艾 華, 常翠青
(北京大學(xué)第三醫(yī)院 運(yùn)動(dòng)醫(yī)學(xué)研究所營(yíng)養(yǎng)研究室, 北京 100191)
?
運(yùn)動(dòng)營(yíng)養(yǎng)食品中營(yíng)養(yǎng)成分和功能因子研究進(jìn)展
艾 華, 常翠青
(北京大學(xué)第三醫(yī)院 運(yùn)動(dòng)醫(yī)學(xué)研究所營(yíng)養(yǎng)研究室, 北京 100191)
運(yùn)動(dòng)營(yíng)養(yǎng)食品是指滿足運(yùn)動(dòng)人群的生理代謝狀態(tài)、運(yùn)動(dòng)能力及對(duì)某些營(yíng)養(yǎng)成分的特殊需要而專門加工的食品。隨著我國(guó)民眾對(duì)健康理念認(rèn)知的提高和廣泛參與各種運(yùn)動(dòng)鍛煉,運(yùn)動(dòng)營(yíng)養(yǎng)食品市場(chǎng)的規(guī)模也越來越大。對(duì)當(dāng)前運(yùn)動(dòng)營(yíng)養(yǎng)食品中一些重要的熱點(diǎn)營(yíng)養(yǎng)成分和功能因子的研究狀況和進(jìn)展進(jìn)行了綜述,并對(duì)有潛力的研發(fā)方向進(jìn)行展望,以期為我國(guó)運(yùn)動(dòng)營(yíng)養(yǎng)食品的研發(fā)提供線索和思路。
運(yùn)動(dòng)營(yíng)養(yǎng)食品;營(yíng)養(yǎng)成分;功能因子
隨著民眾對(duì)健康理念的不斷加深,運(yùn)動(dòng)鍛煉越來越成為流行趨勢(shì),相關(guān)的運(yùn)動(dòng)營(yíng)養(yǎng)食品市場(chǎng)規(guī)模也越來越大。2015年11月國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì)發(fā)布的GB 24154—2015《運(yùn)動(dòng)營(yíng)養(yǎng)食品通則》將運(yùn)動(dòng)營(yíng)養(yǎng)食品定義為:滿足運(yùn)動(dòng)人群的生理代謝狀態(tài)、運(yùn)動(dòng)能力及對(duì)某些營(yíng)養(yǎng)成分的特殊需要而專門加工的食品。運(yùn)動(dòng)營(yíng)養(yǎng)食品往往通過提取、濃縮、純化、混合以及其他方法進(jìn)行制備或加工。
運(yùn)動(dòng)營(yíng)養(yǎng)食品的主要目標(biāo)對(duì)象是運(yùn)動(dòng)人群,既包括專業(yè)運(yùn)動(dòng)員,也包括經(jīng)常參加體育鍛煉的普通健身者。當(dāng)然,一般體力勞動(dòng)者也可以食用。
運(yùn)動(dòng)人群食用運(yùn)動(dòng)營(yíng)養(yǎng)食品,一是為了補(bǔ)充營(yíng)養(yǎng)以滿足機(jī)體運(yùn)動(dòng)所需,二是為了提高運(yùn)動(dòng)能力和運(yùn)動(dòng)成績(jī)。專業(yè)運(yùn)動(dòng)員對(duì)這兩個(gè)目的同樣看中,而普通健身者往往更加看重前者,以提高身體健康水平為主要目的。因此,產(chǎn)品設(shè)計(jì)上,專業(yè)型運(yùn)動(dòng)營(yíng)養(yǎng)食品與普通型應(yīng)該各有側(cè)重。
運(yùn)動(dòng)營(yíng)養(yǎng)食品中的有效成分很多,可大致分為兩類:營(yíng)養(yǎng)物質(zhì)補(bǔ)充類,活性或功能因子類。前者包括機(jī)體所需的營(yíng)養(yǎng)素或其代謝產(chǎn)物,補(bǔ)充這些營(yíng)養(yǎng)物質(zhì)可滿足運(yùn)動(dòng)和健康需求;后者指那些不屬于營(yíng)養(yǎng)物質(zhì)但在人體內(nèi)具有潛在改善運(yùn)動(dòng)能力作用的動(dòng)植物活性或功能成分,以提高運(yùn)動(dòng)能力為主要目的。
本文對(duì)當(dāng)前運(yùn)動(dòng)營(yíng)養(yǎng)食品中一些熱點(diǎn)營(yíng)養(yǎng)成分或功能因子的研究狀況和進(jìn)展做簡(jiǎn)要介紹和綜述,以期為運(yùn)動(dòng)營(yíng)養(yǎng)食品的研發(fā)提供線索和思路,同時(shí)對(duì)未來有潛力的研發(fā)方向提出建議。
運(yùn)動(dòng)增加營(yíng)養(yǎng)素和營(yíng)養(yǎng)成分的代謝和消耗,運(yùn)動(dòng)還使機(jī)體組織器官產(chǎn)生應(yīng)激、適應(yīng)性改變或者損傷,這些使得運(yùn)動(dòng)機(jī)體對(duì)某些營(yíng)養(yǎng)素和營(yíng)養(yǎng)成分的需求增加,而普通常規(guī)膳食可能無法及時(shí)、適量地滿足這些需求。因此,營(yíng)養(yǎng)物質(zhì)補(bǔ)充類別運(yùn)動(dòng)營(yíng)養(yǎng)食品就是為了額外補(bǔ)充這些不足而設(shè)計(jì)的。
1.1 蛋白質(zhì)
蛋白質(zhì)不僅參與運(yùn)動(dòng)引起的骨骼肌損傷性修復(fù)和組織適應(yīng)性增生,還在運(yùn)動(dòng)中參與供能,故運(yùn)動(dòng)人群的蛋白質(zhì)需要量增加。在營(yíng)養(yǎng)物質(zhì)補(bǔ)充類中,蛋白質(zhì)屬于一大類。蛋白質(zhì)是增肌的主力產(chǎn)品,市場(chǎng)上多見乳清蛋白和大豆蛋白。研究顯示,乳清蛋白富含亮氨酸等支鏈氨基酸以及其他必需氨基酸、功能肽、抗氧化成分和免疫球蛋白,可減少肌肉酸痛,加快運(yùn)動(dòng)性損傷的修復(fù)[1],可以提高合成速率,增加肌肉的質(zhì)量和力量[2]。乳清蛋白比酪蛋白更有利于萎縮性骨骼肌的功能恢復(fù)[3],比大豆蛋白更有利于瘦體重增加[4]。乳清蛋白的這些作用可能與其較快、較高的消化吸收利用率以及豐富的亮氨酸有關(guān)。由于乳清蛋白消化吸收快,亮氨酸含量高,可引起血液氨基酸和亮氨酸含量快速升高[5]。有人觀察到,乳清蛋白比酪蛋白能更好地刺激骨骼肌蛋白質(zhì)合成[6]。
大量研究表明,當(dāng)膳食蛋白質(zhì)攝入不足或優(yōu)質(zhì)蛋白質(zhì)攝入較少時(shí),補(bǔ)充蛋白質(zhì)類運(yùn)動(dòng)營(yíng)養(yǎng)食品,可以明顯改善機(jī)體狀況,有利改善運(yùn)動(dòng)能力。因此,對(duì)于蛋白質(zhì)補(bǔ)充,強(qiáng)調(diào)的是在膳食蛋白質(zhì)不充足或不平衡的情況下進(jìn)行補(bǔ)充。此時(shí)補(bǔ)充蛋白質(zhì),改善運(yùn)動(dòng)能力的效果就很明顯;如果膳食蛋白質(zhì)已經(jīng)很充分、很平衡,補(bǔ)充蛋白質(zhì)的效果則不一定明顯。有的學(xué)者懷疑或有的實(shí)驗(yàn)不能顯示補(bǔ)充蛋白質(zhì)對(duì)運(yùn)動(dòng)后肌肉蛋白質(zhì)合成的促進(jìn)作用和效果[7],其實(shí)是忽略了或沒有滿足補(bǔ)充蛋白質(zhì)的基本條件。由于不能排除某些個(gè)體在某種情況下可能存在的膳食蛋白質(zhì)不合理、不充足的情況,運(yùn)動(dòng)個(gè)體補(bǔ)充蛋白質(zhì)還是有必要的。
一般認(rèn)為,運(yùn)動(dòng)后補(bǔ)充蛋白質(zhì),可以增加肌肉蛋白質(zhì)的合成速度,有利于骨骼肌對(duì)運(yùn)動(dòng)的適應(yīng)性增大、增強(qiáng)反應(yīng)和骨骼肌功能的恢復(fù)[8]。而運(yùn)動(dòng)前和運(yùn)動(dòng)中補(bǔ)充蛋白質(zhì),則不一定能夠起到改善運(yùn)動(dòng)能力的作用[7,9]。
蛋白質(zhì)的分解產(chǎn)物多肽(包括小肽或微肽)是當(dāng)前研究熱點(diǎn)。多肽比完整的蛋白質(zhì)更容易消化吸收。運(yùn)動(dòng)后不久在消化系統(tǒng)還沒有完全恢復(fù)正常工作的情況下補(bǔ)充多肽,可加快肽的酶解和氨基酸的吸收利用,有利于運(yùn)動(dòng)相關(guān)組織器官的快速修復(fù)以及增肌性合成代謝。乳清蛋白水解物的運(yùn)動(dòng)實(shí)驗(yàn)結(jié)果支持以上結(jié)論[10-11]。此外還發(fā)現(xiàn)富含L -異亮氨酸和L -亮氨酰 -L -異亮氨酸二肽的乳清蛋白水解產(chǎn)物,有助于促進(jìn)骨骼肌葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT 4)從細(xì)胞核周圍轉(zhuǎn)位到細(xì)胞膜,從而提高GLUT4將肌細(xì)胞外葡萄糖轉(zhuǎn)運(yùn)進(jìn)入肌細(xì)胞的能力,促進(jìn)葡萄糖的氧化供能或肌糖原合成[12]。
支鏈氨基酸特別是亮氨酸的研究涉及多方面。補(bǔ)充亮氨酸可以提高運(yùn)動(dòng)后骨骼肌肌原纖維蛋白合成的速率。由于亮氨酸約占乳清蛋白氨基酸的10%,可能對(duì)乳清蛋白的增肌作用起到非常重要的作用[13]。另外β -丙氨酸對(duì)改善肌細(xì)胞內(nèi)運(yùn)動(dòng)酸化性疲勞的作用也備受矚目。補(bǔ)充β -丙氨酸可以提高肌肽(carnosine)含量,減輕疲勞和疲勞感,促進(jìn)恢復(fù),還能增加瘦體重,增加肌肉力量和運(yùn)動(dòng)能力[14]。肌肽是由β -丙氨酸和L -組氨酸組成的二肽,具有抗氧化、調(diào)節(jié)鈣離子、緩沖酸堿的作用[15]。但是β -丙氨酸提高運(yùn)動(dòng)能力的效果有限。有分析指出,補(bǔ)充β -丙氨酸似乎只在感官指標(biāo)和生化指標(biāo)的層面上顯示運(yùn)動(dòng)肌肉疲勞的改善,但在運(yùn)動(dòng)成績(jī)指標(biāo)上,效果不太明顯[16-17]。其實(shí)對(duì)于一種營(yíng)養(yǎng)素,不要指望能有藥物般的作用。如果有的話,那就不是營(yíng)養(yǎng)素,而是興奮劑了。引起較多關(guān)注的還有β -羥基 -β -甲基丁酸(β -HMB),它是亮氨酸在體內(nèi)的代謝產(chǎn)物,補(bǔ)充后可增強(qiáng)骨骼肌蛋白質(zhì)的合成[18],改善運(yùn)動(dòng)后肌肉的酸痛[19],有助于增加瘦體重,減少運(yùn)動(dòng)引起的肌肉損傷[20]。不過研究顯示,β -HMB的增肌作用,似乎與年齡和運(yùn)動(dòng)強(qiáng)度有關(guān),對(duì)于運(yùn)動(dòng)強(qiáng)度不太大的老年人,效果不明顯[21]。
肌酸是體內(nèi)天然存在的物質(zhì),內(nèi)源性肌酸在肝臟和腎臟由精氨酸、蛋氨酸和甘氨酸合成。外源性肌酸可從食物的肉和內(nèi)臟中獲得。肌酸以磷酸肌酸的形式存儲(chǔ)在肌肉中。磷酸肌酸向ADP提供高能磷酸鍵,形成ATP,為骨骼肌收縮提供能量。研究顯示,補(bǔ)充肌酸,對(duì)短時(shí)間(小于30s)、間歇性、高強(qiáng)度、抗阻性運(yùn)動(dòng)有增力作用[22]。肌酸的增力機(jī)制包括:增加骨骼肌磷酸肌酸儲(chǔ)存和磷酸肌酸再合成,減少肌肉損傷,減小對(duì)無氧糖酵解的依賴,降低乳酸產(chǎn)生[23-24]。薈萃分析(Meta 分析)顯示,口服肌酸與抗阻力訓(xùn)練同時(shí)進(jìn)行,可使老年增肌和增力的提高更為明顯[25]。研究建議在正常膳食情況下,每天可以補(bǔ)充5 g肌酸,同時(shí)配合抗阻力訓(xùn)練[25-26]。因?yàn)檠a(bǔ)充肌酸可以增肌增力,對(duì)于耐力性運(yùn)動(dòng)也有益處[22]。肌酸不是興奮劑,服用幾乎沒有副作用。肌酸除了在增肌增力方面的作用外,對(duì)認(rèn)知和心理活動(dòng)、骨健康、神經(jīng)肌肉功能和肌肉骨骼損傷修復(fù)方面也有積極的作用[27]。因此,肌酸一直是經(jīng)典的增肌增力方面的運(yùn)動(dòng)營(yíng)養(yǎng)食品成分。
肉堿在體內(nèi)可通過1分子賴氨酸和3分子蛋氨酸合成,腎臟和肝臟是合成的主要器官,骨骼肌是主要的儲(chǔ)存和使用組織。機(jī)體也可從動(dòng)物性食物獲得肉堿,植物性食物中肉堿含量很低甚至沒有。食物來源的肉堿約占每天需要的1/2~2/3。肉堿最重要的功能是以?;鈮A的載體形式,將長(zhǎng)鏈脂肪酸從線粒體外運(yùn)送到線粒體內(nèi),進(jìn)行β -氧化,提供能量。另外,肉堿使用安全性很高,沒有什么副作用[28]。
一些綜述認(rèn)為大量運(yùn)動(dòng)可以消耗和減少骨骼肌中肉堿含量,補(bǔ)充肉堿可以通過刺激脂肪酸代謝提高運(yùn)動(dòng)能力[29-30]。補(bǔ)充肉堿還可以減輕缺氧訓(xùn)練的有害影響,加速運(yùn)動(dòng)應(yīng)激的恢復(fù)[31],還可減輕急性運(yùn)動(dòng)導(dǎo)致的脂質(zhì)過氧化和肌肉損傷[32]。但也有綜述認(rèn)為,補(bǔ)充肉堿提高運(yùn)動(dòng)能力特別是耐力性運(yùn)動(dòng)能力的作用不明顯[28,33]。不過新近對(duì)55~70歲的健康老年人聯(lián)合補(bǔ)充肉堿、肌酸和亮氨酸的研究顯示出肌量和肌力增加的結(jié)果[34]。
1996年我國(guó)允許肉堿使用于飲料、乳飲料、固體飲料、餅干和膠囊中,2005年允許用于嬰幼兒配方奶粉,2010年允許用于運(yùn)動(dòng)飲料。使用標(biāo)準(zhǔn)應(yīng)滿足GB 14880—2012《食品安全國(guó)家標(biāo)準(zhǔn) 食品營(yíng)養(yǎng)強(qiáng)化劑使用標(biāo)準(zhǔn)》。除此之外,肉堿還常見用于減肥食品中。
其他氨基酸衍生物或代謝產(chǎn)物作為運(yùn)動(dòng)營(yíng)養(yǎng)食品成分的作用也多有研究,包括谷氨酰胺、酪氨酸、?;撬岬?。
1.2 碳水化合物
碳水化合物是大多數(shù)運(yùn)動(dòng)的主要供能營(yíng)養(yǎng)素,補(bǔ)充碳水化合物對(duì)保持或提高運(yùn)動(dòng)能力的作用已經(jīng)得到肯定[35],目前的研究主要集中在補(bǔ)充的時(shí)間、劑量、類型、組合等細(xì)節(jié)上面。運(yùn)動(dòng)前通過補(bǔ)充碳水化合物,使肝糖原和肌糖原儲(chǔ)備充分,運(yùn)動(dòng)中以糖電解質(zhì)溶液即運(yùn)動(dòng)飲料的形式及時(shí)補(bǔ)充碳水化合物,維持血糖的正常并提供一定量的能量物質(zhì),均可保持穩(wěn)定的機(jī)能狀態(tài),保證運(yùn)動(dòng)能力的正常發(fā)揮,延緩或減輕中樞和外周疲勞的發(fā)生和程度。運(yùn)動(dòng)后立即攝入碳水化合物,有利于肌糖原和肝糖原儲(chǔ)備的快速恢復(fù)[36]。
不同組分的小分子糖混合補(bǔ)充,可充分利用腸道不同的消化酶和腸黏膜吸收通道,增加糖分子的整體吸收速度,同時(shí)又不使血糖增加過高,引起降糖性內(nèi)分泌反應(yīng),抑制交感—腎上腺系統(tǒng),影響運(yùn)動(dòng)能力。研發(fā)運(yùn)動(dòng)前和運(yùn)動(dòng)中不同類型和分子大小的糖組合配方,有很大的應(yīng)用價(jià)值。
將淀粉等水解為2~10個(gè)葡萄糖分子構(gòu)成的麥芽低聚糖,攝入后可保持腸道較低滲透壓,避免腸道內(nèi)保留或吸收較多水分。還因分子大小不同致使消化吸收速度不同,可穩(wěn)定維持血糖濃度,避免血糖瞬間升高,引起降糖性內(nèi)分泌反應(yīng)。此類低聚糖營(yíng)養(yǎng)品運(yùn)動(dòng)前和運(yùn)動(dòng)中使用較好,單糖可逐步入血,延長(zhǎng)供能時(shí)間。葡萄糖鏈接的低聚糖一般以淀粉為原料,通過酶解技術(shù)制成,具有甜度低、滲透壓低、口感好、保濕性好、不易結(jié)晶等特點(diǎn),可應(yīng)用于液體和固體運(yùn)動(dòng)營(yíng)養(yǎng)食品。
1.3 脂類
盡管脂肪在運(yùn)動(dòng)營(yíng)養(yǎng)食品中沒有受到過多的關(guān)注,但有實(shí)驗(yàn)報(bào)告,補(bǔ)充ω -3 多不飽和脂肪酸(ω -3 PUFA)后,青、中年受試者骨骼肌蛋白質(zhì)合成代謝增強(qiáng)[37-38]。ω -3 PUFA在其中可能起了增敏作用。ω -3 PUFA是細(xì)胞膜的重要組分,與脂質(zhì)信號(hào)傳導(dǎo)和細(xì)胞膜生物特性調(diào)節(jié)有關(guān)。ω -3 PUFA,特別是EPA和DHA,因其抗炎特性,與心血管健康息息相關(guān)[39]。研究報(bào)道肌肉減少癥與慢性低度炎癥相關(guān)[40],補(bǔ)充ω -3 PUFA可抵抗慢性炎癥,緩解肌肉減少,對(duì)維護(hù)心血管和大腦細(xì)胞有益處,可改善老年性肌少癥。有研究顯示補(bǔ)充ω -3 PUFA后老年人骨骼肌蛋白質(zhì)合成代謝增強(qiáng)[41]。每天補(bǔ)充含有2g EPA和DHA的魚油,結(jié)合抗阻力練習(xí),老年婦女在90 d后肌肉力量得到增強(qiáng)[42]。不過,有人通過綜述分析得出結(jié)論:目前還無法確證補(bǔ)充ω -3 PUFA可以提高運(yùn)動(dòng)能力,有關(guān)補(bǔ)充ω -3 PUFA可以有效減弱運(yùn)動(dòng)性炎癥和免疫調(diào)節(jié)反應(yīng)的資料也不夠充足[43]??梢?,ω -3 PUFA用于運(yùn)動(dòng)營(yíng)養(yǎng)食品的可行性還需進(jìn)一步探討證實(shí)。
另外,脂類中磷脂酸的作用值得關(guān)注。已發(fā)現(xiàn)磷脂酸可以激活骨骼肌哺乳動(dòng)物雷帕霉素靶標(biāo)(mammalian target of rapamycin, mTOR),刺激骨骼肌蛋白質(zhì)的代謝,促進(jìn)肌肉增大和力量增強(qiáng)[44]。抗阻力運(yùn)動(dòng)可使骨骼肌細(xì)胞內(nèi)源性磷脂酸直接結(jié)合并激活mTOR。細(xì)胞實(shí)驗(yàn)顯示外源性磷脂酸也可間接提高mTOR活性。因此,可以通過抗阻力訓(xùn)練聯(lián)合口服補(bǔ)充磷脂酸,同時(shí)從內(nèi)源性和外源性兩個(gè)方面,發(fā)揮磷脂酸介導(dǎo)mTOR的增肌作用。此外,磷脂酸在老年性肌肉萎縮和疾病性肌萎縮方面,似乎也有改善作用[44]。
1.4 水和運(yùn)動(dòng)飲料
盡管許多人不把水納入營(yíng)養(yǎng)素的范圍,但在運(yùn)動(dòng)營(yíng)養(yǎng)概念中,水的作用卻十分重要,機(jī)體良好的水合狀態(tài)與運(yùn)動(dòng)能力息息相關(guān)。我國(guó)的運(yùn)動(dòng)飲料國(guó)家標(biāo)準(zhǔn)規(guī)定運(yùn)動(dòng)飲料必須含有的基本要素是水和一定含量的碳水化合物、鈉離子、鉀離子[45]。在此基礎(chǔ)上,可根據(jù)運(yùn)動(dòng)飲料的目標(biāo)人群,添加其他營(yíng)養(yǎng)物質(zhì)或活性成分。運(yùn)動(dòng)飲料或可屬于能量飲料或功能飲料的范疇。功能飲料大部分都含有咖啡因和碳水化合物,有的還含有某些氨基酸、維生素、礦物質(zhì)以及某些植物化學(xué)類物質(zhì)[46]。不管是運(yùn)動(dòng)飲料或者功能飲料,主要目的還是補(bǔ)水,同時(shí)補(bǔ)充運(yùn)動(dòng)中損耗的電解質(zhì)和能量,以保持運(yùn)動(dòng)機(jī)體的體溫平衡、水電平衡、酸堿平衡以及能量平衡。運(yùn)動(dòng)飲料對(duì)維持運(yùn)動(dòng)能力以及促進(jìn)運(yùn)動(dòng)后恢復(fù)的作用得到一致肯定。目前通用型或大眾性運(yùn)動(dòng)飲料早已占據(jù)市場(chǎng),值得開發(fā)的是那些特殊型或小眾性的運(yùn)動(dòng)飲料,例如針對(duì)增肌群體添加以亮氨酸為主的支鏈氨基酸的運(yùn)動(dòng)飲料。
1.5 其他
研究發(fā)現(xiàn)碳酸氫鈉、檸檬酸鈉、乳酸鈉、乳酸鈣補(bǔ)充劑可增加細(xì)胞外液的酸緩沖能力,其中碳酸氫鈉(按0.3 g/(bw·kg))可能是改善高強(qiáng)度運(yùn)動(dòng)能力效果最好的。如果碳酸氫鈉聯(lián)合β -丙氨酸一起補(bǔ)充,可從細(xì)胞外液和細(xì)胞內(nèi)液兩方面同時(shí)改善運(yùn)動(dòng)性酸積累的問題,從而延緩或減輕疲勞,提高運(yùn)動(dòng)能力[47]。
2.1 天然脂解物質(zhì)
增加運(yùn)動(dòng)中或運(yùn)動(dòng)后體脂分解能力,是提高耐力運(yùn)動(dòng)能力和運(yùn)動(dòng)減肥效果的重要一環(huán)。研究顯示,動(dòng)植物中一些天然物質(zhì)具有刺激脂解的作用,如果與運(yùn)動(dòng)聯(lián)合,脂解的效應(yīng)可以累加。此類產(chǎn)品對(duì)于減控體重項(xiàng)目的運(yùn)動(dòng)員和減肥控體重的普通健身者均具有吸引力。但是,一些脂解物質(zhì)的真實(shí)效果仍然存在爭(zhēng)議。已經(jīng)發(fā)現(xiàn)咖啡因、綠茶提取物(茶堿)、藤黃果提取物(羥基檸檬酸)、辣椒素、人參(皂甙)、絲肽、二十八醇、肉堿、牛磺酸等可通過增強(qiáng)脂肪分解代謝作用,提高耐力運(yùn)動(dòng)能力。其中,以咖啡因和綠茶提取物的作用最為可靠[48]。其他那些宣稱具有脂解作用和提高運(yùn)動(dòng)耐力的物質(zhì),還需獲得更多的實(shí)驗(yàn)數(shù)據(jù)和現(xiàn)場(chǎng)數(shù)據(jù)的支持。
甜菜堿(betaine)是從甜菜分離的甘氨酸的甲基衍生物,在肝臟中代謝為二甲基甘氨酸(dimethylglycine)和肌氨酸(sarcosine)。動(dòng)物和人體研究表明,甜菜堿對(duì)耐力和抗阻力運(yùn)動(dòng)有積極作用。此外補(bǔ)充甜菜堿還可以促進(jìn)減脂或增加瘦體重。不過,也有一些研究報(bào)告甜菜堿沒有明顯的作用。研究顯示,甜菜堿的作用可能與促進(jìn)脂肪分解和抑制脂肪合成有關(guān),機(jī)理涉及脂代謝相關(guān)蛋白的表達(dá)調(diào)節(jié)、胰島素樣生長(zhǎng)因子 -1(IGF -1)和生長(zhǎng)激素分泌增加、胰島素受體信號(hào)通路激活、肌酸和蛋白質(zhì)合成增加等過程。甜菜堿的補(bǔ)充劑量為500~9 000 mg/d[49]。
2.2 硝酸鹽
2.3 咖啡因
研究證明,咖啡因在提高運(yùn)動(dòng)耐力方面有作用,但在力量型或沖刺型運(yùn)動(dòng)方面的結(jié)果卻不相一致[59]。研究結(jié)果一般認(rèn)可中、高劑量的咖啡因(5~13 mg/(bw·kg))對(duì)運(yùn)動(dòng)能力的促進(jìn)作用,但可能有一些不良副作用。而低劑量的咖啡因(<3 mg/(bw·kg),約200 mg)也可提高某些運(yùn)動(dòng)項(xiàng)目的成績(jī)。咖啡因提高運(yùn)動(dòng)能力的作用與中樞神經(jīng)系統(tǒng)的興奮刺激有關(guān)。使用低劑量咖啡因的副作用極少,還可提高或保持運(yùn)動(dòng)期間的警醒、機(jī)敏、情緒和思維。但應(yīng)注意,低劑量咖啡因的效果會(huì)因人而異[60]。
綠茶通過作用交感神經(jīng)系統(tǒng),引起大腦神經(jīng)興奮,并使能量物質(zhì)氧化代謝增強(qiáng),從而影響運(yùn)動(dòng)表現(xiàn)。綠茶有2個(gè)主要成分與此作用有關(guān),一個(gè)是咖啡因,另一個(gè)是兒茶素[61]。
由于咖啡在日常生活中長(zhǎng)期食用,人們對(duì)咖啡因的安全性一般沒有疑問,導(dǎo)致含有咖啡因的產(chǎn)品越來越多,有飲料、片劑、膠囊、其他固體形式,使用的目的包括減肥、運(yùn)動(dòng)助力、提神等。但是作為提取物單體以及與其他提取物混合使用,使得咖啡因可能與咖啡的情況有所不同。有人建議應(yīng)對(duì)長(zhǎng)期使用咖啡因的副作用進(jìn)行深入研究[46]。研究觀察到,兒童少年高咖啡因攝入(> 5 mg/(bw·kg·d))可能增加焦慮等的風(fēng)險(xiǎn),而低攝入量沒有這樣的副作用,并且可以提高運(yùn)動(dòng)能力。證據(jù)表明,兒童少年每天的咖啡因消耗量應(yīng)限制在2.5 mg/(bw·kg·d),相當(dāng)于一大杯茶或一小杯咖啡[62]。
國(guó)內(nèi)外研究人員對(duì)存在于動(dòng)植物中潛在的可改善運(yùn)動(dòng)能力的活性或功能因子的研發(fā)一直在進(jìn)行。除上述活性因子外,多酚、皂苷、黃酮等活性成分的研究也開展較多。
3.1 發(fā)酵食品活性物質(zhì)
已經(jīng)發(fā)現(xiàn)一些發(fā)酵類食品具有運(yùn)動(dòng)營(yíng)養(yǎng)食品的功能作用[63]。有人觀察到牛奶[64-65]、土豆[66]、豆?jié){[67]、木瓜[68]、豬胎盤[69-71]、大米糠[72]、紅景天[73]、鹿茸[74]等發(fā)酵食品或提取物有改善運(yùn)動(dòng)能力的作用。發(fā)酵食品的原料來源廣泛多樣,幾乎可以囊括所有食物和某些非食物,可供發(fā)酵的微生物也種類繁多。食物發(fā)酵后,可產(chǎn)生一些原料食物中沒有的新物質(zhì)。可以選擇、嘗試不同的有益發(fā)酵微生物對(duì)不同食品進(jìn)行發(fā)酵,從中發(fā)現(xiàn)有潛力的活性成分,成為運(yùn)動(dòng)營(yíng)養(yǎng)食品的新資源。
3.2 海洋來源的活性物質(zhì)
從海洋生物中尋找、提取活性物質(zhì)是另一個(gè)方向。已經(jīng)研發(fā)的海洋活性物質(zhì)包括環(huán)氧合酶抑制劑、海洋類固醇、大環(huán)內(nèi)酯類、抗氧化劑、產(chǎn)熱物質(zhì)、改善免疫力和軟骨保護(hù)的物質(zhì)、幾丁質(zhì)、殼聚糖、ω -3 UPFA等[75]。對(duì)肌肉酸痛有作用的海洋性活性物質(zhì)有雨生紅球藻(Haematococcuspluvialis)中的蝦青素,螺旋藻(Spirulina)中的藻藍(lán)蛋白[75-76]??寡趸?、抗炎作用的海洋性活性物質(zhì)有雨生紅球藻中的蝦青素,螺旋藻中的藻藍(lán)蛋白,蛋白核小球藻(Chlorellapyrenoidosa)中的葉黃素和玉米黃質(zhì),鹽生杜氏藻(Dunaliellasalina)中的β -胡蘿卜素, 魚腥藻中的超氧化物歧化酶,節(jié)旋藻(Arthrospira)中的γ -亞麻酸,Stylocheiluslongicauda中的大環(huán)內(nèi)酯類化合物,紫球藻(Porphyridium)中的γ -氨基丁酸等[75-78]。促進(jìn)脂肪動(dòng)員的海洋性活性物質(zhì)有裙帶菜(Undariapinnatifida)中的墨角藻黃素(fucoxanthin)[75,79]??沟鞍追纸?,提高肌肉功能的海洋性蛋白質(zhì)有杜氏藻(Dunaliella)和節(jié)旋藻(Arthrospiraplatensis)中的蛋白質(zhì), 鞭金藻(I.galbana)中的碳酸酐酶蛋白質(zhì)[75-76]等。
3.3 功效成分的組合配方
利用已知的營(yíng)養(yǎng)功效成分,設(shè)計(jì)具有特定作用的運(yùn)動(dòng)營(yíng)養(yǎng)食品組合配方,是當(dāng)前研發(fā)的重點(diǎn)。運(yùn)動(dòng)往往涉及機(jī)體的諸多代謝通路,也涉及多種營(yíng)養(yǎng)物質(zhì)或功效成分的消耗。補(bǔ)充運(yùn)動(dòng)營(yíng)養(yǎng)食品必須考慮相關(guān)營(yíng)養(yǎng)物質(zhì)和功能因子的同時(shí)應(yīng)用。設(shè)計(jì)合理的組合配方運(yùn)動(dòng)營(yíng)養(yǎng)食品可以起到事半功倍的效果。例如運(yùn)動(dòng)飲料就是一種配方運(yùn)動(dòng)營(yíng)養(yǎng)食品。再例如,運(yùn)動(dòng)時(shí)氧消耗增加,氧代謝增強(qiáng),活性氧等自由基大量生成。同時(shí),機(jī)體的抗氧化防御機(jī)制適應(yīng)性上調(diào),以抑制氧化應(yīng)激。通過長(zhǎng)期鍛煉適應(yīng),隨著機(jī)體的抗氧化應(yīng)激機(jī)制逐漸增強(qiáng),氧化應(yīng)激反應(yīng)會(huì)有所下降。在此過程中,適時(shí)適量補(bǔ)充抗氧化營(yíng)養(yǎng)素如維生素E、維生素C、β -胡蘿卜素、鋅、銅、硒以及其他抗氧化活性物質(zhì)如番茄紅素等,則對(duì)機(jī)體抗氧化和抗氧化適應(yīng)產(chǎn)生有利作用。這些抗氧化物質(zhì)往往在不同的途徑和層面對(duì)抗自由基,相互不可替代,最好補(bǔ)充齊整。這就要求針對(duì)性設(shè)計(jì)具有適當(dāng)劑量功能成分的抗氧化運(yùn)動(dòng)營(yíng)養(yǎng)配方食品。還有含有優(yōu)質(zhì)蛋白質(zhì)、亮氨酸和肌酸的老年增肌配方食品,碳酸氫鹽(細(xì)胞外液抗酸)和β -丙氨酸(細(xì)胞內(nèi)液抗酸)聯(lián)合組方的抗酸運(yùn)動(dòng)營(yíng)養(yǎng)食品[80]等。另外,運(yùn)動(dòng)性損傷康復(fù)的組方營(yíng)養(yǎng)食品市面上也比較少見,值得研發(fā)。
[1] PATEL S. Emerging trends in nutraceutical applications of whey protein and its derivatives[J]. Journal of Food Science and Technology -Mysore, 2015, 52(11): 6847-6858.
[2] MCLELLAN T M. Protein supplementation for military personnel: a review of the mechanisms and performance outcomes[J]. Journal of Nutrition, 2013, 143(11): 1820-1833.
[3] MARTIN V,RATEL S,SIRACUSA J,et al. Whey proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy[J]. PLOS One, 2013, 8(9): 75401-75408.
[4] VOLEK J S,VOLK B M,GOMEZ A L,et al. Whey protein supplementation during resistance training augments lean body mass[J]. Journal of the American College of Nutrition, 2013, 32(2): 122-135.
[5] BURD N A,YANG Y F,MOORE D R,et al. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men[J]. British Journal of Nutrition, 2012, 108(6): 958-962.
[6] PENNINGS B,BOIRIE Y,SENDEN J M,et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men[J]. The American Journal of Clinical Nutrition, 2011, 93(5): 997-1005.
[7] MCLELLAN T M,PASIAKOS S M,LIEBERMAN H R. Effects of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance: a systematic review[J]. Sports Medicine, 2014, 44(4): 535-550.
[8] PASIAKOS S M,LIEBERMAN H R,MCLELLAN T M. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review[J]. Sports Medicine, 2014, 44(5): 655-670.
[9] VAN LOON L J. Is there a need for protein ingestion during exercise?[J]. Sports Medicine, 2014, 44(s):105-111.
[10] MOURA C S,LOLLO P C,MORATO P N, et al. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats[J]. PLOS One, 2014, 9(1): e83437.
[11] LOLLO P C, AMAYA -FARFAN J, FARIA I C, et al. Hydrolysed whey protein reduces muscle damage markers in Brazilian elite soccer players compared with whey protein and maltodextrin: a twelve -week in -championship intervention[J]. International Dairy Journal, 2014, 34(1):19-24.
[12] MORATO P N,LOLLO P ,MOURA C S,et al. A dipeptide and an amino acid present in whey protein hydrolysate increase translocation of GLUT -4 to the plasma membrane in Wistar rats[J]. Food Chemistry, 2013, 139(1/4): 853-859.
[13] CHURCHWARD -VENNE T A,BREEN L,DI DONATO D M,et al. Leucine supplementation of a low -protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double -blind, randomized trial[J]. American Journal of Clinical Nutrition, 2014, 99(2): 276-286.
[14] CERMAK N M. VAN LOON L J. The use of carbohydrates during exercise as an ergogenic aid[J]. Sports Medicine, 2013, 43(11): 1139-1155.
[15] BLANCQUAERT L,EVERAERT I,DERAVE W. Beta -alanine supplementation, muscle carnosine and exercise performance[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18(1): 63-70.
[16] BERTI ZANELLA P, DONNER ALVES F, GUERINI DE SOUZA C. Effects of beta -alanine supplementation on performance and muscle fatigue in athletes and non -athletes of different sports: a systematic review[J/OL]. Journal of Sports Medicine & Physical Fitness.[2017 -04 -02]. http:∥www.minervamedica.it/en/journals/sports -med -physical -fitness/article.php?cod=R40Y999 9N00A16070507&acquista=1.
[17] BELLINGER P M. Beta -alanine supplementation for athletic performance: an update[J]. Journal of Strength and Conditioning Research, 2014, 28(6): 1751-1770.
[18] ANTHONY J C, YOSHIZAWA F, ANTHONY T G, et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin -sensitive pathway[J]. Journal of Nutrition, 2000, 130(10):2413-2419.
[19] MORTON J P,KAYANI A C,MCARDLE A,et al. The exercise -induced stress response of skeletal muscle, with specific emphasis on humans[J]. Sports Medicine, 2009, 39(8): 643-662.
[20] LUCKOSE F,PANDEY M C,RADHAKRISHNA K. Effects of amino acid derivatives on physical, mental, and physiological activities[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(13): 1793-1807.
[21] PHILLIPS S M. Nutritional supplements in support of resistance exercise to counter age -related sarcopenia[J]. Advances in Nutrition, 2015, 6(4): 452-460.
[22] TWYCROSS -LEWIS R,KILDUFF L P,WANG G,et al. The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects[J]. Amino Acids, 2016, 48(8): 1843-1855.
[23] BRANCH J D. Effect of creatine supplementation on body composition and performance: a meta -analysis[J]. International Journal of Sport Nutrition and Exercise Metabolism, 2003, 13(2): 198-226.
[24] RAWSON E S,VENEZIA A C. Use of creatine in the elderly and evidence for effects on cognitive function in young and old[J]. Amino Acids, 2011, 40(5): 1349-1362.
[25] DEVRIES M C,PHILLIPS S M. Creatine supplementation during resistance training in older adults: a meta -analysis[J]. Medicine and Science in Sports and Exercise, 2014, 46(6): 1194-1203.
[26] CANDOW D G,CHILIBECK P D,FORBES S C. Creatine supplementation and aging musculoskeletal health[J]. Endocrine, 2014, 45(3): 354-361.
[27] HAVENETIDIS K. The use of creatine supplements in the military[J]. Journal of the Royal Army Medical Corps, 2016, 162(4): 242-248.
[28] PEKALA J,PATKOWSKA -SOKOA B,BODKOWSKI R,et al. L -carnitine -metabolic functions and meaning in humans life[J]. Current Drug Metabolism, 2011, 12(7): 667-678.
[29] BENVENGA S. Effects of L -carnitine on thyroid hormone metabolism and on physical exercise tolerance[J]. Hormone and Metabolic Research, 2005, 37(9): 566-571.
[30] CHA Y S. Effects of L -carnitine on obesity, diabetes, and as an ergogenic aid[J]. Asia Pacific Journal of Clinical Nutrition, 2008, 17(s):306-308.
[31] KARLIC H,LOHNINGER A. Supplementation of L -carnitine in athletes:does it make sense[J]. Nutrition, 2004, 20(7/8): 709-715.
[32] PARANDAK K,ARAZI H,KHOSHKHAHESH F,et al. The effect of two -week L -carnitine supplementation on exercise -induced oxidative stress and muscle damage[J]. Asian Journal of Sports Medicine, 2014, 5(2): 123-128.
[33] SPRIET L L, PERRY C G, TALANIAN J L. Legal pre -event nutritional supplements to assist energy metabolism[J]. Essays in Biochemistry, 2008(44):27-43.
[34] EVANS M,GUTHRIE N,PEZZULLO J,et al. Efficacy of a novel formulation of L -carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: a randomized, double -blind placebo -controlled study[J]. Nutrition & Metabolism, 2017, 14: 7-23.
[35] HAWLEY J A,LECKEY J J. Carbohydrate dependence during prolonged, intense endurance exercise[J]. Sports Medicine, 2015, 45(1): 5-12.
[36] WILLIAMS C,ROLLO I. Carbohydrate nutrition and team sport performance[J]. Sports Medicine, 2015, 45(1): 13-22.
[37] SMITH G I,ATHERTON P,REEDS D N,et al. Omega -3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia -hyperaminoacidaemia in healthy young and middle -aged men and women[J]. Clinical Science, 2011, 121(5/6): 267-278.
[38] MCGLORY C, GALLOWAY S D, HAMILTON D L, et al. Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation[J]. Prostaglandins Leukot Essent Fatty Acids, 2014, 90: 199-206.
[39] YUSOF H M, MILES E A, CALDER P. Influence of very long -chain n -3 fatty acids on plasma markers of inflammation in middle -aged men[J]. Prostaglandins Leukot Essent Fatty Acids, 2008, 78: 219-28.
[40] BEYER I, METS T, BAUTMANS I. Chronic low -grade inflammation and age -related sarcopenia[J]. Current Opinion in Clinical Nutrition & Metabolic Care, 2012, 15(1):12-22.
[41] SMITH G I,ATHERTON P,REEDS D N,et al. Dietary omega -3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2011, 93(2): 402-412.
[42] RODACKI C L,RODACKI A L,PEREIRA G A,et al. Fish -oil supplementation enhances the effects of strength training in elderly women[J]. American Journal of Clinical Nutrition, 2012, 95(2): 428-436.
[43] SHEI R J,LINDLEY M R,MICKLEBOROUGH T D. Omega -3 polyunsaturated fatty acids in the optimization of physical performance[J]. Military Medicine, 2014, 179(11): 144-156.
[44] SHAD B J,SMEUNINX B,ATHERTON P J. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle[J]. Applied Physiology, Nutrition, and Metabolism, 2015, 40(12): 1233-1241.
[45] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 運(yùn)動(dòng)飲料:GB 15266—2009 [M]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2009.
[46] GURLEY B J,STEELMAN S C,THOMAS S L. Multi -ingredient, caffeine -containing dietary supplements: history, safety, and efficacy[J]. Clinical Therapeutics, 2015, 37(2): 275-301.
[47] LANCHA JUNIOR A H,PAINELLI V D,ARTIOLI G G. Nutritional strategies to modulate intracellular and extracellular buffering capacity during high -intensity exercise[J]. Sports Medicine, 2015, 45(1): 71-81.
[48] KIM J,PARK J,LIM K. Nutrition supplements to stimulate lipolysis: a review in relation to endurance exercise capacity[J]. Journal of Nutritional Science and Vitaminology, 2016, 62(3): 141-161.
[49] CHOLEWA J M,GUIMARES F L,ZANCHI N E. Effects of betaine on performance and body composition:a review of recent findings and potential mechanisms[J]. Amino Acids, 2014, 46(8): 1785-1793.
[50] BREESE B C,MCNARRY M A,MARWOOD S A,et al. Beetroot juice supplementation speeds O2uptake kinetics and improves exercise tolerance during severe -intensity exercise initiated from an elevated metabolic rate[J]. American Journal of Physiology -Regulatory Integrative and Comparative Physiology, 2013, 305(12): 1441-1450.
[51] PAWLAK -CHAOUCH M,BOISSIERE J,GAMELIN F X,et al. Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: a systematic review and a meta -analysis[J]. Nitric Oxide, 2016, 53: 65-76.
[52] CLIFFORD T,HOWATSON G,WEST D J,et al. The potential benefits of red beetroot supplementation in health and disease[J]. Nutrients, 2015, 7(4): 2801-2822.
[53] MCMAHON N F, LEVERITT M D, PAVEY T G. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta -analysis[J]. Sports Medicine, 2016:1-22.
[54] JONES A M. Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review[J]. Applied Physiology, Nutrition, and Metabolism, 2014, 39(9): 1019-1028.
[55] JONES A M, VANHATALO A, BAILEY S J. Influence of dietary nitrate supplementation on exercise tolerance and performance[J]. Nestle Nutrition Institute Workshop, 2013, 75:27-40.
[56] BAILEY S J,VARNHAM R L,DIMENNA F J,et al. Inorganic nitrate supplementation improves muscle oxygenation, O2uptake kinetics,and exercise tolerance at high but not low pedal rates[J]. Journal of Applied Physiology, 2015, 118(11): 1396-1405.
[57] CLEMENTS W T,LEE S R,BLOOMER R J. Nitrate ingestion: a review of the health and physical performance effects[J]. Nutrients, 2014, 6(11): 5224-5264.
[58] BAILEY S J,WINYARD P,VANHATALO A,et al. Dietary nitrate supplementation reduces the O2cost of low -intensity exercise and enhances tolerance to high -intensity exercise in humans[J]. Journal of Applied Physiology, 2009, 107(4): 1144-1155.
[59] TREXLER E T,SMITH -RYAN A E. Creatine and caffeine: considerations for concurrent supplementation[J]. International Journal of Sport Nutrition and Exercise Metabolism, 2015, 25(6): 607-623.
[60] SPRIET L L. Exercise and sport performance with low doses of caffeine[J]. Sports Medicine, 2014, 44(2): 175-184.
[61] TURKOZU D,TEK N A. A minireview of effects of green tea on energy expenditure[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(2): 254-258.
[62] RUXTON C. The suitability of caffeinated drinks for children: a systematic review of randomised controlled trials, observational studies and expert panel guidelines[J]. Journal of Human Nutrition and Dietetics, 2014, 27(4): 342-357.
[63] 朱繼元. 天然酵素在運(yùn)動(dòng)食品中的應(yīng)用及市場(chǎng)前景分析[J]. 食品研究與開發(fā), 2016,37(18):209-211.
[64] IWASA M,AOI W,MUNE K,et al. Fermented milk improves glucose metabolism in exercise -induced muscle damage in young healthy men[J]. Nutrition Journal, 2013(12): 83-90.
[65] AOI W,NAITO Y,NAKAMURA T,et al. Inhibitory effect of fermented milk on delayed -onset muscle damage after exercise[J]. Journal of Nutritional Biochemistry, 2007, 18(2): 140-145.
[66] CHUANG C Y,SHI Y C,YOU H P,et al. Antidepressant effect of GABA -rich monascus -fermented product on forced swimming rat model[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 3027-3034.
[67] SATO T,SHINOHARA Y,KANEKO D,et al. Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats[J]. Applied Physiology Nutrition and Metabolism, 2010, 35(6): 749-754.
[68] ARUOMA O I,HAYASHI Y,MAROTTA F,et al. Applications and bioefficacy of the functional food supplement fermented papaya preparation[J]. Toxicology, 2010, 278(1): 6-16.
[69] MITSUI Y,BAGCHI M,MARONE P A,et al. Safety and toxicological evaluation of a novel, fermented, peptide -enriched, hydrolyzed swine placenta extract powder[J]. Toxicology Mechanisms and Methods, 2015, 25(1): 13-20.
[70] KIM H Y,HAN N R,KIM N R,et al. Effect of fermented porcine placenta on physical fatigue in mice[J]. Experimental Biology and Medicine, 2016, 241(17): 1985-1996.
[71] NAM S Y,KIM H M,JEONG H J. Anti -fatigue effect by active dipeptides of fermented porcine placenta through inhibiting the inflammatory and oxidative reactions[J]. Biomedicine & Pharmacotherapy, 2016, 84: 51-59.
[72] KIM K M,YU K W,KANG D H,et al. Anti -stress and anti -fatigue effect of fermented rice bran[J]. Phytotherapy Research, 2002, 16(7): 700-702.
[73] KANG D Z, HONG H D, KIM K I, et al. Anti -fatigue effects of fermentedRhodiolaroseaextract in mice[J]. Preventive Nutrition & Food Science, 2015, 20(1):38-42.
[74] JANG S,PARK E D,SUH H J,et al. Enhancement of exercise endurance capacity by fermented deer antler in BALB/c mice[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(10): 1716-1722.
[75] GAMMONE M A,GEMELLO E,RICCIONI G,et al. Marine bioactives and potential application in sports[J]. Marine Drugs, 2014, 12(5): 2357-2382.
[76] DE JESUS -RAPOSO M F, DE MORAIS R M, DE MORAIS A M. Health applications of bioactive compounds from marine microalgae[J]. Life Sciences, 2013, 93(15):479-486.
[77] PLAZA M,HERRERO M,CIFUENTES A,et al. Innovative natural functional ingredients from microalgae[J]. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7159-7170.
[78] SUN Y,WANG C. The optimal growth conditions for the biomass production of isochrysis galbana and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of isochrysis galbana and the activity of extracellular CA [J]. Biotechnology Bioprocess Engineering, 2009, 14: 225-231.
[79] WOO M N,JEON S M,SHIN Y C,et al. Anti -obese property of fucoxanthin is partly mediated by altering lipid -regulating enzymes and uncoupling proteins of visceral adipose tissue in mice[J]. Molecular Nutrition & Food Research, 2009, 53(12): 1603-1611.
[80] SAHLIN K. Muscle energetics during explosive activities and potential effects of nutrition and training[J]. Sports Medicine, 2014, 44(2): 167-173.
(責(zé)任編輯:李 寧)
Research Progress on Nutritional Components and Functional Factors in Sports Nutrition Food
AI Hua, CHANG Cuiqing
(NutritionSection,InstituteofSportsMedicine,PekingUniversityThirdHospital,Beijing100191,China)
Sports nutrition food is defined as food that meet the physiological metabolism, exercise ability and special needs for certain nutrients of exercisers. With the improvement of people’s awareness of health concept and extensive participation in various exercise training, sports nutrition food market is also growing. In this paper, the research status and progress of some important hotspot nutrients and functional factors in the current sports nutrition food are reviewed, and the potential research and development direction is forecasted in order to provide clues and ideas for the development of sports nutrition food in China.
sports nutrition food; nutritional components; functional factors
2017 -04 -21
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目課題(2016YFD0400603)。
艾 華,男,研究員,博士,博士生導(dǎo)師,主要從事運(yùn)動(dòng)營(yíng)養(yǎng)的研究和臨床工作。
10.3969/j.issn.2095 -6002.2017.03.002
2095 -6002(2017)03 -0016 -09
艾華,常翠青. 運(yùn)動(dòng)營(yíng)養(yǎng)食品中營(yíng)養(yǎng)成分和功能因子研究進(jìn)展[J]. 食品科學(xué)技術(shù)學(xué)報(bào),2017,35(3):16-24.
AI Hua, CHANG Cuiqing. Research progress on nutritional components and functional factors in sports nutrition food[J]. Journal of Food Science and Technology, 2017,35(3):16-24.
TS201.4
A
專家論壇專欄
編者按:運(yùn)動(dòng)可以改善體質(zhì)、增進(jìn)健康,隨著居民健康意識(shí)的增強(qiáng),運(yùn)動(dòng)健身已經(jīng)成為人們?nèi)粘I畹囊徊糠帧E浜线\(yùn)動(dòng),食用針對(duì)不同運(yùn)動(dòng)性質(zhì)、不同人群狀況的運(yùn)動(dòng)營(yíng)養(yǎng)食品,可以起到減輕運(yùn)動(dòng)損傷、促進(jìn)運(yùn)動(dòng)恢復(fù)、提高運(yùn)動(dòng)成績(jī)的效果。為此,本期欄目特邀專家對(duì)運(yùn)動(dòng)營(yíng)養(yǎng)食品中營(yíng)養(yǎng)成分和功能因子、骨膳食營(yíng)養(yǎng)補(bǔ)充劑的發(fā)展現(xiàn)狀和研究進(jìn)展進(jìn)行系統(tǒng)闡述,希望為運(yùn)動(dòng)營(yíng)養(yǎng)食品的開發(fā)提供理論指導(dǎo),為公眾了解運(yùn)動(dòng)營(yíng)養(yǎng)食品知識(shí)提供有益幫助。
(欄目策劃:李 寧)