• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometry of time-dependent PT-symmetric quantum mechanics?

    2021-10-28 07:02:06DaJianZhang張大劍QinghaiWang王清海andJiangbinGong龔江濱
    Chinese Physics B 2021年10期
    關(guān)鍵詞:江濱張大

    Da-Jian Zhang(張大劍) Qing-hai Wang(王清海) and Jiangbin Gong(龔江濱)

    1Department of Physics,Shandong University,Jinan 250100,China

    2 Department of Physics,National University of Singapore,117551,Singapore

    Keywords: time-dependent PT-symmetric quantum mechanics, geometry, time-varying inner product, unconventional geometric phase

    1. Introduction

    Standard quantum mechanics is built upon a fixed Hilbert space,with the associated inner product of two complex vectors being defined by the Dirac bra-ket notation. However,such a quantum theory may not consistently treat physical problems with time-varying Hilbert spaces. For example, it is not obvious how to depict the dynamics of a particle in an infinitely deep square-well potential with a moving boundary,of which the instantaneous Hilbert space changes with time.It is thus necessary and motivating to formulate new types of quantum theories that allow the inner product to change along a parameter path.

    Inspired by the pioneering work of Bender and Boettcher concerning time-independent parity-time-reversal-symmetric(PT-symmetric)quantum mechanics(PTQM),[1]Gong and Wang proposed a Schr¨odinger-like equation capable of explicitly accounting for a time-varying inner product.[2]Such a proposal was further enriched and developed into a conceptual framework applicable to generic non-Hermitian systems,[3]in which a series of notions like the time-dependent Hilbert space,the observable,and the measurement postulate are formulated. These results lead to a consistent quantum theory extending the time-independentPTQM into the time-dependent domain,referred to as time-dependentPTQM hereafter.

    The advent of time-dependentPTQM has spurred a renewed interest in the fundamentals of quantum mechanics.[4–10]In particular, how to construct the timevarying inner product was demonstrated in Refs.[5,6]and how to define the energy observable for a time-dependent Hilbert space was discussed in Refs.[3,9]. Further developments are witnessed by the reexaminations of some interesting issues in statistics mechanics,[11–15]such as the Jarzynski equality[11,13]and the Crooks fluctuation theorem.[3,12]

    In this work,we explore the geometrical aspects of timedependentPTQM, which is a fascinating topic for the following reasons. First,given the fact that a time-varying inner product is always excluded in standard quantum mechanics,its nontrivial interplay with other concepts in quantum physics,e.g., the Berry phase,[16]is still not well understood in a unified fashion. Second,even in the absence of a time-varying inner product, geometric aspects of standard quantum mechanics are known to be of profound importance in various frontier topics of quantum information science and condensed-matter physics. One thus anticipates that physics arising from a timevarying inner product shall advance our fundamental understanding of the profound role of geometry in time-dependentPTQM. Last but not least, there have been ongoing investigations of physical properties, especially topological properties,ofPT-symmetric systems recently.[17–38]In view of this,a systematic inspection of the geometry of time-dependentPTQM would be a useful, perhaps indispensible, reference point to tackle physical problems involving time-varying system’s parameters.

    The purpose of this work is to present comprehensive and rigorous results regarding the geometry of time-dependentPTQM. To this end, we start with the identification of a geometric phase(GP)that emerges naturally from a cyclic evolution of aPT-symmetric system. Then,with the motivation of revealing the geometry underlying the GP,we formulate,in succession,a series of related differential-geometry concepts,including connection,curvature,parallel transport,metric tensor, and quantum geometric tensor. Of particular interest is the metric tensor advocated here, which may be Riemannian or pseudo-Riemannian,depending on the physical context under consideration. Its pseudo-Riemannian feature is absent in standard quantum mechanics. As detailed below,the findings of this work are applicable to a rather general physical context and include the results of Refs.[4,10]as special cases.

    To exemplify the application of our findings, we revisit one well-known example displaying the so-called unconventional GP,[39]which is the sum of a GP and a dynamical phase(DP)proportional to the GP,and as such,may not be well understood within the geometric theory in standard quantum mechanics. Here,we show that the unconventional GP,instead of being the sum of a GP and a DP, can be expressed as a single GP found in this paper, with the associated metric tensor categorized as a pseudo-Riemannian metric. This provides an interesting interpretation of the geometric nature of the unconventional GP.

    This paper is organized as follows. In Section 2, we recapitulate some fundamentals ofPTQM. In Section 3, we identify the GP. In Section 4, we formulate a series of differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.Section 5 presents our interpretation of the unconventional GP.Section 6 provides a general formula for GP which unifies several real and gauge-invariant GPs in the literature,and Section 7 concludes this work.

    2. Fundamentals of PT QM

    To present our findings clearly,we recapitulate some notions in time-dependentPTQM,[2,3]such as the metric operator, the physical Hilbert space, the physical observable, the Schr¨odinger-like equation,and the density operator.

    A positive-definite operatorWis said to be the metric operator for aPT-symmetric systemSwith unbrokenPTsymmetry if it satisfies

    whereHdenotes the Hamiltonian of the systemS. Usually,Hdepends on some system’s parametersλ:=(λ1,...,λm),which belong to a parameter manifoldM[m=dim(M)]representing the classical configuration of control fields. In the following,we denote the metric operator and the Hamiltonian byW(λ)andH(λ),respectively,in order to indicate their dependence on the parametersλ.

    The physical Hilbert space ofS,denoted as?(λ),is defined to be the Hilbert space endowed with the following inner product:

    which is dependent onλ. It is worth noting that two states|ψ〉∈?(λ)and|φ〉∈?(λ′)are not comparable whenλ/=λ′,as they belong to two different physical Hilbert spaces.

    An operatorOis said to be a physical observable ofSif it is a Hermitian operator under the new inner product in Eq.(2),

    or equivalently,

    Apparently,H(λ)is a physical observable. It has been argued thatH(λ)can be regarded as the energy observable ofS.[3,9]

    An evolution ofSis associated with a parameter pathλt ∈Mover a time interval[0,τ]. For this,the physical Hilbert space moves with time,and the evolving state|ψ(t)〉at timetbelongs to?(λt).The Schr¨odinger-like equation guaranteeing the unitarity of the evolution is found to be(ˉh=1)[2]

    For a state|ψ〉∈N(λ), the associated density operatorρis defined to be[3,10]

    It is easy to see thatρis a positive operator with respect to the inner product (2) and satisfies tr(ρ)=1 andρ2=ρ; that is,it fulfills the conditions of being a density operator for a pure state. Similar to the two states|ψ〉∈N(λ)and|φ〉∈N(λ′),their associated density operatorsρ=|ψ〉〈ψ|W(λ) andσ=|φ〉〈φ|W(λ′)can be regarded as identical if and only ifλ=λ′and|ψ〉= ei?|φ〉for some? ∈R.

    3. Geometric phase

    Let us consider the situation that the evolving state|ψ(t)〉ofSreturns to its initial physical state,|ψ(τ)〉= eiα|ψ(0)〉,and moreover, the system’s parameters return to their initial values,λτ=λ0. This defines a curve of density operators

    Equation(14)indicates that the phaseβdepends explicitly on the Hamiltonian and thus represents a DP.On the contrary,the phaseγ,as a factor obtained by removing the DP from the total phase, depends solely upon the closed curveCin Eq. (9),as will be proved shortly. Therefore,γis our GP.It is interesting to note that DP and GP for non-Hermitian systems were usually defined to be complex in the previous works(see,e.g.,Refs.[40,41]). By contrast,both the DP and GP defined here are real phase factors. Indeed, sinceH(t) is a physical observable satisfying Eq. (3), the term?φa(t),H(t)φa(t)?λtappearing in Eq. (14) is real, which leads to the fact thatβis real. The fact thatγis real follows immediately from the operation of taking the imaginary part of a complex number in Eq.(15).

    To prove thatγis uniquely determined byC,we resort to the following gauge-invariant formula ofγ:

    Here,the term e∫t0dsRe?φb(s),˙φb(s)?λshas been neglected,since it is a real and positive number and thus makes no contribution.Equation(22)clearly shows thatγis uniquely determined byC.

    It is worth noting that the result just presented includes the results of Refs.[4,10]as special cases. Indeed,the GP obtained in Refs.[4,10]is for the eigenstate ofH(λ),and therefore,is a counterpart of Berry’s phase.[16]In contrast,the GPγobtained here is for a generic cyclic state which may or may not be the eigenstate ofH(λ). In this sence,γis a counterpart of Aharonov–Anandan’s phase.[42]Moreover,it has been shown[3]that the dynamics of a generic non-Hermitian system can be described by the Schr¨odinger-like equation (5)with Eq. (6). This implies that the GP found here is applicable to a much more general physical context compared with Refs.[4,10].

    4. Differential geometry concepts

    There is a one–one correspondence between rays inR(λ)and density operators over?(λ). Indeed, given a ray [|ψ〉]inR(λ), one can assign to it a unique density operatorρover?(λ), which isρ=|ψ〉〈ψ|/?ψ,ψ ?λ. Conversely,given a density operatorρover?(λ), one can express it asρ=|ψ〉〈ψ| for some|ψ〉∈N(λ). Then, the unique ray associated toρis[|ψ〉]. Under the effect of this one–one correspondence,a curve inRcan be simply understood as a curve of density operators. Now,it becomes clear thatCin Eq.(9)is actually a curve in the space of raysR.

    A coordinate system can be established by considering a local patch onRand the region ofP(R,U(1)) over the patch. Let (λ1,...,λm,λm+1,...,λm+n) be the local coordinates of a point ofRon the patch. Here,λμ,μ=1,...,m,are the system’s parameters as before, used to specify which subset,R(λ), the point belongs to. The remainderλμ,μ=m+1,...,m+n, are used to represent local coordinates parameterizing the manifoldR(λ) [n= dim(R(λ))]. Then,the local coordinates of a point ofP(R,U(1)) can be expressed as (θ,λ1,...,λm,λm+1,...,λm+n), whereθ ∈R is defined up to an integer multiple of 2π.[43]Using these local coordinates, we can express density operators and states in a coordinate-dependent form. Since a density operatorρis a point ofR, it can be represented asρ=ρ(λ1,...,λm+n).Likewise,a state|φ〉,as a point ofP(R,U(1)),can be written as|φ〉=|φ(θ,λ1,...,λm+n)〉.

    With these notions, we may now start to formulate differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.

    4.1. Connection

    Equation(23)implies that the horizontal part satisfies

    4.2. Curvature

    4.3. Parallel transport

    A choice of connection is equivalent to a notion of parallel transport. By definition,a curve|φ(t)〉is said to be parallel transported along a curve in the base manifold if the vertical part of its tangent vector,i.e.,|˙φv(t)〉,vanishes. Using Eq.(23)and noting the relation|˙φ(t)〉=|˙φv(t)〉+|˙φh(t)〉,we have

    Therefore,|˙φv(t)〉vanishes if and only if

    representing the parallel transport condition associated with the connectionA. Equation (37) is a counterpart of the Berry–Simon parallel transport condition.[44]It depicts a parallel way of transporting|φ(t)〉along a curve inR. Evidently,|φb(t)〉fulfills Eq. (37) and hence is parallel transported. This transport is along the closed curveCin Eq. (9),since|φb(t)〉〈φb(t)|=ρ(t). Starting at an initial point|φb(0)〉,the transport will end at a different point|φb(τ)〉= eiγ|φb(0)〉,as can be easily verified by using Eq. (18). The difference,known as holonomy,is precisely our GPγ.

    4.4. Metric tensor

    To obtain a metric tensor, we resort to the formula for the fidelity between two nearby density operatorsρ(λ1,...,λm+n) andρ(λ1+δλ1,...,λm+n+δλm+n).[10]It reads

    4.5. Quantum geometric tensor

    This point can be easily verified by comparing Eq. (42) with Eq.(43).

    From Eqs.(45)and(46), it follows immediately that the quantum geometric tensor (43) depicts a unified picture: Its imaginary part gives the Berry curvature(35)and thus further determines the GP(31),whereas its real part induces the metric tensor(42)and thereby further determines the fidelity(39).

    5. On the unconventional geometric phase

    So far,we have presented our main findings,consisting of a GP and a series of differential geometry concepts, namely,connection, curvature, parallel transport, metric tensor, and quantum geometric tensor.To exemplify the application of our findings,we revisit one well-known example that yields an interesting GP,called the unconventional GP in the literature.[39]

    The physical model studied in Ref.[39]is a harmonic oscillator. Its Hamiltonian reads

    and|z〉denotes a coherent state. At the timet=τ:=2π/δ,the evolving state|?(t)〉returns to its initial physical state,i.e.,|?(τ)〉= eiγ(τ)|0〉, and it acquires a total phaseγ(τ). A remarkable observation made in Ref. [39] is thatγ(τ) has a nonzero DP component but is still of geometric nature, i.e.,it is an unconventional GP. In showing this, the DP and GP components ofγ(τ), denoted respectively byγdandγg, were calculated, and found to satisfyγd=ηγg(η/=0,?1). So,γ(τ)=(1+η)γg, indicating thatγ(τ) is of geometric nature as it inherits geometric features fromγg. Despite this interesting observation, it remains an open question whether the unconventional GP itself admits a geometric interpretation or not.

    Physically speaking,thePT-symmetric system and its equivalent Hermitian system may be considered two different interpretations of the dynamics of a same physical system.

    Suppose now thatz1(t) = iΩD(e?iδt ?1)eiφL/δ, i.e.,z1(t)=z(t). For this, Eq. (52) reduces to Eq. (47). Hence,the evolution of the Hermitian system is simply the evolution process studied in Ref. [39]. As another interpretation of the dynamics of the same physical system, thePT-symmetric system undergos the corresponding evolution|ψ(t)〉= e?2z1(t)a?|?(t)〉. Sincez1(τ)=z1(0)=0 and|?(τ)〉= eiγ(τ)|?(0)〉,this evolution is cyclic,and the evolving state|ψ(t)〉of thePT-symmetric system acquires the same total phaseγ(τ) as that of the Hermitian system. Note that for thePT-symmetric system, the total phase accumulated in any cyclic evolution is simply the GPγin Eq.(15),due to the vanishing of its Hamiltonian. Hence,γ(τ)=γ,i.e.,the unconventional GP is precisely the GP expressed by Eq.(15).

    To shed more light on the unconventional GP, we calculate the quantum geometric tensor in Eq. (43), with which,we further obtain the curvatureΩand the metric ds2. To do this, we find the evolution operator of thePT-symmetric system. Using magnus expansion[47]and noting that the commutator ofK(t) at different time is a number, we have that the evolution operator reads e?2z1(t)a?D(z1(t)), up to a global phase factor,whereD(z1):= ez1a??z1?ais the displacement operator. So, starting at an arbitrary coherent state|“some complex number”〉, the evolving state|ψ(t)〉reads|ψ(t)〉= e?2z1(t)a?|z1(t)+“some complex number”〉, up to a phase factor. So,the evolving state is of the form e?2z1a?|z2〉,wherez2=z1(t)+“some complex number”. Substituting e?2z1a?|z2〉into Eq.(43),i.e.,setting|φ〉and|φ〉appearing in Eq.(43)as|φ〉= e?2z1a?|z2〉and|φ〉= e2z1?a|z2〉,we obtain,after tedious but straightforward calculations,

    That is,

    For the evolution process studied in Ref.[39],in which the initial state is|0〉,we havez1(t)=z2(t),leading to the constraintsλ1=λ3andλ2=λ4. Substitutingλ1=λ3andλ2=λ4into Eq.(55), we haveΩ=?2dλ1∧dλ2. From Eq. (45), it follows that

    6. A general geometric phase

    It may be an interesting topic for future work to generalize the GP found here to a more general setting,[48]like the non-cyclic case considered in Ref. [49]. This is a non-trivial problem, as the Hilbert space?(t) changes with timetin general.[3]To shed some light on the problem,we provide one possible way to achieve the generalization,

    where|ψ(t)〉is an (unnormalized) state in?(t) andW(t) is the(time-dependent)metric operator associated with?(t).[3]Mathematically, the GP is defined as a functional of a state and the metric operator,γ=γ[ψ(t),W(t)]. It is easy to see thatγdefined in Eq. (59) is gauge-invariant and reduces to the GP given by Eq. (15) in cyclic cases. With the choice of Dirac inner-product, i.e.,W(t)=1, Eq. (59) reproduces AA phase for the cyclic states in Ref.[48]and non-cyclic states in Ref. [50]. Thus, the GP defined in Eq. (59) unifies real and gauge-invariant geometric phases in non-Hermitian systems.

    7. Conclusion

    We have presented a series of results on the geometry of time-dependentPTQM.Specifically,they are the GP(15),the connection(28),the curvature(35),the parallel transport condition(37),the metric tensor(42),and the quantum geometric tensor(43). The GP emerges naturally from cyclic evolutions ofPT-symmetric systems,and it may be regarded as a counterpart of Aharonov–Anandan’s phase. The connection and curvature are responsible for the appearance of the GP,as expressed by Eqs.(30)and(31). The quantum geometric tensor is a unifying concept, of which the imaginary part gives the curvature and the real part induces the metric tensor, as described by Eqs.(45)and(46),respectively.

    These results constitute a useful, perhaps indispensible,tool to tackle geometric problems involvingPT-symmetric systems with time-varying system’s parameters. As an illustration of their usefulness, we have solved the open question whether the unconventional GP admits a geometric interpretation or not. Specifically,we have shown that the unconventional GP,instead of being the sum of a DP and a GP,can be expressed as the single GP in Eq. (15), thus making its geometric nature undoubtedly clear.

    Of particular interest is the finding that the metric tensor(42)may be pseudo-Riemannian,which is elusive in standard quantum mechanics. This leads to the intriguing fact that there can exist three types of evolutions for aPT-symmetric system, i.e., spacelike, lightlike, and timelike evolutions, as shown in the example involving the unconventional GP. Further studies on the implications/applications of the pseudo-Riemannian feature are highly desirable.

    猜你喜歡
    江濱張大
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    休妻用狠招
    百家講壇(2020年8期)2020-09-26 10:38:54
    吃蝦記
    張大林美術(shù)作品欣賞
    九旬老太越活越精彩
    新天地(2018年12期)2018-12-24 09:53:16
    張大春讓健康從業(yè)者偉大起來(lái)
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    心為濟(jì)世挽沉疴——訪廣西江濱醫(yī)院中醫(yī)皮膚科副主任醫(yī)師唐偉東
    金色年華(2016年13期)2016-02-28 01:43:05
    暗戀桃花源
    家長(zhǎng)會(huì)
    啦啦啦韩国在线观看视频| 亚洲真实伦在线观看| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区久久| 国产 一区精品| 在线观看免费视频日本深夜| 又紧又爽又黄一区二区| 免费看光身美女| 国产探花极品一区二区| 久久精品国产亚洲av涩爱 | 内射极品少妇av片p| 中文字幕人妻熟人妻熟丝袜美| 欧美国产日韩亚洲一区| 99久久精品一区二区三区| 成年女人看的毛片在线观看| 一区福利在线观看| 97热精品久久久久久| 国产69精品久久久久777片| 天堂av国产一区二区熟女人妻| 欧美日韩黄片免| 18禁黄网站禁片免费观看直播| 久久久久久九九精品二区国产| 麻豆国产97在线/欧美| 搡老岳熟女国产| 日韩精品青青久久久久久| 成人高潮视频无遮挡免费网站| 看免费成人av毛片| 亚洲色图av天堂| 国产一区二区三区视频了| 91久久精品电影网| 国产精品无大码| 免费av毛片视频| 精品久久国产蜜桃| 69人妻影院| 亚洲精品久久国产高清桃花| 午夜免费激情av| 亚洲男人的天堂狠狠| 日本熟妇午夜| 草草在线视频免费看| 亚洲国产精品成人综合色| 欧美成人免费av一区二区三区| 久久久久久久久久成人| 色噜噜av男人的天堂激情| 亚洲七黄色美女视频| 91麻豆av在线| 国产高清不卡午夜福利| 欧美黑人欧美精品刺激| 国产成人aa在线观看| 大又大粗又爽又黄少妇毛片口| 国产午夜福利久久久久久| 国产一区二区在线观看日韩| 欧美成人一区二区免费高清观看| 日韩欧美在线二视频| 国产毛片a区久久久久| 一级毛片久久久久久久久女| 中文字幕精品亚洲无线码一区| 国产v大片淫在线免费观看| 一本久久中文字幕| 亚洲成人精品中文字幕电影| 小蜜桃在线观看免费完整版高清| 久久99热6这里只有精品| 国产精品久久久久久av不卡| 亚洲18禁久久av| 婷婷色综合大香蕉| 老熟妇乱子伦视频在线观看| 国内精品久久久久精免费| 极品教师在线视频| 人妻少妇偷人精品九色| 69人妻影院| 亚洲国产欧美人成| 亚洲一级一片aⅴ在线观看| 国产真实伦视频高清在线观看 | 简卡轻食公司| 亚洲五月天丁香| 国产成人aa在线观看| 色视频www国产| 性色avwww在线观看| a级毛片a级免费在线| 国产精品av视频在线免费观看| 欧美日韩黄片免| 国产精品乱码一区二三区的特点| 国产av一区在线观看免费| 18禁黄网站禁片午夜丰满| 一区二区三区四区激情视频 | 天堂影院成人在线观看| 热99re8久久精品国产| 可以在线观看的亚洲视频| 国产精品一区二区三区四区久久| 一区二区三区高清视频在线| 中国美白少妇内射xxxbb| 极品教师在线视频| 国产成人影院久久av| 99在线人妻在线中文字幕| 国产精品久久久久久亚洲av鲁大| 一区二区三区激情视频| 精品国内亚洲2022精品成人| 蜜桃亚洲精品一区二区三区| 精品免费久久久久久久清纯| 日日撸夜夜添| 欧美+亚洲+日韩+国产| 国语自产精品视频在线第100页| 国产精品电影一区二区三区| 国产v大片淫在线免费观看| 日韩欧美精品免费久久| 国产av不卡久久| 国产精品福利在线免费观看| 看十八女毛片水多多多| 99热精品在线国产| 麻豆av噜噜一区二区三区| 国产精品久久视频播放| 成年女人永久免费观看视频| 久久中文看片网| 一区福利在线观看| 亚洲成人精品中文字幕电影| 22中文网久久字幕| 999久久久精品免费观看国产| 看十八女毛片水多多多| 熟妇人妻久久中文字幕3abv| 久久久久久久亚洲中文字幕| 精品久久久久久成人av| 可以在线观看的亚洲视频| 偷拍熟女少妇极品色| 亚洲精品粉嫩美女一区| 国产精品国产三级国产av玫瑰| 久久这里只有精品中国| 18禁黄网站禁片免费观看直播| 午夜福利在线在线| 一进一出抽搐gif免费好疼| 在线天堂最新版资源| 麻豆成人av在线观看| 少妇高潮的动态图| 久久精品国产亚洲av涩爱 | 日韩强制内射视频| 国产国拍精品亚洲av在线观看| 99久久中文字幕三级久久日本| 搡女人真爽免费视频火全软件 | 日韩,欧美,国产一区二区三区 | 男人舔奶头视频| 日本免费一区二区三区高清不卡| 久久香蕉精品热| 国产熟女欧美一区二区| 中文亚洲av片在线观看爽| 悠悠久久av| 国产免费一级a男人的天堂| 国产高潮美女av| 99国产极品粉嫩在线观看| 亚洲美女黄片视频| 97人妻精品一区二区三区麻豆| 一级a爱片免费观看的视频| 成人三级黄色视频| 五月伊人婷婷丁香| 亚洲美女视频黄频| 国产私拍福利视频在线观看| www.色视频.com| 我的女老师完整版在线观看| 亚洲熟妇中文字幕五十中出| 色综合站精品国产| 我要看日韩黄色一级片| 日韩欧美免费精品| 狠狠狠狠99中文字幕| 成人午夜高清在线视频| 在线观看午夜福利视频| 国内精品宾馆在线| 精品人妻熟女av久视频| 熟女人妻精品中文字幕| 美女 人体艺术 gogo| 国内精品久久久久久久电影| 色视频www国产| 校园春色视频在线观看| 在线播放国产精品三级| 九九爱精品视频在线观看| 亚洲精品乱码久久久v下载方式| 欧美国产日韩亚洲一区| 久久久久久久久久久丰满 | 成人欧美大片| 日韩在线高清观看一区二区三区 | 亚洲成人免费电影在线观看| 日韩欧美 国产精品| 三级国产精品欧美在线观看| 久久精品人妻少妇| 精品久久久久久,| 国产免费av片在线观看野外av| 婷婷六月久久综合丁香| 他把我摸到了高潮在线观看| 亚洲一级一片aⅴ在线观看| 亚洲内射少妇av| 日韩欧美免费精品| 欧美xxxx黑人xx丫x性爽| 日本一二三区视频观看| 亚洲欧美日韩高清专用| 在线免费观看不下载黄p国产 | 国产熟女欧美一区二区| 男女啪啪激烈高潮av片| 久久久午夜欧美精品| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美日韩无卡精品| 色吧在线观看| 少妇的逼好多水| 俄罗斯特黄特色一大片| 毛片一级片免费看久久久久 | 成人二区视频| 久久久久精品国产欧美久久久| 国内精品久久久久精免费| 亚洲成av人片在线播放无| 国产毛片a区久久久久| 亚洲成人免费电影在线观看| av在线蜜桃| 国产三级在线视频| 久久这里只有精品中国| 欧美性猛交黑人性爽| 一级毛片久久久久久久久女| 一个人观看的视频www高清免费观看| 一夜夜www| 中文字幕熟女人妻在线| 啪啪无遮挡十八禁网站| 日本一二三区视频观看| 国产中年淑女户外野战色| 性欧美人与动物交配| 九九爱精品视频在线观看| 看片在线看免费视频| 99在线视频只有这里精品首页| 日本撒尿小便嘘嘘汇集6| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品一区二区| 国产精品99久久久久久久久| 亚洲经典国产精华液单| 亚洲 国产 在线| 久久亚洲精品不卡| 哪里可以看免费的av片| 久久6这里有精品| 麻豆成人午夜福利视频| 91精品国产九色| 联通29元200g的流量卡| 在线国产一区二区在线| 人妻制服诱惑在线中文字幕| 别揉我奶头~嗯~啊~动态视频| 99热6这里只有精品| 久久久久精品国产欧美久久久| 赤兔流量卡办理| 国产黄片美女视频| 国产乱人视频| 最新中文字幕久久久久| 国产精品人妻久久久影院| 国产精品女同一区二区软件 | 联通29元200g的流量卡| 亚洲国产精品合色在线| 人妻夜夜爽99麻豆av| 欧美bdsm另类| 久久久久久国产a免费观看| 搡老妇女老女人老熟妇| 成人av在线播放网站| 精品久久久久久成人av| 中文字幕高清在线视频| 小说图片视频综合网站| 色在线成人网| 国产av不卡久久| 听说在线观看完整版免费高清| 在线观看午夜福利视频| 亚洲人成伊人成综合网2020| 中文字幕人妻熟人妻熟丝袜美| av在线亚洲专区| 午夜福利在线观看免费完整高清在 | 精品国产三级普通话版| 免费不卡的大黄色大毛片视频在线观看 | 好男人在线观看高清免费视频| 色视频www国产| 国产成人a区在线观看| 日韩精品中文字幕看吧| 久久欧美精品欧美久久欧美| 久久久成人免费电影| 亚洲狠狠婷婷综合久久图片| 国产精品久久视频播放| 两人在一起打扑克的视频| 亚洲av成人精品一区久久| 日韩精品中文字幕看吧| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出| 免费人成视频x8x8入口观看| 成人av在线播放网站| 亚洲三级黄色毛片| 免费无遮挡裸体视频| 久久人人精品亚洲av| 九色成人免费人妻av| 性色avwww在线观看| 免费看av在线观看网站| 免费观看精品视频网站| 小说图片视频综合网站| 婷婷色综合大香蕉| 色综合站精品国产| 久久国内精品自在自线图片| 黄色丝袜av网址大全| 色5月婷婷丁香| 成人毛片a级毛片在线播放| 99久久精品热视频| 国产一区二区激情短视频| 性插视频无遮挡在线免费观看| 女人被狂操c到高潮| 国产精品野战在线观看| 女同久久另类99精品国产91| 精品人妻1区二区| 久久精品影院6| 99久久无色码亚洲精品果冻| 久久久久性生活片| 黄色欧美视频在线观看| 看十八女毛片水多多多| 午夜免费成人在线视频| 久久人人爽人人爽人人片va| 狠狠狠狠99中文字幕| 一进一出抽搐动态| 又爽又黄a免费视频| 亚洲va日本ⅴa欧美va伊人久久| 一进一出抽搐gif免费好疼| 亚洲精品色激情综合| 亚洲精华国产精华精| 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 国产女主播在线喷水免费视频网站 | 18禁在线播放成人免费| x7x7x7水蜜桃| 亚洲在线观看片| 欧美日韩瑟瑟在线播放| 欧美+亚洲+日韩+国产| 亚洲国产欧洲综合997久久,| 性插视频无遮挡在线免费观看| 欧美成人免费av一区二区三区| 熟妇人妻久久中文字幕3abv| 此物有八面人人有两片| 深爱激情五月婷婷| 三级毛片av免费| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 亚洲内射少妇av| 午夜爱爱视频在线播放| 成人欧美大片| 免费观看在线日韩| 亚洲熟妇中文字幕五十中出| 亚洲欧美清纯卡通| 成人美女网站在线观看视频| 白带黄色成豆腐渣| 国产一区二区在线观看日韩| 免费看美女性在线毛片视频| 久久精品国产亚洲网站| 亚洲最大成人中文| 色播亚洲综合网| 免费黄网站久久成人精品| 男人舔女人下体高潮全视频| 免费人成视频x8x8入口观看| 国产v大片淫在线免费观看| 伦精品一区二区三区| 亚洲美女黄片视频| 日韩欧美免费精品| 干丝袜人妻中文字幕| 一个人看视频在线观看www免费| 村上凉子中文字幕在线| 免费搜索国产男女视频| 嫩草影视91久久| or卡值多少钱| 免费在线观看成人毛片| 中文字幕高清在线视频| 身体一侧抽搐| 国产黄a三级三级三级人| 一本一本综合久久| 国产又黄又爽又无遮挡在线| 一进一出抽搐gif免费好疼| 国产一区二区在线av高清观看| 1024手机看黄色片| 国产伦精品一区二区三区四那| 三级国产精品欧美在线观看| 久久精品影院6| 一本一本综合久久| 欧美最黄视频在线播放免费| 日韩精品青青久久久久久| 九九热线精品视视频播放| aaaaa片日本免费| 91在线观看av| 成人三级黄色视频| 久久久久九九精品影院| 日本一本二区三区精品| 身体一侧抽搐| 亚洲国产欧洲综合997久久,| 无人区码免费观看不卡| 18+在线观看网站| 美女大奶头视频| 成人午夜高清在线视频| 欧美国产日韩亚洲一区| 久久精品91蜜桃| 香蕉av资源在线| 在线免费十八禁| 看黄色毛片网站| 国产真实伦视频高清在线观看 | 可以在线观看毛片的网站| 嫩草影视91久久| 免费看美女性在线毛片视频| 色av中文字幕| av天堂中文字幕网| 天堂√8在线中文| 国产中年淑女户外野战色| 变态另类成人亚洲欧美熟女| 淫秽高清视频在线观看| 国内久久婷婷六月综合欲色啪| 成年女人看的毛片在线观看| 亚洲国产欧洲综合997久久,| 99热6这里只有精品| 婷婷亚洲欧美| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频| 麻豆一二三区av精品| 国产一区二区三区av在线 | 久久久久久久久久成人| 美女大奶头视频| 91在线精品国自产拍蜜月| 精品久久久久久久久久久久久| 日本五十路高清| 中国美女看黄片| 日本熟妇午夜| 美女免费视频网站| 久久亚洲真实| 尤物成人国产欧美一区二区三区| 欧美日韩黄片免| 成人特级av手机在线观看| 夜夜夜夜夜久久久久| 免费无遮挡裸体视频| 国产男人的电影天堂91| 能在线免费观看的黄片| 国产精品一区二区三区四区免费观看 | 国产av麻豆久久久久久久| 亚洲自拍偷在线| 99riav亚洲国产免费| 国产亚洲精品av在线| 亚洲自拍偷在线| 欧美黑人巨大hd| 可以在线观看毛片的网站| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 国产免费男女视频| 亚洲av美国av| 男人和女人高潮做爰伦理| 两性午夜刺激爽爽歪歪视频在线观看| 国产主播在线观看一区二区| 狂野欧美白嫩少妇大欣赏| 久久精品国产99精品国产亚洲性色| 亚洲第一电影网av| 大型黄色视频在线免费观看| 69人妻影院| 可以在线观看毛片的网站| 搡老岳熟女国产| 亚洲欧美日韩高清专用| 一个人看的www免费观看视频| 九色成人免费人妻av| 成人亚洲精品av一区二区| 91久久精品电影网| 一夜夜www| 免费人成在线观看视频色| 久久国产乱子免费精品| 欧美色视频一区免费| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| 亚洲avbb在线观看| 国内少妇人妻偷人精品xxx网站| 免费搜索国产男女视频| 大又大粗又爽又黄少妇毛片口| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| 国产探花极品一区二区| 亚洲av美国av| 女的被弄到高潮叫床怎么办 | 日韩欧美免费精品| 99精品在免费线老司机午夜| eeuss影院久久| 精品久久久久久久末码| 亚洲精华国产精华液的使用体验 | 免费看日本二区| 国产精品综合久久久久久久免费| 久久久久久久精品吃奶| a级一级毛片免费在线观看| 久久久成人免费电影| 欧美丝袜亚洲另类 | 天美传媒精品一区二区| 99热这里只有是精品50| 婷婷色综合大香蕉| 少妇人妻精品综合一区二区 | 午夜福利欧美成人| 人妻少妇偷人精品九色| 久久香蕉精品热| 欧美黑人巨大hd| 一个人看视频在线观看www免费| 亚洲内射少妇av| 精品久久久久久久久久久久久| 免费看a级黄色片| 亚洲最大成人手机在线| 国产毛片a区久久久久| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 久久这里只有精品中国| 在线看三级毛片| 国产极品精品免费视频能看的| 欧美zozozo另类| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 黄色丝袜av网址大全| 久久人人精品亚洲av| 午夜激情福利司机影院| 永久网站在线| 夜夜爽天天搞| 欧美日韩国产亚洲二区| 国产高清视频在线观看网站| 尤物成人国产欧美一区二区三区| 亚洲乱码一区二区免费版| 午夜免费激情av| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 免费在线观看日本一区| 亚洲一级一片aⅴ在线观看| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 精品欧美国产一区二区三| 久久香蕉精品热| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 国国产精品蜜臀av免费| 最近最新中文字幕大全电影3| 黄色女人牲交| 色视频www国产| 在线观看av片永久免费下载| 午夜精品在线福利| 波野结衣二区三区在线| 午夜亚洲福利在线播放| 看片在线看免费视频| 五月玫瑰六月丁香| 国产色婷婷99| 99久久中文字幕三级久久日本| 亚洲图色成人| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 久久国产乱子免费精品| 久久久久性生活片| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 黄色日韩在线| 69av精品久久久久久| 日韩国内少妇激情av| 最近中文字幕高清免费大全6 | 国产视频一区二区在线看| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 18禁在线播放成人免费| 国产精品不卡视频一区二区| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 99在线人妻在线中文字幕| 黄色欧美视频在线观看| 亚洲av.av天堂| 国产大屁股一区二区在线视频| 一区福利在线观看| 极品教师在线视频| 五月伊人婷婷丁香| 久久精品国产99精品国产亚洲性色| 亚洲精品在线观看二区| 能在线免费观看的黄片| 免费在线观看影片大全网站| 午夜福利视频1000在线观看| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 黄色日韩在线| 久久天躁狠狠躁夜夜2o2o| 伦理电影大哥的女人| 日本a在线网址| 国产精品亚洲美女久久久| 深爱激情五月婷婷| 18+在线观看网站| 日韩强制内射视频| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 日韩欧美在线乱码| 综合色av麻豆| 少妇的逼水好多| 琪琪午夜伦伦电影理论片6080| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 成人美女网站在线观看视频| 天堂动漫精品| 亚洲在线观看片| 精品久久国产蜜桃| 日日夜夜操网爽| 色哟哟·www| a级一级毛片免费在线观看| 成人特级av手机在线观看| 18+在线观看网站| 最近视频中文字幕2019在线8| 日韩在线高清观看一区二区三区 | 欧美黑人巨大hd| 老熟妇乱子伦视频在线观看| 欧美成人a在线观看| 免费av不卡在线播放| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 夜夜爽天天搞| 国产高清不卡午夜福利| 99riav亚洲国产免费| 欧美日韩黄片免| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 欧洲精品卡2卡3卡4卡5卡区| 免费不卡的大黄色大毛片视频在线观看 | 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 一个人看视频在线观看www免费| 欧美成人性av电影在线观看| 黄色配什么色好看| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 午夜精品在线福利| 91久久精品电影网|