(23)implies that the horizontal part satisfies

    4.2. Curvature

    4.3. Parallel transport

    A choice of connection is equivalent to a notion of parallel transport. By definition,a curve|φ(t)〉is said to be parallel transported along a curve in the base manifold if the vertical part of its tangent vector,i.e.,|˙φv(t)〉,vanishes. Using Eq.(23)and noting the relation|˙φ(t)〉=|˙φv(t)〉+|˙φh(t)〉,we have

    Therefore,|˙φv(t)〉vanishes if and only if

    representing the parallel transport condition associated with the connectionA. Equation (37) is a counterpart of the Berry–Simon parallel transport condition.[44]It depicts a parallel way of transporting|φ(t)〉along a curve inR. Evidently,|φb(t)〉fulfills Eq. (37) and hence is parallel transported. This transport is along the closed curveCin Eq. (9),since|φb(t)〉〈φb(t)|=ρ(t). Starting at an initial point|φb(0)〉,the transport will end at a different point|φb(τ)〉= eiγ|φb(0)〉,as can be easily verified by using Eq. (18). The difference,known as holonomy,is precisely our GPγ.

    4.4. Metric tensor

    To obtain a metric tensor, we resort to the formula for the fidelity between two nearby density operatorsρ(λ1,...,λm+n) andρ(λ1+δλ1,...,λm+n+δλm+n).[10]It reads

    4.5. Quantum geometric tensor

    This point can be easily verified by comparing Eq. (42) with Eq.(43).

    From Eqs.(45)and(46), it follows immediately that the quantum geometric tensor (43) depicts a unified picture: Its imaginary part gives the Berry curvature(35)and thus further determines the GP(31),whereas its real part induces the metric tensor(42)and thereby further determines the fidelity(39).

    5. On the unconventional geometric phase

    So far,we have presented our main findings,consisting of a GP and a series of differential geometry concepts, namely,connection, curvature, parallel transport, metric tensor, and quantum geometric tensor.To exemplify the application of our findings,we revisit one well-known example that yields an interesting GP,called the unconventional GP in the literature.[39]

    The physical model studied in Ref.[39]is a harmonic oscillator. Its Hamiltonian reads

    and|z〉denotes a coherent state. At the timet=τ:=2π/δ,the evolving state|?(t)〉returns to its initial physical state,i.e.,|?(τ)〉= eiγ(τ)|0〉, and it acquires a total phaseγ(τ). A remarkable observation made in Ref. [39] is thatγ(τ) has a nonzero DP component but is still of geometric nature, i.e.,it is an unconventional GP. In showing this, the DP and GP components ofγ(τ), denoted respectively byγdandγg, were calculated, and found to satisfyγd=ηγg(η/=0,?1). So,γ(τ)=(1+η)γg, indicating thatγ(τ) is of geometric nature as it inherits geometric features fromγg. Despite this interesting observation, it remains an open question whether the unconventional GP itself admits a geometric interpretation or not.

    Physically speaking,thePT-symmetric system and its equivalent Hermitian system may be considered two different interpretations of the dynamics of a same physical system.

    Suppose now thatz1(t) = iΩD(e?iδt ?1)eiφL/δ, i.e.,z1(t)=z(t). For this, Eq. (52) reduces to Eq. (47). Hence,the evolution of the Hermitian system is simply the evolution process studied in Ref. [39]. As another interpretation of the dynamics of the same physical system, thePT-symmetric system undergos the corresponding evolution|ψ(t)〉= e?2z1(t)a?|?(t)〉. Sincez1(τ)=z1(0)=0 and|?(τ)〉= eiγ(τ)|?(0)〉,this evolution is cyclic,and the evolving state|ψ(t)〉of thePT-symmetric system acquires the same total phaseγ(τ) as that of the Hermitian system. Note that for thePT-symmetric system, the total phase accumulated in any cyclic evolution is simply the GPγin Eq.(15),due to the vanishing of its Hamiltonian. Hence,γ(τ)=γ,i.e.,the unconventional GP is precisely the GP expressed by Eq.(15).

    To shed more light on the unconventional GP, we calculate the quantum geometric tensor in Eq. (43), with which,we further obtain the curvatureΩand the metric ds2. To do this, we find the evolution operator of thePT-symmetric system. Using magnus expansion[47]and noting that the commutator ofK(t) at different time is a number, we have that the evolution operator reads e?2z1(t)a?D(z1(t)), up to a global phase factor,whereD(z1):= ez1a??z1?ais the displacement operator. So, starting at an arbitrary coherent state|“some complex number”〉, the evolving state|ψ(t)〉reads|ψ(t)〉= e?2z1(t)a?|z1(t)+“some complex number”〉, up to a phase factor. So,the evolving state is of the form e?2z1a?|z2〉,wherez2=z1(t)+“some complex number”. Substituting e?2z1a?|z2〉into Eq.(43),i.e.,setting|φ〉and|φ〉appearing in Eq.(43)as|φ〉= e?2z1a?|z2〉and|φ〉= e2z1?a|z2〉,we obtain,after tedious but straightforward calculations,

    That is,

    For the evolution process studied in Ref.[39],in which the initial state is|0〉,we havez1(t)=z2(t),leading to the constraintsλ1=λ3andλ2=λ4. Substitutingλ1=λ3andλ2=λ4into Eq.(55), we haveΩ=?2dλ1∧dλ2. From Eq. (45), it follows that

    6. A general geometric phase

    It may be an interesting topic for future work to generalize the GP found here to a more general setting,[48]like the non-cyclic case considered in Ref. [49]. This is a non-trivial problem, as the Hilbert space?(t) changes with timetin general.[3]To shed some light on the problem,we provide one possible way to achieve the generalization,

    where|ψ(t)〉is an (unnormalized) state in?(t) andW(t) is the(time-dependent)metric operator associated with?(t).[3]Mathematically, the GP is defined as a functional of a state and the metric operator,γ=γ[ψ(t),W(t)]. It is easy to see thatγdefined in Eq. (59) is gauge-invariant and reduces to the GP given by Eq. (15) in cyclic cases. With the choice of Dirac inner-product, i.e.,W(t)=1, Eq. (59) reproduces AA phase for the cyclic states in Ref.[48]and non-cyclic states in Ref. [50]. Thus, the GP defined in Eq. (59) unifies real and gauge-invariant geometric phases in non-Hermitian systems.

    7. Conclusion

    We have presented a series of results on the geometry of time-dependentPTQM.Specifically,they are the GP(15),the connection(28),the curvature(35),the parallel transport condition(37),the metric tensor(42),and the quantum geometric tensor(43). The GP emerges naturally from cyclic evolutions ofPT-symmetric systems,and it may be regarded as a counterpart of Aharonov–Anandan’s phase. The connection and curvature are responsible for the appearance of the GP,as expressed by Eqs.(30)and(31). The quantum geometric tensor is a unifying concept, of which the imaginary part gives the curvature and the real part induces the metric tensor, as described by Eqs.(45)and(46),respectively.

    These results constitute a useful, perhaps indispensible,tool to tackle geometric problems involvingPT-symmetric systems with time-varying system’s parameters. As an illustration of their usefulness, we have solved the open question whether the unconventional GP admits a geometric interpretation or not. Specifically,we have shown that the unconventional GP,instead of being the sum of a DP and a GP,can be expressed as the single GP in Eq. (15), thus making its geometric nature undoubtedly clear.

    Of particular interest is the finding that the metric tensor(42)may be pseudo-Riemannian,which is elusive in standard quantum mechanics. This leads to the intriguing fact that there can exist three types of evolutions for aPT-symmetric system, i.e., spacelike, lightlike, and timelike evolutions, as shown in the example involving the unconventional GP. Further studies on the implications/applications of the pseudo-Riemannian feature are highly desirable.

    猜你喜歡
    江濱張大
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    休妻用狠招
    百家講壇(2020年8期)2020-09-26 10:38:54
    吃蝦記
    張大林美術(shù)作品欣賞
    九旬老太越活越精彩
    新天地(2018年12期)2018-12-24 09:53:16
    張大春讓健康從業(yè)者偉大起來(lái)
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    心為濟(jì)世挽沉疴——訪廣西江濱醫(yī)院中醫(yī)皮膚科副主任醫(yī)師唐偉東
    金色年華(2016年13期)2016-02-28 01:43:05
    暗戀桃花源
    家長(zhǎng)會(huì)
    成在线人永久免费视频| 自线自在国产av| 首页视频小说图片口味搜索| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 亚洲在线自拍视频| 老司机午夜十八禁免费视频| 国产高清有码在线观看视频 | 中文字幕人妻丝袜一区二区| 精品少妇一区二区三区视频日本电影| 色老头精品视频在线观看| 色播在线永久视频| 久久 成人 亚洲| 窝窝影院91人妻| 无人区码免费观看不卡| 男人操女人黄网站| 日韩高清综合在线| 88av欧美| 国产av不卡久久| 亚洲中文字幕日韩| 亚洲专区国产一区二区| 侵犯人妻中文字幕一二三四区| 国产精品国产高清国产av| 国产免费男女视频| 天天一区二区日本电影三级| 国产精品99久久99久久久不卡| 午夜激情av网站| 一级a爱视频在线免费观看| 熟女电影av网| 久久久久久九九精品二区国产 | 国产一级毛片七仙女欲春2 | 免费搜索国产男女视频| 免费看美女性在线毛片视频| 国产黄色小视频在线观看| 99久久99久久久精品蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 99精品欧美一区二区三区四区| АⅤ资源中文在线天堂| 国产精品爽爽va在线观看网站 | 亚洲成a人片在线一区二区| av片东京热男人的天堂| 法律面前人人平等表现在哪些方面| 91大片在线观看| 国产又黄又爽又无遮挡在线| 看免费av毛片| 久久热在线av| 91老司机精品| 成人欧美大片| 真人做人爱边吃奶动态| 天天躁夜夜躁狠狠躁躁| 变态另类成人亚洲欧美熟女| 亚洲 欧美 日韩 在线 免费| 精品国产超薄肉色丝袜足j| 午夜视频精品福利| 91字幕亚洲| 男人舔女人下体高潮全视频| 草草在线视频免费看| 国产精品免费一区二区三区在线| 国产av不卡久久| 国产一区二区三区在线臀色熟女| 日韩视频一区二区在线观看| 成人亚洲精品一区在线观看| 叶爱在线成人免费视频播放| 免费女性裸体啪啪无遮挡网站| 日韩欧美免费精品| 51午夜福利影视在线观看| 国产精品 国内视频| 亚洲国产欧美一区二区综合| 欧美乱妇无乱码| 免费在线观看亚洲国产| 亚洲成国产人片在线观看| 国产高清videossex| 人人澡人人妻人| 国产精品电影一区二区三区| 十分钟在线观看高清视频www| 国产亚洲欧美精品永久| 观看免费一级毛片| 老司机午夜十八禁免费视频| 香蕉国产在线看| 亚洲av电影在线进入| 叶爱在线成人免费视频播放| 亚洲aⅴ乱码一区二区在线播放 | 日韩av在线大香蕉| 午夜免费激情av| 在线观看免费午夜福利视频| 黄色片一级片一级黄色片| 特大巨黑吊av在线直播 | 99re在线观看精品视频| 日韩 欧美 亚洲 中文字幕| 国产主播在线观看一区二区| 国产欧美日韩精品亚洲av| 国产黄a三级三级三级人| 亚洲av第一区精品v没综合| 嫁个100分男人电影在线观看| 午夜精品久久久久久毛片777| 高清毛片免费观看视频网站| 三级毛片av免费| 日本三级黄在线观看| 观看免费一级毛片| 国产亚洲精品一区二区www| 色老头精品视频在线观看| 久久久久久免费高清国产稀缺| 男人舔奶头视频| 一区二区日韩欧美中文字幕| 天堂动漫精品| 久久中文字幕一级| 精品免费久久久久久久清纯| 在线观看午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 久久这里只有精品19| 99久久综合精品五月天人人| 久久午夜综合久久蜜桃| 精品高清国产在线一区| 搞女人的毛片| 久久香蕉精品热| 久久久久久人人人人人| 亚洲国产精品sss在线观看| 两个人免费观看高清视频| 天堂√8在线中文| av视频在线观看入口| 一本一本综合久久| 99久久国产精品久久久| 特大巨黑吊av在线直播 | 国产高清激情床上av| 欧美激情极品国产一区二区三区| 亚洲性夜色夜夜综合| 最近最新中文字幕大全免费视频| tocl精华| 色av中文字幕| 50天的宝宝边吃奶边哭怎么回事| 9191精品国产免费久久| 老熟妇乱子伦视频在线观看| 亚洲国产高清在线一区二区三 | 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久人妻精品电影| 成年人黄色毛片网站| 午夜福利成人在线免费观看| 亚洲av中文字字幕乱码综合 | 两个人视频免费观看高清| 欧美成人一区二区免费高清观看 | 18禁黄网站禁片免费观看直播| 国产av一区二区精品久久| 国产一区二区三区在线臀色熟女| 母亲3免费完整高清在线观看| 禁无遮挡网站| 欧美中文日本在线观看视频| 亚洲精品国产一区二区精华液| 欧美大码av| 久久久久免费精品人妻一区二区 | 国产成人av激情在线播放| xxx96com| 亚洲专区字幕在线| 欧美精品亚洲一区二区| 999久久久精品免费观看国产| 午夜福利在线在线| 宅男免费午夜| 极品教师在线免费播放| 午夜免费激情av| 97超级碰碰碰精品色视频在线观看| 午夜成年电影在线免费观看| 男女那种视频在线观看| av电影中文网址| 老司机在亚洲福利影院| 999精品在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产蜜桃级精品一区二区三区| av有码第一页| 18禁美女被吸乳视频| 欧美成人一区二区免费高清观看 | 欧美又色又爽又黄视频| 波多野结衣av一区二区av| 亚洲国产欧洲综合997久久, | 中文字幕高清在线视频| 一二三四在线观看免费中文在| 久久久久久人人人人人| 99re在线观看精品视频| 亚洲精品国产精品久久久不卡| 亚洲一码二码三码区别大吗| 可以在线观看的亚洲视频| 成人三级做爰电影| 亚洲av中文字字幕乱码综合 | 欧美在线一区亚洲| bbb黄色大片| 中文字幕最新亚洲高清| 9191精品国产免费久久| 日本黄色视频三级网站网址| 午夜福利18| 国产一区二区激情短视频| 视频在线观看一区二区三区| 91麻豆av在线| netflix在线观看网站| 久久久久久免费高清国产稀缺| 男人舔女人下体高潮全视频| 成在线人永久免费视频| 国产亚洲av嫩草精品影院| 成人三级做爰电影| 色播在线永久视频| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 国产在线观看jvid| 久久久久精品国产欧美久久久| 女性被躁到高潮视频| 亚洲精品在线美女| 久久久国产精品麻豆| 麻豆国产av国片精品| 精品免费久久久久久久清纯| 久久久久九九精品影院| 中出人妻视频一区二区| 色综合婷婷激情| 亚洲精品国产区一区二| 午夜福利一区二区在线看| 91成年电影在线观看| 别揉我奶头~嗯~啊~动态视频| 中出人妻视频一区二区| 男男h啪啪无遮挡| 亚洲专区字幕在线| 男人舔奶头视频| 免费高清视频大片| 一区二区三区精品91| www国产在线视频色| 一级毛片高清免费大全| 少妇粗大呻吟视频| 亚洲,欧美精品.| 日韩欧美免费精品| 国内精品久久久久久久电影| 脱女人内裤的视频| 侵犯人妻中文字幕一二三四区| 一a级毛片在线观看| videosex国产| 久99久视频精品免费| 日日爽夜夜爽网站| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| 欧美zozozo另类| 中出人妻视频一区二区| 中文字幕精品免费在线观看视频| 成人国产一区最新在线观看| 亚洲av成人av| 男人的好看免费观看在线视频 | 天堂影院成人在线观看| 亚洲自偷自拍图片 自拍| 婷婷精品国产亚洲av在线| 欧美日韩中文字幕国产精品一区二区三区| 麻豆国产av国片精品| 一本精品99久久精品77| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 国产午夜精品久久久久久| 高清毛片免费观看视频网站| 成人18禁在线播放| 成年版毛片免费区| av中文乱码字幕在线| 亚洲精品国产精品久久久不卡| 日本一区二区免费在线视频| 看片在线看免费视频| 亚洲中文字幕一区二区三区有码在线看 | 无限看片的www在线观看| 99久久久亚洲精品蜜臀av| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| 久久人妻av系列| 一级黄色大片毛片| 免费av毛片视频| 午夜免费激情av| 啦啦啦观看免费观看视频高清| 黑人巨大精品欧美一区二区mp4| av在线播放免费不卡| 国产亚洲精品久久久久5区| 欧美黄色淫秽网站| 亚洲午夜理论影院| 国产精品影院久久| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 日日爽夜夜爽网站| 久久婷婷成人综合色麻豆| 一进一出好大好爽视频| 国产精品久久久久久人妻精品电影| 美女扒开内裤让男人捅视频| 777久久人妻少妇嫩草av网站| 国产成人系列免费观看| 两个人视频免费观看高清| 99热这里只有精品一区 | 88av欧美| 1024手机看黄色片| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看 | 两人在一起打扑克的视频| 在线国产一区二区在线| 男女午夜视频在线观看| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看| 亚洲自偷自拍图片 自拍| 18禁黄网站禁片免费观看直播| 欧美在线一区亚洲| 国产精品久久电影中文字幕| 亚洲午夜精品一区,二区,三区| 日韩免费av在线播放| 午夜a级毛片| 麻豆av在线久日| 黄色丝袜av网址大全| 精品福利观看| 日韩免费av在线播放| 在线天堂中文资源库| 亚洲一码二码三码区别大吗| 女警被强在线播放| 在线观看舔阴道视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 老熟妇乱子伦视频在线观看| 国内揄拍国产精品人妻在线 | 国产成人精品无人区| www.精华液| 亚洲三区欧美一区| 国产成年人精品一区二区| 最近在线观看免费完整版| 男女那种视频在线观看| 亚洲一区二区三区色噜噜| 黄色视频不卡| 亚洲人成伊人成综合网2020| 国产伦在线观看视频一区| 一区福利在线观看| 一区二区三区精品91| 色尼玛亚洲综合影院| 亚洲五月色婷婷综合| 啦啦啦 在线观看视频| 两人在一起打扑克的视频| 色老头精品视频在线观看| 婷婷六月久久综合丁香| 国产成人影院久久av| 麻豆一二三区av精品| 国产av在哪里看| 最近最新免费中文字幕在线| 免费在线观看日本一区| 精品电影一区二区在线| 久久久久久大精品| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 欧美日韩中文字幕国产精品一区二区三区| 日韩有码中文字幕| 韩国av一区二区三区四区| 一区福利在线观看| 亚洲成av人片免费观看| 人妻丰满熟妇av一区二区三区| 国产av在哪里看| www.www免费av| 窝窝影院91人妻| 波多野结衣av一区二区av| 久久久久久久精品吃奶| 国产av一区在线观看免费| 黄色 视频免费看| 国产午夜精品久久久久久| 国产成人欧美在线观看| 国语自产精品视频在线第100页| 天堂动漫精品| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 久久久久久久午夜电影| 国产日本99.免费观看| 免费无遮挡裸体视频| 十八禁网站免费在线| x7x7x7水蜜桃| 亚洲国产精品合色在线| 亚洲第一青青草原| 精品无人区乱码1区二区| 99国产精品一区二区三区| 宅男免费午夜| 女人被狂操c到高潮| 一级黄色大片毛片| 国产精品一区二区三区四区久久 | 啦啦啦韩国在线观看视频| 亚洲成人精品中文字幕电影| 中国美女看黄片| 久久久久久久久中文| 欧美在线黄色| 制服诱惑二区| 波多野结衣巨乳人妻| av欧美777| 别揉我奶头~嗯~啊~动态视频| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲国产欧美网| 欧美在线黄色| 一本一本综合久久| 中文资源天堂在线| 亚洲第一青青草原| 国产成人av教育| 伊人久久大香线蕉亚洲五| 日日干狠狠操夜夜爽| 我的亚洲天堂| 国产成人系列免费观看| 一区二区三区精品91| 国产伦在线观看视频一区| 免费在线观看完整版高清| 99久久精品国产亚洲精品| 精品少妇一区二区三区视频日本电影| 久久久久久大精品| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩乱码在线| 怎么达到女性高潮| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 精品国产国语对白av| 男女做爰动态图高潮gif福利片| 中文字幕人妻熟女乱码| 曰老女人黄片| 宅男免费午夜| 亚洲成a人片在线一区二区| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 亚洲av熟女| 国产激情欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利一区二区在线看| 99久久国产精品久久久| 黄色成人免费大全| 久久久精品欧美日韩精品| 日韩欧美国产在线观看| 午夜影院日韩av| 欧美成狂野欧美在线观看| 欧美国产精品va在线观看不卡| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 日本免费一区二区三区高清不卡| 一夜夜www| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| 国产一区二区激情短视频| 99热这里只有精品一区 | 搡老妇女老女人老熟妇| 国产99久久九九免费精品| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到| 激情在线观看视频在线高清| 天天添夜夜摸| 欧美一级a爱片免费观看看 | 美女免费视频网站| 免费在线观看日本一区| 又黄又爽又免费观看的视频| 国产一卡二卡三卡精品| 夜夜夜夜夜久久久久| 中文亚洲av片在线观看爽| 日日摸夜夜添夜夜添小说| 欧美日韩黄片免| 18禁美女被吸乳视频| 亚洲国产欧美网| 日韩三级视频一区二区三区| 成熟少妇高潮喷水视频| 亚洲全国av大片| 嫁个100分男人电影在线观看| 女性被躁到高潮视频| 成在线人永久免费视频| 久久青草综合色| 日韩欧美一区二区三区在线观看| 免费在线观看成人毛片| 老司机靠b影院| 久久久久国内视频| 亚洲国产精品合色在线| 露出奶头的视频| 男女那种视频在线观看| 久久天堂一区二区三区四区| 91麻豆av在线| 亚洲精品在线观看二区| av福利片在线| 中文亚洲av片在线观看爽| 成人午夜高清在线视频 | 久久久国产欧美日韩av| 免费在线观看黄色视频的| 久热爱精品视频在线9| 欧美zozozo另类| 中文资源天堂在线| 19禁男女啪啪无遮挡网站| 国产又黄又爽又无遮挡在线| av欧美777| 成年女人毛片免费观看观看9| 欧美又色又爽又黄视频| 一级作爱视频免费观看| 动漫黄色视频在线观看| 一级片免费观看大全| 国产精品亚洲美女久久久| 嫩草影院精品99| 久久 成人 亚洲| 国产精品久久久久久精品电影 | 亚洲美女黄片视频| 真人一进一出gif抽搐免费| 久热爱精品视频在线9| 国产精品自产拍在线观看55亚洲| 成人18禁在线播放| av欧美777| 精品久久蜜臀av无| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 亚洲 欧美 日韩 在线 免费| 母亲3免费完整高清在线观看| 中文资源天堂在线| 黄色视频不卡| 黄色a级毛片大全视频| 国产精品,欧美在线| 美女扒开内裤让男人捅视频| av天堂在线播放| 黄色片一级片一级黄色片| 午夜视频精品福利| 真人一进一出gif抽搐免费| 国产99白浆流出| 国产成人影院久久av| 久久香蕉精品热| 亚洲五月天丁香| 激情在线观看视频在线高清| 午夜亚洲福利在线播放| 熟妇人妻久久中文字幕3abv| 天天添夜夜摸| 亚洲av中文字字幕乱码综合 | 人妻丰满熟妇av一区二区三区| 免费在线观看完整版高清| 欧美 亚洲 国产 日韩一| 免费高清在线观看日韩| 热re99久久国产66热| 国产精品日韩av在线免费观看| xxx96com| 久久精品夜夜夜夜夜久久蜜豆 | 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| 亚洲激情在线av| 制服人妻中文乱码| 欧美午夜高清在线| 国产久久久一区二区三区| 日韩精品免费视频一区二区三区| 色av中文字幕| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| 老司机福利观看| 美女免费视频网站| 久久久久久亚洲精品国产蜜桃av| 97碰自拍视频| aaaaa片日本免费| 99国产极品粉嫩在线观看| 一区二区三区精品91| 欧美人与性动交α欧美精品济南到| 日本成人三级电影网站| 视频在线观看一区二区三区| 国产精品免费视频内射| 免费看十八禁软件| 国产精品亚洲一级av第二区| 久久亚洲真实| 国产精品1区2区在线观看.| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 中亚洲国语对白在线视频| 激情在线观看视频在线高清| 亚洲国产欧美一区二区综合| 在线视频色国产色| 非洲黑人性xxxx精品又粗又长| 此物有八面人人有两片| 久久久精品国产亚洲av高清涩受| 久久久久亚洲av毛片大全| 午夜激情福利司机影院| 日韩欧美国产一区二区入口| 国产极品粉嫩免费观看在线| 精品电影一区二区在线| 三级毛片av免费| 婷婷精品国产亚洲av在线| 性欧美人与动物交配| 亚洲国产看品久久| 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 免费在线观看完整版高清| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 精品久久久久久久久久免费视频| 99热只有精品国产| 夜夜躁狠狠躁天天躁| 国产一区二区在线av高清观看| 日日爽夜夜爽网站| 琪琪午夜伦伦电影理论片6080| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 在线观看舔阴道视频| 欧美成人性av电影在线观看| 欧美不卡视频在线免费观看 | 黄频高清免费视频| 美女国产高潮福利片在线看| 日韩高清综合在线| 999久久久精品免费观看国产| 亚洲成人久久爱视频| 久久久国产欧美日韩av| 老司机福利观看| 国产精品,欧美在线| 丁香六月欧美| 久久中文字幕一级| 亚洲一区中文字幕在线| 久久性视频一级片| 18禁观看日本| 十分钟在线观看高清视频www| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 亚洲激情在线av| 亚洲精品av麻豆狂野| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 啪啪无遮挡十八禁网站| 99久久国产精品久久久| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片 | 国产成人系列免费观看| 久久午夜亚洲精品久久| 老司机靠b影院| 一进一出抽搐动态|