• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    2017-06-22 14:44:19WANGJianchunWUChengshengWANGXing
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:王星建春雷諾數(shù)

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Direct numerical simulation(DNS)for low/medium Reynolds lid-driven cavity flow with different schemes are presented.The semi-implicit method for pressure-linked equations(SIMPLE), pressure-implicit splitting of operations(PISO)and pseudo-compressibility schemes are used.The N-S equations are all discretised by the Finite Volume Method for the three schemes,with the same staggered grid arrangement,the fully implicit time-stepping scheme and the QUICK scheme for the discretization of the temporal items and convective transport terms,the results are compared with the benchmark solution reported by Ghia[1].Under the same convergence criteria condition,difference in the stability,accuracy and convergence rate are analyzed.The PISO scheme is the most accurate scheme for low Reynolds number of Re=400 and 1 000 flow.The pseudo-compressibility scheme is found to be the most accurate for Re=5 000 flow.Besides,pseudo-compressibility scheme cost the minimum time to achieve convergence for all the cases,which shows it is one of the best choice for DNS of the low/medium flows.

    SIMPLE;PISO;pseudo-compressibility;DNS;accuracy;convergence rate; stability

    0 Introduction

    In recent years,along with the continuous improvement of computer performance,deepening of the high performance parallel computing study and the fervent need for the industry to the research of the turbulent meticulous flow field,direct numerical simulation(DNS)of the turbulence are constantly studied.Incompressible fluids are the main objects of the DNS research,their governing equations are the incompressible N-S equations.However,a lot of prerequisites need to be met before carrying out the DNS research,for example,a good solver of the governing equations,massively parallel cluster,high precision scheme for the temporal and space discretization,high resolution to catch the minimum scale vortices,and so on.Nowadays,the DNS research is main focused on the low/medium flows since there are so many restrict prerequisites.Among these prerequisites,a good solvers is the fundamental conditions that you can choose to accelerate the DNS program.The main solvers for the incompressible fluid are solving the primitive variable N-S equations,vorticity-stream function method andother methods.SIMPLE and PISO method belong to the first one,the pseudo-compressibility method belongs to other methods.

    The SIMPLE algorithm was relatively straightforward and soon became the main solver of the incompressible flow since it was first put forward in 1972 and it had been successfully implemented in numerous CFD procedures recent years.The PISO scheme was first put forward by Issa in 1986 and was early designed to solve the unsteady N-S equations.The PISO was considered as an extension for the SIMPLE scheme.At the same time,the pseudo-compressibility scheme attracted lots of researchers’attention because the continuous equation and the momentum equations were solved synchronously and the scheme itself had high efficiency.In recent years,these schemes were applied to perform the DNS research by some researchers. Wang et al[2]applied GPU accelerated DNS with the SIMPLE[3-4]scheme to the Re=1 000 and Re=10 000 lid-driven cavity flow and the results agreed with the literature well.Dousset and Pothérat[5]carried out the DNS of low Reynolds Re=100 and Re=200 flows past a truncated square cylinder through the PISO[6]scheme for both steady and unsteady flows and analyzed the formation mechanism of hairpin vortices in the wake of the truncated square cylinder in a duct.Skovorodko[7]used the pseudo-compressibility[8]scheme to complete the DNS of compressible fully developed turbulent Couette flow between two parallel plates and analyzed the slip effects in compressible turbulent channel flow.However,rare articles are found about using the pseudo-compressibility scheme to the DNS of incompressible flows.

    Since the better solver of the N-S equations chosen,the easier the DNS be performed, being aware of the difference among the different kinds of solvers to the governing equations is very important for the DNS research,since you can choose the best solver to your problems. Convergence,accuracy and stability are the three important features used to judge whether a scheme is good or bad for the studied problems.Difference of these important features for the three different schemes is presented in this paper.Same conditions as shown latter are implemented for these different schemes to avoid the influence of other factors in addition to these schemes theirselves.

    1 Numerical methods

    The integral form of the dimensionless incompressible N-S equations is:

    Finite-volume discretion momentum equation in the staggered grid is:

    Mass conservation equation is:

    where the subscripts e,n,w and s represent the control-volume faces and E,N,W and S represent the grid points,nb represents the neighbor grid point as shown in the staggered grid[4,9]system(Fig.1)below.

    Fig.1 Staggered grid system

    1.1 SIMPLE scheme

    There is evidently no equation for the pressure in the incompressible N-S equations,coupling between pressure and velocity is hidden in the continuity equation,bring the problem that how to solve the pressure alone?The Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)was originally put forward by Patankar and Spalding in 1972,resolved the pressurevelocity coupled problem well.Staggered grid arrangement is used in this paper and the main calculation procedures of the SIMPLE algorithm are as follows:

    (2)Solve the discretised momentum Eqs.(4)and(5)to get the u*,v*,using the estimated pressure or the pressure calculated on the last level remarked as P*.

    (3)Calculate the pressure correction P′,ensure the(u*+u′),(v*+v′)corresponding to(P*+P′)satisfy the continuity equation.The pressure correction is then obtained by substituting the corrected velocity into discretised continuity Eq.(6),using the relationship between u′, v′and P′.

    (4)Calculate the velocity corrections u′,v′,ensure the(ue*+ue′ )and(vn*+vn′)still satisfy the linearized momentum equation.

    (5)Set the(u*+u′),(v*+v′)and(P*+aPP′)as the answer of this level and start the calculation for the next level,aPis the under-relax factor,repeat step one to five until the flow field converges,namely the velocities can satisfy both the momentum equations and the continuity equation.The so-called‘level’is the solving process of the algebraic equation set consisted of the fixed coefficient and source.SIMPLE method is essentially a guess-and-correct scheme,the guess steps are 1~3 and correct steps are 4~5.Details refer to the Ref.[6]or[7].

    1.2 PISO scheme

    The PISO method consists of one guess step and two correct steps,the guess step and the first correct step are almost the same of SIMPLE scheme,the main procedure is:

    (1)Guess step-same as the SIMPLE scheme

    Solving discretised momentum equation implicitly based on the estimated or the last level pressure value,remarked as P()k:

    u*,v*and P()kin this step satisfy the momentum equation but may not satisfy the continuity equation.

    (2)First correct step-same as the SIMPLE scheme

    (3)The second correct step-special feature for the PISO scheme

    Search for the second corrected pressure P**and velocities u***,v***based on the calculated pressure P*and velocities u**,v**in the first correct step,make them satisfy the continuity equation and momentum equations better.

    Then,P**,u***,v***are calculated,the second correct step is complemented.Set the P**, u***,v***as the initial value for the next level and continue the procedure above until it satifies the the convergence condition.Details refer to the Ref.[5].

    1.3 Pseudo-compressibility scheme

    Pseudo-compressibility scheme was first put forward by Chorin and Vladimirova separately.The wind tunnel test was started,the wind speed was gradual changed from zero to the stability value,this accelerate process was unsteady.This change from the unsteady to the steady process was essentially the change of the type of governing equations.The idea for the pseudo-compressibility scheme is:If the steady incompressible N-S equations are added an time derivative term?/?t,then they are translated to a virtual unsteady compressible N-S equations.The continuity equation is added pressure derivative term?P/?t,momentum equations are added velocities derivative terms?v→/?t and the N-S equations for the pseudo-compressibility scheme are:

    The procedure for the pseudo-compressibility is very simple:

    (1)Calculate the velocities u,v from the momentum equations(10)based on the estimated pressure or the last level pressure.

    (2)Using the velocities u,v calculated above and the equation(9)to calculate the pressure P.

    (3)Repeat the steps(1-2)until the u,v and P satisfy the convergence condition.

    2 Numerical results

    The convergence criterion[10-11]is:

    where rpis the residual reduction factor,its value range from 0.05 to 0.25.0.1 is used in this paper.

    Accuracy,stability and rapid convergence of the three scheme are compared for three different Reynolds and the corresponding grid number.The results are presented in the Tabs.1-2 and Figs.2-4.As showed in Tab.1,under the same discretised scheme and convergence criterion,different time and iterate number are needed to achieve convergence for different scheme. The pseudo-compressibility cost the minimum time to converge,followed by SIMPLE scheme and then PISO scheme.For the case of Re=400,Re=1 000 and Re=5 000,the corresponding time consumed for SIMPLE scheme is 20.4,18.4 and 44.7 times as the pseudo-compressibility scheme,the time consumed for PISO scheme is 26.2,23.1 and 48.2 times as the pseudocompressibility scheme.Much time are saved for the pseudo-compressibility scheme since it is a non-iterative scheme,while 80%of the time costed in calculation is to solve the pressurecorrect equation.One more pressure correct equation is needed for PISO compare with SIMPLE,which shows the PISO scheme cost maximum time to simulate the steady lid-driven flow.

    Tab.1 Fast convergence for different method under different conditions

    Fig.2 Iterative process or the residual monitor for different scheme at Re=1 000,40*40 grids: UP(SIMPLE);RIGHT(PISO);LEFT(pseudo-compressibility)

    For the stability during iteration,SIMPLE and PISO are better than pseudo-compressibility as the corresponding residual monitor curve shown in Fig.2 for the case Re=1 000.

    It can be seen from Fig.3.that PISO is the most accurate scheme for simulating the velocities in the central line in the case Re=400 and Re=1 000,followed by pseudo-compressibility and then SIMPLE scheme.While for Re=5 000,the pseudo-compressibility scheme is themost accurate scheme,also the streamline for different methods in the case Re=5 000 in Fig.4 shows that the pseudo-compressibility scheme can simulate the secondary vortices that occur in the bottom right corner better and the curve of streamline matches the benchmark results by Ghia better than the SIMPLE and PISO.for simulating the lid-driven flow,followed by pseudo-compressibility and then SIMPLE.In the case of mid Re such as Re=5 000,pseudo-compressibility is thought to be the most accurate scheme for simulating the lid-driven flow.PISO is more accurate than SIMPLE scheme for simulating the lid-driven flow for all the Re number,since PISO has one more pressure correct step than SIMPLE.

    Fig.3 Non-dimensional horizontal(U)and vertical(V)velocity component profiles along the vertical(y)and horizontal(x)centerlines of a wall-driven square enclosure flow

    Fig.4 Streamline for different methods at Re=5 000Thus,in the case of low Re such as Re=400 and 1 000,PISO is the most accurate scheme

    Tab.2 The location of primary and the secondary vortices

    Tab.2 shows that the location of primary and the secondary vortices,when Re=400,the position deviation for the location of primary vortices compared with Ghia’s results for SIMPLE is(+0.003 5,+0.001 9),PISO is(+0.001 5,+0.002 1)and pseudo-compressibility is(+0.003 1, +0.002 5),which shows that the PISO is the most accurate scheme,followed by pseudo-compressibility and then SIMPLE in this case.Similar,when Re=5 000,the position deviation for SIMPLE is(+0.004 4,-0.012 9),for PISO is(+0.008 8,-0.001 7),for pseudo-compressibility is(+0.003 5,-0.000 2),which shows that the pseudo-compressibility is the most accuratescheme in this case.Similarly comparison can be performed to approve the conclusion reached last paragraph.

    3 Conclusions

    Three different numerical schemes applied to numerically simulate the low-medium Reynolds lid-driven cavity flow are presented in this paper,results are compared with benchmark solution reported by Ghia in 1982,difference among these schemes are analyzed and the results are as follows:

    (1)The convergence rate is the best for pseudo-compressibility in different cases,also the accuracy of this scheme is the best in the case of medium and high Reynolds.The iterate residual curve of SIMPLE and PISO schemes is smoother than pseudo-compressibility scheme.

    (2)In the cases of low Reynolds flow,PISO is found to be the most accurate scheme.However,the convergence rate of PISO is the worst among these schemes.It is always more accurate than SIMPLE in all cases.

    In this paper,for medium or high Reynolds like Re=5 000,the pseudo-compressibility is more accurate than the other schemes and for all Reynolds studied in the paper,the convergence rate of pseudo-compressibility is the best.The pseudo-compressibility scheme is considered to be the best choice for direct numerical simulation of low/medium Reynolds steady laminar or turbulence in the future.

    However,there are still some shortcomings for pseudo-compressibility scheme need to be overcome,for example,when come to the unsteady flow,the scheme needs to be re-designed. Besides,the key parameter c for different situations is always different and not easy to design.

    [1]Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411.

    [2]Wang J,Xu M,Ge W,et al.GPU accelerated direct numerical simulation with SIMPLE arithmetic for single-phase flow [J].Chin Sci Bull,2010,55:1979-1986.

    [3]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].International Journal of Heat and Mass Transfer,1972,15(10):1787-1806.

    [4]Patankar S.Numerical heat transfer and fluid flow[M].CRC Press,1980.

    [5]Dousset V,Pothérat A.Formation mechanism of hairpin vortices in the wake of a truncated square cylinder in a duct[J]. Journal of Fluid Mechanics,2010,653:519-536.

    [6]Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics, 1986,62(1):40-65.

    [7]Skovorodko P A.Slip effects in compressible turbulent channel flow[J].arXiv preprint arXiv:1210.2152,2012.

    [8]Chorin A J.A numerical method for solving incompressible viscous flow problems[J].Journal of Computational Physics, 1967,2(1):12-26.

    [9]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J].Physics of Fluids,1965,8(12):2182.

    [10]Patankar S V.A calculation procedure for two-dimensional elliptic situations[J].Numerical Heat Transfer,1981,4(4): 409-425.

    [11]Van Doormaal J P,Raithby G D.Enhancements of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,7(2):147-163.

    中低雷諾數(shù)流動(dòng)直接數(shù)值模擬的算法比較

    王建春,吳乘勝,王星
    (中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082)

    文章采用不同的算法對(duì)中低雷諾數(shù)方腔驅(qū)動(dòng)流動(dòng)進(jìn)行了直接數(shù)值模擬,所用算法分別是人工壓縮方法、SIMPLE算法以及PISO算法。三種算法均采用有限體積法基于交錯(cuò)網(wǎng)格技術(shù)離散N-S方程,時(shí)間項(xiàng)采用全隱格式離散,對(duì)流項(xiàng)采用QUICK格式離散,并將它們得到結(jié)果與Ghia發(fā)表的基準(zhǔn)解進(jìn)行了比對(duì)。文中分析了在同樣的收斂條件下,不同算法之間的穩(wěn)定性,收斂速率以及準(zhǔn)確性的差異,發(fā)現(xiàn)PISO算法在較低雷諾數(shù)Re=400和Re=1 000情況下最準(zhǔn)確,而人工壓縮算法在雷諾數(shù)為5 000時(shí)最準(zhǔn)確,在所有計(jì)算的不同Re數(shù)條件下,發(fā)現(xiàn)人工壓縮法達(dá)到收斂所需時(shí)間都是最少的,這可以使它成為中低雷諾數(shù)下研究直接數(shù)值模擬最好的算法之一。

    SIMPLE;PISO;人工壓縮方法;DNS;準(zhǔn)確性;收斂速度;穩(wěn)定性

    O35

    :A

    王建春(1989-),男,中國(guó)船舶科學(xué)研究中心碩士研究生;

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.001

    1007-7294(2017)06-0651-10

    吳乘勝(1976-),男,中國(guó)船舶科學(xué)研究中心研究員;

    date:2017-01-12

    Biography:WANG Jian-chun(1989-),male,master student,E-mail:664148138@qq.com; WU Cheng-sheng(1976-),male,researcher.

    王星(1988-),男,中國(guó)船舶科學(xué)研究中心工程師。

    猜你喜歡
    王星建春雷諾數(shù)
    LOCALIZED NODAL SOLUTIONS FOR SCHR?DINGER-POISSON SYSTEMS*
    陸建春油畫(huà)作品欣賞
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
    過(guò)建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    高壓旋噴樁在市政道路軟基處理中的質(zhì)量控制與常見(jiàn)病害防治
    基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
    Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory*
    失穩(wěn)初期的低雷諾數(shù)圓柱繞流POD-Galerkin 建模方法研究
    基于轉(zhuǎn)捩模型的低雷諾數(shù)翼型優(yōu)化設(shè)計(jì)研究
    亚洲欧美日韩卡通动漫| 别揉我奶头~嗯~啊~动态视频| 一本一本综合久久| 亚洲欧美日韩高清专用| 欧美日韩福利视频一区二区| 欧美日韩一级在线毛片| 成年人黄色毛片网站| 精品欧美国产一区二区三| 别揉我奶头~嗯~啊~动态视频| 久久久国产成人精品二区| 午夜福利成人在线免费观看| 日本一本二区三区精品| 中文字幕高清在线视频| 熟妇人妻久久中文字幕3abv| 国内精品一区二区在线观看| 亚洲国产高清在线一区二区三| 动漫黄色视频在线观看| 午夜福利高清视频| 男女午夜视频在线观看| 国产真人三级小视频在线观看| 精品乱码久久久久久99久播| 亚洲无线在线观看| 欧美性猛交黑人性爽| 观看美女的网站| 高清毛片免费观看视频网站| 美女cb高潮喷水在线观看 | 12—13女人毛片做爰片一| 男人舔女人的私密视频| 亚洲精品一区av在线观看| 色噜噜av男人的天堂激情| 国产91精品成人一区二区三区| 久久久国产精品麻豆| 一夜夜www| 高清毛片免费观看视频网站| 国产美女午夜福利| 亚洲av电影不卡..在线观看| 精品久久久久久久久久免费视频| 人人妻人人看人人澡| 国产乱人伦免费视频| 悠悠久久av| 99re在线观看精品视频| 欧美黄色片欧美黄色片| 叶爱在线成人免费视频播放| 日本a在线网址| 青草久久国产| 国产成人一区二区三区免费视频网站| 特大巨黑吊av在线直播| 精品一区二区三区av网在线观看| 在线观看舔阴道视频| 婷婷亚洲欧美| 亚洲成人免费电影在线观看| 又粗又爽又猛毛片免费看| 少妇丰满av| 亚洲熟妇熟女久久| 国产成人精品久久二区二区91| 真人一进一出gif抽搐免费| 亚洲欧美激情综合另类| www.精华液| 成人欧美大片| 国产精品一区二区精品视频观看| ponron亚洲| 国产精品香港三级国产av潘金莲| 久久精品影院6| 99久久无色码亚洲精品果冻| 国产麻豆成人av免费视频| 亚洲欧洲精品一区二区精品久久久| 色综合婷婷激情| 免费av不卡在线播放| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 精品免费久久久久久久清纯| 久久午夜亚洲精品久久| 久久久久国产一级毛片高清牌| 欧美最黄视频在线播放免费| 日韩精品中文字幕看吧| 一进一出抽搐gif免费好疼| 午夜a级毛片| 床上黄色一级片| 免费人成视频x8x8入口观看| 狂野欧美白嫩少妇大欣赏| 久久久久精品国产欧美久久久| 国产午夜精品论理片| 亚洲一区二区三区色噜噜| 一a级毛片在线观看| 久久久久久国产a免费观看| 国产精品久久视频播放| 夜夜夜夜夜久久久久| 久久热在线av| 少妇熟女aⅴ在线视频| 国产爱豆传媒在线观看| 国产欧美日韩一区二区三| 国内毛片毛片毛片毛片毛片| 天堂av国产一区二区熟女人妻| 精品福利观看| 亚洲真实伦在线观看| 天堂动漫精品| 色播亚洲综合网| 午夜激情福利司机影院| 精品久久久久久久久久久久久| 色综合婷婷激情| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩无卡精品| 亚洲av成人av| 免费人成视频x8x8入口观看| 国产视频内射| 欧美国产日韩亚洲一区| 99热这里只有是精品50| 99国产精品一区二区三区| 日韩免费av在线播放| 精品乱码久久久久久99久播| 日日干狠狠操夜夜爽| 一级作爱视频免费观看| 99热这里只有是精品50| 日韩有码中文字幕| 亚洲第一电影网av| 欧美乱色亚洲激情| 免费在线观看影片大全网站| 九九久久精品国产亚洲av麻豆 | 日韩有码中文字幕| xxx96com| 精品福利观看| 18禁黄网站禁片免费观看直播| 亚洲精品国产精品久久久不卡| 欧美成人一区二区免费高清观看 | 搡老岳熟女国产| 听说在线观看完整版免费高清| 一本一本综合久久| 日韩欧美国产在线观看| 婷婷亚洲欧美| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 好男人在线观看高清免费视频| 精品久久久久久久久久久久久| 手机成人av网站| 亚洲精品在线观看二区| 国产精品一及| 黄频高清免费视频| 精品99又大又爽又粗少妇毛片 | 国产伦精品一区二区三区视频9 | 亚洲国产精品sss在线观看| 在线观看美女被高潮喷水网站 | 色综合婷婷激情| 婷婷精品国产亚洲av| 91av网一区二区| 我要搜黄色片| 国产成人av教育| 久久久色成人| 校园春色视频在线观看| 99久久99久久久精品蜜桃| av在线蜜桃| 男女下面进入的视频免费午夜| 观看美女的网站| 99久国产av精品| 日韩欧美国产在线观看| 欧美黄色淫秽网站| 免费看光身美女| 国产熟女xx| 久久久久精品国产欧美久久久| 岛国在线观看网站| 亚洲乱码一区二区免费版| 国产三级黄色录像| 久久九九热精品免费| 日本在线视频免费播放| 特级一级黄色大片| 日韩欧美国产一区二区入口| 中文字幕人妻丝袜一区二区| 亚洲av第一区精品v没综合| 性色avwww在线观看| 1024手机看黄色片| 久久久久久久精品吃奶| 亚洲精品粉嫩美女一区| 欧美日韩乱码在线| 日韩av在线大香蕉| 又爽又黄无遮挡网站| 午夜激情欧美在线| 亚洲男人的天堂狠狠| 无限看片的www在线观看| 国产黄片美女视频| 美女午夜性视频免费| 美女高潮喷水抽搐中文字幕| 久久亚洲真实| 一本久久中文字幕| 久久伊人香网站| 国产 一区 欧美 日韩| h日本视频在线播放| 少妇人妻一区二区三区视频| 久久这里只有精品中国| 日韩三级视频一区二区三区| 欧美成人性av电影在线观看| a级毛片在线看网站| 免费观看的影片在线观看| 久久精品91无色码中文字幕| 黄色片一级片一级黄色片| 99精品在免费线老司机午夜| 成年女人看的毛片在线观看| 国产精品亚洲一级av第二区| 精品久久久久久久人妻蜜臀av| 欧美日韩黄片免| 一进一出好大好爽视频| 最近最新中文字幕大全免费视频| 亚洲avbb在线观看| av福利片在线观看| 无遮挡黄片免费观看| 中文字幕熟女人妻在线| 久久久久久久精品吃奶| 久久这里只有精品中国| 国内毛片毛片毛片毛片毛片| av片东京热男人的天堂| 亚洲成av人片在线播放无| 此物有八面人人有两片| 日韩精品青青久久久久久| 国产一区二区激情短视频| 麻豆av在线久日| 91麻豆av在线| 国产亚洲精品av在线| 天天一区二区日本电影三级| 国产精品久久久av美女十八| 欧美av亚洲av综合av国产av| 午夜福利免费观看在线| 免费观看的影片在线观看| 国产高清videossex| 熟妇人妻久久中文字幕3abv| 久久久久亚洲av毛片大全| 日韩欧美一区二区三区在线观看| 美女免费视频网站| 国产又色又爽无遮挡免费看| 国产精品自产拍在线观看55亚洲| 亚洲成人久久爱视频| 男女那种视频在线观看| 韩国av一区二区三区四区| 色在线成人网| 国产精品爽爽va在线观看网站| 国产精品女同一区二区软件 | 婷婷丁香在线五月| 久99久视频精品免费| 国产在线精品亚洲第一网站| www日本在线高清视频| 午夜福利在线在线| 亚洲精品美女久久久久99蜜臀| 国产精品免费一区二区三区在线| 舔av片在线| 久久天躁狠狠躁夜夜2o2o| 亚洲天堂国产精品一区在线| 国产一区二区三区视频了| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| 两性夫妻黄色片| 首页视频小说图片口味搜索| 不卡av一区二区三区| 国产野战对白在线观看| 亚洲狠狠婷婷综合久久图片| 国产高清有码在线观看视频| 国产69精品久久久久777片 | 亚洲美女黄片视频| 天天添夜夜摸| 在线观看日韩欧美| 国产在线精品亚洲第一网站| 国产精品98久久久久久宅男小说| 搞女人的毛片| 色播亚洲综合网| 级片在线观看| 757午夜福利合集在线观看| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女| 桃红色精品国产亚洲av| 精品国内亚洲2022精品成人| 亚洲av中文字字幕乱码综合| 国产精品影院久久| 国产精品日韩av在线免费观看| 色视频www国产| 亚洲午夜理论影院| 亚洲精品一区av在线观看| 国产不卡一卡二| 两个人视频免费观看高清| 美女高潮的动态| 最近最新中文字幕大全电影3| 黄色成人免费大全| 久久久久久久久久黄片| 久9热在线精品视频| 九色国产91popny在线| 不卡一级毛片| 婷婷亚洲欧美| 免费av毛片视频| 黄频高清免费视频| 亚洲欧美精品综合久久99| 日本成人三级电影网站| 免费看a级黄色片| 精品国产美女av久久久久小说| 日本精品一区二区三区蜜桃| 热99re8久久精品国产| 午夜精品一区二区三区免费看| 老汉色∧v一级毛片| 在线观看一区二区三区| 亚洲精品中文字幕一二三四区| 免费看十八禁软件| 窝窝影院91人妻| 日韩人妻高清精品专区| 亚洲九九香蕉| 免费在线观看亚洲国产| 久久久久国产一级毛片高清牌| 不卡av一区二区三区| 国产又色又爽无遮挡免费看| 一夜夜www| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产日韩欧美精品在线观看 | 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 精品日产1卡2卡| 一区二区三区国产精品乱码| 亚洲成人精品中文字幕电影| 岛国视频午夜一区免费看| 一个人免费在线观看电影 | 美女大奶头视频| 69av精品久久久久久| 亚洲欧美激情综合另类| 一本综合久久免费| 亚洲成人精品中文字幕电影| 欧美乱妇无乱码| 小蜜桃在线观看免费完整版高清| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 国产精品av久久久久免费| 黄色丝袜av网址大全| 不卡av一区二区三区| 男人舔女人下体高潮全视频| 18禁国产床啪视频网站| 免费在线观看亚洲国产| 久久国产精品影院| 午夜福利18| 在线观看午夜福利视频| 精品一区二区三区四区五区乱码| 欧美日韩精品网址| 国产三级黄色录像| 欧美激情在线99| 久久久久精品国产欧美久久久| www.自偷自拍.com| 国产精品一及| aaaaa片日本免费| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 听说在线观看完整版免费高清| 99久久综合精品五月天人人| 老熟妇乱子伦视频在线观看| av国产免费在线观看| 午夜精品在线福利| 成人永久免费在线观看视频| 国产高清激情床上av| 成人午夜高清在线视频| 最近最新中文字幕大全电影3| 国产精品影院久久| 香蕉av资源在线| 国产精品亚洲av一区麻豆| av黄色大香蕉| 国内精品美女久久久久久| 十八禁网站免费在线| 99热6这里只有精品| 在线观看免费视频日本深夜| 国产成人系列免费观看| 99在线视频只有这里精品首页| 久久精品亚洲精品国产色婷小说| 午夜影院日韩av| 青草久久国产| 免费观看精品视频网站| 久久精品人妻少妇| 香蕉丝袜av| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 香蕉av资源在线| 国产97色在线日韩免费| 不卡av一区二区三区| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 99久久久亚洲精品蜜臀av| 国产精品 国内视频| 国内精品久久久久精免费| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 精品久久久久久久人妻蜜臀av| 人人妻人人澡欧美一区二区| 精品一区二区三区视频在线 | 给我免费播放毛片高清在线观看| 搞女人的毛片| 国产精品免费一区二区三区在线| 亚洲五月婷婷丁香| 欧美高清成人免费视频www| 日本与韩国留学比较| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 日韩欧美国产一区二区入口| 亚洲国产欧美一区二区综合| 亚洲精品456在线播放app | 亚洲精品一区av在线观看| 亚洲精品美女久久久久99蜜臀| 欧美国产日韩亚洲一区| av天堂在线播放| 欧美在线一区亚洲| 午夜日韩欧美国产| 国产三级在线视频| 久久精品91无色码中文字幕| 一个人看视频在线观看www免费 | 亚洲av电影在线进入| 国产美女午夜福利| 国产精品久久久久久久电影 | 国产伦人伦偷精品视频| 午夜激情欧美在线| 精品一区二区三区视频在线观看免费| 12—13女人毛片做爰片一| 男女视频在线观看网站免费| 久久久久精品国产欧美久久久| h日本视频在线播放| 男女之事视频高清在线观看| 日韩有码中文字幕| 欧美日韩综合久久久久久 | 午夜福利免费观看在线| 亚洲精品乱码久久久v下载方式 | 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 99热精品在线国产| 99久久精品热视频| 亚洲一区高清亚洲精品| 午夜福利高清视频| 中国美女看黄片| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 少妇丰满av| 老司机午夜福利在线观看视频| 久久久久久九九精品二区国产| 十八禁人妻一区二区| 国产黄片美女视频| 精品免费久久久久久久清纯| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 成人三级做爰电影| 国产av在哪里看| 精品一区二区三区视频在线 | 日韩欧美国产一区二区入口| 99在线视频只有这里精品首页| 亚洲午夜精品一区,二区,三区| 我要搜黄色片| 午夜日韩欧美国产| 亚洲av成人av| 黑人欧美特级aaaaaa片| 久久这里只有精品中国| 久久精品国产99精品国产亚洲性色| 亚洲精品在线观看二区| 操出白浆在线播放| 成人av一区二区三区在线看| 欧美乱妇无乱码| 久久香蕉精品热| 国产亚洲精品一区二区www| 免费电影在线观看免费观看| 国产激情久久老熟女| 亚洲国产精品sss在线观看| av片东京热男人的天堂| 午夜福利高清视频| 99精品久久久久人妻精品| 亚洲一区二区三区色噜噜| 又大又爽又粗| 网址你懂的国产日韩在线| 日本a在线网址| 国产精品99久久久久久久久| a级毛片a级免费在线| 一区二区三区国产精品乱码| 国产黄a三级三级三级人| 男女那种视频在线观看| 在线免费观看的www视频| 日本三级黄在线观看| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品综合久久99| 国产精品久久久av美女十八| 欧美3d第一页| 日本与韩国留学比较| 夜夜夜夜夜久久久久| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 国产乱人视频| 国产亚洲av嫩草精品影院| 亚洲中文字幕日韩| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 老汉色av国产亚洲站长工具| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 中文字幕精品亚洲无线码一区| 国产精品久久久久久久电影 | 成人午夜高清在线视频| 国产精品一区二区三区四区免费观看 | 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 国产高清三级在线| 黄片小视频在线播放| 国产又黄又爽又无遮挡在线| 色吧在线观看| 国产高清三级在线| 中文字幕人妻丝袜一区二区| 免费观看精品视频网站| 色综合站精品国产| 丁香六月欧美| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 欧美一区二区国产精品久久精品| 免费观看精品视频网站| 国产精品av视频在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲真实伦在线观看| 女人被狂操c到高潮| 欧美在线黄色| 日韩欧美在线二视频| 在线永久观看黄色视频| 精品久久久久久久久久久久久| 精品乱码久久久久久99久播| 国产成人av激情在线播放| 国产黄a三级三级三级人| 少妇的逼水好多| 黄色视频,在线免费观看| 一个人看视频在线观看www免费 | 给我免费播放毛片高清在线观看| 国产精品久久久久久久电影 | 国产69精品久久久久777片 | 成年人黄色毛片网站| 动漫黄色视频在线观看| 国产真实乱freesex| 久久欧美精品欧美久久欧美| 美女高潮的动态| 国产麻豆成人av免费视频| 一个人看的www免费观看视频| 日韩高清综合在线| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 三级国产精品欧美在线观看 | 又紧又爽又黄一区二区| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 三级毛片av免费| 亚洲乱码一区二区免费版| 亚洲一区高清亚洲精品| 午夜a级毛片| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 国产精品野战在线观看| 嫩草影院精品99| 757午夜福利合集在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲成人免费电影在线观看| 久久久国产成人免费| 此物有八面人人有两片| 99久久综合精品五月天人人| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久久久久| 一二三四社区在线视频社区8| 一区二区三区国产精品乱码| 日本免费a在线| 又黄又爽又免费观看的视频| 高清毛片免费观看视频网站| ponron亚洲| xxxwww97欧美| 巨乳人妻的诱惑在线观看| 国产又黄又爽又无遮挡在线| 国产三级黄色录像| 欧美绝顶高潮抽搐喷水| 亚洲精华国产精华精| 身体一侧抽搐| 亚洲成a人片在线一区二区| 色噜噜av男人的天堂激情| xxx96com| 久久久久久大精品| www日本在线高清视频| 18禁裸乳无遮挡免费网站照片| 亚洲成人久久性| 亚洲一区高清亚洲精品| 久久久成人免费电影| 一级毛片女人18水好多| 中文字幕熟女人妻在线| 免费无遮挡裸体视频| 一本久久中文字幕| 男人舔奶头视频| 久久久久国产一级毛片高清牌| 国产私拍福利视频在线观看| 国产激情偷乱视频一区二区| 亚洲精品中文字幕一二三四区| 全区人妻精品视频| 好男人在线观看高清免费视频| 2021天堂中文幕一二区在线观| 婷婷丁香在线五月| 午夜a级毛片| 精品一区二区三区av网在线观看| 听说在线观看完整版免费高清| 一个人看的www免费观看视频| 在线观看日韩欧美| 2021天堂中文幕一二区在线观| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久av网站| 成人永久免费在线观看视频| 母亲3免费完整高清在线观看| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 色吧在线观看| 天堂av国产一区二区熟女人妻| 国产成人精品久久二区二区91| 精品国产亚洲在线| 最新在线观看一区二区三区| 精品国产美女av久久久久小说| 国产在线精品亚洲第一网站| 最近视频中文字幕2019在线8| 曰老女人黄片| 1024手机看黄色片| 午夜免费成人在线视频|