• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Three-dimensional Ehrlich-Schwoebel Barriers on Cu(111) and Cu(100) Homoepitaxial Growth

    2017-06-21 10:48:31DONGGuirenTANGJiyuCUIJingLIUJuanHEYouqing
    關(guān)鍵詞:勢(shì)壘同質(zhì)晶面

    DONG Guiren, TANG Jiyu, CUI Jing, LIU Juan, HE Youqing

    (Department of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China)

    ?

    Effects of Three-dimensional Ehrlich-Schwoebel Barriers on Cu(111) and Cu(100) Homoepitaxial Growth

    DONG Guiren, TANG Jiyu, CUI Jing, LIU Juan, HE Youqing

    (Department of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China)

    The 3-dimensional Ehrlich-Schwoebel(3D ES) barriers directly affect the interlayer diffusion, and the 2D ES barrier and the 3D ES barrier are different on the Cu(111) and Cu(100) surface respectively. Based on (1+1) dimensional KMC method, we mainly focused on the homogeneous epitaxial growth of Cu films on these two special crystal surfaces in this paper. And we found that the roughness of the film decreases with the increase of temperature. The roughness on Cu(111) surface drops faster than that on Cu(100) surface, and Cu(111) surface is more conducive to the growth of film due to lower 2D ES barrier. For the application of nanorods, the growth rate declines gradually when the growth time is short, but the growth rate of Cu(100) surface is faster than that on Cu(111) surface. However, with the growth time increasing, the effects on these two surfaces are different in appearance of multi-layer steps. The growth rate of Cu(111) surface rises and eventually exceeds the Cu(100) surface. The multi-layer steps formed on Cu(111) surface is more favorable for the growth of nanorods because of the larger 3D ES barrier while the multi-layer steps are hard to form on Cu(100) surface and the growth rate of nanorods does not increase due to the lower 3D ES barrier. The existence of 3D ES barrier leads to the emergence of multi-layer steps and the larger 3D ES barrier is conducive to the growth of nanorods.

    Kinetic Monte Carlo simulations; surface roughness; thin film growth; (1+1) dimensional

    1 Introduction

    Computational nanostructure simulations (such as nanodot, nanowire and thin film) have always been popular. With decants of theoretical and experimental researches, reliable methodology has been established, which enables individuals to have an insightful understanding of nanostructure formation mechanism[1-5]. Currently, film computational simulation methods include molecular dynamics method (MD), Monte Carlo method (MC) and Kinetic Monte Carlo method (KMC), etc. Among these computational methods, the KMC method is a powerful material modeling tool in long time scale[6]. R.Zhang[7]and S.Ruan[8]employed KMC method based on (1+1) dimensional to simulate the film growth. R.Zhang found that a larger 3D ES barrier led to higher stability and more multi-layer steps. But he only studied the Cu(111) surface, and he didn’t consider Cu(100) surface.

    Flat diffusions of adatoms have been exhaustively studied[9-12]and the interlayer ones have also received great attention[13]. In 1966, Ehrlich, Schwoebel and his co-workers studied adatom interlayer transmission. They found that an additional barrier should be overcome for an adatom to migrate down the surface step[14-15]. The additional barrier is called Ehrlich-Schwoebel (ES) barrier or 2D ES barrier. A variety of computer simulations have been adopted to study the effects of ES barrier, which controls mass adatoms transport during surface deposition and has impact on thin film roughness[14-18].

    Additional studies generalized the conventional concept with 3D ES barriers, which refer to the barrier needs to be conquered when adatom effectively diffuses down a multiple layer step[19]. Considerable researchers[7,20]pointed out that substantial differences exist between 2D and 3D barriers. Molecular Dynamics and Molecular Statics methods were employed to explicit the exact value of some specific materials, based on a broad area of research fields. In the study of R. Zhang et al[7], it has found that the 3D-ES barriers stabilize multi-layer steps. The stability was improved due to the presence of 3D-ES barrier which was larger than 2D ES barrier in that specific condition. However, according to the study of S. J. Liu et al[19], there is a major disparity in the 3D barriers between two facets. Sun Jie et al, prepared Cu2O thin films by experiment and studied the optical properties of them. Liang Jingshu et al, using Monte Carlo model investigated the effects of Si(100) pre structure substrate on the growth of three dimensional simulation of Si sculptured thin film. Zhu Chunzhang simulated the effects of grain boundaries on the hole expansion in nanocrystalline copper via the molecular dynamics model.

    The effects of 3D-ES barriers on Cu(100) surface and Cu(111) surface of thin film growth have been studied, but the analysis is rare for 3D-ES barrier on Cu (100) and Cu (111) surface of nanorod growth. Based on H. Huang’s work[21]and (1+1) dimensional Kinetic Monte Carlo (KMC) model, this paper has studied the effects of 3D-ES barrier on Cu (100) surface and Cu (111) surface of thin films and nanorods homoepitaxial growth. According to the results, multiple-layer steps in mode surface Cu(111) benefit the growth of nanorods. This mechanism does not exist on surface Cu(100) and its growth rate decreases. The large 3D-ES barrier benefits the growth of nanorods. In addition, Cu (100) surface is suitable for the growth of nanorods while Cu (111) surface is suitable for the growth of thin films.

    2 Modeling

    Kinetic Monte Carlo (KMC) method based on (1+1) dimensional is employed. Atoms are deposited a

    t a fixed rate on the surface of substrate which is initial flat with constant temperature and periodic boundary conditions. The particles move in the following situations in the process of the thin film growth : (1) deposition: vapor particles incident on the surface and adsorption become adsorbed species on the surface; (2) diffusion: adsorbed particles jump to another position form one position on the surface; (3) reevaporation: adsorption energy particles from the substrate will be large enough for desorption. The rates of these three processes correspond to the deposition rate, the diffusion rate and desorption rate, respectively.

    Deposition process is determined by deposition rate. The deposition rate Vdgiven by Vd=FN where N is the sum of positions on the substrate and F is the deposition rate given in monolayers per second (ML/S).

    The reevaporation process is determined by the reevaporation rate Vr given by

    (1)

    If the particles is absorbed on the substrate, the particles may stop moving or diffusing on the substrate. Deposition particles diffusion on the substrate is the key of the thin film growth, the adsorption particles diffusion on the substrate can be divided into the following forms: (1) the particle deposition to the substrate, (2) the adsorption particles diffuse on the substrate surface, (3) diffusion particles with another particle form nuclear, (4) the diffusion particles was captured by the existing island, (5) the adsorption particle deposition on the island of existing and conduct flat diffusion or interlayer diffusion. (6) deposition particles have low energy or the diffusion positions around the particles are occupied by another particle to stop movement. Figure 1 shows several cases of diffusion movement on the substrate surface: a) gas phase particle deposition, b) adsorption particles diffusion on the flat, c) adsorption particle diffusion on the mono-layer. d) adsorption particle diffusion on the multi-layer.

    Fig.1 A schematic of growth process in our simulation, consisting four different kinds of events: a) deposition, b) flat diffusion, c) mono-layer diffusion and d) multiple-layer diffusion

    Diffusion rate to potential sites determine their hop probabilities.

    (2)

    Table 1 ES barrier (eV) as a function of number of layers of each step

    Deposition, diffusion and reevaporationcan be selected by using rate Vh, Vd, Vr. If reevaporation happens, a surface atom is removed to form the substrate randomly. However, due to a large energy to be overcome for reevaporation of the particles, the probability of partical reevaportion is very low. In this paper, the reevaportion process is not considered. If deposition event is selected, the atom is deposited on the substrate randomly. If diffusion takes place, the atom will diffuse from one site to another, and the diffusion direction is determined by a random number R, R is between 0 and 1,

    If the event n satisfies the formula (1), the event n will happen

    (3)

    The full expression of the time increment isΔt,given by

    (4)

    In this paper, software C# language was used, with Microsoft Visual Studio 2010 as a platform for simulation, the simulation processes are as follows:

    (1)To set the periodic boundary conditions, substrate size, temperature, and other parameters.

    (2)To randomly generate a coordinate, if no particles in this coordinate below Z, so z become Z-1, until the deposited particles fall into the substrate. Reproject a new deposition atom on the substrate if this coordinate is higher than the present coordinate.

    (3)Analyzing diffusion particles may have a hop sites around the position, if all of sites is occupied by other particles, execution (5), otherwise execution (4);

    (4)The diffusion is selected, execution (6);

    (5)The deposition is selected;

    (6)Refresh the position of deposition particles and calculate the simulation time, if the simulation time is less than a preset time to execute (3);

    (7)Terminate the program and output data to analysis.

    3 Results & Discussions

    In the simulation, deposition rate is a constant and temperature ranging from 200K to 700K is fixed in each running. The possibility of particles randomly depositing each position is equal and deposition position from 0 to 200, 2000 atoms were deposited. Fig.2 shows film morphology on Cu (100) surface in condition of changing temperature. The evolution trend shows that the higher the temperature is, the smoother the film will be, which can verify our simulation mode.

    From the values listed in Table 1, it can be inferred that growth situation is distinctly different on surface Cu(100) from Cu(111). 2D ES barrier of Cu(100) is much larger than that of Cu(111) while it Cu(100) becomes smaller when it comes to 3D ES barrier. The prediction of growth situation on the two surfaces is hard. Therefore, the following tests are settled.

    Fig.2 Morphology evolution of thin film on surface Cu(100) when the temperature ascends from 200K to 700K, F=0.1ML/S

    3.1 Thin film

    Fig.3 Image a) shows surface roughness as a function of temperature; Image b) shows step as a function of temperature; Image c) and d) respectively present the roughness and multiple-step variations with temperature on surface Cu(100) and on surface Cu(111), F=0.1ML/S

    before 200K and changes little since then. From the comparison, the growth on Cu(111) surface unequivocally smoother than that on Cu(100) in conditions of equivalent temperature and deposition rate.

    Variation of the number of steps is presented in Fig.3b) which resembles that of roughness, indicating less number of steps in high temperature. But step decline faster on the Cu(111) surface than that on the Cu(100). Step decreased rapidly from 0 to 200K on the Cu(111). Fig.3c), 3d) illustrates the relationship of roughness and multiple-steps in Cu(100) and Cu(111) respectively. The changed trends of roughness and multiple-steps are very similar. The vanishing of multiple-step leads to the approximate constant roughness.

    3.2 Nnaorods

    Based on the work of R. Zhang[7], multiple steps benefit the growth of nanorod while detrimental to that of thin film. From Fig.3c) and 3d), we can see the number of multiple steps is larger in Cu (100) than Cu(111) in the same temperature. Therefore, it can be inducted that for nanorods growth, surface Cu(100) is desirable. Due to the equity deposition probability in each site, deposition of atoms acts as compensation of the interlayer diffusion. To further test the inference above, scenarios of concentrated deposition are settled. Atoms are equally deposited in ranges from site 151 to 250 of the periodic substrate of 400, which could better reflect the growth situation of nanorods. 4000 atoms were deposited. Fig.4 reveals the evolution of nanorods on surface Cu(100) and Cu(111). In general, it is not conducive to growth for nanorods when the temperature rises.

    Fig.4 Nanorods evolution via temperature on surface Cu(100) and Cu(111), F=0.1ML/S

    Comparing the growth on surface Cu(100) and Cu(111), substantial disparity in variation via temperature is presented. Lateral sides of nanorods on surface Cu(100) appear slow descending with the increase of temperature. However, on surface Cu(111), we can see several steps or multiple-steps. And with the disappearance of multiple-step, the nanorods corrupted. Based on the observation above, it comes to preliminary conclusions: (i) surfaces of Cu(100) are more conductive to the growth of nanorods compared with its equal temperature counterparts on surface Cu(111); (ii) the multiple-steps can facilitate nanorods growth on surface (111); (iii) on surface Cu(100), multiple-steps are not as stable as that of surface Cu(111) and a step-meandering instability phenomenon can be observed.

    Further analysis is executed to verify the first inference. Here we introduce concepts of width and altitude of nanorods. Width is defined as the range of X sites which possess more than three atoms. And altitude is defined as the average of all the peaks. Fig.5a), b) shows the variation width and altitude when temperature ascends respectively. It can be figured out in Fig.5c) that the ratio of altitude to width descends with the ascending of temperature and the decrease of surface Cu(111) is faster than its counterpart on surface Cu(100). Accordingly, the surface of Cu(100) is more conducive to the growth of nanorods than on surface Cu(111).

    Fig.5 a) Width as a function of temperature; b) altitude as a function of temperature; c) ratio of altitude to width as a function of temperature, F=0.1ML/S

    Fig.6 a) the highest layer step evolution with growth process; b) growth rate (differential of height to time) as a function of time F=2.5ML/S, time from 0 to 10.

    To testify inferences ii and iii above, growth process with the extension of time at a specific temperature should be scrutinized. We focus on the temperature of 200K for surface Cu(111) and 350K for surface Cu(100) due to their proper atom migration (ratio of altitude to width is approximate 0.2). Growth time varies from one to ten normalized time scale. The lateral sides beyond deposition range are analyzed to elaborate the step changes.

    Fig.6a) reveals the dramatic ascending of highest multi-layer steps on the surface Cu(111) and nearly fixed that on the surface Cu(100), which validates the stability mechanism presented by R. Zhangetal[7]. The stability mechanism is that a larger 3D ES barrier leads to higher stability and a larger number of multi-layer steps. Noting that 3D ES barrier less than 2D ES barrier in situation of (100), multiple-steps corrupt easily. Therefore, the growth rate decreased gradually on the surface Cu(100). As a result, the stability mechanism does not exist on the Cu(100) surface. Comparing the growth rate in two surface, it is larger on the surface Cu(100) than Cu(111) initially for its higher 2D ES barrier which blocks the interlayer diffusions. Ascribing to the stability mechanism, growth rate of nanorod on Cu(111) increases while that on Cu(100) decreases, as is showed in Fig.6b), and finally surpasses that on the surface Cu(100).

    As is revealed in Fig.7a), growth rate declines initially while the declining tendency ceases after the appearance of multiple-steps. It accelerates the growth rate as well as strengthens the stability of nanorod. As a comparison, Fig.7b) exposes step layer and growth rate on surface (100), pointing out that the scanty of sturdy multiple-steps leads the consistent debilitation of growth rate.

    Fig.7 a) the highest layer step and growth rate evolutions with growth process on Cu(111); b) growth rate and highest multiple step layer as a function of time on Cu(100) 4 Summar

    We employed a full diffusion Kinetic Monte Carlo (KMC) method based on (1+1) dimensional to simulate effect of three-dimensional Ehrlich-Schwoebel barriers on Cu(111) and Cu(100) homoepitaxial growth modes. We found that the growth process on surface Cu(100) is distinctly different from that on surface Cu(111) due to the substantial disparity of ES barrier. For thin film application, surface Cu(111) is desirable because of the relatively small 2D ES barrier benefiting the migration of adatoms. For nanorods’ applications, the growth time is shorter and the deposition atoms are relatively few. The 2D ES barrier plays a leading role and the growth rate on Cu(100) is faster than that on Cu(111) surface due to larger 2D ES barrier on Cu(100) surface. With the increase of growth time the appearance of multi-layer steps, 3D ES barrier dominates in two surfaces. And the Cu(111) growth rate grows and ultimately exceeds the Cu(100) surface because of the larger 3D ES barrier. Thus, the multi-layer steps on Cu(111) surface are conducive to the growth of nanorods. In addition, the effects of multi-layer on these two surfaces are different. Cu(100) surface is hard to form a multi-layer steps and also makes little contribution to the growth rate of nanorods. From the analysis above, it can be figured out that the multiple-step on surface Cu(111) growth blocks the interlayer diffusion and facilitates the nanorod evolution, while the multiple-steps on (100) acts without the same function.

    Reference

    [1] A. Chatterjee, D. G. Vlachos. An Overview of Spatial Microscopic and Accelerated Kinetic Monte Carlo Methods[J]. Computer-Aided Materials Design, 2007, 14:253.

    [2] A. E. Lita, J. E. Sanchez, Jr. Characterization of Surface Structure in Sputtered Al Films: Correlation to Microstructure Evolution[J].Appl. Phys., 1998, 85:876.

    [3] P. B. Barna, M. Adamik. Fundamental Structure forming Phenomena of Polycrystalline Films and the Structure zone models[J].Thin Solid Films, 1998, 317(1):27.

    [4] H. Huang, G. H. Gilmer. An atomistic Simulator for Thin Film Deposition in three Dimensions[J].Appl. Phys., 1998, 84: 3636.

    [5] M. Kotrla, P. Smilauer.Nonuniversality in Models of Epitaxial Growth[J].Phys. Rev. B., 1996, 53: 13777.

    [6] A.Chatterjee, A. F. Voter.Accurate Acceleration of Kinetic Monte Carlo Simulations through the Modification of Rate Constants[J].Chem. Phys.,2010, 132(19): 4101.

    [7] R. Zhang, H. Huang. Another Kinetic Mechanism of Stabilizing Multiple-layer Surface Steps[J]. Appl. Phys. Lett., 2011, 98(22): 1903.

    [8] S. Ruan, C. A. Schuh. Kinetic Monte Carlo Simulations of Nanocrystalline Film Deposition[J]. Appl. Phys., 2010, 107(7): 3512.

    [9] M.I. Rojas, M.C. Gimenez, E.P.M. Leiva.Kinetic Monte Carlo Simulation of Pt Discontinuous thin Film Formation Adsorbed on Au[J]. Surf. Sci., 2005, 581(1): 109.

    [10] K. A. Fichthorn, W. H. Weinberg. Theoretical Foundations of Dynamical Monte Carlo Simulations[J]. Chem. Phys., 1991, 95: 1090.

    [11] J. M. Rogowska, M. Maciejewski.Kinetic Monte Carlo Study of Fractal Growth with Edge Diffusion and Reversible Aggregation on a bcc(1 1 0) surface[J].Vacuum, 2001, 63: 91.

    [12] R. Q. Hwang, J. Schroder, C. Gunther et al. Fractal Growth of Two-dimensional Islands: Au on Ru(0001) [J].Phys. Rev. Lett., 1991, 67: 3279.

    [13] J. E. Rubio, M. Jaraiz, I. Martin-Bragado, et al. Atomistic Monte Carlo Simulations of Three-dimensional Polycrystalline Thin Films[J]. Appl. Phys., 2003, 94: 163.

    [14] G. Ehrlich, F. G. Hudda. Atomic View of Surface Self-Diffusion: Tungsten on Tungsten[J].Chem. Phys., 1966, 44: 1039.

    [15] R. L. Schwoebel, E. J. Shipsey. Step Motion on Crystal Surfaces[J].Appl. Phys., 1966, 37: 3682.

    [16] H. C. Huang, J. Wang. Surface kinetics: Step-facet Barriers[J].Appl. Phys. Lett., 2003, 83: 4752.

    [17] K. Kyuno, G. Ehrlich.Cluster Diffusion and Dissociation in the Kinetics of Layer Growth: An Atomic View[J]. Phys. Rev. Lett., 2000, 84: 2658.

    [18] Z. Zhang, M. G. Lagally.Atomistic Processes in the Early Stages of Thin-Film Growth[J].Science, 1997, 276: 377.

    [19] S. J. Liu, H. C. Huang, C. H. Woo. Appl. Schwoebel-Ehrlich Barrier: From Two to Three Dimensions[J]. Phys. Lett., 2002, 80: 3295.

    [20] S. K. Xiang, H. C. Huang. Ab Initio Determination of Ehrlich-Schwoebel barriers on Cu{111}[J].Appl. Phys. Lett., 2008, 92(10): 1923.

    [21] H. Huang, C. H. Woo, H. L. Wei, et al. Kinetics-limited Surface Structures at the Nanoscale[J]. Appl. Phys. Lett., 2003, 82: 1272.

    [22] M. Karimi, T.Tomkowski. Diffusion of Cu on Cu Surfaces[J]. Phys. Rev. B., 1995, 25: 5364.

    [23] M. Basham, P. A. Mulheran, F. Montalenti. Diffusion and Stability of Small Vacancy Clusters on Cu(100)——a Simulation Study[J].Surf. Sci., 2004, 565(2): 28.

    1673-2812(2017)03-0394-08

    3D ES勢(shì)壘對(duì)Cu(111) 和 Cu(001)晶面同質(zhì)外延生長(zhǎng)的影響

    董貴仁,唐吉玉,崔 靖,劉 娟,何右青

    (華南師范大學(xué) 物理與電信工程學(xué)院,廣東 廣州 510006)

    三維3D ES勢(shì)壘直接影響著層間擴(kuò)散,在Cu(111) 和 Cu(100)面2D ES勢(shì)壘和3D ES勢(shì)壘是不同的。本文主要研究了基于(1+1)維KMC模型,在這兩個(gè)特殊的晶面上Cu薄膜的同質(zhì)外延生長(zhǎng)。觀察兩個(gè)面的生長(zhǎng)情況,發(fā)現(xiàn)隨著溫度的增加薄膜的粗糙度逐漸減小,由于Cu(111)表面2D ES勢(shì)壘較小,所以Cu(111)面粗糙度的下降的速度比Cu(100)要快,Cu(111)表面更有利于薄膜的生長(zhǎng)。對(duì)于納米棒的應(yīng)用,在生長(zhǎng)時(shí)間較短時(shí)兩個(gè)面的生長(zhǎng)速率逐漸減小,但是Cu(100)面的生長(zhǎng)速度比Cu(111)面更快,隨著生長(zhǎng)時(shí)間的增加,這兩個(gè)面會(huì)出現(xiàn)多層臺(tái)階,Cu(111)面的生長(zhǎng)速度會(huì)逐漸增加,最終會(huì)超過(guò)了Cu(100)面。多層臺(tái)階出現(xiàn)后對(duì)兩個(gè)面的影響是不同的。由于Cu(111)表面3D ES勢(shì)壘較大,在Cu(111)表面會(huì)形成較多的多層臺(tái)階,Cu(111) 面上多層臺(tái)階數(shù)有利于納米棒的生長(zhǎng),然而在Cu(100)表面3D ES勢(shì)壘較小,Cu(100)表面很難形成多層臺(tái)階,所以Cu(100)面上納米棒的生長(zhǎng)速度并沒(méi)有增加。正是因?yàn)?D ES勢(shì)壘的存在才會(huì)導(dǎo)致多層臺(tái)階的出現(xiàn),較大的3D ES勢(shì)壘有利于納米棒的生長(zhǎng)。

    動(dòng)力學(xué)蒙特卡洛模擬; 表面粗糙度; 薄膜生長(zhǎng); (1+1)維模型

    date:2015-12-25;Modified date:2016-04-05

    National Natural Science Foundation of China(61271127)

    TANG Jiyu, Associate Professor, E-mail:195866901@qq.com.

    O484.1 Document code:A

    10.14136/j.cnki.issn 1673-2812.2017.03.010

    Biography:DONG Guiren (1990-), Master Graduate. E-mail:549727972@qq.com.

    猜你喜歡
    勢(shì)壘同質(zhì)晶面
    乙酸乙酯與ε-CL-20不同晶面的微觀作用機(jī)制
    NaCl單晶非切割面晶面的X射線衍射
    (100)/(111)面金剛石膜抗氧等離子刻蝕能力
    不同硅晶面指數(shù)上的類(lèi)倒金字塔結(jié)構(gòu)研究與分析?
    “形同質(zhì)異“的函數(shù)問(wèn)題辨析(上)
    溝道MOS 勢(shì)壘肖特基(TMBS)和超級(jí)勢(shì)壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    同質(zhì)異構(gòu)交聯(lián)法對(duì)再生聚乙烯的改性研究
    淺談同質(zhì)配件發(fā)展歷程
    聚焦國(guó)外同質(zhì)配件發(fā)展歷程
    勢(shì)壘邊界對(duì)共振透射的影響
    1000部很黄的大片| 22中文网久久字幕| 欧美激情国产日韩精品一区| 精品久久久久久久久久免费视频| 校园春色视频在线观看| 黄色丝袜av网址大全| 国产69精品久久久久777片| 精品人妻熟女av久视频| 国产亚洲av嫩草精品影院| 日本 欧美在线| 91久久精品国产一区二区成人| 深爱激情五月婷婷| 在线观看美女被高潮喷水网站| 最近最新免费中文字幕在线| 性色avwww在线观看| 国产亚洲精品久久久com| 国产亚洲精品久久久com| 国产人妻一区二区三区在| 男人的好看免费观看在线视频| 久久6这里有精品| 一夜夜www| 人人妻人人澡欧美一区二区| 午夜福利在线观看免费完整高清在 | 88av欧美| 丰满的人妻完整版| 人人妻,人人澡人人爽秒播| 在线天堂最新版资源| 1000部很黄的大片| 999久久久精品免费观看国产| 久久久久久久久久成人| 尤物成人国产欧美一区二区三区| 桃色一区二区三区在线观看| 国产成人av教育| videossex国产| 嫩草影院精品99| 亚洲国产欧美人成| 九色成人免费人妻av| av在线天堂中文字幕| 亚洲国产欧美人成| 亚洲无线在线观看| 欧美性猛交╳xxx乱大交人| 18禁黄网站禁片免费观看直播| www日本黄色视频网| 亚洲精品日韩av片在线观看| 午夜a级毛片| 搡女人真爽免费视频火全软件 | 成人国产综合亚洲| 熟妇人妻久久中文字幕3abv| 国产亚洲精品综合一区在线观看| 国产亚洲精品综合一区在线观看| 国产亚洲精品av在线| 亚洲中文日韩欧美视频| 在线国产一区二区在线| 真人做人爱边吃奶动态| a级一级毛片免费在线观看| 亚洲午夜理论影院| 国产午夜精品论理片| 搡老熟女国产l中国老女人| 欧美高清成人免费视频www| 久久久久久久久久成人| 韩国av一区二区三区四区| 国产成人一区二区在线| 国产亚洲精品av在线| 黄色一级大片看看| 久久香蕉精品热| 色综合色国产| 中文亚洲av片在线观看爽| 国产伦精品一区二区三区四那| 夜夜夜夜夜久久久久| 高清日韩中文字幕在线| 免费观看精品视频网站| 啦啦啦韩国在线观看视频| 人妻少妇偷人精品九色| 一区二区三区激情视频| 97碰自拍视频| 亚洲专区国产一区二区| 特级一级黄色大片| 伊人久久精品亚洲午夜| 欧美激情久久久久久爽电影| 免费无遮挡裸体视频| 亚洲国产精品合色在线| 亚洲人成网站在线播放欧美日韩| 欧美区成人在线视频| 白带黄色成豆腐渣| 国产午夜福利久久久久久| av福利片在线观看| 韩国av一区二区三区四区| 少妇的逼水好多| 天堂网av新在线| 大又大粗又爽又黄少妇毛片口| 看片在线看免费视频| 成人永久免费在线观看视频| 亚洲,欧美,日韩| 日韩精品中文字幕看吧| 精品一区二区三区视频在线观看免费| 国内少妇人妻偷人精品xxx网站| 成人国产一区最新在线观看| 波多野结衣高清无吗| 黄片wwwwww| www日本黄色视频网| 麻豆成人av在线观看| 国产伦一二天堂av在线观看| 亚洲欧美精品综合久久99| 精品免费久久久久久久清纯| 99热只有精品国产| 999久久久精品免费观看国产| 免费一级毛片在线播放高清视频| 午夜激情欧美在线| 天美传媒精品一区二区| 亚州av有码| 1000部很黄的大片| 国内精品美女久久久久久| 99久久精品一区二区三区| 日本黄色片子视频| 91久久精品国产一区二区成人| 高清日韩中文字幕在线| 在线a可以看的网站| 日本一本二区三区精品| 国产欧美日韩一区二区精品| 国产淫片久久久久久久久| 狂野欧美白嫩少妇大欣赏| 国内久久婷婷六月综合欲色啪| 亚洲久久久久久中文字幕| 色尼玛亚洲综合影院| 国产高清三级在线| 免费av观看视频| 免费无遮挡裸体视频| 国产高清视频在线播放一区| 欧美又色又爽又黄视频| 国产三级在线视频| 久久精品人妻少妇| 亚洲国产精品sss在线观看| 亚洲美女黄片视频| 国内揄拍国产精品人妻在线| 91av网一区二区| 五月伊人婷婷丁香| 久久精品国产亚洲av香蕉五月| 国产av不卡久久| 免费大片18禁| videossex国产| 精品欧美国产一区二区三| 久久久久性生活片| 性欧美人与动物交配| 国内精品久久久久久久电影| 午夜福利成人在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 老师上课跳d突然被开到最大视频| 亚洲天堂国产精品一区在线| av在线老鸭窝| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 成年女人看的毛片在线观看| 午夜福利高清视频| 久久精品夜夜夜夜夜久久蜜豆| 国产91精品成人一区二区三区| 精品久久国产蜜桃| 精品免费久久久久久久清纯| 美女cb高潮喷水在线观看| 一级黄片播放器| 直男gayav资源| 午夜视频国产福利| 白带黄色成豆腐渣| 日韩一本色道免费dvd| 午夜a级毛片| 亚洲无线在线观看| 69av精品久久久久久| 亚洲欧美清纯卡通| 美女 人体艺术 gogo| 亚洲天堂国产精品一区在线| 中文字幕av在线有码专区| 国产精品1区2区在线观看.| 22中文网久久字幕| 国产高清激情床上av| 我的女老师完整版在线观看| 国产欧美日韩精品亚洲av| 免费看美女性在线毛片视频| av女优亚洲男人天堂| 亚洲精品456在线播放app | 少妇丰满av| 色综合站精品国产| 国模一区二区三区四区视频| 亚洲欧美激情综合另类| 天堂网av新在线| 黄色配什么色好看| 久久久久久九九精品二区国产| 午夜福利欧美成人| 久久久久久大精品| 99久久无色码亚洲精品果冻| x7x7x7水蜜桃| 直男gayav资源| 人妻制服诱惑在线中文字幕| 我的老师免费观看完整版| 美女大奶头视频| 国产精品人妻久久久影院| 精品免费久久久久久久清纯| 精品一区二区三区视频在线| 亚洲人成网站在线播| 午夜视频国产福利| 小说图片视频综合网站| 神马国产精品三级电影在线观看| 黄片wwwwww| 亚洲狠狠婷婷综合久久图片| 99久久精品国产国产毛片| 亚洲人成网站在线播| 真人做人爱边吃奶动态| 国产精品国产高清国产av| 欧美+亚洲+日韩+国产| 88av欧美| 最近中文字幕高清免费大全6 | 国产aⅴ精品一区二区三区波| 一个人看视频在线观看www免费| 成人国产综合亚洲| 99国产极品粉嫩在线观看| 久久精品国产亚洲av香蕉五月| 综合色av麻豆| 国产精品嫩草影院av在线观看 | 亚洲性久久影院| 成人欧美大片| 老熟妇乱子伦视频在线观看| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 极品教师在线免费播放| 久久久久九九精品影院| 99久国产av精品| 小蜜桃在线观看免费完整版高清| 熟女电影av网| 热99在线观看视频| 乱人视频在线观看| 日本一二三区视频观看| 久久精品国产99精品国产亚洲性色| 免费观看精品视频网站| 网址你懂的国产日韩在线| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 最近视频中文字幕2019在线8| a在线观看视频网站| 如何舔出高潮| 韩国av一区二区三区四区| 成人特级黄色片久久久久久久| 国产不卡一卡二| 久久精品综合一区二区三区| 99riav亚洲国产免费| 久久精品国产亚洲av天美| 搞女人的毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲五月天丁香| 欧美丝袜亚洲另类 | 黄片wwwwww| 免费看美女性在线毛片视频| 国产人妻一区二区三区在| 尤物成人国产欧美一区二区三区| 国产毛片a区久久久久| 嫩草影视91久久| 日本黄色视频三级网站网址| 国产高清不卡午夜福利| 成人特级黄色片久久久久久久| 一个人看的www免费观看视频| 国产精品国产高清国产av| 不卡视频在线观看欧美| 欧美+日韩+精品| 国产成人一区二区在线| 搞女人的毛片| 日本熟妇午夜| 成年版毛片免费区| 日本成人三级电影网站| 欧美激情久久久久久爽电影| 人妻制服诱惑在线中文字幕| 黄色一级大片看看| 午夜福利在线在线| 久久婷婷人人爽人人干人人爱| 国产精品一区二区三区四区久久| 亚州av有码| 亚洲精品国产成人久久av| 午夜免费激情av| 久久久久久久久久久丰满 | 午夜福利欧美成人| 69av精品久久久久久| 尤物成人国产欧美一区二区三区| 色哟哟哟哟哟哟| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 91在线观看av| 男人舔奶头视频| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产 | 欧美黑人欧美精品刺激| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品 | 69av精品久久久久久| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 噜噜噜噜噜久久久久久91| 成人性生交大片免费视频hd| 午夜精品一区二区三区免费看| 动漫黄色视频在线观看| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 天堂影院成人在线观看| av天堂中文字幕网| 国产精品免费一区二区三区在线| a在线观看视频网站| 精品一区二区三区av网在线观看| 亚洲成人久久性| 琪琪午夜伦伦电影理论片6080| 国产成人aa在线观看| 午夜视频国产福利| 大型黄色视频在线免费观看| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 联通29元200g的流量卡| 久久久久久久精品吃奶| 欧美极品一区二区三区四区| 亚洲最大成人中文| 在线观看一区二区三区| 亚洲最大成人手机在线| 日韩欧美在线乱码| 神马国产精品三级电影在线观看| 国产欧美日韩精品亚洲av| av视频在线观看入口| 亚洲四区av| 国产单亲对白刺激| 国产高清三级在线| 国产成人一区二区在线| 麻豆成人av在线观看| 亚洲专区中文字幕在线| 久久精品久久久久久噜噜老黄 | 91久久精品国产一区二区三区| 少妇裸体淫交视频免费看高清| 嫩草影院入口| 国产人妻一区二区三区在| 女人被狂操c到高潮| 中文字幕免费在线视频6| 国产av一区在线观看免费| 欧美潮喷喷水| 国产探花极品一区二区| 在线观看66精品国产| 国产三级中文精品| 99久久精品热视频| 久久久久久大精品| 最后的刺客免费高清国语| 一级av片app| 国产高清不卡午夜福利| 波多野结衣高清作品| 一进一出抽搐动态| 国产毛片a区久久久久| 欧美黑人欧美精品刺激| 国产亚洲欧美98| 看十八女毛片水多多多| 国产精品一及| 给我免费播放毛片高清在线观看| 美女被艹到高潮喷水动态| 日本色播在线视频| 欧美在线一区亚洲| 成人一区二区视频在线观看| 国产女主播在线喷水免费视频网站 | 午夜爱爱视频在线播放| 天堂av国产一区二区熟女人妻| 亚洲精品一区av在线观看| 亚洲黑人精品在线| 精品久久久久久久久久免费视频| av在线观看视频网站免费| 日本免费a在线| 尤物成人国产欧美一区二区三区| 尾随美女入室| 久久婷婷人人爽人人干人人爱| 国产精品嫩草影院av在线观看 | av天堂在线播放| 欧美成人性av电影在线观看| 天堂影院成人在线观看| 久久欧美精品欧美久久欧美| 少妇猛男粗大的猛烈进出视频 | 国产免费男女视频| 热99在线观看视频| 男人的好看免费观看在线视频| av专区在线播放| 午夜福利欧美成人| 久久九九热精品免费| 免费人成在线观看视频色| 亚洲美女黄片视频| 少妇猛男粗大的猛烈进出视频 | 在线观看免费视频日本深夜| 99热只有精品国产| 国产美女午夜福利| 内射极品少妇av片p| 久久精品国产清高在天天线| 国产成人aa在线观看| 欧美+日韩+精品| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 麻豆成人av在线观看| 国产精品爽爽va在线观看网站| 亚洲人成网站在线播| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女| 亚洲图色成人| 一进一出抽搐gif免费好疼| 嫩草影院新地址| 久久久精品大字幕| 国产av在哪里看| www.www免费av| 亚洲成av人片在线播放无| 免费av毛片视频| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品| 久久草成人影院| av在线蜜桃| 免费搜索国产男女视频| 国产av一区在线观看免费| av天堂在线播放| 日本 欧美在线| 中文字幕av在线有码专区| 亚洲美女视频黄频| 午夜精品在线福利| 亚洲天堂国产精品一区在线| 婷婷精品国产亚洲av| 少妇丰满av| av在线天堂中文字幕| 人妻少妇偷人精品九色| 国产成人a区在线观看| 变态另类成人亚洲欧美熟女| 欧美bdsm另类| 国产精品女同一区二区软件 | 国产伦在线观看视频一区| 一进一出抽搐gif免费好疼| 深夜精品福利| 亚洲最大成人手机在线| 国产aⅴ精品一区二区三区波| av天堂中文字幕网| 搡女人真爽免费视频火全软件 | 亚洲国产精品合色在线| 色在线成人网| 一夜夜www| 国产精品野战在线观看| 在线免费观看的www视频| 中文字幕免费在线视频6| 欧美+亚洲+日韩+国产| a在线观看视频网站| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 高清毛片免费观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 精品久久久久久成人av| 国产午夜精品久久久久久一区二区三区 | 亚洲精品亚洲一区二区| 免费大片18禁| 欧美潮喷喷水| 日日撸夜夜添| 成人二区视频| 在线观看av片永久免费下载| 日韩欧美精品免费久久| 内射极品少妇av片p| a级毛片免费高清观看在线播放| 一本精品99久久精品77| 毛片一级片免费看久久久久 | 亚洲欧美精品综合久久99| 身体一侧抽搐| 男女视频在线观看网站免费| 成人精品一区二区免费| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 两个人的视频大全免费| 69人妻影院| 久久久久久久久中文| 香蕉av资源在线| 久久久国产成人精品二区| 国产高清视频在线播放一区| 午夜老司机福利剧场| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 99热精品在线国产| 我的女老师完整版在线观看| 亚洲欧美精品综合久久99| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 精品国内亚洲2022精品成人| av天堂在线播放| 欧美性猛交╳xxx乱大交人| 国产真实乱freesex| 午夜激情福利司机影院| 国产探花在线观看一区二区| 亚洲av二区三区四区| 亚洲乱码一区二区免费版| 精品午夜福利在线看| 简卡轻食公司| 麻豆成人av在线观看| 观看美女的网站| 在线播放无遮挡| 国产一区二区亚洲精品在线观看| 亚洲在线观看片| 国产精品,欧美在线| 亚洲图色成人| avwww免费| 精品午夜福利视频在线观看一区| 91午夜精品亚洲一区二区三区 | av在线蜜桃| 国内精品宾馆在线| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看| 男人狂女人下面高潮的视频| 亚洲av中文av极速乱 | 两个人的视频大全免费| 国产成人影院久久av| 黄色日韩在线| av视频在线观看入口| 亚洲最大成人中文| 听说在线观看完整版免费高清| 看黄色毛片网站| a级毛片免费高清观看在线播放| 亚洲三级黄色毛片| 免费不卡的大黄色大毛片视频在线观看 | 男人舔奶头视频| 国产成人av教育| 亚洲 国产 在线| 日韩 亚洲 欧美在线| 久久久久久九九精品二区国产| 精品一区二区三区视频在线| .国产精品久久| 色播亚洲综合网| 国产精品一区二区三区四区免费观看 | 欧美日韩精品成人综合77777| 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 美女cb高潮喷水在线观看| 国产视频一区二区在线看| 在线观看午夜福利视频| 国产白丝娇喘喷水9色精品| 亚洲av熟女| 99久久九九国产精品国产免费| 岛国在线免费视频观看| 少妇熟女aⅴ在线视频| 男女之事视频高清在线观看| 日韩精品中文字幕看吧| 日韩av在线大香蕉| 亚洲国产精品合色在线| 午夜亚洲福利在线播放| 久久精品国产亚洲av涩爱 | 美女被艹到高潮喷水动态| 久久久成人免费电影| 精品人妻一区二区三区麻豆 | 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 尤物成人国产欧美一区二区三区| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 一级av片app| 国产男靠女视频免费网站| 麻豆av噜噜一区二区三区| 国产 一区精品| 久久草成人影院| www日本黄色视频网| 欧美日韩亚洲国产一区二区在线观看| 午夜a级毛片| 亚洲精品乱码久久久v下载方式| 国产主播在线观看一区二区| 人妻久久中文字幕网| 婷婷六月久久综合丁香| 久久人妻av系列| 国产高清视频在线观看网站| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 婷婷精品国产亚洲av| 久久午夜福利片| 日韩欧美 国产精品| 午夜爱爱视频在线播放| 嫩草影视91久久| 成年女人毛片免费观看观看9| 亚洲美女视频黄频| 国产aⅴ精品一区二区三区波| 成年女人永久免费观看视频| 日韩在线高清观看一区二区三区 | 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 久久久久国产精品人妻aⅴ院| 少妇猛男粗大的猛烈进出视频 | 男女边吃奶边做爰视频| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 亚洲专区国产一区二区| 亚洲欧美日韩高清专用| 两个人的视频大全免费| 69av精品久久久久久| 欧美区成人在线视频| 精品欧美国产一区二区三| 久久热精品热| 老司机午夜福利在线观看视频| 久久99热这里只有精品18| av在线老鸭窝| 亚洲18禁久久av| 欧美高清成人免费视频www| 校园人妻丝袜中文字幕| 亚洲经典国产精华液单| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站 | av福利片在线观看| 精品欧美国产一区二区三| 日韩欧美国产一区二区入口| 成年免费大片在线观看| 久久精品久久久久久噜噜老黄 | 91在线观看av| 校园人妻丝袜中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 俺也久久电影网| 男人舔奶头视频| 欧美成人免费av一区二区三区| 成人国产麻豆网| 国产色爽女视频免费观看| 欧美日韩中文字幕国产精品一区二区三区|