• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of the interannual variability of vegetation LAI on surface temperature

    2016-11-23 03:30:20ZHUJiWenndZENGXioDong
    關(guān)鍵詞:熱帶地區(qū)變率年際

    ZHU Ji-Wennd ZENG Xio-Dong,b

    aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology,Nanjing, China

    Influences of the interannual variability of vegetation LAI on surface temperature

    ZHU Jia-Wenaand ZENG Xiao-Donga,b

    aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology,Nanjing, China

    The infuences of interannual variability of vegetation LAI on surface temperature are investigated via two ensemble simulations, applying the Community Earth System Model. The interannual LAI,derived from Global Inventory Modeling and Mapping Studies NDVI for the period 1982-2011, and its associated climatological LAI, are used in the two ensemble simulations, respectively. The results show that the signals of the infuences, represented as ensemble-mean diferences, are generally weaker than the noises of the atmospheric variability, represented as one standard deviation of the ensemble diferences. Spatially, the signals are stronger over the tropics compared with the mid-high latitudes. Such stronger signals are contributed by the signifcant linearity between LAI and surface temperature, which is mainly caused via the infuences of LAI on evapotranspiration. The maximum amplitudes of the infuences on the interannual variability of surface temperature are high and thus deserve full consideration. However, the mean magnitudes of infuences are small because of the small changes in the amplitudes of LAI. This work only investigates the infuences of the interannual variability of LAI and does not consider interannual changes in other vegetation characteristics, such as canopy height and fractional cover. Further work involving dynamic vegetation models may be needed to investigate the infuences of vegetation variability.

    ARTICLE HISTORY

    Revised 12 April 2016

    Accepted 12 April 2016

    Interannual variability;leaf area index; surface temperature

    通過兩組模式的集合模擬,本論文研究了植被葉面積指數(shù)的年際變化對地表溫度的影響。結(jié)果表明葉面積指數(shù)的年際變化的影響信號整體弱于大氣變率的噪聲。但是,就空間分布而言,熱帶地區(qū)的影響信號強于中高緯度地區(qū)。這主要是由于熱帶地區(qū)的葉面積指數(shù)通過影響地表蒸散發(fā)導(dǎo)致其與地表溫度具有顯著的線性關(guān)系。

    1. Introduction

    Vegetation plays signifcant roles in regulating exchanges of water and energy between the land surface and the atmosphere via its infuences on evapotranspiration and albedo. Changes in vegetation characteristics, such as LAI, can result in considerable feedbacks to climate (Zhu and Zeng 2015). Vegetation variability is considered as an important forcing for climate as atmospheric dynamics and ocean circulations (Pielke et al. 1998).

    Many previous studies have been published to discuss the feedbacks and mechanisms via idealized modeling simulations in which vegetation is drastically changed (Charney, Stone, and Quirk 1975; Dickinson and Henderson-Sellers 1988; Bonan, Pollard, and Thompson 1992; Bounoua et al. 2000; Buermann et al. 2001). These results provide valuable references for understanding the processes of land-atmosphere interactions. For example,an increased vegetation density is expected to result in regional or even global climate warming by reducing the surface albedo. Meanwhile, it is also favorable for cooling a surface because of intensifed evapotranspiration. However, these idealized simulations are unlikely to occur in the current century and may overestimate the feedbacks(Chapin et al. 2005).

    Therefore, in this work, the long-term interannual vegetation LAI (1982-2011), derived from Global Inventory Modeling and Mapping Studies (GIMMS) NDVI (Zhu et al. 2013), is used to estimate the degree to which the interannual variability of vegetation infuences surface temperature. Section 2 describes the model, LAI datasets, and the experimental design. Section 3 presents the results and discussion. Concluding remarks are given in Section 4.

    2. Methods

    2.1. Model

    This study applies version 4 of the Community Land Model(CLM4; Oleson, Lawrence, and Bonan 2010; Lawrence et al. 2011), coupled with version 4 of the Community Atmosphere Model (CAM4; Neale et al. 2013). In CLM4, LAI is included in the surface data. LAI can afect the radiation of a vegetated surface via changing the albedo of plant functional types for visible and near-infrared solar radiation (Sellers et al. 1986; Dorman and Sellers 1989; Asner et al. 1998). The evapotranspiration over a vegetated surface is also impacted by LAI via evaporation from wetted leaves, and transpiration from dry leaves. These feedbacks result in changes in surface energy budgets, and consequently surface temperature.

    2.2. Datasets

    Two LAI datasets are used in this study. One comprises the global datasets of vegetation LAI derived from GIMMS NDVI for the period 1982-2011 (Zhu et al. 2013). The data are available at a 15-day temporal frequency and a 1/12° spatial resolution. For application in the CESM simulations,the data are interpolated into a monthly frequency and a 1.9° (latitude) × 2.5° (longitude) horizontal resolution. The other data-set employed is the multi-year mean of the above interannual LAI. Figure 1 shows the spatial distribution of the multi-year mean LAI from 1982 to 2011 and its interannual variability evidenced by its standard deviation.

    2.3. Experimental design

    First, forced by climatological SSTs (Hurrell et al. 2008), a 20-year initial simulation is conducted. Its land and atmosphere initial conditions are the default datasets of CLM4 and CAM4. These datasets are derived from the spin-up simulations of CESM. The initial simulation is controlled to output 20 restart fles each frst day of January. Then,two ensemble experiments are carried out. Each ensemble comprises 20 members that use the 20 diferent atmospheric initial conditions derived from the initial simulation,and the land initial conditions are also the default initial datasets of CLM4. The two ensemble experiments, defned as INT and CLI, utilize the above interannual LAI and its associated climatological LAI, respectively. They difer only with respect to the LAI datasets. Both ensemble experiments are run for 30 years, and are forced by climatological SSTs to isolate the infuence of the interannual variability of SSTs.

    3. Results and discussion

    Figure 1.(a) Multi-year mean LAI from 1982 to 2011 (units: m2m-2). (b) Standard deviation of annual LAI.

    The results reported in this section have been averaged for 12 months. Furthermore, following Notaro and Liu (2008),we use the ensemble mean diferences, INT minus CLI, to represent the signal of the infuences of vegetation variability, and use one standard deviation of the 20 ensembles of diferences between INT and CLI to represent the noise of the atmospheric variability.

    Figure 2(a) shows the time-averaged ratios for the 30 model years between the signals and noises. Generally, the signals are weaker than the noises. Over most areas of the land the ratios are less than 50%. Larger ratios occur over the tropics compared to the mid-high latitudes, which demonstrates that the weaker infuence of LAI interannual variability on surface temperature over tropics is buried by the internal variability of the atmosphere.

    Such stronger signals of the infuences over the tropics mainly result from the signifcant linearity between LAI and surface temperature. In CLM4, the inputted LAI is adjusted for vertical burying snow (Wang and Zeng 2009; Oleson,Lawrence, and Bonan 2010). The LAI that is not buried by snow is defned as exposed LAI (ELAI), which directly correlates to the calculations of water and energy exchanges(Oleson, Lawrence, and Bonan 2010). Figure 2(b) shows the time correlations between the diferences in ELAI and surface temperature. Over the tropics, the changes in surface temperature negatively correlate with the changes in ELAI at the 95% confdence level, with correlation coefcients reaching up to -0.9.

    These negative correlations are mainly caused via the infuences of ELAI on evapotranspiration. Figure 3 shows time series of the ensemble-mean diferences for surface temperature, ELAI, and latent heat over the tropics. It is clear that the changes in ELAI positively correlate with those of latent heat, with a correlation coefcient of 0.88 at a statistically signifcant level (p < 0.001). However, the changes in latent heat are signifcantly negatively correlated with the changes in surface temperature, with a correlation coefcient of -0.87 at a statistically signifcant level (p < 0.001). Therefore, signifcantly negative correlations are shown in Figure 2(b) over the tropics.

    To highlight the amplitudes of the infuences on the interannual variability of surface temperature over the tropics, we defne cases MAX and MIN, representing the diferences in surface temperature exceeding +0.9 and -0.9 standard deviations, respectively. Based on this criterion, eight and six modeling years are selected for cases MAX and MIN, respectively (Figure 3).

    Figure 4(a) shows the diferences in surface temperature of case MAX minus those of case MIN over the tropics,which is used to represent the maximum amplitudes of the infuences on the interannual variability of surface temperature. Over most areas of the tropics the amplitudes are between 0.1 and 0.2 K, which should not be ignored compared to the trends in surface temperature over thetropics from 1981 to 2012 - about 0.2 K/10 yr from the National Climatic Data Center Merged Land-Ocean Surface Temperature Analysis (IPCC 2013).

    Figure 2.(a) Time-averaged ratios of 30 model years between absolute values of ensemble-mean diferences in surface temperature and one standard deviation of 20 ensemble diferences between INT and CLI. (b) Time correlations between ensemble-mean diferences in ELAI and surface temperature.

    Figure 3.Time series of area-averaged diferences in ELAI (units: m2m-2), surface temperature (TS; units: K) (left ordinates), and latent heat (LH; units: W m-2) (right ordinates) over signifcant grids of 15°S-15°N in Figure 2(b).

    Figure 4.(a) The amplitudes of the diferences in surface temperature (units: K) in case MAX minus those in case MIN. (b) As in (a) but for ELAI (units: m2m-2). (c) Ratios (units: %) between the amplitudes shown in (b) and the multi-year mean ELAI.

    Although over the tropics the maximum amplitudes of the infuences are deserving of full attention, the mean magnitudes of infuences are small. The main reason is that the changes in ELAI are small; and not only the absolute amplitudes, but also the relative changes. Figure 4 shows that the maximum amplitudes of interannual variability of ELAI are less than 0.5 m2m-2over most areas of the tropics,and these amplitudes are less than 15% of the multi-year mean ELAI.

    This work only investigates the infuences of the interannual variability of LAI on surface temperature. The fractional cover, canopy height, and stem area index of vegetation are still climatological. These characteristics of vegetation also play signifcant roles in regulating land-atmosphere interaction (Bonfls et al. 2012; Zhu and Zeng 2015). Therefore,the results in this work may underestimate the infuences. The other limitation of the work is that it is a one-way interaction between vegetation and climate. The static LAI forces the atmosphere and causes its changes. However, such changes cannot in turn infuence vegetation. Therefore, it is necessary to couple a dynamic vegetation model with the atmosphere in order to better estimate the infuences.

    4. Conclusions

    Two ensemble experiments have been carried out in this study to investigate the infuences of the interannualvariability of vegetation LAI on surface temperature. The interannual LAI and its associated climatological LAI are used in the two ensembles, respectively.

    The results show that the signals of the infuences of LAI interannual variability on surface temperature are generally weaker than the noises of the atmosphere. Spatially, the signals are stronger over the tropics compared to the mid-high latitudes. Such stronger signals result from the signifcant linearity between LAI and surface temperature. The signifcant linearity is mainly caused via the infuences of LAI on evapotranspiration. The magnitudes of the infuences on the interannual variability of surface temperature can reach up to 0.2 K. However, the mean magnitudes of infuences are small because of the weak changes in LAI.

    This work primarily investigates the infuences of the interannual variability of vegetation by employing observed interannual LAI. However, the variability of other vegetation characteristics, such as canopy height and fractional cover, should also be included. Additionally, coupling between the atmosphere and dynamic vegetation is necessary to better estimate the efects.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was supported by the major research projects of the National Natural Science Foundation of China [grant number 91230202].

    Notes on contributors

    ZHU Jia-Wen is an assistant researcher in the Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on land-atmosphere interactions. Recent publications include papers in Advances in Atmospheric Sciences, and Atmospheric and Oceanic Sciences Letters.

    ZENG Xiao-Dong is a professor in the Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on the development of Dynamic Global Vegetation Model. Recent publications include papers in Advances in Atmospheric Sciences, Global biogeochemical cycles, Journal of Geophysical Research (Biogeosciences), and Tellus.

    References

    Asner, G. P., C. A. Wessman, D. S. Schimel, and S. Archer. 1998.“Variability in Leaf and Litter Optical Properties: Implications for BRDF Model Inversions Using AVHRR, MODIS, and MISR.”Remote Sensing of Environment 63: 243-257.

    Bonan, G. B., D. Pollard, and S. L. Thompson. 1992. “Efects of Boreal Forest Vegetation on Global Climate.” Nature 359: 716-718.

    Bonfls, C. J. W., T. J. Phillips, D. M. Lawrence, P. Cameron-Smith,W. J. Riley, and Z. M. Subin. 2012. “On the Infuence of Shrub Height and Expansion on Northern High Latitude Climate.” Environmental Research Letters 7: 015503. doi: http://dx.doi.org/10.1088/1748-9326/7/1/015503.

    Bounoua, L., G. J. Collatz, S. O. Los, P. J. Sellers, D. A. Dazlich,C. J. Tucker, and D. A. Randall. 2000. “Sensitivity of Climate to Changes in NDVI.” Journal of Climate 13: 2277-2292.

    Buermann, W., J. R. Dong, X. B. Zeng, R. B. Myneni, and R. E. Dickinson. 2001. “Evaluation of the Utility of Satellite-Based Vegetation Leaf Area Index Data for Climate Simulations.”Journal of Climate 14: 3536-3550.

    Chapin, F. S., M. Sturm, M. C. Serreze, J. P. McFadden, J. R. Key,A. H. Lloyd, A. D. McGuire, et al. 2005. “Role of Land-Surface Changes in Arctic Summer Warming.” Science 310: 657-660.

    Charney, J., P. H. Stone, and W. J. Quirk. 1975. “Drought in the Sahara: A Biogeophysical Feedback Mechanism.” Science 187: 434-435.

    Dickinson, R. E., and A. Henderson-Sellers. 1988. “Modelling Tropical Deforestation: A Study of GCM Land-Surface Parametrizations.” Quarterly Journal of the Royal Meteorological Society 114: 439-462.

    Dorman, J. L., and P. J. Sellers. 1989. “A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB).” Journal of Applied Meteorology 28: 833-855.

    Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski. 2008. “A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model.” Journal of Climate 21: 5145-5153.

    IPCC. 2013. “Climate Change 2013: The Physical Science Basis.” In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen,J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 1535. Cambridge: Cambridge University Press.

    Lawrence, D. M., K. W. Oleson, M. G. Flanner, P. E. Thornton,S. C. Swenson, P. J. Lawrence, X. B. Zeng, et al. 2011. “Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model.”Journal of Advances in Modeling Earth Systems 3. 27 pp. doi: http://dx.doi.org/10.1029/2011MS000045.

    Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus,P. J. Rasch, and M. H. Zhang. 2013. “The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments.” Journal of Climate 26: 5150-5168.

    Notaro, M., and Z. Y. Liu. 2008. “Statistical and Dynamical Assessment of Vegetation Feedbacks on Climate over the Boreal Forest.” Climate Dynamics 31: 691-712.

    Oleson, K. W., D. M. Lawrence, G. B. Bonan, M. G. Flanner,E. Kluzek, P. J. Lawrence, S. Levis, et al. 2010. Technical Description of Version 4.0 of the Community Land Model (CLM),NCAR Technical Note, NCAR/TN478+STR. Boulder: National Center for Atmospheric Research, 257.

    Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. B. Zeng, and A. S. Denning. 1998. “Interactions between the Atmosphereand Terrestrial Ecosystems: Infuence on Weather and Climate.” Global Change Biology 4: 461-475.

    Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher. 1986. “A Simple Biosphere Model (SiB) for Use within General Circulation Models.” Journal of the Atmospheric Sciences 43: 505-531.

    Wang, A., and X. Zeng. 2009. “Improving the Treatment of the Vertical Snow Burial Fraction over Short Vegetation in the NCAR CLM3.” Advances in Atmospheric Sciences 26: 877-886. doi:http://dx.doi.org/10.1007/s00376-009-8098-3.

    Zhu, J. W., and X. D. Zeng. 2015. “Comprehensive Study on the Infuence of Evapotranspiration and Albedo on Surface Temperature Related to Changes in the Leaf Area Index.”Advances in Atmospheric Sciences 32 (7): 935-942. doi: http://dx.doi.org/10.1007/s00376-014-4045-z.

    Zhu, Z. C., J. Bi, Y. Z. Pan, S. Ganguly, A. Anav, L. Xu, A. Samanta,S. Piao, R. R. Nemani, and R. B. Myneni. 2013. “Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS)Normalized Diference Vegetation Index (NDVI3g) for the Period 1981 to 2011.” Remote Sensing 5: 927-948.

    30 December 2015

    CONTACT ZHU Jia-Wen zhujw@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    熱帶地區(qū)變率年際
    第30期 參考答案
    內(nèi)部變率和全球變暖對春季北太平洋維多利亞模態(tài)增強的相對貢獻(xiàn)
    第30期 參考答案
    城市化對熱帶地區(qū)大型深層滑坡加速失穩(wěn)的影響研究
    我喜歡的水果
    研究顯示降水變率將隨氣候增暖而增強
    北緯30°中層頂區(qū)域鈉與鐵原子層的結(jié)構(gòu)和年際變化
    Does a monsoon circulation exist in the upper troposphere over the central and eastern tropical Pacifc?
    亞洲夏季風(fēng)的年際和年代際變化及其未來預(yù)測
    與北大西洋接壤的北極海冰和年際氣候變化
    97超视频在线观看视频| 亚洲欧美日韩无卡精品| 99久久久亚洲精品蜜臀av| 村上凉子中文字幕在线| 深夜精品福利| 亚洲av一区综合| 高清毛片免费观看视频网站| 三级毛片av免费| 日本黄色片子视频| 亚洲精品影视一区二区三区av| 蜜桃亚洲精品一区二区三区| 中出人妻视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区www在线观看 | 国产精品乱码一区二三区的特点| 国产综合懂色| 在线播放无遮挡| 欧美人与善性xxx| 欧美高清成人免费视频www| 窝窝影院91人妻| 成人一区二区视频在线观看| 精品久久久久久久人妻蜜臀av| 黄色丝袜av网址大全| 欧美国产日韩亚洲一区| 又黄又爽又刺激的免费视频.| 国产又黄又爽又无遮挡在线| 小蜜桃在线观看免费完整版高清| 看片在线看免费视频| 久久久久久久久久成人| 乱码一卡2卡4卡精品| 91麻豆av在线| 韩国av在线不卡| 亚洲成a人片在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦韩国在线观看视频| 真人做人爱边吃奶动态| 国产精品电影一区二区三区| 亚洲久久久久久中文字幕| 国产高清三级在线| 欧美激情国产日韩精品一区| 午夜福利在线观看免费完整高清在 | 久久人人精品亚洲av| 一进一出好大好爽视频| 欧美一区二区亚洲| 国模一区二区三区四区视频| 久久精品国产清高在天天线| 长腿黑丝高跟| 国产精品精品国产色婷婷| 欧美黑人欧美精品刺激| 国产真实伦视频高清在线观看 | 人妻久久中文字幕网| 男女那种视频在线观看| 国产亚洲精品综合一区在线观看| 国内精品一区二区在线观看| 成人毛片a级毛片在线播放| 亚洲专区中文字幕在线| 国产真实伦视频高清在线观看 | 日韩在线高清观看一区二区三区 | 男女下面进入的视频免费午夜| 97超视频在线观看视频| 久久6这里有精品| 最近在线观看免费完整版| 精品午夜福利视频在线观看一区| 亚洲中文日韩欧美视频| 国产一区二区三区视频了| 国产不卡一卡二| 久久精品久久久久久噜噜老黄 | 99久国产av精品| av专区在线播放| 99视频精品全部免费 在线| 色哟哟哟哟哟哟| 国产 一区精品| 美女黄网站色视频| 99热网站在线观看| 五月伊人婷婷丁香| 嫩草影视91久久| 成人国产一区最新在线观看| 一区二区三区激情视频| 亚洲av中文av极速乱 | 亚洲欧美精品综合久久99| 啦啦啦观看免费观看视频高清| 欧美日韩国产亚洲二区| 日本成人三级电影网站| av在线蜜桃| 日日啪夜夜撸| 国产免费av片在线观看野外av| 亚洲熟妇熟女久久| 日本爱情动作片www.在线观看 | 能在线免费观看的黄片| 欧美成人一区二区免费高清观看| 久久久久国产精品人妻aⅴ院| 亚洲av中文字字幕乱码综合| 色5月婷婷丁香| 熟女电影av网| 国产女主播在线喷水免费视频网站 | 久久亚洲真实| 99在线视频只有这里精品首页| 女人被狂操c到高潮| 真实男女啪啪啪动态图| 免费一级毛片在线播放高清视频| 亚洲最大成人中文| 国产女主播在线喷水免费视频网站 | 国产aⅴ精品一区二区三区波| 日韩精品中文字幕看吧| 国产精品人妻久久久影院| 亚洲aⅴ乱码一区二区在线播放| 国产中年淑女户外野战色| 午夜亚洲福利在线播放| 亚洲自拍偷在线| 1000部很黄的大片| 亚洲欧美日韩无卡精品| 99久久中文字幕三级久久日本| 亚洲内射少妇av| 夜夜爽天天搞| 久久久国产成人免费| 精品日产1卡2卡| 日韩大尺度精品在线看网址| 欧美日韩国产亚洲二区| 国语自产精品视频在线第100页| 午夜福利在线观看免费完整高清在 | 在线观看美女被高潮喷水网站| 一边摸一边抽搐一进一小说| 啦啦啦啦在线视频资源| 少妇的逼水好多| 日本黄色视频三级网站网址| 精华霜和精华液先用哪个| 麻豆国产97在线/欧美| 听说在线观看完整版免费高清| 自拍偷自拍亚洲精品老妇| www.www免费av| 成人av在线播放网站| 成人综合一区亚洲| 日韩中文字幕欧美一区二区| 亚洲成人中文字幕在线播放| 女生性感内裤真人,穿戴方法视频| 男人的好看免费观看在线视频| 久久久久久久久久久丰满 | 久久久久国产精品人妻aⅴ院| av在线观看视频网站免费| 日韩欧美精品免费久久| 精品99又大又爽又粗少妇毛片 | 偷拍熟女少妇极品色| 久久久久性生活片| 三级毛片av免费| 成人欧美大片| 亚洲人成网站在线播放欧美日韩| 草草在线视频免费看| 亚洲精品影视一区二区三区av| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 久久久久国产精品人妻aⅴ院| 精品人妻1区二区| 91麻豆精品激情在线观看国产| 久久精品综合一区二区三区| 日韩亚洲欧美综合| 老女人水多毛片| 少妇熟女aⅴ在线视频| 97碰自拍视频| 久久这里只有精品中国| 日本爱情动作片www.在线观看 | 久久草成人影院| 欧美最黄视频在线播放免费| 精品不卡国产一区二区三区| 久久人人精品亚洲av| 国产精品女同一区二区软件 | ponron亚洲| 综合色av麻豆| 欧美另类亚洲清纯唯美| 在线观看av片永久免费下载| 69av精品久久久久久| 久久精品国产亚洲av天美| 两个人的视频大全免费| 床上黄色一级片| 日本a在线网址| 久久久久久久久大av| 国产精品三级大全| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 啦啦啦观看免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人澡欧美一区二区| 综合色av麻豆| 精品欧美国产一区二区三| 亚洲不卡免费看| 91狼人影院| 国产爱豆传媒在线观看| 热99在线观看视频| 男女之事视频高清在线观看| 日韩av在线大香蕉| 美女 人体艺术 gogo| 免费在线观看日本一区| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 最近视频中文字幕2019在线8| 久9热在线精品视频| 老女人水多毛片| 中文亚洲av片在线观看爽| eeuss影院久久| 欧美在线一区亚洲| 精品日产1卡2卡| 少妇熟女aⅴ在线视频| 欧美又色又爽又黄视频| 男女边吃奶边做爰视频| 久久久色成人| 黄色欧美视频在线观看| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| 国产黄色小视频在线观看| 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添小说| 中文字幕av成人在线电影| 亚洲精品粉嫩美女一区| 国产精华一区二区三区| 亚洲人成网站高清观看| 久久久久久久久久成人| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 国产精品精品国产色婷婷| 欧美激情在线99| 最近最新中文字幕大全电影3| 黄色日韩在线| 精品一区二区免费观看| 一本一本综合久久| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| 天堂影院成人在线观看| 国产乱人视频| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片 | 99久久精品热视频| 99国产精品一区二区蜜桃av| 99热精品在线国产| 国产精品,欧美在线| 国内精品久久久久久久电影| 国产一级毛片七仙女欲春2| 搡老妇女老女人老熟妇| 在线观看舔阴道视频| 日韩欧美三级三区| 91精品国产九色| ponron亚洲| 中国美女看黄片| 国产亚洲精品综合一区在线观看| 日本精品一区二区三区蜜桃| 中文字幕人妻熟人妻熟丝袜美| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 三级男女做爰猛烈吃奶摸视频| 日韩强制内射视频| 免费观看精品视频网站| 国产免费av片在线观看野外av| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 我要搜黄色片| 午夜免费男女啪啪视频观看 | 一区二区三区免费毛片| 日本熟妇午夜| 俄罗斯特黄特色一大片| 天堂网av新在线| 国产主播在线观看一区二区| 成人二区视频| 亚洲 国产 在线| 午夜福利在线观看吧| 中文资源天堂在线| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 老熟妇仑乱视频hdxx| 免费人成视频x8x8入口观看| 少妇熟女aⅴ在线视频| 亚洲欧美日韩高清专用| 欧美激情久久久久久爽电影| 亚洲国产欧美人成| 黄色欧美视频在线观看| 我的女老师完整版在线观看| 欧美高清性xxxxhd video| 日韩中文字幕欧美一区二区| 亚洲国产精品成人综合色| 亚洲精华国产精华液的使用体验 | 看片在线看免费视频| 色综合亚洲欧美另类图片| 夜夜夜夜夜久久久久| ponron亚洲| 禁无遮挡网站| 麻豆成人av在线观看| 天美传媒精品一区二区| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 亚洲人成伊人成综合网2020| 黄色配什么色好看| 我要搜黄色片| 成人永久免费在线观看视频| or卡值多少钱| 免费av观看视频| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 国产不卡一卡二| 欧美3d第一页| 国产精品无大码| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 波多野结衣高清作品| 久久久久精品国产欧美久久久| 国产一区二区在线观看日韩| 色av中文字幕| 美女大奶头视频| 少妇人妻精品综合一区二区 | 可以在线观看毛片的网站| 在线免费观看的www视频| 亚洲美女搞黄在线观看 | 69av精品久久久久久| 国产伦在线观看视频一区| 色哟哟·www| 国产aⅴ精品一区二区三区波| 成人三级黄色视频| 一区二区三区四区激情视频 | 国产在视频线在精品| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 如何舔出高潮| 午夜爱爱视频在线播放| 欧美潮喷喷水| 成人国产一区最新在线观看| 免费大片18禁| 国产精品久久电影中文字幕| 亚洲电影在线观看av| 亚洲无线在线观看| xxxwww97欧美| 九九在线视频观看精品| 亚洲av成人av| 性色avwww在线观看| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| 免费搜索国产男女视频| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 嫩草影院新地址| av在线老鸭窝| 婷婷精品国产亚洲av在线| 嫩草影院入口| 色5月婷婷丁香| 日韩强制内射视频| 日韩欧美在线乱码| 美女xxoo啪啪120秒动态图| 18+在线观看网站| 99在线人妻在线中文字幕| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 窝窝影院91人妻| 九色成人免费人妻av| 中文字幕久久专区| 男女边吃奶边做爰视频| 精品久久久久久久人妻蜜臀av| 国产一区二区在线av高清观看| 99热这里只有是精品50| 床上黄色一级片| 欧美潮喷喷水| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 噜噜噜噜噜久久久久久91| 欧美最黄视频在线播放免费| 亚洲av日韩精品久久久久久密| 成人欧美大片| 中文字幕熟女人妻在线| 久久精品国产亚洲av涩爱 | 精品人妻1区二区| 很黄的视频免费| 国产精品亚洲一级av第二区| 日本a在线网址| netflix在线观看网站| 国产亚洲91精品色在线| 国内久久婷婷六月综合欲色啪| 亚洲精品一区av在线观看| 久99久视频精品免费| 22中文网久久字幕| 真人一进一出gif抽搐免费| 精品一区二区三区视频在线观看免费| av女优亚洲男人天堂| 国产精品98久久久久久宅男小说| 亚洲av一区综合| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 日韩精品中文字幕看吧| 日韩欧美精品免费久久| 国产精品一区二区性色av| 男女之事视频高清在线观看| 一个人看的www免费观看视频| 精品久久久久久久末码| 国产极品精品免费视频能看的| 国产精品嫩草影院av在线观看 | 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 久久精品人妻少妇| 国产亚洲欧美98| 日本色播在线视频| 国产av一区在线观看免费| 五月伊人婷婷丁香| 级片在线观看| 九色成人免费人妻av| 亚洲av中文字字幕乱码综合| 久久久精品欧美日韩精品| 伦精品一区二区三区| 亚洲性夜色夜夜综合| 亚洲,欧美,日韩| 制服丝袜大香蕉在线| 国产探花极品一区二区| 久久午夜福利片| 动漫黄色视频在线观看| 无人区码免费观看不卡| 日本色播在线视频| 尤物成人国产欧美一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av电影不卡..在线观看| 国产av在哪里看| 蜜桃亚洲精品一区二区三区| 无遮挡黄片免费观看| 亚洲avbb在线观看| 亚洲av免费在线观看| 人妻丰满熟妇av一区二区三区| 精品久久国产蜜桃| av在线亚洲专区| 狠狠狠狠99中文字幕| .国产精品久久| 亚洲最大成人手机在线| 国产乱人视频| 国产69精品久久久久777片| 在线a可以看的网站| 亚洲精华国产精华精| 亚洲人成网站在线播放欧美日韩| 午夜爱爱视频在线播放| 国产真实伦视频高清在线观看 | 国产av不卡久久| 99久久精品一区二区三区| or卡值多少钱| 伦理电影大哥的女人| 高清毛片免费观看视频网站| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 亚洲精品粉嫩美女一区| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 99riav亚洲国产免费| 国产乱人伦免费视频| 观看美女的网站| 看片在线看免费视频| 免费电影在线观看免费观看| 免费看光身美女| 国产私拍福利视频在线观看| 婷婷丁香在线五月| 国产精品福利在线免费观看| 国产欧美日韩一区二区精品| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 免费观看在线日韩| 午夜激情福利司机影院| 在线观看一区二区三区| 黄色欧美视频在线观看| 我要搜黄色片| 久久香蕉精品热| 国产美女午夜福利| 黄片wwwwww| 天堂影院成人在线观看| a级毛片免费高清观看在线播放| 特级一级黄色大片| 一本久久中文字幕| 久久精品人妻少妇| 99热这里只有精品一区| 少妇的逼好多水| 特级一级黄色大片| 日本一二三区视频观看| 在线观看av片永久免费下载| 午夜福利成人在线免费观看| 国产不卡一卡二| 蜜桃久久精品国产亚洲av| 草草在线视频免费看| 女人被狂操c到高潮| 无遮挡黄片免费观看| 最新在线观看一区二区三区| 日韩欧美精品v在线| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 毛片女人毛片| 国产黄片美女视频| 嫩草影院精品99| 亚洲中文日韩欧美视频| 淫秽高清视频在线观看| 色综合婷婷激情| 国产精品精品国产色婷婷| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧美人成| 免费人成在线观看视频色| 久久精品影院6| 国产探花在线观看一区二区| 国产av不卡久久| 国产精品野战在线观看| 国国产精品蜜臀av免费| 在线国产一区二区在线| 久久久精品欧美日韩精品| 在线观看舔阴道视频| 国内毛片毛片毛片毛片毛片| 亚洲av中文字字幕乱码综合| 成人特级av手机在线观看| 天堂av国产一区二区熟女人妻| 丰满乱子伦码专区| 久久久久久久久中文| 亚洲无线在线观看| 91在线观看av| 午夜亚洲福利在线播放| 特级一级黄色大片| 最近中文字幕高清免费大全6 | 男女下面进入的视频免费午夜| 国产精品久久电影中文字幕| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 深夜精品福利| 国产av麻豆久久久久久久| 久久久久久久午夜电影| 国产欧美日韩精品一区二区| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 99在线人妻在线中文字幕| 亚洲av中文字字幕乱码综合| 露出奶头的视频| 赤兔流量卡办理| 99九九线精品视频在线观看视频| 国产午夜精品论理片| 色综合站精品国产| 尾随美女入室| 男女之事视频高清在线观看| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 亚洲电影在线观看av| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站 | 久久国产乱子免费精品| 97超级碰碰碰精品色视频在线观看| 色噜噜av男人的天堂激情| 美女被艹到高潮喷水动态| 夜夜爽天天搞| 亚洲专区中文字幕在线| 久久精品国产鲁丝片午夜精品 | 国产精品98久久久久久宅男小说| 中文字幕精品亚洲无线码一区| 99热网站在线观看| 欧美人与善性xxx| 真人一进一出gif抽搐免费| 黄片wwwwww| 99久久精品一区二区三区| 日本 欧美在线| 91久久精品电影网| 别揉我奶头 嗯啊视频| 露出奶头的视频| 亚洲人成网站在线播放欧美日韩| 免费看av在线观看网站| 国产亚洲91精品色在线| 白带黄色成豆腐渣| 无人区码免费观看不卡| 国产91精品成人一区二区三区| 亚洲,欧美,日韩| 99在线视频只有这里精品首页| 一区福利在线观看| 亚洲三级黄色毛片| 欧美黑人巨大hd| av在线观看视频网站免费| 亚洲在线观看片| 亚洲黑人精品在线| 欧美+亚洲+日韩+国产| 老师上课跳d突然被开到最大视频| 91久久精品国产一区二区三区| 国产精品98久久久久久宅男小说| 亚洲欧美激情综合另类| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 精品久久国产蜜桃| 久久天躁狠狠躁夜夜2o2o| 国语自产精品视频在线第100页| 色精品久久人妻99蜜桃| 国产免费一级a男人的天堂| 成年免费大片在线观看| 黄片wwwwww| 久久久久久久亚洲中文字幕| 女生性感内裤真人,穿戴方法视频| 午夜日韩欧美国产| 欧美激情在线99| 久久精品91蜜桃| 久久久国产成人免费| 精品人妻偷拍中文字幕| 久久草成人影院| 国产91精品成人一区二区三区| 国产精品野战在线观看| 69人妻影院| 国产极品精品免费视频能看的| 亚洲欧美激情综合另类| 婷婷六月久久综合丁香| 精品国内亚洲2022精品成人| 深爱激情五月婷婷| 欧美最新免费一区二区三区| 嫁个100分男人电影在线观看| 嫩草影视91久久| 老司机午夜福利在线观看视频| 久久99热这里只有精品18| 淫妇啪啪啪对白视频|