• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect

    2016-11-23 03:30:18FUYundLIAOHong
    關(guān)鍵詞:異戊二烯前體氣溶膠

    FU Yund LIAO Hong

    aClimate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing, China;bSchool of Environmental Science and Engineering,Nanjing University of Information Science & Technology, Nanjing, China

    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect

    FU Yuaand LIAO Hongb

    aClimate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing, China;bSchool of Environmental Science and Engineering,Nanjing University of Information Science & Technology, Nanjing, China

    Isoprene emissions emitted from vegetation are one of the most important precursors for tropospheric ozone and secondary organic aerosol formation. The authors estimate the biogenic isoprene emissions in China over 2006-2011 using a global chemical transport model (GEOSChem) driven by meteorological felds from the assimilated meteorological data from MERRA. The authors incorporate three diferent parameterizations of isoprene-CO2interaction into the model,and perform three sensitivity simulations to investigate the efect of CO2inhibition on isoprene emissions for the period 2006-2011 in China. The annual isoprene emissions rate across China is simulated to be 12.62 Tg C yr-1, averaged over 2006-2011, and decreases by about 2.7%-7.4% when the CO2inhibition schemes are included. The CO2inhibition efect might be signifcant in regions where the CO2concentration and isoprene emissions are high. Estimates of isoprene emissions can difer depending on the scheme of CO2inhibition. According to the results obtained from the sensitivity simulations, the authors fnd that the CO2inhibition efect leads to 5.6% ± 2.3% reductions in annual isoprene emissions over China. The authors also fnd that inclusion of CO2inhibition can substantially alter the sensitivity of isoprene emissions to the changes in meteorological conditions during the study period.

    ARTICLE HISTORY

    Revised 5 January 2016

    Accepted 1 April 2016

    Isoprene emissions; CO2;

    inhibition; GEOS-Chem model

    陸地植被排放的異戊二烯是對流層臭氧及二次有機(jī)氣溶膠的形成重要前體物之一。已有研究表明,當(dāng)CO2濃度超過一定水平時可能使得葉片氣孔關(guān)閉,對葉片釋放異戊二烯產(chǎn)生直接的抑制作用。而這一影響機(jī)制在目前大多數(shù)異戊二烯排放估算時并沒有考慮在內(nèi),對其排放的估算仍存在很大的不確定性。本文基于GEOS-Chem及其耦合的MEGAN模式模擬了2006-2011年中國異戊二烯的排放變化。通過引入三種不同CO2抑制作用參數(shù)化因子的模擬試驗(yàn),定量評估了CO2抑制作用對異戊二烯排放的影響及不確定性。結(jié)果表明:考慮CO2抑制參數(shù)因子后,中國年平均異戊二烯的排放量平均減少了5.6% ± 2.3%。不同參數(shù)化方案對排放的抑制程度存在差異。CO2對異戊二烯排放的影響將會改變其對氣象條件變化的敏感性,從而影響空氣質(zhì)量。

    1. Introduction

    Isoprene is a volatile organic compound (VOC) mainly emitted from terrestrial vegetation, and it makes up the largest fraction of non-methane biogenic VOCs, with an estimated emissions rate of 400-600 Tg C yr-1at the global scale (Guenther et al. 2006; Arneth et al. 2008). In polluted regions, biogenic isoprene emissions are an important contributor to tropospheric ozone formation in the presence of nitrogen oxides (NOx), but in remote regions with low-NOxconcentration, isoprene could reduce ozone by sequestering NOxas isoprene nitrate or by ozonolysis(Fiore et al. 2012). In addition, isoprene acts as a major precursor for secondary organic aerosol (SOA) formation,and can afect the atmospheric oxidation capacity through infuencing the regional level of tropospheric hydroxyl radicals (OH) and the lifetime of methane (Pe?uelas and Staudt 2010). Therefore, changes in isoprene emissions could modulate atmospheric composition and chemistry. An accurate estimate of isoprene emissions is important for air quality and climate change studies, and thus warrants in-depth investigation.

    Many previous studies have shown that biogenic isoprene emissions are not only dependent on changes in environmental factors, such as canopy temperature, light,soil moisture etc., but also related to changes in vegetation type, vegetation distribution, leaf area, and leaf age(Guenther et al. 2006). Some recent studies have reported that changes in atmospheric CO2concentration mightpromote or limit isoprene emissions from vegetation. Increasing CO2concentration could enhance vegetation productivity (Piao et al. 2011), and hence indirectly promote isoprene emissions. However, it is unclear whether a raised atmospheric CO2concentration would increase isoprene emissions intrinsically (Pe?uelas and Staudt 2010). Several laboratory and feld studies have indicated that the isoprene emissions rate has an inverse relationship in response to rising CO2concentration in the short and long term because an elevated CO2concentration might uncouple isoprene emissions from photosynthesis and suppress isoprene emissions at leaf level (Rosenstiel et al. 2003; Possell, Hewitt, and Beerling 2005) (known as ‘the CO2-inhibition efect').

    A number of previous studies have attempted to introduce the CO2-inhibition efect into chemical transport models for examining the impact of climate change on isoprene emissions, although the relationship between CO2and isoprene is not fully understood (Arneth et al. 2007;Heald et al. 2009; Wilkinson et al. 2009; Lathière, Hewitt,and Beerling 2010; Possell and Hewitt 2010). Arneth et al.(2007) found that observed leaf isoprene emissions were reproduced well by implementing the isoprene response to CO2concentration into the model used in their study,which is expressed as the ratio of the leaf internal CO2concentration at ambient CO2= 370 ppmv to the leaf internal CO2concentration. They also suggested the CO2-inhibition efect could be large enough to counteract the increases in isoprene emissions due to CO2-induced enhancement of vegetation productivity and leaf area growth. According to the isoprene measurements taken from aspen trees growing under four diferent CO2concentrations, Wilkinson et al. (2009) proposed a sigmoidal, Hill-reaction type isoprene-CO2curve to describe the short-term and longterm isoprene response to changes in atmospheric CO2. Heald et al. (2009) used a global coupled land-atmosphere model with the CO2-isoprene parameterization of Wilkinson et al. (2009) to explore the potential role of CO2in isoprene emissions over 2000-2100. They suggested the projected increases in isoprene emissions due to the warming climate in 2100 could be signifcantly modifed by including the CO2inhibition efect. Recently, Possell and Hewitt (2010) improved the isoprene-CO2response curve by considering a wide range of tree species from tropical to temperate regions. The aforementioned studies indicate the important impacts of changes in atmospheric CO2concentration on isoprene emissions simulation, but large discrepancies remain among these isoprene-CO2relationships and related parameters. Such diferences can result in diferent isoprene emissions predictions. Recently,a number of studies have examined biogenic emissions in China (Li et al. 2012; Li, Chen, and Xie 2013; Fu and Liao 2014; Li and Xie 2014). However, those studies were mostly focused on the estimation and spatiotemporal variation of biogenic VOC emissions, and investigating the roles of meteorological factors and vegetation parameters in biogenic emissions. No previous studies have quantifed the impact of CO2concentration on isoprene emissions in China, or evaluated the uncertainty of the CO2-inhibition efect.

    In this study, we use a global chemical transport model(GEOS-Chem) to estimate the biogenic isoprene emissions in China over 2006-2011, and examine the efect of CO2inhibition on regional isoprene emissions. We quantify the CO2-inhibition efect on the simulation of isoprene emissions and the uncertainty in comparison with diferent CO2inhibition parameterizations in the model, based on previous studies. We further discuss the implications for regional air quality due to the inclusion of CO2inhibition efects on isoprene emissions.

    2. Model and methods

    We use the GEOS-Chem global 3D chemical transport model, version 9-02 (http://acmg.seas.harvard.edu/geos/)to simulate the biogenic isoprene emissions in China over 2006-2011. The model is driven by the assimilated meteorological data from MERRA (http://gmao.gsfc.nasa.gov/ merra/), with a horizontal resolution of 2.0° latitude × 2.5° longitude and a reduced vertical resolution of 47 levels. A similar modelling framework was used by Fu and Tai (2015). In GEOS-Chem, biogenic isoprene emissions are calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) (Guenther et al. 2006, 2012), which is estimated as a function of plant functional type-specifc emission factors (E0, μg C m-2h-1) modulated by environmental activity factors (normalized ratio) to account for the efects of temperature (γT), light (γp), leaf age (γage) ,LAI, soil moisture (γsm) and CO2concentration (γCO2). The biogenic isoprene emissions rate (E) in each model grid cell is computed as

    However, the default model does not consider the efect of soil moisture and CO2inhibition by settingγsm=1 and γCO2=1. To account for the CO2-inhibition efect,the empirical relationships between CO2concentration and the isoprene emissions rate from previous studies are applied in this work. For examining the impact of CO2inhibition on isoprene simulation, we perform four sets of simulations: [noCO2_ctrl], [wCO2_A], [wCO2_W],and [wCO2_P]. For each set, a six-year simulation is performed with meteorological felds from 2006 to 2011, present-day vegetation parameters and fxed anthropogenic emissions at year-2005 levels (Streets et al. 2003; Zhang et al. 2009). The simulation [noCO2_ctrl] is the controlsimulation without the CO2-inhibition efect. The simulations [wCO2_A], [wCO2_W], and [wCO2_P] are the sensitivity simulations, which are similar to [noCO2_ctrl] but with diferent CO2-inhibition parameterizations. In the simulation [wCO2_A], the empirical CO2-isoprene relationship is from Arneth et al. (2007) (Equation (2)); and in the simulation [wCO2_W], the CO2inhibition parameterization of Wilkinson et al. (2009) is used (Equation (3)). The simulation[wCO2_P] applies the CO2-inhibition efect given by Possell and Hewitt (2010) (Equation (4)). The CO2concentrations used for calculating the γCO2in all the simulations are from the GEOS-Chem CO2simulation during the same period.

    As shown in Arneth et al. (2007), the additional activity factor associated with the CO2suppressed efect can be modelled in Equation (2): where Ciis the leaf internal CO2concentration, and Ci-370is the leaf internal concentration at ambient CO2= 370 ppmv(under non-water-stressed conditions). According to Possell, Hewitt, and Beerling (2005),Ciis about 70% of the ambient CO2concentration (Ca).

    We also apply the isoprene-CO2relationship from Wilkinson et al. (2009), which is

    where Isis the isoprene emissions rate,Ismaxis the estimated asymptote at which further decreases in CO2concentration (Ci) would suppress isoprene emissions, andC?and h are the Hill-type coefcients used to adjust the sigmoidal slope of the relationship between Isand Ci. In this study,the Ismax, C?, and h are determined from the measurements of plants grown at four diferent CO2concentrations (400,600, 800, and 1200 ppmv), by best-ft lines. The parameters are obtained from Wilkinson et al. (2009, Table 1).

    The third normalized ratio to account for the efect of CO2concentration is provided by Possell and Hewitt(2010),

    where γCO2=1at a CO2concentration equal to 370 ppmv,and a and b are empirical coefcients. Here, we use the ftting parameters a = 8.9406 and b = 0.0024 ppm-1, which are provided in Possell and Hewitt (2010, Figure 5).

    3. Results

    Without the CO2efect ([noCO2_ctrl]), the simulated annual isoprene emissions rate averaged over 2006-2011 across China is about 12.62 Tg C yr-1. The annual isoprene emissions rate simulated in this study is within the range of 9.3-23.4 Tg C yr-1reported for China (Fu and Liao 2012;Li, Chen, and Xie 2013). Isoprene emissions are highest in summer (June-July-August, JJA) and lowest in winter (December-January-February, DJF). The isoprene emissions in DJF, MAM (March-April-May), JJA, and SON(September-October-November) account for 4.8%, 18.5%,55.0%, and 21.7% of the annual emissions, respectively(Table 1). Figure 1(a) shows the spatial distribution of summertime and annual mean isoprene emissions from the[noCO2_ctrl] simulation averaged over 2006-2011. We fnd that, largely, isoprene emissions are simulated over southern (south of 35°N) and northeastern China in summer,which are within the range of 10-40 mg C m-2d-1, and mostly attributable to the increases in temperature and vegetation density. In addition, the spatial distribution of isoprene emissions is generally consistent with the distribution of trees in China, as trees are considered the highest isoprene emitter, compared with other vegetation types such as crops and grass.

    We fnd that the spatial patterns of CO2efects on isoprene emissions are similar over China, despite the amount of infuence exhibiting some discrepancies among the three diferent CO2-inhibition parameterizations (Figure 1(b-d)). As shown in Figure 1, the CO2efect can substantially reduce isoprene emissions in summer in most of eastern China, especially in the eastern regions of Sichuan Province and southeastern China. The strong reductions in isoprene emissions in those regions are primarily due to the atmospheric CO2concentrations in those regions being generally higher than in other regions. As reportedby a number of laboratory-based studies, when CO2changes within the range of 200-1200 ppmv, trees grown at lower CO2concentrations exhibit signifcantly higher isoprene emission rates compared with those grown at higher CO2concentrations (Possell, Hewitt, and Beerling 2005; Wilkinson et al. 2009). The plant physiological and biochemical mechanisms responsible for the CO2suppression of isoprene emissions are poorly understood, but likely relate to the changes in the substrates for isoprene biosynthesis and metabolism at leaf level under increased CO2concentrations (Rosenstiel et al. 2003). In the eastern regions of Sichuan Province and parts of southeastern China, isoprene emissions decline by more than 9% to a maximum of -3.5 mg C m-2d-1in summer when the CO2-inhibition efects are included, indicating the importance of the CO2-inhibition efect on estimates of isoprene emissions. The consideration of CO2inhibition reduces annual isoprene emissions by around 2.7%-7.4% (Table 1).

    Table 1.Estimates of isoprene emission rates in China averaged over 2006-2011 (Tg C yr-1). Also shown are the percentage changes of isoprene emissions (%) between the experiments with ([wCO2_A], [wCO2_P], and [wCO2_W]) and without ([noCO2_ctrl]) the CO2-inhibition efect.

    Figure 1.(a) Simulated summertime (left column) and annual (right column) biogenic isoprene emissions averaged over 2006-2011 in China in [noCO2_ctrl]. (b) Spatial distribution of changes in isoprene emissions as a result of the CO2-inhibition efect using the scheme of Arneth et al. (2007) ([wCO2_A] - [noCO2_ctrl]). (c) As in (b) but with the scheme of Possell and Hewitt (2010) ([wCO2_P] - [noCO2_ctrl]).(d) As in (b) but with the scheme of Wilkinson et al. (2009) ([wCO2_W] - [noCO2_ctrl]).

    Figure 2.Box-plots for the annual variations of the CO2-inhibition efect on seasonal isoprene emissions in China from three diferent parameterizations of the isoprene-CO2relationship during the years 2006-2011.

    Figure 2 represents the efects of CO2inhibition on seasonal isoprene emissions over China during 2006-2011 from [wCO2_A] - [noCO2_ctrl], [wCO2_P] - [noCO2_ctrl],and [wCO2_W] - [noCO2_ctrl]. In all seasons, the maximum reduction in isoprene emissions due to the CO2efect is obtained in [wCO2_A], followed by [wCO2_P] and [wCO2_W]. The CO2efect on isoprene emissions exhibits little seasonal variation in all sensitivity simulations. However, the changes in isoprene emissions resulting from CO2inhibition display interannual variation during 2006-2011, except those in[wCO2_W]. In [wCO2_A], the isoprene emissions in DJF over China decrease by -7.8% (median value) when taking into account CO2inhibition, and the decline in isoprene emissions in MAM due to CO2inhibition varies from -9.8% to-6.6%, with a median of -8.4%. In JJA and SON, the CO2efect leads to a decrease in isoprene emissions of -8.5% to -6.0% in [wCO2_A] over 2006-2011. The reductions in isoprene emissions induced by the CO2efect in [wCO2_P]are similar to the results of [wCO2_A]. We also fnd that the interannual variation in isoprene emissions, induced by the efect of CO2inhibition, is quite important compared to the impact of land-cover and land-use change. As shown by Fu and Liao (2012), simulated isoprene emissions in summer over eastern China change by 5%-8% as a result of vegetation change alone over 2001-2006.

    As shown above, estimates of isoprene emissions can difer depending on the CO2-isoprene response curve,which also represents a major source of uncertainty in projecting future isoprene emissions as the atmospheric CO2concentration continues to rise. The discrepancies in the three CO2-isoprene relationships likely result from the diferences in quantitative algorithms and empirical coefcients, which are obtained from diferent plant species in growth-chamber experiments. For example, some studies describe the response as a purely mathematical relationship based on the experimental growth of two isoprene-emitting herbaceous species under diferent CO2levels (Possell, Hewitt, and Beerling 2005; Arneth et al. 2007). Whereas, Wilkinson et al. (2009) constructed an empirical relationship through consideration of the principles of enzyme kinetics based on the measured responses of temperate cottonwood and aspen trees under controlled-environment growth chambers. Possell and Hewitt (2010) attempted to defne the CO2-inhibition efect using laboratory measurements of tropical tree species (Acacia nigrescens). In order to better understand the calculated CO2inhibition in the model, we further quantify the CO2-inhibition efect and its uncertainty according to the results of the sensitivity simulations. As shown in Figure 3, in the presence of CO2-isoprene interaction, the annual present-day (2006-2011) isoprene emissions over China reduce by 5.6% ± 2.3%, while the isoprene emissions in DJF, MAM, JJA, and SON are cut by 5.9% ± 2.5%,6.2% ± 2.7%, 5.3% ± 2.1%, and 5.5% ± 2.2%, respectively.

    Figure 3.Estimates of the CO2-inhibition efect on isoprene emissions from existing parameterizations in the model.

    The signifcance of the variations induced by CO2inhibition can also be demonstrated when compared with the changes in isoprene emissions resulting from climate change alone. For instance, without the CO2efect,changes in meteorological conditions between the two three-year periods of 2006-2008 and 2009-2011 enhances summertime isoprene emissions by about 50 Gg C/ month in China (1 Gg = 109g) (isoprene averaged over 2009-2011 minus isoprene averaged over 2006-2008). However, inclusion of the CO2efect can partly ofset such increases or even reverse the sign. The simulated summertime isoprene increment from the period 2006-2008 to the period 2009-2011 on average shrinks by 20% when the CO2efect is considered in [wCO2_W], while the CO2efect in [wCO2_A] and [wCO2_P] can completely nullify such an increase and lead to 70 Gg C/month and 60 Gg C/month reductions in isoprene emissions, respectively. The results in this study imply that the inclusion of CO2inhibition can substantially afect the sensitivity of isoprene emissions to changes in meteorological conditions. The impact of CO2inhibition can be more signifcant on multi-decadal scales than the magnitudes reported here. Recently, a few studies have indicated that the inclusion of CO2inhibition would generally reduce the sensitivity of air pollution to climate and vegetation change under future projection. Tai et al.(2013) reported that, over 2000-2050, the inclusion of CO2inhibition leads to reduced sensitivity of surface ozone and SOA (by more than 50%) to climate and natural vegetation change where isoprene emissions are important, implying a beneft of air quality in populated, high-NOxregions.

    4. Discussion and conclusions

    A global transport model (GEOS-Chem) is used in this study to simulate the isoprene emissions over China, with the inclusion of CO2-isoprene interaction, from 2006 to 2011. Without the CO2-inhibition efect, the simulated isoprene emissions rate is approximately 12.62 Tg C yr-1across China. To quantify the impact of CO2inhibition on isoprene emissions, three estimates of isoprene emissions with different parameterizations of the CO2-isoprene response are compared. The results indicate that the CO2-inhibition efect, which is not included in most chemistry or climate modelling studies, is signifcant in estimating isoprene emissions. For instance, applying the Wilkinson et al. (2009)scheme in [wCO2_W] decreases annual isoprene emissions by ~3% relative to the control simulation ([noCO2_ctrl])without CO2inhibition. Whereas, applying the CO2inhibition scheme of Arneth et al. (2007) in [wCO2_A] and Possell and Hewitt (2010) in [wCO2_P] reduces annual isoprene emissions by ~7% over China. This efect might be signifcant in regions where the CO2concentration and isoprene emissions are high. To summarize, the impact of CO2inhibition can lead to an annual isoprene emissions decrease of 5.6% ± 2.3%. Regionally, summertime isoprene emissions might be cut by more than 9% when the CO2-inhibition efect is included. Compared with the changes in isoprene emissions resulting from climate change alone on the multi-decadal scale, the reductions in isoprene emissions induced by CO2inhibition are signifcant. Sensitivity studies have shown that, in China, changes in meteorological conditions between the late 1980s and mid-2000s led to increases in isoprene emissions by 17% (Fu and Liao 2014). The changes in isoprene emissions resulting from climate change can be modifed if the CO2inhibition is accounted for in the model.

    There are a few studies that have indicated that the CO2-isoprene efect might have a potential infuence for projected ozone air quality or SOA concentrations under future climate change scenarios (Young et al. 2009; Tai et al. 2013), because they are both sensitive to the spatial and temporal variations of biogenic isoprene emissions (Fu and Liao 2012). In this study, the inclusion of CO2inhibition may lead to a reduction in SOA concentrations (by ~10%)where isoprene emissions largely decrease. Future work should focus on a more systematic analysis of the variation of in ozone and SOA to CO2-isoprene integration under climate change. However, the CO2-isoprene response curves are built on a limited number of measurements for several species in earlier studies, so the parameterizations of CO2-isoprene interaction still pose a challenge for accurate estimates of isoprene emissions in China at present. In addition, a few previous experimental studies pointed out that inhibition of the isoprene emissions rate occurs in the presence of an increased CO2concentration for both short-term exposure (seconds to minutes) and long-term exposure (weeks to months). The responses of isoprene emissions to changes in CO2concentration might be diferent on various time scales. For instance, the response of isoprene emissions might be driven by adjustments in existing metabolic components during a single day. Whereas, on time scales at which leaves develop and grow(weeks or months), the response of isoprene emissions is likely driven by the adjustments in gene expression and the production of new metabolic components (Wilkinson et al. 2009). Here, we only focus on the efects of CO2inhibition on monthly and seasonal isoprene emissions, rather than diurnal isoprene emissions, mostly because the changes in sub-ambient CO2concentration (intercellular CO2) over shorter time scales are scarce. The short-term efect of CO2inhibition on daily isoprene emissions is still a challenge and full of large uncertainty, especially in China. Wilkinson et al. (2009) reported that the sensitivity of the isoprene emissions rate to intercellular CO2could decrease with long-term exposure to increased atmospheric CO2if the intercellular CO2concentration changes between 200 and 400 ppmv. Since the diurnal variation of isoprene emissions is strong, the diurnal efect of CO2concentration on isoprene emissions defnitely warrants further investigation. More specifc information on, and measurements of, extensive and representative plant species from major isoprenerelease regions are required to improve CO2-isoprene parameterization in future studies in China.

    Acknowledgements

    The MERRA data used in this study were provided by the Global Modeling and Assimilation Ofce (GMAO) at the NASA Goddard Space Flight Center through the NASA GES DISC online archive.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41405138]; the National High Technology Research and Development Program of China[grant number 2013AA122002].

    References

    Arneth, A., R. K. Monson, G. Schurgers, U. Niinemets, and P. I. Palmer. 2008. “Why Are Estimates of Global Terrestrial Isoprene Emissions So Similar (and Why is This Not So for Monoterpenes)?” Atmospheric Chemistry and Physics 8: 4605-4620. doi:http://dx.doi.org/10.5194/acp-8-4605-2008.

    Arneth, A., ü. Niinemets, S. Pressley, J. B?ck, P. Hari, T. Karl, S. Noe,et al. 2007. “Process-Based Estimates of Terrestrial Ecosystem Isoprene Emissions: Incorporating the Efects of a Direct CO2-Isoprene Interaction.” Atmospheric Chemistry and Physics 7: 31-53. doi:http://dx.doi.org/10.5194/acp-7-31-2007.

    Fiore, A. M., V. Naik, D. V. Spracklen, A. Steiner, N. Unger,M. Prather, D. Bergmann, et al. 2012. “Global Air Quality and Climate.” Chemical Society Reviews 41: 6663-6683. doi:http:// dx.doi.org/10.1039/C2CS35095E.

    Fu, Y., and H. Liao. 2012. “Simulation of the Interannual Variations of Biogenic Emissions of Volatile Organic Compounds in China: Impacts on Tropospheric Ozone and Secondary Organic Aerosol.” Atmospheric Environment 59: 170-185. doi:http://dx.doi.org/10.1016/j.atmosenv.2012.05.053.

    Fu, Y., and H. Liao. 2014. “Impacts of Land Use and Land Cover Changes on Biogenic Emissions of Volatile Organic Compounds in China from the Late 1980s to the mid-2000s: Implications for Tropospheric Ozone and Secondary Organic Aerosol.” Tellus B 66: 24987. doi:http://dx.doi.org/10.3402/ tellusb.v66.24987.

    Fu, Y., and A. P. K. Tai. 2015. “Impact of Climate and Land Cover Changes on Tropospheric Ozone Air Quality and Public Health in East Asia between 1980 and 2010.” Atmospheric Chemistry and Physics 15: 10093-10106. doi:http://dx.doi. org/10.5194/acp-15-10093-2015.

    Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl,L. K. Emmons, and X. Wang. 2012. “The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1): An Extended and Updated Framework for Modeling Biogenic Emissions.” Geoscientific Model Development 5: 1471-1492. doi:http://dx.doi.org/10.5194/gmd-5-1471-2012.

    Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron. 2006. “Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature).” Atmospheric Chemistry and Physics 6: 3181-3210. doi:http://dx.doi.org/10.5194/acp-6-3181-2006.

    Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. Wang,and A. Guenther. 2009. “Response of Isoprene Emission to Ambient CO2Changes and Implications for Global Budgets.”Global Change Biology 15: 1127-1140. doi:http://dx.doi. org/10.1111/j.1365-2486.2008.01802.x.

    Lathière, J., C. N. Hewitt, and D. J. Beerling. 2010. “Sensitivity of Isoprene Emissions from the Terrestrial Biosphere to 20th Century Changes in Atmospheric CO2Concentration,Climate, and Land Use.” Global Biogeochemical Cycles 24: GB1004. doi:http://dx.doi.org/10.1029/2009gb003548.

    Li, L. Y., Y. Chen, and S. D. Xie. 2013. “Spatio-Temporal Variation of Biogenic Volatile Organic Compounds Emissions in China.”Environmental Pollution 182: 157-168. doi:http://dx.doi. org/10.1016/j.envpol.2013.06.042.

    Li, M., X. Huang, J. Li, and Y. Song. 2012. “Estimation of Biogenic Volatile Organic Compound (BVOC) Emissions from the Terrestrial Ecosystem in China Using Real-Time Remote Sensing Data.” Atmospheric Chemistry and Physics Discussion 12: 6551-6592. doi:http://dx.doi.org/10.5194/acpd-12-6551-2012.

    Li, L. Y., and S. D. Xie. 2014. “Historical Variations of Biogenic Volatile Organic Compound Emission Inventories in China,1981-2003.” Atmospheric Environment 95: 185-196. doi:http:// dx.doi.org/10.1016/j.atmosenv.2014.06.033.

    Pe?uelas, J., and M. Staudt. 2010. “BVOCs and Global Change.”Trends in Plant Science 15: 133-144. doi:http://dx.doi. org/10.1016/j.tplants.2009.12.005.

    Piao, S., P. Ciais, M. Lomas, C. Beer, H. Liu, J. Fang, P. Friedlingstein,et al. 2011. “Contribution of Climate Change and Rising CO2to Terrestrial Carbon Balance in East Asia: A Multi-Model Analysis.” Global and Planetary Change 75: 133-142. doi:http://dx.doi.org/10.1016/j.gloplacha.2010.10.014.

    Possell, M., and C. N. Hewitt. 2010. “Isoprene Emissions from Plants Are Mediated by Atmospheric CO2Concentrations.”Global Change Biology 17: 1595-1610. doi:http://dx.doi. org/10.1111/j.1365-2486.2010.02306.x.

    Possell, M., C. N. Hewitt, and D. J. Beerling. 2005. “The Efects of Glacial Atmospheric CO2Concentrations and Climate on Isoprene Emissions by Vascular Plants.” Global Change Biology 11: 60-69. doi:http://dx.doi.org/10.1111/j.1365-2486.2004.00889.x.

    Rosenstiel, T. N., M. J. Potosnak, K. L. Grifn, R. Fall, and R. K. Monson. 2003. “Increased CO2Uncouples Growth from Isoprene Emission in an Agriforest Ecosystem.” Nature 421: 256-259. doi:http://dx.doi.org/10.1038/nature01312.

    Streets, D. G., T. C. Bond, G. R. Carmichael, S. D. Fernandes, Q. Fu,D. He, Z. Klimont, et al. 2003. “An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000.” Journal of Geophysical Research: Atmospheres 108 (D21): 8809. doi: http://dx.doi.org/10.1029/2002jd003093.

    Tai, A. P. K., L. J. Mickley, C. L. Heald, and S. L. Wu. 2013. “Efect of CO2Inhibition on Biogenic Isoprene Emission: Implications for Air Quality under 2000 to 2050 Changes in Climate,Vegetation, and Land Use.” Geophysical Research Letters 40: 3479-3483. doi:http://dx.doi.org/10.1002/Grl.50650.

    Wilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown,R. B. Jackson, H. W. Polley, P. A. Fay, and R. A. Y. Fall. 2009.“Leaf Isoprene Emission Rate as a Function of Atmospheric CO2Concentration.” Global Change Biology 15: 1189-1200. doi:http://dx.doi.org/10.1111/j.1365-2486.2008.01803.x.

    Young, P. J., A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle. 2009. “The CO2Inhibition of Terrestrial Isoprene Emission Signifcantly Afects Future Ozone Projections.” Atmospheric Chemistry and Physics 9: 2793-2803. doi:http://dx.doi. org/10.5194/acp-9-2793-2009.

    Zhang, Q., D. G. Streets, G. R. Carmichael, K. B. He, H. Huo,A. Kannari, Z. Klimont, et al. 2009. “Asian Emissions in 2006 for the NASA INTEX-B Mission.” Atmospheric Chemistry and Physics 9: 5131-5153. doi:http://dx.doi.org/10.5194/acp-9-5131-2009.

    異戊二烯排放; 二氧化碳;抑制作用; 模式模擬

    19 November 2015

    CONTACT LIAO Hong hongliao@nuist.edu.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    異戊二烯前體氣溶膠
    N-末端腦鈉肽前體與糖尿病及糖尿病相關(guān)并發(fā)癥呈負(fù)相關(guān)
    氣溶膠傳播之謎
    氣溶膠中210Po測定的不確定度評定
    四川盆地秋季氣溶膠與云的相關(guān)分析
    N-端腦鈉肽前體測定在高血壓疾病中的應(yīng)用研究
    異戊二烯生物合成研究進(jìn)展
    一種室溫硫化聚異戊二烯橡膠的制備方法
    一種制備異戊二烯聚合物的方法
    石油化工(2015年9期)2015-08-15 00:43:05
    大氣氣溶膠成核監(jiān)測
    茶葉香氣前體物研究進(jìn)展
    茶葉通訊(2014年2期)2014-02-27 07:55:40
    精品久久久久久久久久免费视频| 不卡一级毛片| 成人三级黄色视频| 亚洲最大成人av| 在线播放无遮挡| 亚洲狠狠婷婷综合久久图片| 一个人看视频在线观看www免费| 最好的美女福利视频网| 亚洲av不卡在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲久久久久久中文字幕| 床上黄色一级片| 人妻制服诱惑在线中文字幕| av视频在线观看入口| 免费av观看视频| 日韩欧美免费精品| 免费观看的影片在线观看| 国产高清三级在线| 亚洲在线自拍视频| 久久久色成人| 中文字幕av在线有码专区| 国产亚洲欧美98| 日本 av在线| 午夜福利18| 天堂动漫精品| 欧美日韩亚洲国产一区二区在线观看| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 天堂网av新在线| 看免费成人av毛片| 18禁在线播放成人免费| netflix在线观看网站| 又黄又爽又刺激的免费视频.| 亚洲av一区综合| 亚洲国产高清在线一区二区三| 舔av片在线| 在线观看一区二区三区| 人人妻人人看人人澡| 欧美激情在线99| 日韩欧美国产一区二区入口| 老司机福利观看| 岛国在线免费视频观看| 成人毛片a级毛片在线播放| av专区在线播放| 欧美国产日韩亚洲一区| 国产精品久久久久久av不卡| 少妇被粗大猛烈的视频| 国产亚洲精品av在线| 人妻少妇偷人精品九色| 国产男靠女视频免费网站| 91在线精品国自产拍蜜月| 国产高清视频在线播放一区| 一卡2卡三卡四卡精品乱码亚洲| 久久这里只有精品中国| av天堂中文字幕网| 国产精品一区二区免费欧美| 亚洲国产精品成人综合色| 1000部很黄的大片| 在线观看舔阴道视频| 男女视频在线观看网站免费| 草草在线视频免费看| 成人精品一区二区免费| 别揉我奶头 嗯啊视频| 久久精品国产亚洲网站| 亚洲人与动物交配视频| а√天堂www在线а√下载| 露出奶头的视频| 精品午夜福利在线看| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品青青久久久久久| 日韩,欧美,国产一区二区三区 | 床上黄色一级片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线自拍视频| 午夜福利视频1000在线观看| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 啦啦啦韩国在线观看视频| 乱码一卡2卡4卡精品| 精品日产1卡2卡| 欧美色欧美亚洲另类二区| 啦啦啦啦在线视频资源| 给我免费播放毛片高清在线观看| 老熟妇乱子伦视频在线观看| 男女那种视频在线观看| 午夜激情福利司机影院| 欧美zozozo另类| 精品久久国产蜜桃| 亚洲综合色惰| 国产在线精品亚洲第一网站| a在线观看视频网站| 欧美日韩黄片免| 色av中文字幕| 国产一区二区三区在线臀色熟女| 熟女电影av网| 日本一本二区三区精品| 色av中文字幕| 国产美女午夜福利| 夜夜爽天天搞| 我要看日韩黄色一级片| 婷婷六月久久综合丁香| 亚洲精品日韩av片在线观看| 国产三级在线视频| 亚洲精品亚洲一区二区| 国产精品乱码一区二三区的特点| 男插女下体视频免费在线播放| 精品国产三级普通话版| 国产乱人视频| 日韩中文字幕欧美一区二区| 在线a可以看的网站| 不卡视频在线观看欧美| 色综合婷婷激情| 99精品在免费线老司机午夜| 亚洲天堂国产精品一区在线| 老司机午夜福利在线观看视频| 欧美成人一区二区免费高清观看| 亚洲18禁久久av| 国产 一区精品| 国产精品久久久久久亚洲av鲁大| 看免费成人av毛片| 人妻少妇偷人精品九色| 免费电影在线观看免费观看| 日本成人三级电影网站| 欧美日韩综合久久久久久 | 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 亚洲国产欧美人成| 一个人免费在线观看电影| 亚洲黑人精品在线| 国产真实乱freesex| 久久精品国产亚洲网站| 韩国av在线不卡| 又爽又黄a免费视频| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久久电影| 无遮挡黄片免费观看| 国产精品福利在线免费观看| 人人妻,人人澡人人爽秒播| 成人国产综合亚洲| 免费人成在线观看视频色| 国产精品久久久久久久久免| 久久精品国产鲁丝片午夜精品 | 亚洲最大成人中文| 久久久久免费精品人妻一区二区| 久久久国产成人精品二区| 蜜桃亚洲精品一区二区三区| 一级av片app| 精品午夜福利视频在线观看一区| 欧美xxxx性猛交bbbb| 女人十人毛片免费观看3o分钟| 亚洲av.av天堂| 久久国产乱子免费精品| 此物有八面人人有两片| 亚洲乱码一区二区免费版| 男女下面进入的视频免费午夜| 色噜噜av男人的天堂激情| 久久中文看片网| 国产伦精品一区二区三区视频9| 在线观看av片永久免费下载| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| 搡女人真爽免费视频火全软件 | 久久精品国产99精品国产亚洲性色| 久久午夜福利片| 国产亚洲av嫩草精品影院| 日韩亚洲欧美综合| 麻豆av噜噜一区二区三区| 久久久久精品国产欧美久久久| 校园春色视频在线观看| 免费人成在线观看视频色| 亚洲,欧美,日韩| 小说图片视频综合网站| 国产av在哪里看| 黄片wwwwww| 99在线人妻在线中文字幕| 最近最新免费中文字幕在线| 99精品久久久久人妻精品| 久久久久性生活片| 亚洲不卡免费看| 窝窝影院91人妻| 国产精品野战在线观看| av在线老鸭窝| 欧美高清成人免费视频www| 国产69精品久久久久777片| 国产伦人伦偷精品视频| 精品久久久久久久末码| 亚洲狠狠婷婷综合久久图片| 欧美性猛交╳xxx乱大交人| 我的女老师完整版在线观看| 极品教师在线免费播放| 久久午夜亚洲精品久久| 干丝袜人妻中文字幕| 国产又黄又爽又无遮挡在线| 在线播放国产精品三级| 一卡2卡三卡四卡精品乱码亚洲| 乱系列少妇在线播放| 午夜精品在线福利| 成人鲁丝片一二三区免费| 国产中年淑女户外野战色| videossex国产| 日日干狠狠操夜夜爽| 久9热在线精品视频| 国产精品久久久久久久久免| 亚洲天堂国产精品一区在线| 国产探花极品一区二区| 麻豆成人av在线观看| 韩国av一区二区三区四区| 欧美人与善性xxx| 亚洲三级黄色毛片| 日日夜夜操网爽| netflix在线观看网站| 无人区码免费观看不卡| 亚洲国产精品久久男人天堂| a级一级毛片免费在线观看| 乱码一卡2卡4卡精品| 欧洲精品卡2卡3卡4卡5卡区| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 亚洲第一电影网av| 亚洲精品乱码久久久v下载方式| 日本免费a在线| 亚洲18禁久久av| 最近视频中文字幕2019在线8| 成人av一区二区三区在线看| 国产一级毛片七仙女欲春2| 99国产极品粉嫩在线观看| 免费看a级黄色片| 国产精品福利在线免费观看| 久久婷婷人人爽人人干人人爱| 国产三级中文精品| 午夜免费成人在线视频| 久久久久久九九精品二区国产| 久久久精品大字幕| 日韩亚洲欧美综合| 久久久国产成人免费| 日韩高清综合在线| 夜夜夜夜夜久久久久| 国国产精品蜜臀av免费| 草草在线视频免费看| 亚洲成人中文字幕在线播放| 精华霜和精华液先用哪个| 国产私拍福利视频在线观看| 国产精品一区二区三区四区久久| 最好的美女福利视频网| 嫩草影视91久久| 欧美日韩黄片免| 我的老师免费观看完整版| 少妇人妻一区二区三区视频| 九九久久精品国产亚洲av麻豆| 在线a可以看的网站| 国产亚洲91精品色在线| 他把我摸到了高潮在线观看| 婷婷六月久久综合丁香| 99九九线精品视频在线观看视频| 久久人人精品亚洲av| 色综合婷婷激情| 国产成人一区二区在线| 在线观看av片永久免费下载| 九色成人免费人妻av| 丝袜美腿在线中文| 久9热在线精品视频| 别揉我奶头 嗯啊视频| 成人综合一区亚洲| 特级一级黄色大片| 日本免费一区二区三区高清不卡| 国产午夜精品久久久久久一区二区三区 | 亚洲在线观看片| 内地一区二区视频在线| 成人午夜高清在线视频| 精品久久久久久久末码| 99在线视频只有这里精品首页| 最近视频中文字幕2019在线8| 久久久久久大精品| 国产精品久久久久久av不卡| 欧美成人免费av一区二区三区| 国产精品一区二区免费欧美| 国产免费男女视频| 久久精品91蜜桃| 国产不卡一卡二| 女生性感内裤真人,穿戴方法视频| 午夜福利欧美成人| 国产亚洲91精品色在线| 成人av在线播放网站| 搡老熟女国产l中国老女人| 日韩一本色道免费dvd| or卡值多少钱| 国产v大片淫在线免费观看| 亚洲成人免费电影在线观看| 精华霜和精华液先用哪个| 男女视频在线观看网站免费| 好男人在线观看高清免费视频| 极品教师在线视频| 91麻豆av在线| 99热这里只有是精品50| 免费在线观看影片大全网站| 国产精品日韩av在线免费观看| 亚洲18禁久久av| 99在线视频只有这里精品首页| 亚洲七黄色美女视频| 日韩亚洲欧美综合| 简卡轻食公司| 日本一本二区三区精品| 男女啪啪激烈高潮av片| 国产男人的电影天堂91| 久久99热6这里只有精品| 国产伦一二天堂av在线观看| 深夜a级毛片| 欧美成人a在线观看| 国内精品久久久久久久电影| 国产v大片淫在线免费观看| 久久久久国产精品人妻aⅴ院| 人妻制服诱惑在线中文字幕| 国产精品免费一区二区三区在线| 国产黄a三级三级三级人| 欧美色视频一区免费| 午夜精品一区二区三区免费看| 日韩一区二区视频免费看| 成人欧美大片| av在线蜜桃| 精品一区二区免费观看| 国产麻豆成人av免费视频| 别揉我奶头 嗯啊视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲avbb在线观看| av.在线天堂| 欧美又色又爽又黄视频| 女生性感内裤真人,穿戴方法视频| 1024手机看黄色片| 国产精品伦人一区二区| 大又大粗又爽又黄少妇毛片口| 国产精品人妻久久久久久| 亚洲美女黄片视频| 18禁在线播放成人免费| 国产视频一区二区在线看| 亚洲国产精品sss在线观看| 岛国在线免费视频观看| 老司机福利观看| av.在线天堂| 国产免费av片在线观看野外av| 丰满人妻一区二区三区视频av| 日韩欧美在线乱码| 我的女老师完整版在线观看| 嫩草影院精品99| 女人被狂操c到高潮| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 久久久久性生活片| 国内精品一区二区在线观看| 嫩草影视91久久| 女生性感内裤真人,穿戴方法视频| 国产黄a三级三级三级人| 真人一进一出gif抽搐免费| 中文字幕av在线有码专区| 欧美+亚洲+日韩+国产| 国产国拍精品亚洲av在线观看| 午夜精品在线福利| 亚洲一区高清亚洲精品| 亚洲不卡免费看| 女同久久另类99精品国产91| 九色成人免费人妻av| 午夜精品久久久久久毛片777| 成人一区二区视频在线观看| 成人欧美大片| 久久精品国产自在天天线| 国产人妻一区二区三区在| 国产乱人伦免费视频| 久久久精品欧美日韩精品| 好男人在线观看高清免费视频| 18+在线观看网站| 精品一区二区免费观看| 一本一本综合久久| 尤物成人国产欧美一区二区三区| 欧美不卡视频在线免费观看| 久久久久久久久久久丰满 | 日本 av在线| 日韩欧美精品免费久久| 99精品在免费线老司机午夜| 少妇被粗大猛烈的视频| 亚洲熟妇中文字幕五十中出| 九九爱精品视频在线观看| 中文字幕av成人在线电影| 一个人观看的视频www高清免费观看| 少妇猛男粗大的猛烈进出视频 | 成人二区视频| 少妇高潮的动态图| 亚洲精品一区av在线观看| 成人午夜高清在线视频| 国产又黄又爽又无遮挡在线| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 免费观看精品视频网站| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频 | av在线天堂中文字幕| 欧美xxxx性猛交bbbb| 熟女电影av网| a级毛片免费高清观看在线播放| 99精品久久久久人妻精品| 啦啦啦韩国在线观看视频| 国产三级在线视频| 日本免费a在线| 国产精品永久免费网站| 国产高清不卡午夜福利| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 精品一区二区三区av网在线观看| 日韩,欧美,国产一区二区三区 | 国产乱人伦免费视频| 久久热精品热| 88av欧美| 在线免费十八禁| 男女之事视频高清在线观看| 亚洲国产色片| 在线观看舔阴道视频| 一区福利在线观看| 国产精品伦人一区二区| 亚洲成人久久性| 一区二区三区四区激情视频 | 免费观看在线日韩| 亚洲乱码一区二区免费版| 美女xxoo啪啪120秒动态图| 最近最新中文字幕大全电影3| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 乱系列少妇在线播放| 日本熟妇午夜| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 国产探花在线观看一区二区| www日本黄色视频网| 毛片女人毛片| 国产av麻豆久久久久久久| 成人毛片a级毛片在线播放| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 久久国产精品人妻蜜桃| 小说图片视频综合网站| 精品久久国产蜜桃| 亚洲不卡免费看| 久久久久久久久久成人| 亚洲精品日韩av片在线观看| 观看美女的网站| 日韩欧美在线二视频| 国产白丝娇喘喷水9色精品| 亚洲综合色惰| 一区二区三区激情视频| 亚洲美女视频黄频| 性色avwww在线观看| 国产欧美日韩精品一区二区| 欧美bdsm另类| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 毛片一级片免费看久久久久 | 窝窝影院91人妻| 精品久久久久久久久久免费视频| 18+在线观看网站| 在线观看免费视频日本深夜| 亚洲成人久久性| 欧美黑人欧美精品刺激| 国产精品一区www在线观看 | 亚洲精华国产精华液的使用体验 | 亚洲成人久久性| 亚洲精品色激情综合| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 久久久久久久久中文| 99久久久亚洲精品蜜臀av| 亚洲18禁久久av| 可以在线观看的亚洲视频| 天堂av国产一区二区熟女人妻| 啦啦啦韩国在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 婷婷精品国产亚洲av| 欧美bdsm另类| 好男人在线观看高清免费视频| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 99热网站在线观看| 美女 人体艺术 gogo| 韩国av一区二区三区四区| 深夜a级毛片| 丝袜美腿在线中文| 两人在一起打扑克的视频| 欧美不卡视频在线免费观看| 亚州av有码| 久9热在线精品视频| 国产精品人妻久久久久久| 国产一区二区三区av在线 | 免费观看的影片在线观看| 日韩国内少妇激情av| 99在线人妻在线中文字幕| 乱码一卡2卡4卡精品| 国产精品无大码| 能在线免费观看的黄片| 看十八女毛片水多多多| 最近视频中文字幕2019在线8| 春色校园在线视频观看| 黄色丝袜av网址大全| 精品久久久久久,| 性色avwww在线观看| 人妻制服诱惑在线中文字幕| 精品乱码久久久久久99久播| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 99热网站在线观看| 91久久精品国产一区二区成人| 国产国拍精品亚洲av在线观看| 欧美黑人巨大hd| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 亚洲国产精品合色在线| 九九久久精品国产亚洲av麻豆| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲性久久影院| 一个人看的www免费观看视频| 亚洲国产精品合色在线| 婷婷精品国产亚洲av在线| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 国产成人aa在线观看| 看黄色毛片网站| 国产私拍福利视频在线观看| 亚洲欧美激情综合另类| 国产伦精品一区二区三区四那| 午夜久久久久精精品| 欧美最新免费一区二区三区| 丰满人妻一区二区三区视频av| 88av欧美| 一区二区三区免费毛片| 免费在线观看日本一区| 国产成人一区二区在线| 日本五十路高清| 日韩欧美精品免费久久| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 动漫黄色视频在线观看| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 日韩一本色道免费dvd| 一区二区三区免费毛片| 婷婷精品国产亚洲av| 我要搜黄色片| 在线观看美女被高潮喷水网站| 搡老妇女老女人老熟妇| 99热只有精品国产| 日日干狠狠操夜夜爽| 欧美黑人欧美精品刺激| xxxwww97欧美| 一个人看的www免费观看视频| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 搞女人的毛片| 97超视频在线观看视频| 国产视频内射| 国产高清三级在线| 欧美三级亚洲精品| 日韩强制内射视频| 麻豆成人午夜福利视频| 国产成人一区二区在线| 国产极品精品免费视频能看的| 免费av毛片视频| 亚洲av免费在线观看| 国内精品宾馆在线| 日韩欧美在线乱码| 五月玫瑰六月丁香| 亚洲av不卡在线观看| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 黄色丝袜av网址大全| 在线天堂最新版资源| 十八禁网站免费在线| 精品99又大又爽又粗少妇毛片 | 国产精品自产拍在线观看55亚洲| 国产伦人伦偷精品视频| 午夜久久久久精精品| 欧美日本亚洲视频在线播放| 日韩欧美精品免费久久| av专区在线播放| 欧美日本亚洲视频在线播放| 麻豆精品久久久久久蜜桃| 大型黄色视频在线免费观看| 免费大片18禁| 天堂av国产一区二区熟女人妻| 欧美黑人欧美精品刺激| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 国内久久婷婷六月综合欲色啪| 国产精品一区二区性色av| 午夜精品在线福利| 日韩精品中文字幕看吧| 午夜亚洲福利在线播放| 欧美人与善性xxx| 国产伦人伦偷精品视频| 熟妇人妻久久中文字幕3abv| 欧美性猛交╳xxx乱大交人| 成年女人毛片免费观看观看9| 日韩精品中文字幕看吧| 综合色av麻豆| 可以在线观看毛片的网站| 一a级毛片在线观看| 狂野欧美白嫩少妇大欣赏| 一级黄色大片毛片| 综合色av麻豆| 人人妻人人看人人澡| 亚洲一级一片aⅴ在线观看| 国产精品一区二区免费欧美| 国产一区二区在线观看日韩| 午夜精品在线福利| 日韩中文字幕欧美一区二区| 亚洲精品国产成人久久av| 男女那种视频在线观看|