• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The link between the Victoria mode in the preceding boreal winter and spring precipitation over the southeastern USA and Gulf of Mexico

    2016-11-23 03:30:19PUXiuShuCHENQunLingDINGRuiQingndGUOYiPengPlteuAtmospherendEnvironmentKeyLortoryofSihunProvineCollegeofAtmospheriSienesChengduUniversityofInformtionTehnologyChengduChinStteKeyLortoryofNumerilModelingforAtmospheriSien
    關鍵詞:比濕墨西哥灣海溫

    PU Xiu-Shu, CHEN Qun-Ling, DING Rui-Qingnd GUO Yi-Peng,Plteu Atmosphere nd Environment Key Lortory of Sihun Provine, College of Atmospheri Sienes, Chengdu University of Informtion Tehnology, Chengdu, Chin;Stte Key Lortory of Numeril Modeling for Atmospheri Sienes nd Geophysil Fluid Dynmis (LASG),Institute of Atmospheri Physis, Chinese Ademy of Sienes, Beijing, Chin;College of Erth Siene, University of Chinese Ademy of Sienes, Beijing, Chin

    The link between the Victoria mode in the preceding boreal winter and spring precipitation over the southeastern USA and Gulf of Mexico

    PU Xiu-Shua,b, CHEN Quan-Lianga, DING Rui-Qianga,band GUO Yi-Pengb,caPlateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;cCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    The sea surface temperature anomalies (SSTAs) associated with the Victoria mode (VM) can persist into the following season and then infuence climate variability in the tropical Pacifc. This paper demonstrates the connection between the preceding boreal winter VM and precipitation in the following spring over the southeastern United States (SE USA) and the Gulf of Mexico (GM). The results indicate that a positive (negative) preceding winter VM is usually followed by increased(reduced) precipitation over the SE USA and GM during the following spring. The corresponding mechanism is similar, but slightly diferent to, the seasonal footprinting mechanism. For positive VM cases, the preceding-winter VM-related SSTAs appear to persist into the following spring via airsea interactions, which then induce low-level convergence and vigorous ascending motion, leading to an adjustment of the zonal and meridional circulation. This adjustment can then infuence the local Hadley cell by weakening the downward branch. These anomalous patterns of vertical airfow enhance spring precipitation over the SE USA and GM under suitable moisture conditions. Hence,this work demonstrates that the preceding-winter VM has the potential to regulate precipitation over the SE USA and GM in the following spring.

    ARTICLE HISTORY

    Revised 8 March 2016

    Accepted 28 March 2016

    Victoria mode; spring precipitation; southeastern USA; Gulf of Mexico; air-sea interaction

    北太平洋海溫第二主導模態(tài)是一個呈現(xiàn)東北-西南“+-”偶極子型變化的海溫模態(tài),被定義為維多利亞模態(tài)(VM)。本文利用1979-2014年的逐月資料,通過偏相關分析及回歸分析等氣象統(tǒng)計方法,探究了北半球前冬VM與春季美國東南部及墨西哥灣(SE USA及GM,(24-34°N,95-80°W))降水之間的關系,結果表明兩者之間存在顯著的正相關關系。當前冬為正(負)VM事件,則在隨之而來的春季, SE USA及GM區(qū)域往往會出現(xiàn)降水增加(減少)。SE USA及GM區(qū)域的環(huán)流系統(tǒng)對前冬正(負)VM的響應十分顯著,具體表現(xiàn)為比濕偏高(偏低),輸入此區(qū)域的水汽輸送增多(減少),并且,此區(qū)域?qū)α鲗踊旧媳划惓I仙ㄏ鲁粒┻\動控制,有利于(不利于)降水發(fā)生。因此,本文的研究可能為春季美國東南部及墨西哥灣降水的季節(jié)預測提供新的預測因子。

    1. Introduction

    The Victoria mode (VM) is the second empirical orthogonal function mode (EOF2) of sea surface temperature anomalies (SSTAs) in the North Pacifc north of 20°N(Bond et al. 2003; Ding et al., “The Victoria Mode,” 2015),and is distinct from the Pacifc Decadal Oscillation (Mantua et al. 1997; Zhang, Wallace, and Battisti 1997), which is the leading mode of North Pacifc climate variability (fgure not shown). The VM exhibits a tripole structure that is characterized by a band of positive SSTAs extending from the west coast of North America to the central tropical Pacifc, a band of negative SSTAs extending from the central North Pacifc to the northwestern tropical Pacifc, and another band of positive SSTAs in the Pacifc north of 35°N (Bond et al. 2003; Ding et al., “The Victoria Mode”, 2015) Figure 1(a). The VM index (VMI) is the corresponding time coefcient of the EOF2 of the monthly SSTA feld over the North Pacifc (20-61°N, 100°E-100°W) (Bond et al. 2003; Ding et al., “The Victoria Mode”, “The Impact of South Pacifc”,2015). Previous studies indicate that the VM is driven by the North Pacifc Oscillation (NPO; Walker and Bliss 1932;Rogers 1981; Ding et al., “The Victoria Mode”, “The Impact of South Pacifc”, 2015).

    Figure 1.Correlation maps of the preceding winter VMI-DJF showing the three-month averaged SSTAs (shaded) and 850 hPa wind anomalies (vectors) for (a) DJF and (b) MAM.

    Ding et al., “The Victoria Mode”, (2015) suggested that the VM, as an ocean bridge through which extratropical atmospheric variability in the North Pacifc afects tropical variability, is more closely linked than the NPO to the development of ENSO. The VM can trigger the onset of ENSO via surface air-sea coupling and the evolution of subsurface ocean temperature anomalies along the equator. Meanwhile, the spring VM has been linked to variability in Pacifc ITCZ precipitation during the following summer(Ding et al., “The Impact of South Pacifc”, 2015). In positive VM cases, SSTAs in the subtropics associated with the spring VM persist until summer and develop towards the equator, inducing low-level convergence that leads to enhanced precipitation over the central-eastern Pacifc ITCZ region.

    Many studies have focused on the correlation between the VM and the tropical Pacifc climate system (Ding et al.,“The Victoria Mode”, “The Impact of South Pacifc”, 2015). Wang et al. (2010) found that spring precipitation over the southeastern United States (SE USA) is afected by SST patterns in the Pacifc. However, they did not address the efect of the preceding winter (December-January-February: DJF) VM on spring (March-April-May: MAM) precipitation. In this study, we explore a possible connection between the preceding winter VM and following spring precipitation over the SE USA and the Gulf of Mexico (GM)with the ENSO signal removed.

    2. Data description

    The following datasets were used in this study:(1) Precipitation data were obtained from the GPCP(Hufman et al. 1997), and the CMAP data-set (Xie and Arkin 1997) was used to validate the results for precipitation. The GPCP and CMAP datasets contain monthly precipitation data at a horizontal resolution of 2.5° × 2.5°.(2) Atmospheric variables are from the NCEP-NCAR reanalysis (Kalnay et al. 1996), which has a horizontal resolution of 2.5° × 2.5°. (3) SST data are from the HadISST data-set,gridded at a resolution of 1° × 1° (Rayner et al. 2006).(4) The ENSO index (Nin?3) is from the NOAA CPC website. In addition, we calculated the vertical integration of the anomalous moisture fux felds between the sea level and 300 hPa (Behera, Krishnan, and Yamagata 1999; Nnamchi and Li 2011).

    We analyzed the period from 1979 to 2014, for which satellite records are available. The signifcance of the correlation between two autocorrelated time series was assessed using the efective number of degrees of freedom.

    3. Results

    3.1. Connections between the preceding winter VM and spring precipitation

    To investigate the link between the preceding winter VM and following spring precipitation over the USA, we show in Figure 2(a) the correlation coefcients between the DJF-averaged VMI (denoted as the VMI-DJF) and the MAM-averaged precipitation anomalies over the USA based on the GPCP data-set. Large areas with signifcant positive values occur over the SE USA and GM, which includes Louisiana, Mississippi, Alabama, Georgia, and Florida. This feature implies that a positive (negative) preceding winter VM is likely to be followed by increased (reduced)spring precipitation over the SE USA and GM (hereafter referred to as ‘the Box,' i.e. the region enclosed by (24-34°N,95-80°W)). We represent spring precipitation using the area-averaged precipitation index (PI), which is defned as the standardized area-averaged spring precipitation for the Box region (Figure 2(c)). The preceding winter VM has a marked positive correlation with precipitation anomalies over the above region at a confdence level greater than 99%, with a correlation coefcient of 0.51. This result proves the reliability of the relationship between the preceding winter VM and spring precipitation.

    Figure 2.(a) Correlation map of the VMI-DJF with the spring (MAM) precipitation anomalies based on the GPCP data-set. Positive (blue)and negative (red) precipitation anomalies, signifcant at the 0.2 level, are shaded. The crosses indicate the 90% confdence level. The green box is the positive correlation box (24-34°N, 95-80°W), which indicates the location of the Box region. (c) Time series of VMI-DJF(red line) and MAM-averaged PI (blue line) for the Box region between 1979 and 2014. Both the VMI-DJF and PI have been detrended and standardized. (e) Regressions of the boreal winter (DJF) SSTA (°C) feld on the PI for the period 1979-2014. Shaded areas represent signifcance above the 0.1 level. (b, d, f) As in (a, c, e) but based on the CMAP data-set.

    To further confrm the connection between the preceding winter VM and spring precipitation over the SE USA and GM, we regressed the preceding winter North Pacifc SSTAs onto the PI, shown in Figure 2(c). The regression of the SSTAs (Figure 2(e)) shows a well-defned dipole structure over the North Pacifc poleward of 20°N, which closely resembles the VM-related SSTA pattern in Figure 1(a). It appears that the VM SST pattern bears a resemblance to the optimal initial SST condition that is likely to lead to spring precipitation anomalies over the SE USA and GM. A positive (negative) VM event in the preceding winter tends to be followed by more (less) precipitation during the following spring over this region. This result agreeswith the conclusions from Figure 2(a) and (c), and further supports the existence of a close relationship between the preceding winter VM and following spring precipitation over the SE USA and GM.

    Similar correlation maps and regression patterns were also obtained when using the CMAP data-set (Figure 2(b),(d), and (f)). These consistent results demonstrate that the spring precipitation anomalies over the SE USA and GM are closely related to the VM from the previous winter. Thus,the preceding winter VM is one possible factor that afects spring precipitation over the SE USA and GM.

    Figure 3.Correlation maps of the VMI-DJF with anomalies of MAM-averaged (a) 700 hPa specifc humidity, (b) moisture transport magnitude vertically integrated from the 1,000 to 400 hPa pressure levels (shading and vectors), (c) 500 hPa vertical pressure velocity, and (d) 200 hPa divergence.

    3.2. Spring atmospheric circulation anomalies associated with the preceding winter VM

    The distribution of precipitation is closely associated with the combined efect of the water vapor conditions and vertical motion. To explain the above-mentioned link between the preceding winter VM and spring precipitation over the SE USA and GM, we present the following spring meteorological variable anomalies that are correlated with the preceding winter VM (Figure 3(a-d)).

    Figure 3(a) displays the correlation between the VMIDJF and spring specifc humidity at 700 hPa. During positive VM cases, positive anomalies are centered over the SE USA and GM, indicating that the air is wetter over this region. Furthermore, Figure 3(b) indicates that the vertically integrated moisture fux feld characterizes much of the specifc humidity anomaly pattern. The vector of the moisture fux shows that the moisture transport induced by the preceding winter's VM is centered over the GM. The majority of the region is dominated by strong southerly winds, which promote the moisture transport from the GM.

    When the preceding winter VM is positive, anomalous upward motion prevails over the SE USA and GM (Figure 3(c)). The correlation between the VMI-DJF and spring divergence at 200 hPa is displayed in Figure 3(d). The confguration of the divergence feld in the upper troposphere matches these upward motion anomalies well. The vertical motion associated with the positive preceding winter VM is consistent with the vapor conditions that favor the spring precipitation pattern in Figure 2(a) and (b).

    To summarize, in the case of a positive preceding winter VM, the anomalous horizontal divergence at 200 hPa favors ascending motion of wetter air over the SE USA and GM. The combination of favorable vapor conditions, vertical motion, and the divergence feld generates increased precipitation in this region.

    3.3. Possible physical mechanisms

    As mentioned above, the preceding winter VM has the potential to infuence the following spring precipitation over the SE USA and GM. However, the question remains as to exactly how the winter VM afects the SE USA and GM during the following spring. To provide a physicalexplanation for the observed relationship, we examined the VM-related SST and atmospheric circulation anomalies.

    Figure 4.(a) Correlation map of the VMI-DJF with the MAM-averaged 850 hPa divergence anomalies. Correlation signifcant at the 0.1 level is shaded. (b) Correlation map of the VMI-DJF with anomalies of the meridional mean spring (MAM) zonal wind and omega components for 10°S-10°N. The green lines indicate the longitudinal band of the Box region. (c) Correlation map of the VMI-DJF with anomalies of the zonal mean spring(MAM) meridional wind and omega components for 95-80°W. The green lines indicate the latitudinal band of the Box region. In(b, c), the omega value with the vector is multiplied by 10. Shading represents signifcance above the 0.1 level.

    Figure 1(a) and (b) present the correlation between the VMI-DJF and SST and the 850-hPa wind anomalies in the winter and following spring. During winter, the positive VM is accompanied by a dipole-like SSTA pattern in the North Pacifc north of 20°N, and a subtropical (0°-20°N)band of positive SSTAs extending from the northeastern Pacifc to the tropical central Pacifc (Figure 1(a)). The related wind anomalies resemble those associated with the NPO (Walker and Bliss 1932; Rogers 1981). This result is consistent with those reported by Vimont, Wallace, and Battisti (2003), Vimont, Battisti, and Hirst (2003), Alexander et al. (2010), and Ding et al., “The Victoria Mode,” (2015). These signifcant SST and wind anomalies in the North Pacifc north of 20°N decrease quickly in the following spring (Figure 1(b)). In contrast, SSTAs in the subtropical central-eastern North Pacifc (10-20°N) can persist from the preceding winter and into spring (Figure 1(b)) via surface air-sea interactions associated with the VM (Ding, Li, and Tseng 2015; Ding et al., “The Impact of South Pacifc”, 2015). Specifcally, anomalous southwesterlies associated with the VM during the preceding winter reduce the upward latent heat fux (fgure not shown) and subsequently warm the ocean from the northeastern Pacifc to the equatorial central Pacifc.

    In response to the warming induced by the above processes in the central-eastern tropical Pacifc, strong anomalous southwesterlies in the central-western tropical Pacifc strengthen (Figure 1(b)), leading to convergence at 850 hPa with the center located in the central-eastern North Pacifc(Figure 4(a)). These convergence zones in the lower tropospheric layers cause vigorous ascending motion centered near the dateline (10°S-10°N, 170°E-170°W). Meanwhile,signifcant descending motion occurs over the tropical eastern Pacifc of the west coast of Colombia and Ecuador((10°S-10°N, 95-80°W); Figure 4(b)). This anomalous east-west oriented circulation resembles the Walker circulation across the tropical Pacifc, resulting in enhancement of the latter. In addition, the increased convection and precipitation caused by low-level convergence in the central-eastern North Pacifc may intensify the release of the latent heat of condensation into the atmosphere, which favors the ascending motion, convective precipitation, and so on (Ding et al., “The Impact of South Pacifc”, 2015).

    Adjustment of the Walker circulation also infuences the meridional circulation over the region 95-80°W, which is the longitudinal band of the Box region. Following the increased Walker circulation, the sinking airfow over the tropical eastern Pacifc of the west coast of Colombia and Ecuador is strengthened (Figure 4(c)). Subsequently,this enhanced downward motion is superposed onto the upward branch of the local Hadley cell in the tropical eastern Pacifc, weakening the latter and thereby leading to anomalous ascending motion and precipitation over the SE USA and GM (Figure 4(c)).

    Note that signifcant anomalous southerlies are seen over the Box region (Figure 4(c)), which is consistent with anomalous rising airfow there, indicating that the abundant supply of water vapor over the SE USA and GM is closely linked to the ascending motion over this region,and together they encourage the generation of local precipitation. In general, our interpretation is that a largescale convergence over the central-eastern North Pacifc induced by the VM plays an important role in causing anomalous ascending motion and increased precipitation over the SE USA and GM.

    4. Conclusions and discussion

    This paper focuses on the relationship between the preceding winter VM and precipitation over the SE USA and GM during the following spring. Our analysis demonstrates that the VM may have a marked efect on the interannual variation in spring precipitation over this region. A positive preceding winter VM is related to an intensifed Walker circulation across the tropical eastern Pacifc and a suppressed local Hadley cell within the longitude of the Box region. The related anomalous upward motion over the Box region,which contains large amounts of water vapor, dominates the SE USA and GM. The confguration of the atmospheric circulation and the water vapor conditions is consistent with the positive precipitation anomalies over the SE USA and GM. In brief, the underlying physical processes associated with the infuence of the preceding winter VM on spring precipitation over the SE USA and GM are similar, but slightly diferent to, the seasonal footprinting mechanism(SFM). The SFM was proposed by Vimont, Battisti, and Hirst(2001), Vimont, Wallace, and Battisti (2003), Vimont, Battisti,and Hirst (2003) to explain the efects of the NPO-like variability during a particular winter on ENSO during the following winter. The preceding winter VM SST pattern displayed in Figure 1a closely resembles the SST footprint reported by Vimont, Battisti, and Hirst (2001), Vimont, Wallace, and Battisti (2003), Vimont, Battisti, and Hirst (2003). However,here we emphasize the linkage between the VM and precipitation over the SE USA and GM. Specifcally, the preceding winter VM signal can persist into the following spring,inducing anomalous southwesterlies that have a potential efect on the circulation in the central-eastern tropical Pacifc through air-sea interaction. Thus, the Walker circulation and local Hadley cell act as an atmospheric bridge,which allows the North Pacifc VM to infuence precipitation over the SE USA and GM during the following spring. Our analysis suggests that the preceding winter VM provides an additional source of predictability for downscaled seasonal predictions of the following spring precipitation over the SE USA and GM. Nevertheless, the problem of how to construct a prediction model for the following spring precipitation based on the preceding winter VM remains;additional study is required in this area. Moreover, given that the VM is closely correlated with ENSO (Ding et al.,“The Victoria Mode,” 2015), and ENSO could signifcantly infuence precipitation over the USA (Ting and Wang 1997;Gutzler, Kann, and Thornbrugh 2002; Wang et al. 2010,2012; Ciancarelli et al. 2014), the question naturally arises as to whether the efect of the VM and ENSO on the precipitation over the SE USA and GM are independent. Further research into this issue is also necessary.

    Acknowledgements

    The authors thank Dr Sen Zhao for calculating the vertical integration of the anomalous moisture fux felds.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the China Special Fund for Meteorological Research in the Public Interest [grant number GYHY201506013]; the National Basic Research Program of China[973 Program, grant number 2012CB955200]; the National Natural Science Foundation of China for Excellent Young Scholars[grant number 41522502]; the National Natural Science Foundation of China [grant number 41475037], and the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010303].

    References

    Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott. 2010. “The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments.” Journal of Climate 23: 2885-2901.

    Behera, S. K., R. Krishnan, and T. Yamagata. 1999. “Unusual Ocean-Atmosphere Conditions in the Tropical Indian Ocean during 1994.” Geophysical Research Letters 26: 3001-3004.

    Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno. 2003. “Recent Shifts in the State of the North Pacifc.”Geophysical Research Letters 30: 2183. doi:http://dx.doi. org/10.1029/2003GL018597.

    Ciancarelli, B., C. L. Castro, C. Woodhouse, F. Dominguez, and H. I. Chang. 2014. “Dominant Patterns of US Warm Season Precipitation Variability in a Fine Resolution Observational Record, with Focus on the Southwest.” International Journal of Climatology 34 (3): 687-707.

    Ding, R. Q., J. P. Li, Y. H. Tseng, C. Sun, and Y. P. Guo. 2015. “The Victoria Mode in the North Pacifc Linking Extratropical Sea Level Pressure Variations to ENSO.” Journal of Geophysical Research Atmospheres 120 (1): 27-45. doi:http://dx.doi. org/10.1002/2014JD022221.

    Ding, R. Q., J. P. Li, Y.-h. Tseng, and C. Q. Ruan. 2015. “Infuence of the North Pacifc Victoria Mode on the Pacifc ITCZ Summer Precipitation.” Journal of Geophysical Research Atmospheres 120: 964-979. doi:http://dx.doi.org/10.1002/2014JD022364.

    Ding, R. Q., J. P. Li, and Y. H. Tseng. 2015. “The Impact of South Pacifc Extratropical Forcing on ENSO and Comparisons with the North Pacifc.” Climate Dynamics 44: 2017-2034.

    Gutzler, D. S., D. M. Kann, and C. Thornbrugh. 2002. “Modulation of ENSO-Based Long-Lead Outlooks of Southwestern U.S. Winter Precipitation by the Pacifc Decadal Oscillation.”Weather and Forecasting 17: 1163-1172.

    Hufman, G. J., R. F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. E. Janowiak, et al. 1997. “The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset.”Bulletin of the American Meteorological Society 78: 5-20.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 77: 437-471.

    Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. “A Pacifc Interdecadal Climate Oscillation with Impacts on Salmon Production.” Bulletin of the American Meteorological Society 78: 1069-1079.

    Nnamchi, H. C., and J. P. Li. 2011. “Infuence of the South Atlantic Ocean Dipole on West African Summer Precipitation.” Journal of Climate 24: 1184-1197.

    Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy,M. Vanicek, T. J. Ansell, et al. 2006. “Improved Analyses of Changes and Uncertainties in Sea Surface Temperature Measured in Situ since the mid-Nineteenth Century: The HadSST2 Dataset.” Journal of Climate 19: 446-469.

    Rogers, J. C. 1981. “The North Pacifc Oscillation.” Journal of Climatology 1: 39-57.

    Ting, M. F., and H. Wang. 1997. “Summertime U.S. Precipitation Variability and Its Relation to Pacifc Sea Surface Temperature.”Journal of Climate 10 (8): 1853-1873.

    Vimont, D. J., D. S. Battisti, and A. C. Hirst. 2001. “Footprinting: A Seasonal Connection between the Tropics and mid-Latitudes.” Geophysical Research Letters 28: 3923-3926.

    Vimont, D. J., J. M. Wallace, and D. S. Battisti. 2003. “the Seasonal Footprinting Mechanism in the Pacifc: Implications for ENSO.” Journal of Climate 16: 2668-2675.

    Vimont, D. J., D. S. Battisti, and A. C. Hirst. 2003. “The Seasonal Footprinting Mechanism in the CSIRO General Circulation Models.” Journal of Climate 16: 2653-2667.

    Walker, G. T., and E. W. Bliss. 1932. “World Weather V.” Memoirs of the Royal Meteorological Society 4: 53-84.

    Wang, H. L., S. Schubert, M. Suarez, and R. Koster. 2010. “The Physical Mechanisms by Which the Leading Patterns of SST Variability Impact U.S. Precipitation.” Journal of Climate 23 (7): 1815-1836.

    Wang, H., A. Kumar, W. Q. Wang, and B. Jha. 2012. “U.S. Summer Precipitation and Temperature Patterns following the Peak Phase of El Ni?o.” Journal of Climate 25: 7204-7215.

    Xie, P. P., and P. A. Arkin. 1997. “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs.” Bulletin of the American Meteorological Society 78: 2539-2558.

    Zhang, Y., J. M. Wallace, and D. S. Battisti. 1997. “ENSO-like Interdecadal Variability: 1900-93.” Journal of Climate 10: 1004-1020.

    維多利亞模態(tài); 春季降水;美國東南部; 墨西哥灣;海氣相互作用

    6 February 2016

    CONTACT DING Rui-Qiang drq@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    比濕墨西哥灣海溫
    美國港口工人大罷工
    國企管理(2024年10期)2024-12-31 00:00:00
    雅安地區(qū)近50 年濕度變化特征分析
    溫暖的墨西哥灣
    基于深度學習的海溫觀測數(shù)據(jù)質(zhì)量控制應用研究
    海洋通報(2021年3期)2021-08-14 02:20:48
    基于Argo、XBT數(shù)據(jù)的蘇拉威西海溫鹽特征分析
    海洋通報(2021年1期)2021-07-23 01:55:22
    基于探空資料的1961—2018年新疆高空大氣比濕氣候特征分析
    南方比濕特征及其與暴雨的關系
    南印度洋偶極型海溫與中國西南地區(qū)初秋降水的關系
    墨西哥灣魚蝦死亡案
    2017年朝陽市地面比濕特征分析
    国产乱来视频区| 母亲3免费完整高清在线观看 | 国产欧美另类精品又又久久亚洲欧美| 99视频精品全部免费 在线| 黑丝袜美女国产一区| 亚洲久久久国产精品| 久久久久国产网址| 亚洲第一av免费看| 99久久人妻综合| 国产69精品久久久久777片| 久久97久久精品| 久久人人爽av亚洲精品天堂| 久久精品久久精品一区二区三区| 亚洲内射少妇av| 少妇人妻久久综合中文| 亚洲怡红院男人天堂| 又粗又硬又长又爽又黄的视频| av免费在线看不卡| 亚洲情色 制服丝袜| 老司机影院成人| 伊人久久国产一区二区| 色94色欧美一区二区| 午夜av观看不卡| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 成人国产麻豆网| 视频中文字幕在线观看| 欧美亚洲日本最大视频资源| 亚洲国产日韩一区二区| 国产欧美日韩综合在线一区二区| 黄色毛片三级朝国网站| 九九爱精品视频在线观看| 久久久久久久久久成人| 亚洲天堂av无毛| 制服人妻中文乱码| 久久精品久久久久久久性| 午夜视频国产福利| 国产精品国产三级专区第一集| 男女边吃奶边做爰视频| 亚洲五月色婷婷综合| 成人综合一区亚洲| av网站免费在线观看视频| 亚洲一级一片aⅴ在线观看| 毛片一级片免费看久久久久| 丁香六月天网| 大话2 男鬼变身卡| 男女国产视频网站| 国产亚洲一区二区精品| 欧美+日韩+精品| 这个男人来自地球电影免费观看 | 国产av一区二区精品久久| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 欧美日韩av久久| 欧美一级a爱片免费观看看| 女人久久www免费人成看片| 高清黄色对白视频在线免费看| 精品国产露脸久久av麻豆| 热re99久久国产66热| 观看美女的网站| 久久久精品94久久精品| 最近手机中文字幕大全| 婷婷成人精品国产| 亚洲av成人精品一区久久| 欧美97在线视频| 亚洲第一av免费看| 亚洲少妇的诱惑av| 国产一区二区三区综合在线观看 | 国产精品 国内视频| 26uuu在线亚洲综合色| 国产高清国产精品国产三级| 热re99久久国产66热| 丝袜在线中文字幕| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线观看99| 亚洲精品视频女| 一区二区av电影网| xxx大片免费视频| 久久99热这里只频精品6学生| 视频中文字幕在线观看| 亚洲精品日本国产第一区| 高清在线视频一区二区三区| 亚洲久久久国产精品| 两个人的视频大全免费| 国产黄色免费在线视频| 欧美日韩在线观看h| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 伊人久久国产一区二区| 国产精品 国内视频| 久久午夜综合久久蜜桃| 国产爽快片一区二区三区| 五月开心婷婷网| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 日本欧美视频一区| freevideosex欧美| 91久久精品国产一区二区成人| 高清毛片免费看| 亚洲人成77777在线视频| 国产一区二区在线观看av| 人人澡人人妻人| 日韩成人av中文字幕在线观看| 青春草视频在线免费观看| 国产视频首页在线观看| 国产一区二区三区综合在线观看 | 80岁老熟妇乱子伦牲交| 国产精品.久久久| 久久久久久久久久久免费av| 欧美人与善性xxx| 五月开心婷婷网| 熟女av电影| tube8黄色片| 国产免费一级a男人的天堂| 黑人巨大精品欧美一区二区蜜桃 | 精品人妻在线不人妻| 永久网站在线| 最新中文字幕久久久久| 视频中文字幕在线观看| 国产亚洲一区二区精品| 免费看光身美女| 国产 一区精品| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 午夜免费男女啪啪视频观看| 国产黄色免费在线视频| 午夜久久久在线观看| videossex国产| 国产欧美日韩一区二区三区在线 | 日本av免费视频播放| 一边亲一边摸免费视频| 91精品国产国语对白视频| 水蜜桃什么品种好| av女优亚洲男人天堂| 亚洲精品成人av观看孕妇| 国产69精品久久久久777片| 亚洲人成网站在线播| 精品亚洲乱码少妇综合久久| 乱码一卡2卡4卡精品| 成人综合一区亚洲| 日韩在线高清观看一区二区三区| 伦精品一区二区三区| 国产精品一区二区在线观看99| 三级国产精品欧美在线观看| 亚洲精品乱码久久久久久按摩| 免费高清在线观看视频在线观看| 3wmmmm亚洲av在线观看| 桃花免费在线播放| 大片电影免费在线观看免费| 欧美性感艳星| 国产精品久久久久久精品电影小说| 亚洲精品456在线播放app| 久久精品国产a三级三级三级| 国产伦理片在线播放av一区| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜爱| 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 91在线精品国自产拍蜜月| 乱人伦中国视频| 在线天堂最新版资源| 有码 亚洲区| 久久久精品区二区三区| av.在线天堂| 狂野欧美激情性xxxx在线观看| 美女视频免费永久观看网站| 天堂中文最新版在线下载| 在线观看国产h片| 在线亚洲精品国产二区图片欧美 | 狂野欧美白嫩少妇大欣赏| 午夜福利,免费看| 亚洲av男天堂| 日韩一区二区三区影片| 欧美最新免费一区二区三区| 伦理电影免费视频| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 日韩成人av中文字幕在线观看| 精品亚洲成国产av| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放| 久久久久视频综合| 亚洲成人一二三区av| 亚洲成人av在线免费| 有码 亚洲区| 欧美成人精品欧美一级黄| 狠狠婷婷综合久久久久久88av| 九色成人免费人妻av| 特大巨黑吊av在线直播| 久久热精品热| 免费观看无遮挡的男女| 成年女人在线观看亚洲视频| 国产精品秋霞免费鲁丝片| 亚洲欧美中文字幕日韩二区| 国产免费现黄频在线看| 制服人妻中文乱码| 精品一区二区三卡| 久久久久精品久久久久真实原创| 99热这里只有是精品在线观看| 成人亚洲精品一区在线观看| 夫妻午夜视频| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 精品人妻熟女毛片av久久网站| 女人精品久久久久毛片| 亚洲成人一二三区av| 午夜福利在线观看免费完整高清在| 亚洲国产精品一区三区| 在线观看人妻少妇| 亚洲天堂av无毛| 在现免费观看毛片| 色94色欧美一区二区| 91久久精品国产一区二区三区| 熟妇人妻不卡中文字幕| 只有这里有精品99| 亚洲精品国产av成人精品| 热99久久久久精品小说推荐| 国产一区亚洲一区在线观看| 18禁观看日本| 国产午夜精品久久久久久一区二区三区| 欧美日韩国产mv在线观看视频| 久久亚洲国产成人精品v| 成人国语在线视频| 女的被弄到高潮叫床怎么办| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频| 日韩成人伦理影院| 亚洲内射少妇av| 欧美成人午夜免费资源| 天天操日日干夜夜撸| 亚洲精品久久午夜乱码| 91精品一卡2卡3卡4卡| 日本vs欧美在线观看视频| 天堂俺去俺来也www色官网| 色网站视频免费| 亚洲欧洲精品一区二区精品久久久 | 国产成人aa在线观看| 亚洲国产精品国产精品| 永久网站在线| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频 | 精品视频人人做人人爽| 午夜福利影视在线免费观看| 自线自在国产av| 免费av不卡在线播放| 亚洲精品乱久久久久久| 亚洲欧美中文字幕日韩二区| 国产不卡av网站在线观看| 成年美女黄网站色视频大全免费 | 久久精品熟女亚洲av麻豆精品| 国产av精品麻豆| 日本wwww免费看| 91久久精品国产一区二区成人| 蜜桃国产av成人99| 国产毛片在线视频| 成人毛片a级毛片在线播放| 少妇的逼好多水| 久久国内精品自在自线图片| 国产色爽女视频免费观看| av免费观看日本| 亚洲国产色片| .国产精品久久| 欧美日韩视频高清一区二区三区二| 国产精品麻豆人妻色哟哟久久| 男人操女人黄网站| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 国产午夜精品一二区理论片| 午夜激情久久久久久久| 一个人免费看片子| 日韩一本色道免费dvd| 亚洲国产精品一区三区| 久久精品国产亚洲av天美| 五月天丁香电影| 亚洲精品成人av观看孕妇| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 国产精品一二三区在线看| 老熟女久久久| 夜夜看夜夜爽夜夜摸| 各种免费的搞黄视频| 久久久久国产精品人妻一区二区| 秋霞伦理黄片| 黄片无遮挡物在线观看| 青春草国产在线视频| 三级国产精品欧美在线观看| 欧美 亚洲 国产 日韩一| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 亚洲欧美成人精品一区二区| 日韩强制内射视频| 日韩欧美一区视频在线观看| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 免费播放大片免费观看视频在线观看| 纯流量卡能插随身wifi吗| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 一区二区三区乱码不卡18| 久久久精品免费免费高清| 亚洲第一区二区三区不卡| 午夜视频国产福利| 亚洲精品乱码久久久久久按摩| 在线观看国产h片| 建设人人有责人人尽责人人享有的| 亚洲在久久综合| 成人手机av| 美女福利国产在线| 欧美日韩亚洲高清精品| 99国产综合亚洲精品| 久久久久久久精品精品| 不卡视频在线观看欧美| 美女xxoo啪啪120秒动态图| 亚洲丝袜综合中文字幕| 国产精品欧美亚洲77777| 免费黄频网站在线观看国产| 一级毛片 在线播放| 18禁观看日本| 街头女战士在线观看网站| 亚洲国产精品一区三区| 色视频在线一区二区三区| 亚洲国产精品国产精品| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 午夜免费观看性视频| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 黑人猛操日本美女一级片| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 夫妻午夜视频| 中文字幕制服av| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片| 亚洲精品日本国产第一区| 蜜桃在线观看..| 日韩不卡一区二区三区视频在线| 欧美丝袜亚洲另类| 街头女战士在线观看网站| 亚洲精品第二区| 亚洲激情五月婷婷啪啪| a级毛色黄片| 久久热精品热| 亚洲国产最新在线播放| 在线观看一区二区三区激情| 日本91视频免费播放| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| 婷婷色麻豆天堂久久| 久久午夜综合久久蜜桃| 一区二区日韩欧美中文字幕 | 欧美人与善性xxx| 一级片'在线观看视频| 丝瓜视频免费看黄片| 午夜日本视频在线| 我要看黄色一级片免费的| 一个人看视频在线观看www免费| 精品久久国产蜜桃| 如何舔出高潮| 日韩一本色道免费dvd| 好男人视频免费观看在线| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 久久影院123| 亚洲三级黄色毛片| 如日韩欧美国产精品一区二区三区 | 又粗又硬又长又爽又黄的视频| 久久久精品区二区三区| 国产一区二区三区综合在线观看 | 一个人免费看片子| 少妇丰满av| 亚洲欧美一区二区三区国产| 黄色配什么色好看| 丰满乱子伦码专区| 狠狠精品人妻久久久久久综合| 蜜臀久久99精品久久宅男| 色婷婷久久久亚洲欧美| 欧美激情极品国产一区二区三区 | 久久久久人妻精品一区果冻| 91成人精品电影| 久久99精品国语久久久| 久久午夜福利片| 日韩电影二区| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 亚洲成人av在线免费| 狂野欧美激情性xxxx在线观看| 十八禁高潮呻吟视频| 视频在线观看一区二区三区| 国产亚洲精品久久久com| 黄色一级大片看看| 精品少妇内射三级| 99视频精品全部免费 在线| 中文字幕精品免费在线观看视频 | 久久99精品国语久久久| 老司机亚洲免费影院| 国产精品人妻久久久久久| 七月丁香在线播放| 人妻系列 视频| 老司机影院毛片| 成人影院久久| 亚洲欧美色中文字幕在线| 免费观看a级毛片全部| 国内精品宾馆在线| 少妇高潮的动态图| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| 最近中文字幕高清免费大全6| 在线精品无人区一区二区三| 中文字幕av电影在线播放| .国产精品久久| 美女cb高潮喷水在线观看| 欧美xxⅹ黑人| 亚洲人与动物交配视频| 国产精品成人在线| 三上悠亚av全集在线观看| 国产极品粉嫩免费观看在线 | 欧美日韩视频精品一区| 精品亚洲乱码少妇综合久久| 国产国拍精品亚洲av在线观看| 两个人免费观看高清视频| 国产国拍精品亚洲av在线观看| 久久毛片免费看一区二区三区| 免费大片18禁| 亚洲人成77777在线视频| 免费观看的影片在线观看| 成人毛片60女人毛片免费| 熟女人妻精品中文字幕| 欧美日韩视频精品一区| 伊人久久国产一区二区| 国产精品免费大片| 久久av网站| 久久国产亚洲av麻豆专区| 国产熟女欧美一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品一区二区三区在线| av网站免费在线观看视频| 欧美精品亚洲一区二区| 午夜av观看不卡| 女的被弄到高潮叫床怎么办| 国产成人免费观看mmmm| 亚洲三级黄色毛片| 中国国产av一级| 欧美日本中文国产一区发布| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 在线免费观看不下载黄p国产| 国产午夜精品久久久久久一区二区三区| 特大巨黑吊av在线直播| 色吧在线观看| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 少妇高潮的动态图| 日本欧美国产在线视频| 91久久精品电影网| 妹子高潮喷水视频| 亚洲国产精品专区欧美| h视频一区二区三区| 9色porny在线观看| 国产白丝娇喘喷水9色精品| 精品久久久精品久久久| 天天操日日干夜夜撸| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久小说| 乱人伦中国视频| 啦啦啦在线观看免费高清www| 人妻 亚洲 视频| 午夜免费鲁丝| 全区人妻精品视频| 亚洲五月色婷婷综合| 观看av在线不卡| 丁香六月天网| 国产视频首页在线观看| 五月开心婷婷网| 2021少妇久久久久久久久久久| 亚洲精品亚洲一区二区| 亚洲人成网站在线播| 国产欧美另类精品又又久久亚洲欧美| 国产av一区二区精品久久| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 亚洲国产精品成人久久小说| 免费人妻精品一区二区三区视频| 久久精品国产a三级三级三级| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人伦理影院| 国产免费一区二区三区四区乱码| 22中文网久久字幕| 亚洲精品中文字幕在线视频| 中国三级夫妇交换| 国产不卡av网站在线观看| 热re99久久国产66热| 成人毛片a级毛片在线播放| 丝袜在线中文字幕| 亚洲国产欧美在线一区| 精品人妻熟女毛片av久久网站| 一区二区三区乱码不卡18| 亚洲av中文av极速乱| 自线自在国产av| 国产男女内射视频| 国产精品一区二区三区四区免费观看| 亚洲综合精品二区| 亚洲精品久久久久久婷婷小说| 黑人巨大精品欧美一区二区蜜桃 | 人人澡人人妻人| 精品国产露脸久久av麻豆| 日韩 亚洲 欧美在线| 69精品国产乱码久久久| 久久久国产欧美日韩av| 久久人人爽av亚洲精品天堂| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩另类电影网站| 少妇人妻久久综合中文| 亚洲欧美成人精品一区二区| 精品久久久精品久久久| 日本与韩国留学比较| 精品亚洲乱码少妇综合久久| 日韩强制内射视频| 欧美日韩综合久久久久久| 韩国av在线不卡| 亚洲国产精品专区欧美| a级片在线免费高清观看视频| 91精品伊人久久大香线蕉| 久久热精品热| 老熟女久久久| av天堂久久9| 插逼视频在线观看| 三级国产精品片| 亚洲伊人久久精品综合| 日韩成人伦理影院| 一本大道久久a久久精品| 国产极品天堂在线| 国产在线一区二区三区精| 男女边吃奶边做爰视频| 波野结衣二区三区在线| 人妻系列 视频| 日韩大片免费观看网站| 亚洲在久久综合| 在线 av 中文字幕| 日本午夜av视频| 亚洲综合色网址| 午夜视频国产福利| 丰满少妇做爰视频| 日本与韩国留学比较| 一级爰片在线观看| 国产av国产精品国产| 欧美精品人与动牲交sv欧美| 黑人巨大精品欧美一区二区蜜桃 | 性色av一级| 国产一区亚洲一区在线观看| 久久鲁丝午夜福利片| 女性被躁到高潮视频| 国产欧美日韩综合在线一区二区| 欧美变态另类bdsm刘玥| 人妻人人澡人人爽人人| 亚洲熟女精品中文字幕| 精品一品国产午夜福利视频| 国产免费视频播放在线视频| 久久久久久久久久久久大奶| 蜜桃久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 熟女电影av网| 91精品国产九色| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 日本黄色片子视频| 久久人人爽人人爽人人片va| 色94色欧美一区二区| 99热这里只有是精品在线观看| 我的女老师完整版在线观看| 精品人妻熟女毛片av久久网站| 人妻少妇偷人精品九色| 一区二区av电影网| 久久av网站| 精品一区二区三区视频在线| 久久精品久久久久久噜噜老黄| 18+在线观看网站| 亚洲四区av| 国产一区二区在线观看日韩| 人妻 亚洲 视频| av电影中文网址| 黄片无遮挡物在线观看| 免费人成在线观看视频色| 少妇猛男粗大的猛烈进出视频| 蜜臀久久99精品久久宅男| 亚洲第一av免费看| 国产精品久久久久久av不卡| 日本与韩国留学比较| 欧美精品高潮呻吟av久久| 久久久精品94久久精品| 亚洲在久久综合| 色视频在线一区二区三区| 99热全是精品| 国产 一区精品| 乱人伦中国视频| 97超视频在线观看视频| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 成年人免费黄色播放视频| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 各种免费的搞黄视频| kizo精华| 大片免费播放器 马上看|