• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    2017-06-22 14:44:19WANGJianchunWUChengshengWANGXing
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:王星建春雷諾數(shù)

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Direct numerical simulation(DNS)for low/medium Reynolds lid-driven cavity flow with different schemes are presented.The semi-implicit method for pressure-linked equations(SIMPLE), pressure-implicit splitting of operations(PISO)and pseudo-compressibility schemes are used.The N-S equations are all discretised by the Finite Volume Method for the three schemes,with the same staggered grid arrangement,the fully implicit time-stepping scheme and the QUICK scheme for the discretization of the temporal items and convective transport terms,the results are compared with the benchmark solution reported by Ghia[1].Under the same convergence criteria condition,difference in the stability,accuracy and convergence rate are analyzed.The PISO scheme is the most accurate scheme for low Reynolds number of Re=400 and 1 000 flow.The pseudo-compressibility scheme is found to be the most accurate for Re=5 000 flow.Besides,pseudo-compressibility scheme cost the minimum time to achieve convergence for all the cases,which shows it is one of the best choice for DNS of the low/medium flows.

    SIMPLE;PISO;pseudo-compressibility;DNS;accuracy;convergence rate; stability

    0 Introduction

    In recent years,along with the continuous improvement of computer performance,deepening of the high performance parallel computing study and the fervent need for the industry to the research of the turbulent meticulous flow field,direct numerical simulation(DNS)of the turbulence are constantly studied.Incompressible fluids are the main objects of the DNS research,their governing equations are the incompressible N-S equations.However,a lot of prerequisites need to be met before carrying out the DNS research,for example,a good solver of the governing equations,massively parallel cluster,high precision scheme for the temporal and space discretization,high resolution to catch the minimum scale vortices,and so on.Nowadays,the DNS research is main focused on the low/medium flows since there are so many restrict prerequisites.Among these prerequisites,a good solvers is the fundamental conditions that you can choose to accelerate the DNS program.The main solvers for the incompressible fluid are solving the primitive variable N-S equations,vorticity-stream function method andother methods.SIMPLE and PISO method belong to the first one,the pseudo-compressibility method belongs to other methods.

    The SIMPLE algorithm was relatively straightforward and soon became the main solver of the incompressible flow since it was first put forward in 1972 and it had been successfully implemented in numerous CFD procedures recent years.The PISO scheme was first put forward by Issa in 1986 and was early designed to solve the unsteady N-S equations.The PISO was considered as an extension for the SIMPLE scheme.At the same time,the pseudo-compressibility scheme attracted lots of researchers’attention because the continuous equation and the momentum equations were solved synchronously and the scheme itself had high efficiency.In recent years,these schemes were applied to perform the DNS research by some researchers. Wang et al[2]applied GPU accelerated DNS with the SIMPLE[3-4]scheme to the Re=1 000 and Re=10 000 lid-driven cavity flow and the results agreed with the literature well.Dousset and Pothérat[5]carried out the DNS of low Reynolds Re=100 and Re=200 flows past a truncated square cylinder through the PISO[6]scheme for both steady and unsteady flows and analyzed the formation mechanism of hairpin vortices in the wake of the truncated square cylinder in a duct.Skovorodko[7]used the pseudo-compressibility[8]scheme to complete the DNS of compressible fully developed turbulent Couette flow between two parallel plates and analyzed the slip effects in compressible turbulent channel flow.However,rare articles are found about using the pseudo-compressibility scheme to the DNS of incompressible flows.

    Since the better solver of the N-S equations chosen,the easier the DNS be performed, being aware of the difference among the different kinds of solvers to the governing equations is very important for the DNS research,since you can choose the best solver to your problems. Convergence,accuracy and stability are the three important features used to judge whether a scheme is good or bad for the studied problems.Difference of these important features for the three different schemes is presented in this paper.Same conditions as shown latter are implemented for these different schemes to avoid the influence of other factors in addition to these schemes theirselves.

    1 Numerical methods

    The integral form of the dimensionless incompressible N-S equations is:

    Finite-volume discretion momentum equation in the staggered grid is:

    Mass conservation equation is:

    where the subscripts e,n,w and s represent the control-volume faces and E,N,W and S represent the grid points,nb represents the neighbor grid point as shown in the staggered grid[4,9]system(Fig.1)below.

    Fig.1 Staggered grid system

    1.1 SIMPLE scheme

    There is evidently no equation for the pressure in the incompressible N-S equations,coupling between pressure and velocity is hidden in the continuity equation,bring the problem that how to solve the pressure alone?The Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)was originally put forward by Patankar and Spalding in 1972,resolved the pressurevelocity coupled problem well.Staggered grid arrangement is used in this paper and the main calculation procedures of the SIMPLE algorithm are as follows:

    (2)Solve the discretised momentum Eqs.(4)and(5)to get the u*,v*,using the estimated pressure or the pressure calculated on the last level remarked as P*.

    (3)Calculate the pressure correction P′,ensure the(u*+u′),(v*+v′)corresponding to(P*+P′)satisfy the continuity equation.The pressure correction is then obtained by substituting the corrected velocity into discretised continuity Eq.(6),using the relationship between u′, v′and P′.

    (4)Calculate the velocity corrections u′,v′,ensure the(ue*+ue′ )and(vn*+vn′)still satisfy the linearized momentum equation.

    (5)Set the(u*+u′),(v*+v′)and(P*+aPP′)as the answer of this level and start the calculation for the next level,aPis the under-relax factor,repeat step one to five until the flow field converges,namely the velocities can satisfy both the momentum equations and the continuity equation.The so-called‘level’is the solving process of the algebraic equation set consisted of the fixed coefficient and source.SIMPLE method is essentially a guess-and-correct scheme,the guess steps are 1~3 and correct steps are 4~5.Details refer to the Ref.[6]or[7].

    1.2 PISO scheme

    The PISO method consists of one guess step and two correct steps,the guess step and the first correct step are almost the same of SIMPLE scheme,the main procedure is:

    (1)Guess step-same as the SIMPLE scheme

    Solving discretised momentum equation implicitly based on the estimated or the last level pressure value,remarked as P()k:

    u*,v*and P()kin this step satisfy the momentum equation but may not satisfy the continuity equation.

    (2)First correct step-same as the SIMPLE scheme

    (3)The second correct step-special feature for the PISO scheme

    Search for the second corrected pressure P**and velocities u***,v***based on the calculated pressure P*and velocities u**,v**in the first correct step,make them satisfy the continuity equation and momentum equations better.

    Then,P**,u***,v***are calculated,the second correct step is complemented.Set the P**, u***,v***as the initial value for the next level and continue the procedure above until it satifies the the convergence condition.Details refer to the Ref.[5].

    1.3 Pseudo-compressibility scheme

    Pseudo-compressibility scheme was first put forward by Chorin and Vladimirova separately.The wind tunnel test was started,the wind speed was gradual changed from zero to the stability value,this accelerate process was unsteady.This change from the unsteady to the steady process was essentially the change of the type of governing equations.The idea for the pseudo-compressibility scheme is:If the steady incompressible N-S equations are added an time derivative term?/?t,then they are translated to a virtual unsteady compressible N-S equations.The continuity equation is added pressure derivative term?P/?t,momentum equations are added velocities derivative terms?v→/?t and the N-S equations for the pseudo-compressibility scheme are:

    The procedure for the pseudo-compressibility is very simple:

    (1)Calculate the velocities u,v from the momentum equations(10)based on the estimated pressure or the last level pressure.

    (2)Using the velocities u,v calculated above and the equation(9)to calculate the pressure P.

    (3)Repeat the steps(1-2)until the u,v and P satisfy the convergence condition.

    2 Numerical results

    The convergence criterion[10-11]is:

    where rpis the residual reduction factor,its value range from 0.05 to 0.25.0.1 is used in this paper.

    Accuracy,stability and rapid convergence of the three scheme are compared for three different Reynolds and the corresponding grid number.The results are presented in the Tabs.1-2 and Figs.2-4.As showed in Tab.1,under the same discretised scheme and convergence criterion,different time and iterate number are needed to achieve convergence for different scheme. The pseudo-compressibility cost the minimum time to converge,followed by SIMPLE scheme and then PISO scheme.For the case of Re=400,Re=1 000 and Re=5 000,the corresponding time consumed for SIMPLE scheme is 20.4,18.4 and 44.7 times as the pseudo-compressibility scheme,the time consumed for PISO scheme is 26.2,23.1 and 48.2 times as the pseudocompressibility scheme.Much time are saved for the pseudo-compressibility scheme since it is a non-iterative scheme,while 80%of the time costed in calculation is to solve the pressurecorrect equation.One more pressure correct equation is needed for PISO compare with SIMPLE,which shows the PISO scheme cost maximum time to simulate the steady lid-driven flow.

    Tab.1 Fast convergence for different method under different conditions

    Fig.2 Iterative process or the residual monitor for different scheme at Re=1 000,40*40 grids: UP(SIMPLE);RIGHT(PISO);LEFT(pseudo-compressibility)

    For the stability during iteration,SIMPLE and PISO are better than pseudo-compressibility as the corresponding residual monitor curve shown in Fig.2 for the case Re=1 000.

    It can be seen from Fig.3.that PISO is the most accurate scheme for simulating the velocities in the central line in the case Re=400 and Re=1 000,followed by pseudo-compressibility and then SIMPLE scheme.While for Re=5 000,the pseudo-compressibility scheme is themost accurate scheme,also the streamline for different methods in the case Re=5 000 in Fig.4 shows that the pseudo-compressibility scheme can simulate the secondary vortices that occur in the bottom right corner better and the curve of streamline matches the benchmark results by Ghia better than the SIMPLE and PISO.for simulating the lid-driven flow,followed by pseudo-compressibility and then SIMPLE.In the case of mid Re such as Re=5 000,pseudo-compressibility is thought to be the most accurate scheme for simulating the lid-driven flow.PISO is more accurate than SIMPLE scheme for simulating the lid-driven flow for all the Re number,since PISO has one more pressure correct step than SIMPLE.

    Fig.3 Non-dimensional horizontal(U)and vertical(V)velocity component profiles along the vertical(y)and horizontal(x)centerlines of a wall-driven square enclosure flow

    Fig.4 Streamline for different methods at Re=5 000Thus,in the case of low Re such as Re=400 and 1 000,PISO is the most accurate scheme

    Tab.2 The location of primary and the secondary vortices

    Tab.2 shows that the location of primary and the secondary vortices,when Re=400,the position deviation for the location of primary vortices compared with Ghia’s results for SIMPLE is(+0.003 5,+0.001 9),PISO is(+0.001 5,+0.002 1)and pseudo-compressibility is(+0.003 1, +0.002 5),which shows that the PISO is the most accurate scheme,followed by pseudo-compressibility and then SIMPLE in this case.Similar,when Re=5 000,the position deviation for SIMPLE is(+0.004 4,-0.012 9),for PISO is(+0.008 8,-0.001 7),for pseudo-compressibility is(+0.003 5,-0.000 2),which shows that the pseudo-compressibility is the most accuratescheme in this case.Similarly comparison can be performed to approve the conclusion reached last paragraph.

    3 Conclusions

    Three different numerical schemes applied to numerically simulate the low-medium Reynolds lid-driven cavity flow are presented in this paper,results are compared with benchmark solution reported by Ghia in 1982,difference among these schemes are analyzed and the results are as follows:

    (1)The convergence rate is the best for pseudo-compressibility in different cases,also the accuracy of this scheme is the best in the case of medium and high Reynolds.The iterate residual curve of SIMPLE and PISO schemes is smoother than pseudo-compressibility scheme.

    (2)In the cases of low Reynolds flow,PISO is found to be the most accurate scheme.However,the convergence rate of PISO is the worst among these schemes.It is always more accurate than SIMPLE in all cases.

    In this paper,for medium or high Reynolds like Re=5 000,the pseudo-compressibility is more accurate than the other schemes and for all Reynolds studied in the paper,the convergence rate of pseudo-compressibility is the best.The pseudo-compressibility scheme is considered to be the best choice for direct numerical simulation of low/medium Reynolds steady laminar or turbulence in the future.

    However,there are still some shortcomings for pseudo-compressibility scheme need to be overcome,for example,when come to the unsteady flow,the scheme needs to be re-designed. Besides,the key parameter c for different situations is always different and not easy to design.

    [1]Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411.

    [2]Wang J,Xu M,Ge W,et al.GPU accelerated direct numerical simulation with SIMPLE arithmetic for single-phase flow [J].Chin Sci Bull,2010,55:1979-1986.

    [3]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].International Journal of Heat and Mass Transfer,1972,15(10):1787-1806.

    [4]Patankar S.Numerical heat transfer and fluid flow[M].CRC Press,1980.

    [5]Dousset V,Pothérat A.Formation mechanism of hairpin vortices in the wake of a truncated square cylinder in a duct[J]. Journal of Fluid Mechanics,2010,653:519-536.

    [6]Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics, 1986,62(1):40-65.

    [7]Skovorodko P A.Slip effects in compressible turbulent channel flow[J].arXiv preprint arXiv:1210.2152,2012.

    [8]Chorin A J.A numerical method for solving incompressible viscous flow problems[J].Journal of Computational Physics, 1967,2(1):12-26.

    [9]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J].Physics of Fluids,1965,8(12):2182.

    [10]Patankar S V.A calculation procedure for two-dimensional elliptic situations[J].Numerical Heat Transfer,1981,4(4): 409-425.

    [11]Van Doormaal J P,Raithby G D.Enhancements of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,7(2):147-163.

    中低雷諾數(shù)流動(dòng)直接數(shù)值模擬的算法比較

    王建春,吳乘勝,王星
    (中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082)

    文章采用不同的算法對(duì)中低雷諾數(shù)方腔驅(qū)動(dòng)流動(dòng)進(jìn)行了直接數(shù)值模擬,所用算法分別是人工壓縮方法、SIMPLE算法以及PISO算法。三種算法均采用有限體積法基于交錯(cuò)網(wǎng)格技術(shù)離散N-S方程,時(shí)間項(xiàng)采用全隱格式離散,對(duì)流項(xiàng)采用QUICK格式離散,并將它們得到結(jié)果與Ghia發(fā)表的基準(zhǔn)解進(jìn)行了比對(duì)。文中分析了在同樣的收斂條件下,不同算法之間的穩(wěn)定性,收斂速率以及準(zhǔn)確性的差異,發(fā)現(xiàn)PISO算法在較低雷諾數(shù)Re=400和Re=1 000情況下最準(zhǔn)確,而人工壓縮算法在雷諾數(shù)為5 000時(shí)最準(zhǔn)確,在所有計(jì)算的不同Re數(shù)條件下,發(fā)現(xiàn)人工壓縮法達(dá)到收斂所需時(shí)間都是最少的,這可以使它成為中低雷諾數(shù)下研究直接數(shù)值模擬最好的算法之一。

    SIMPLE;PISO;人工壓縮方法;DNS;準(zhǔn)確性;收斂速度;穩(wěn)定性

    O35

    :A

    王建春(1989-),男,中國(guó)船舶科學(xué)研究中心碩士研究生;

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.001

    1007-7294(2017)06-0651-10

    吳乘勝(1976-),男,中國(guó)船舶科學(xué)研究中心研究員;

    date:2017-01-12

    Biography:WANG Jian-chun(1989-),male,master student,E-mail:664148138@qq.com; WU Cheng-sheng(1976-),male,researcher.

    王星(1988-),男,中國(guó)船舶科學(xué)研究中心工程師。

    猜你喜歡
    王星建春雷諾數(shù)
    LOCALIZED NODAL SOLUTIONS FOR SCHR?DINGER-POISSON SYSTEMS*
    陸建春油畫(huà)作品欣賞
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
    過(guò)建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    高壓旋噴樁在市政道路軟基處理中的質(zhì)量控制與常見(jiàn)病害防治
    基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
    Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory*
    失穩(wěn)初期的低雷諾數(shù)圓柱繞流POD-Galerkin 建模方法研究
    基于轉(zhuǎn)捩模型的低雷諾數(shù)翼型優(yōu)化設(shè)計(jì)研究
    97热精品久久久久久| 久久热精品热| 中文字幕亚洲精品专区| 国产淫片久久久久久久久| 国产精品久久久久久av不卡| 18禁在线无遮挡免费观看视频| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久影院| 国产成年人精品一区二区| 搡老乐熟女国产| 久久6这里有精品| 国产成人精品婷婷| 国产一区亚洲一区在线观看| 国内揄拍国产精品人妻在线| 亚洲国产精品sss在线观看| 欧美日韩综合久久久久久| 久久亚洲国产成人精品v| 一级爰片在线观看| 又爽又黄无遮挡网站| 亚洲欧美日韩卡通动漫| 亚洲av成人av| 亚洲自拍偷在线| 午夜福利高清视频| 天堂中文最新版在线下载 | 亚洲精品乱码久久久久久按摩| a级一级毛片免费在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲欧洲日产国产| 亚洲欧洲国产日韩| 街头女战士在线观看网站| 男女啪啪激烈高潮av片| 亚洲欧美精品专区久久| 欧美最新免费一区二区三区| 十八禁网站网址无遮挡 | 国产人妻一区二区三区在| 国产一区二区在线观看日韩| 十八禁网站网址无遮挡 | 日韩大片免费观看网站| av福利片在线观看| 又爽又黄a免费视频| 国产精品嫩草影院av在线观看| 中文欧美无线码| 波多野结衣巨乳人妻| 韩国av在线不卡| 国产高清国产精品国产三级 | 亚洲av国产av综合av卡| .国产精品久久| 在线免费观看不下载黄p国产| 国产成人91sexporn| 麻豆成人av视频| 日韩 亚洲 欧美在线| 色综合站精品国产| 波野结衣二区三区在线| 亚洲丝袜综合中文字幕| 亚洲精品第二区| 春色校园在线视频观看| 亚洲国产av新网站| 最近中文字幕2019免费版| 欧美潮喷喷水| 免费在线观看成人毛片| 亚洲国产av新网站| 大陆偷拍与自拍| 免费观看精品视频网站| 亚洲国产色片| 听说在线观看完整版免费高清| 高清av免费在线| 九色成人免费人妻av| 免费不卡的大黄色大毛片视频在线观看 | 精品99又大又爽又粗少妇毛片| 麻豆成人午夜福利视频| 一本一本综合久久| 欧美性猛交╳xxx乱大交人| 精品久久久久久电影网| 久久久久久九九精品二区国产| 久久鲁丝午夜福利片| 国产成人精品一,二区| 少妇熟女欧美另类| 亚洲精品日本国产第一区| 日日干狠狠操夜夜爽| 中文精品一卡2卡3卡4更新| 日产精品乱码卡一卡2卡三| 亚洲,欧美,日韩| 高清在线视频一区二区三区| 麻豆av噜噜一区二区三区| 国产亚洲一区二区精品| 国产亚洲精品久久久com| 超碰av人人做人人爽久久| 又粗又硬又长又爽又黄的视频| 精华霜和精华液先用哪个| 美女大奶头视频| 欧美不卡视频在线免费观看| 久久久久久久久久久丰满| 国产美女午夜福利| 欧美成人a在线观看| 少妇猛男粗大的猛烈进出视频 | 中文天堂在线官网| 久久久久免费精品人妻一区二区| 国产乱人偷精品视频| 午夜精品国产一区二区电影 | 九九在线视频观看精品| 99热这里只有是精品50| 51国产日韩欧美| 亚洲精品久久午夜乱码| 日韩中字成人| 国产精品综合久久久久久久免费| 亚洲欧美成人精品一区二区| 三级国产精品片| 一级毛片我不卡| 九色成人免费人妻av| 国产精品无大码| h日本视频在线播放| av黄色大香蕉| 午夜精品国产一区二区电影 | 国产熟女欧美一区二区| 亚洲在线自拍视频| 能在线免费观看的黄片| 亚洲四区av| 女人十人毛片免费观看3o分钟| 一边亲一边摸免费视频| 2022亚洲国产成人精品| 免费av观看视频| 中文字幕免费在线视频6| 成人漫画全彩无遮挡| 国产精品日韩av在线免费观看| 亚洲国产av新网站| 免费观看a级毛片全部| 99久久九九国产精品国产免费| 十八禁网站网址无遮挡 | 亚洲精品国产av蜜桃| 99热6这里只有精品| 亚洲av免费高清在线观看| 91在线精品国自产拍蜜月| 听说在线观看完整版免费高清| 日本与韩国留学比较| 寂寞人妻少妇视频99o| 免费av不卡在线播放| 国内精品一区二区在线观看| 成人一区二区视频在线观看| 亚洲va在线va天堂va国产| 五月玫瑰六月丁香| 久久久久精品久久久久真实原创| 男人舔奶头视频| 国产午夜福利久久久久久| 不卡视频在线观看欧美| 国产黄片美女视频| 亚洲成色77777| 99视频精品全部免费 在线| 精品少妇黑人巨大在线播放| kizo精华| 看黄色毛片网站| 午夜视频国产福利| 国产精品一区二区在线观看99 | 久久久久久久久中文| 精品一区二区三卡| 免费少妇av软件| 久久久久久久国产电影| av在线老鸭窝| 欧美高清性xxxxhd video| 亚洲成人一二三区av| 国产一级毛片在线| 久久精品夜色国产| 亚洲欧美日韩卡通动漫| 91久久精品国产一区二区三区| 99热网站在线观看| 少妇丰满av| eeuss影院久久| 国产黄色免费在线视频| 一区二区三区高清视频在线| 国产高清不卡午夜福利| 国产亚洲精品av在线| 国产 一区 欧美 日韩| 国产69精品久久久久777片| 美女内射精品一级片tv| 国产成人福利小说| 亚洲18禁久久av| 亚洲av.av天堂| 久久久久久九九精品二区国产| 国产精品一区二区性色av| 国产午夜精品论理片| 青春草视频在线免费观看| 国产精品熟女久久久久浪| 男女视频在线观看网站免费| 欧美性感艳星| 久久午夜福利片| 久久久久九九精品影院| 美女内射精品一级片tv| 欧美成人一区二区免费高清观看| 在线观看免费高清a一片| 毛片女人毛片| 水蜜桃什么品种好| 男人爽女人下面视频在线观看| 欧美xxxx黑人xx丫x性爽| 视频中文字幕在线观看| 深爱激情五月婷婷| 国产高清国产精品国产三级 | 一个人观看的视频www高清免费观看| 视频中文字幕在线观看| 男女国产视频网站| 久久午夜福利片| 女人被狂操c到高潮| 国产高清三级在线| 日韩国内少妇激情av| 国产一区二区三区综合在线观看 | 熟妇人妻不卡中文字幕| 中文字幕免费在线视频6| 99久久人妻综合| 建设人人有责人人尽责人人享有的 | 久久国产乱子免费精品| 深夜a级毛片| 26uuu在线亚洲综合色| 欧美日韩在线观看h| 免费看a级黄色片| 国产av不卡久久| 亚洲av中文av极速乱| 热99在线观看视频| 五月玫瑰六月丁香| 免费大片18禁| 国产人妻一区二区三区在| 最近最新中文字幕大全电影3| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 国产一区亚洲一区在线观看| 少妇的逼好多水| 免费观看性生交大片5| 亚洲高清免费不卡视频| 午夜精品国产一区二区电影 | 国产老妇伦熟女老妇高清| 午夜久久久久精精品| 一个人看的www免费观看视频| 欧美日韩在线观看h| 国产精品爽爽va在线观看网站| 成人性生交大片免费视频hd| 亚洲不卡免费看| 日日摸夜夜添夜夜添av毛片| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 超碰av人人做人人爽久久| 久久人人爽人人片av| 亚洲在线自拍视频| 免费av不卡在线播放| 3wmmmm亚洲av在线观看| 欧美一区二区亚洲| 成人av在线播放网站| 国产伦精品一区二区三区四那| 国产有黄有色有爽视频| 天天躁夜夜躁狠狠久久av| 高清日韩中文字幕在线| 久久精品久久精品一区二区三区| 国产v大片淫在线免费观看| 十八禁国产超污无遮挡网站| 黄色配什么色好看| 国产一区二区在线观看日韩| 搡老妇女老女人老熟妇| 极品教师在线视频| 欧美最新免费一区二区三区| 国产成人91sexporn| 夫妻午夜视频| 人妻少妇偷人精品九色| 极品少妇高潮喷水抽搐| 最近中文字幕2019免费版| 99久久中文字幕三级久久日本| 成人午夜高清在线视频| 天堂影院成人在线观看| 1000部很黄的大片| a级毛片免费高清观看在线播放| 色视频www国产| 伊人久久精品亚洲午夜| 久久久成人免费电影| 午夜免费激情av| 秋霞伦理黄片| 免费看a级黄色片| 国产精品久久久久久av不卡| 免费黄频网站在线观看国产| 日本-黄色视频高清免费观看| 麻豆国产97在线/欧美| 久久久久精品性色| 夜夜爽夜夜爽视频| 亚洲国产高清在线一区二区三| 亚洲激情五月婷婷啪啪| 亚洲欧洲日产国产| 国产成人aa在线观看| 色尼玛亚洲综合影院| 人妻制服诱惑在线中文字幕| 91aial.com中文字幕在线观看| av一本久久久久| 亚洲欧美中文字幕日韩二区| 高清在线视频一区二区三区| 国内精品一区二区在线观看| 国产黄色免费在线视频| 九色成人免费人妻av| 亚洲精品日本国产第一区| 青春草视频在线免费观看| 国产高清不卡午夜福利| 亚洲精品日韩av片在线观看| 久久久久久久午夜电影| 最近2019中文字幕mv第一页| 亚洲在线自拍视频| 肉色欧美久久久久久久蜜桃 | 日本黄大片高清| 2018国产大陆天天弄谢| 国内精品宾馆在线| 精品久久久噜噜| 午夜福利在线观看免费完整高清在| 亚洲精品乱久久久久久| 插阴视频在线观看视频| 99热这里只有精品一区| 日韩国内少妇激情av| 精品人妻视频免费看| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 国产伦一二天堂av在线观看| 午夜福利在线在线| 最近视频中文字幕2019在线8| 在线 av 中文字幕| 成年女人在线观看亚洲视频 | 久久久久久久久久久免费av| av免费在线看不卡| 成人无遮挡网站| 99久久人妻综合| 精品国产露脸久久av麻豆 | 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| .国产精品久久| 七月丁香在线播放| 国产在视频线精品| 精品国内亚洲2022精品成人| 中文天堂在线官网| 久久综合国产亚洲精品| 99热全是精品| 97超碰精品成人国产| 亚洲精品亚洲一区二区| 床上黄色一级片| 能在线免费观看的黄片| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 有码 亚洲区| 深爱激情五月婷婷| 简卡轻食公司| 成人欧美大片| 在线观看av片永久免费下载| 高清av免费在线| 中文乱码字字幕精品一区二区三区 | 免费黄频网站在线观看国产| 精品不卡国产一区二区三区| 亚洲国产精品专区欧美| 插阴视频在线观看视频| 观看免费一级毛片| 天堂中文最新版在线下载 | 三级国产精品欧美在线观看| 亚洲国产av新网站| 亚洲精品国产av成人精品| 国产精品麻豆人妻色哟哟久久 | 一级毛片久久久久久久久女| 天堂俺去俺来也www色官网 | 午夜福利高清视频| 国产亚洲最大av| 干丝袜人妻中文字幕| 国产一区二区三区综合在线观看 | 一级毛片 在线播放| 春色校园在线视频观看| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 热99在线观看视频| 一区二区三区免费毛片| 色尼玛亚洲综合影院| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 卡戴珊不雅视频在线播放| 亚洲久久久久久中文字幕| 看免费成人av毛片| 97人妻精品一区二区三区麻豆| 国产黄片视频在线免费观看| 免费看av在线观看网站| 国产午夜精品论理片| 久久99蜜桃精品久久| 青春草亚洲视频在线观看| 人妻系列 视频| 国产成人一区二区在线| 黄片无遮挡物在线观看| 日本av手机在线免费观看| 亚洲av电影不卡..在线观看| 少妇熟女aⅴ在线视频| 国产成人精品婷婷| 色视频www国产| 久久久久国产网址| 国产伦精品一区二区三区视频9| 大片免费播放器 马上看| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 久久久久精品性色| 成人欧美大片| 久久99蜜桃精品久久| 久久99热这里只频精品6学生| 精品久久久久久成人av| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 啦啦啦啦在线视频资源| 黄色配什么色好看| 久久久成人免费电影| 午夜免费激情av| 亚洲精品一二三| 亚洲欧洲国产日韩| 日本欧美国产在线视频| 国产激情偷乱视频一区二区| 久久热精品热| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 国产在线男女| 汤姆久久久久久久影院中文字幕 | 一级a做视频免费观看| 狂野欧美白嫩少妇大欣赏| 不卡视频在线观看欧美| 男女下面进入的视频免费午夜| 日韩成人av中文字幕在线观看| 婷婷色av中文字幕| 国产一区二区三区综合在线观看 | 一级黄片播放器| 国产在线男女| 亚洲乱码一区二区免费版| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 不卡视频在线观看欧美| 哪个播放器可以免费观看大片| 一个人免费在线观看电影| 成人二区视频| 国产精品一区二区在线观看99 | 在线免费观看的www视频| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻熟人妻熟丝袜美| 老司机影院毛片| 美女黄网站色视频| 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久 | 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 插逼视频在线观看| 亚洲精品国产成人久久av| 亚洲精品中文字幕在线视频 | 国产 一区 欧美 日韩| 日韩av不卡免费在线播放| 午夜亚洲福利在线播放| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 午夜激情欧美在线| 一个人看的www免费观看视频| av又黄又爽大尺度在线免费看| 久久久久性生活片| 成人亚洲精品一区在线观看 | 简卡轻食公司| 欧美最新免费一区二区三区| 好男人视频免费观看在线| 午夜精品一区二区三区免费看| 中文欧美无线码| 午夜免费激情av| 美女内射精品一级片tv| 晚上一个人看的免费电影| 九九在线视频观看精品| 精品久久国产蜜桃| 欧美 日韩 精品 国产| 国产精品久久久久久久电影| 一级毛片电影观看| 亚洲在线自拍视频| eeuss影院久久| 久久久久网色| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| a级毛色黄片| 国产成人精品久久久久久| 国产精品精品国产色婷婷| 亚洲国产精品国产精品| 日韩av在线免费看完整版不卡| 亚洲欧美日韩卡通动漫| 夜夜爽夜夜爽视频| 高清日韩中文字幕在线| 成人鲁丝片一二三区免费| 亚洲成人av在线免费| 丰满乱子伦码专区| 日日啪夜夜爽| 免费看a级黄色片| 亚洲四区av| 免费大片黄手机在线观看| 一级片'在线观看视频| 午夜精品国产一区二区电影 | 亚洲美女搞黄在线观看| ponron亚洲| 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| 久久久久久久久大av| 秋霞在线观看毛片| 日本黄大片高清| 69av精品久久久久久| 精品国内亚洲2022精品成人| 少妇丰满av| 秋霞在线观看毛片| 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| 丝袜喷水一区| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 国产精品1区2区在线观看.| 激情五月婷婷亚洲| 观看免费一级毛片| 精华霜和精华液先用哪个| 麻豆av噜噜一区二区三区| 91久久精品电影网| 一区二区三区免费毛片| 国产伦在线观看视频一区| 国产男人的电影天堂91| 国产91av在线免费观看| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 免费看光身美女| 久久久久久久午夜电影| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 一本一本综合久久| 全区人妻精品视频| 亚洲精品国产av成人精品| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 黄色日韩在线| 在线观看美女被高潮喷水网站| 免费看不卡的av| 丰满人妻一区二区三区视频av| 亚洲美女搞黄在线观看| 精华霜和精华液先用哪个| 国产视频内射| 蜜臀久久99精品久久宅男| 国产美女午夜福利| 国产女主播在线喷水免费视频网站 | 成人av在线播放网站| av在线蜜桃| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 国产免费又黄又爽又色| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 人妻一区二区av| 国国产精品蜜臀av免费| 夜夜爽夜夜爽视频| 在线免费观看的www视频| 欧美高清性xxxxhd video| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 日韩欧美 国产精品| 国产精品一区www在线观看| av在线蜜桃| 国产人妻一区二区三区在| 永久网站在线| 男人爽女人下面视频在线观看| 免费观看av网站的网址| 一级毛片我不卡| 全区人妻精品视频| 在线观看免费高清a一片| 国产伦理片在线播放av一区| 亚洲精品乱久久久久久| 国产一区有黄有色的免费视频 | 欧美精品国产亚洲| 亚洲在线观看片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美另类一区| 大又大粗又爽又黄少妇毛片口| 久久久久久久久大av| 午夜久久久久精精品| 免费av毛片视频| 久久草成人影院| av播播在线观看一区| 日韩 亚洲 欧美在线| av在线蜜桃| 亚洲人与动物交配视频| 男女边摸边吃奶| 狂野欧美白嫩少妇大欣赏| 国产女主播在线喷水免费视频网站 | 免费在线观看成人毛片| ponron亚洲| 亚洲成人久久爱视频| 国产高潮美女av| 国产麻豆成人av免费视频| 久久精品人妻少妇| 少妇熟女欧美另类| 国产精品综合久久久久久久免费| 亚洲国产色片| ponron亚洲| 97精品久久久久久久久久精品| 久久精品人妻少妇| 99热全是精品| 日本与韩国留学比较| 免费看av在线观看网站| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 国产三级在线视频| 嘟嘟电影网在线观看| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 精品人妻视频免费看| 青春草国产在线视频| 哪个播放器可以免费观看大片| 极品教师在线视频| 97人妻精品一区二区三区麻豆| 中文字幕制服av| 亚洲国产av新网站| 午夜精品一区二区三区免费看| 精品久久久久久久久av| 在线播放无遮挡| 听说在线观看完整版免费高清| 尾随美女入室| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 欧美激情在线99| 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线|