• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precipitation responses to radiative processes of water- and ice-clouds: an equilibrium cloud-resolving modeling study

    2016-11-23 03:30:22XINJinandLIXiaoFan
    關(guān)鍵詞:水云平衡態(tài)長波

    XIN Jin and LI Xiao-Fan

    School of Earth Sciences, Zhejiang University, Hangzhou, China

    Precipitation responses to radiative processes of water- and ice-clouds: an equilibrium cloud-resolving modeling study

    XIN Jin and LI Xiao-Fan

    School of Earth Sciences, Zhejiang University, Hangzhou, China

    Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity. The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric longwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming in the upper troposphere via a reduction in longwave radiative cooling. The enhanced warming increases the rain source via an increase in the melting of graupel, which increases rainfall.

    ARTICLE HISTORY

    Revised 29 March 2016

    Accepted 12 April 2016

    Radiative processes;water-cloud; ice-cloud;precipitation; longwave radiative cooling; equilibrium cloud-resolving model simulation

    云輻射過程對(duì)制約天氣與氣候很重要。本文通過分析二維云分辨模式敏感性試驗(yàn)?zāi)M平衡態(tài)平均資料研究降水對(duì)水云及冰云輻射過程的響應(yīng)。模式給定的垂直速度為零。存在冰云輻射過程時(shí)去除水云輻射過程,以及去除冰云輻射過程會(huì)加強(qiáng)大氣長波輻射冷卻和降低空氣溫度及飽和混合比。飽和混合比的減少導(dǎo)致水汽凝結(jié)增加及其相關(guān)的潛熱釋放的增加,從而增加降雨。去除水云輻射過程通過減少長波輻射冷卻增加對(duì)流層上部局地大氣變暖。而增強(qiáng)的變暖通過霰的融化增強(qiáng)而增加降水源與降水。

    1. Introduction

    Cloud radiative processes play an important role during the development of precipitation systems. Gray and Jacobson(1977) revealed that the nocturnal precipitation peak - a major component of the diurnal cycle of precipitation - is associated with the secondary circulation forced by the diferent radiative heating between cloudy and clear-sky regions. Lilly (1988) described the cloud radiative efects on unstable thermal stratifcation for the growth of stratiform clouds in the upper troposphere. Dudhia (1989)found important cloud radiative efects on environmental destabilization. Tao and Simpson (1993) revealed that enhanced precipitation corresponds to strengthened longwave radiative cooling over both the tropics and midlatitudes. Fu, Krueger, and Liou (1995) showed that enhanced precipitation is associated with increased clearsky longwave radiative cooling, while reduced precipitation is related to weakened longwave radiative cooling. Sui et al. (1997); Sui, Li, and Lau (1998), Gao, Cui, and Li (2009),and Gao and Li (2010) revealed an enhanced nocturnal precipitation peak in response to the nocturnal longwave radiative cooling by a weakened saturation mixing ratio. Cloud radiative processes also have important impacts on climate change. For example, doubled carbon dioxide may change precipitation through the radiation-induced change in vertical thermal stratifcation (e.g. Li, Shen, and Liu 2014), although the enhanced water vapor owing to doubled carbon dioxide may increase precipitation ultimately (e.g. Allen and Ingram 2002). The diurnal cycle of radiation may produce a warm and humid climate equilibrium state (e.g. Gao, Zhou, and Li 2007). Thus, cloud radiative processes are crucial in regulating weather and climate.

    The release of latent heat associated with precipitation corresponds to radiation in the thermal balance in the absence of heat divergence. However, the heat divergence associated with large-scale circulations may make such latent heat-radiation responses complicated. For example,the exclusion of cloud radiative processes can reduce or enhance pre-summer rainfall, depending on the response of heat divergence to cloud radiative processes (e.g. Wang,Shen, and Li 2010; Shen, Wang, and Li 2011a, 2011b; Liu,Shen, and Li 2014; Shen et al. 2016).

    When large-scale circulations are absent, the precipitation responses to cloud radiative processes become rather simple. However, interaction between waterand ice-cloud may afect the precipitation responses to cloud radiative processes. The objective of this study is to investigate the dominant thermal and cloud microphysical responses to water and ice radiative processes in the absence of large-scale circulations. The questions to be discussed include: What is the nature of the precipitation responses to water and ice radiative processes?What are the diferences in the precipitation responses to water (ice) radiative processes in the presence and absence of ice (water) radiative processes? And what is the physical link responsible for the diferences in precipitation responses to radiation? To discuss these concerns, we analyze equilibrium model simulation data from a set of two-dimensional cloud-resolving model sensitivity experiments conducted by Gao, Zhou, and Li (2007), Ping, Luo, and Li (2007), and Gao (2008), by employing the analysis method developed by Liu, Shen,and Li (2014). The model is imposed with zero vertical velocity, which excludes the efects of large-scale circulations. The model setup and sensitivity experiments are briefy described in section 2. The results are presented in section 3. A summary is given in section 4.

    2. Model and experiments

    The data used in this study come from Gao, Zhou, and Li(2007), Ping, Luo, and Li (2007), and Gao (2008). The model used in these studies was a modifed two-dimensional cloud-resolving model (Soong and Ogura 1980; Soong and Tao 1980; Tao and Simpson 1993; Sui et al. 1994; Sui,Li, and Lau 1998; Li et al. 1999; Li, Sui, and Lau 2002). The prognostic equations of specifc humidity and fve cloud species, including cloud water, raindrops, cloud ice, snow and graupel, had the source/sink terms from cloud microphysical schemes (Lin, Farley, and Orville 1983; Rutledge and Hobbs 1983, 1984; Tao, Simpson, and McCumber 1989;Krueger et al. 1995). The prognostic equation of potential temperature had the source/sink terms from radiation schemes (Chou, Kratz, and Ridgway 1991; Chou and Suarez 1994; Chou et al. 1998) and the release of latent heat from cloud microphysical schemes. The model was furnished with lateral periodic boundaries. The basic model setup was a model domain of 768 km, with a horizontal grid mesh of 1.5 km, 33 vertical levels, and a time step of 12 s. The top of the model was at 42 hPa.

    The control experiment (CTL) included cloud radiative efects (Gao, Zhou, and Li 2007). The three sensitivity experiments without water (no water radiation, NWR),ice (no ice radiation, NIR), and cloud (no cloud radiation,NCR) radiative efects were identical to the CTL except that water, ice, and the total hydrometeor mixing ratio were set to zero in the calculation of radiation in NWR (Gao 2008),NIR (Ping, Luo, and Li 2007), and NCR (Gao 2008), respectively. In the four experiments, the model was forced by zero vertical velocity and a constant zonal wind of 4 m s-1zonally and vertically, and a constant SST of 29 °C. The vertical temperature and specifc humidity profles observed during TOGA COARE at 0400 LST 19 December 1992 were used as the initial conditions. The model was integrated for 40.5 days to reach a quasi-equilibrium state (Figure 1 in Gao 2008).

    Comparisons between the results of NWR and CTL,and NCR and NIR, are conducted to study the efects of water radiative processes on precipitation in the presence and absence of ice radiative processes, respectively. Comparisons between NIR and CTL, and NCR and NWR, are carried out to study the efects of ice radiative processes on precipitation in the presence and absence of water radiative processes, respectively. Model domain mean data from the last 10 days of integration are used in the following discussion.

    3. Results

    The exclusion of water radiative processes increases the rain rate from CTL to NWR by 12.3% in the presence of ice radiative processes, and increases the rain rate from NIR to NCR by 6.5% in the absence of ice radiative processes(Table 1). The removal of ice radiative processes increases the rain rate from CTL to NIR by 43.1% in the presence of water radiative processes, and increases the rain rate from NWR to NCR by 35.6% in the absence of water radiative processes.

    Rainfall separation analysis using the scheme of Tao et al. (1993) shows that the increases in the rain rate come mainly from the increases in the convective rain rate. The exclusion of water or ice radiative processes reduces the fractional coverage of stratiform rainfall. The removal of water (ice) radiative processes barely changes the fractional coverage of convective (FCCR) rainfall in the presence of ice (water) radiative processes, but it increases the FCCR rainfall in the absence of ice (water) radiative processes.

    To examine the cloud processes responsible for surface precipitation, the cloud budget is analyzed. The cloud budget is expressed by:

    where,

    Figure 1.Vertical profles of diferences between NWR and CTL (NWR-CTL), averaged for 10 days over the model domain, (a) in local temperature change (LTC; black), release of latent heat (RLT; red), convergence of vertical heat fux (CVHF; green), and radiation (Rad;orange); and (b) in radiation (Rad; orange) and its components of solar radiative heating (SRad; red) and longwave radiative cooling(LRad; blue). Units: °C d-1.

    Table 1.Cloud microphysical budgets (PS, QNC,and QCM), convective (CPS) and stratiform (SPS) rain rate, FCCR and stratiform (FCSR)rainfall, averaged from day 31 to day 40 over the model domain in CTL, NWR, NIR, and NCR; and their diferences (NWR-CTL, NCR-NIR,NIR-CTL, and NCR-NWR).

    Here, PSis the surface rain rate; QNCis the net condensation;PCNDis vapor condensation to cloud ice; PDEP, PSDEP, and PGDEPare vapor deposition to cloud ice, snow, and graupel,respectively; PREVP, PMLTS, and PMLTGare the evaporation of raindrops, melting snow and graupel to vapor, respectively; QCMis hydrometeor change/convergence; and QCMC,QCMR, QCMI, QCMSand QCMGare the hydrometeor changes in cloud water, raindrops, cloud ice, snow, and graupel,respectively.

    Table 2.Breakdown of QNCaveraged from day 31 to day 40 over the model domain in CTL, NWR, NIR, and NCR; and their diferences(NWR-CTL, NIR-CTL, and NCR-NWR).

    The enhanced precipitation from CTL to NWR corresponds to the strengthened net condensation and hydrometeor change from a gain in CTL to a loss in NWR. The increase in precipitation from NIR to NCR is mainly related to the hydrometeor change from a gain in NIR to a loss in NCR. The strengthened precipitation from CTL to NIR and NWR to NCR is mainly associated with the enhanced net condensation.

    The enhanced net condensation from CTL to NWR results mainly from the increases in PCND(Table 2). The hydrometeor change from the gain in CTL to the loss in NWR is mainly associated with the raindrop change from the increase in CTL to the decrease in NWR. The raindrop change (QCMR) in the rain budget can be written as:

    Here, PRAUTis the auto-conversion from cloud water to raindrops; PRACWis the collection of cloud water by raindrops; PGACWis the accretion of cloud water by graupel; PSMLTand PGMLTare the melting of snow and graupel,respectively, to raindrops; and T0= 0 °C. The calculations of the rain budget, Equation (2), show that the increase in the mean rain rate from CTL to NWR is associated with the increase in PRACW, which corresponds to the increase in PCND.

    To examine the cloud microphysical responses to water radiative processes, the heat budget is analyzed. Local temperature change is associated with condensational heating,convergence of vertical heat fux, and radiation. In the presence of ice radiative processes, the exclusion of water radiative processes from CTL to NWR generally enhances longwave radiative cooling below 10 km by emitting more longwaveradiation into space in NWR than in CTL, since the change in radiation is determined by the change in longwave radiation(Figure 1). The enhanced longwave radiative cooling from CTL to NWR turns to lower air temperature and associated saturation mixing ratio, which increases vapor condensation and the associated release of latent heat. Thus, the increase in therelease of latent heat corresponds to the enhancement in radiative cooling.

    Table 3.Breakdown of QCMaveraged from day 31 to day 40 over the model domain in CTL, NWR, NIR, and NCR; and their diferences(NWR-CTL and NCR-NIR).

    Table 4.The rain budgets averaged from day 31 to day 40 over the model domain in CTL, NWR, NIR and NCR; and their diferences(NWR-CTL and NCR-NIR).

    Figure 2.Vertical profles of diferences between NCR and NIR (NCR-NIR), averaged for 10 days over the model domain, (a) in local temperature change (LTC; black), release of latent heat (RLT; red), convergence of vertical heat fux (CVHF; green), and radiation (Rad;orange); and (b) in radiation (Rad; orange) and its components of solar radiative heating (SRad; red) and longwave radiative cooling(LRad; blue). Units: °C d-1.

    Figure 3.Vertical profles of diferences between NIR and CTL (NIR-CTL), averaged for 10 days over the model domain, (a) in local temperature change (LTC; black), release of latent heat (RLT; red), convergence of vertical heat fux (CVHF; green), and radiation (Rad;orange); and (b) in radiation (Rad; orange) and its components of solar radiative heating (SRad; red) and longwave radiative cooling(LRad; blue). Units: °C d-1.

    The hydrometeor change from the gain in NIR to the loss in NCR is mainly related to the strengthened raindrop loss (Table 3). The calculations of the rain budget, Equation(2), also reveal that the increase in precipitation from NIR to NCR corresponds mainly to the strengthened raindrop loss (Table 4). The increase in raindrop loss from NIR to NCR may result from the increase in rain hydrometeors (mass integration of the mixing ratio of rain hydrometeors) from 1.24 mm in NIR to 1.27 mm in NCR, which may correspond mainly to the increase in rain source from PGMLT.

    In the absence of ice radiative processes, the removal of water radiative processes from NIR to NCR enhances longwave radiative cooling in the lower troposphere by emitting more longwave radiation in NIR than in NCR(Figure 2(b)). The elimination of water radiative processes generally reduces the longwave radiative cooling in the upper troposphere by trapping more longwave radiation due to strengthened ice hydrometeors by the enhanced radiative cooling in the lower troposphere. This leads to the enhanced local atmospheric warming (Figure 2(a)). Since PGMLTis proportional to the air temperature, the enhanced melting of graupel to rain corresponds to the suppressed longwave radiative cooling.

    The enhanced mean net condensation from CTL to NIR and NWR to NCR (Table 1) results mainly from the increased PCND(Table 2). The exclusion of ice radiative processes enhances the longwave radiative cooling regardless of the water radiative processes below 8 km (Figures 3(a)and 4(a)), while it slightly strengthens solar radiative heating (Figures 3(b) and 4(b)). The enhanced radiative cooling lowers air temperature and the associated saturation mixing ratio, which increases relative humidity and vapor condensation and the associated release of latent heat. Above 8 km, the weakened solar radiative heating is largely ofset by the reduced longwave radiative cooling, which barely changes radiation. Thus, the increased mean net condensation from CTL to NIR and NWR to NCR corresponds to theenhanced radiative cooling via the strengthened release of latent heat.

    Figure 4.Vertical profles of diferences between NCR and NWR (NCR-NWR), averaged for 10 days over the model domain, (a) in local temperature change (LTC; black), release of latent heat (RLT; red), convergence of vertical heat fux (CVHF; green), and radiation (Rad;orange); and (b) in radiation (Rad; orange) and its components of solar radiative heating (SRad; red) and longwave radiative cooling(LRad; blue). Units: °C d-1.

    4. Summary

    In this study, the precipitation responses to the radiative processes of water- and ice-clouds are examined by analyzing the data from a two-dimensional equilibrium cloud-resolving model imposed with zero vertical velocity. In the presence of ice radiative processes, the exclusion of water radiative processes generally enhances the mean longwave radiative cooling throughout the troposphere,which enhances the release of latent heat associated with the increase in vapor condensation through the decrease in air temperature and saturation mixing ratio. In the absence of ice radiative processes, the removal of water radiative processes reduces the longwave radiative cooling in the upper troposphere, which increases local atmospheric warming. As a result, the enhancement in warming causes a rain source via an increase in the melting of graupel, which leads to an increase in rainfall. The exclusion of ice radiative processes enhances the longwave radiative cooling in the mid and lower troposphere through an increase in the release of latent heat, regardless of the water radiative processes.

    The model was imposed with zero vertical velocity in this study, whereas it was imposed with non-zero vertical velocity in the simulation of pre-summer rainfall event by Liu, Shen, and Li (2014) and Shen et al. (2016). Comparison between the experiments imposed with zero and non-zero vertical velocity shows the diferences and similarities in the radiative efects on rainfall. In the presence of radiative efects of ice (water) clouds, the exclusion of radiative efects of water (ice) clouds increases rainfall in the experiment imposed with zero vertical velocity, but it decreases rainfall in the experiment imposed with nonzero vertical velocity. In the absence of the radiative efects of ice (water) clouds, the removal of the radiative efects of water (ice) clouds increases rainfall in both experiments. Even if cloud radiative processes cause similar changes in rainfall, the associated physical processes may be diferent. For example, in the absence of the radiative efects ofwater clouds, the exclusion of the radiative efects of ice clouds increases rainfall through an increase in net condensation in the experiment imposed with zero vertical velocity, and a hydrometeor change from a gain to a loss in the experiment imposed with non-zero vertical velocity. This indicates the efects of large-scale dynamics on the rainfall responses to cloud radiative processes.

    Acknowledgements

    The authors thank W.-K. TAO at NASA/GSFC for his cloudresolving model.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41475039]; the National Basic Research Program of China [grant number 2015CB953601].

    Notes on contributors

    XIN Jin is a master candidate at the School of Earth Sciences,Zhejiang University. His main research interest is cloudresolving modeling of convective development. His recent paper on the modeling of depositional growth of ice crystal has been accepted by the Journal of Tropical Meteorology.

    LI Xiao-Fan is a professor at the School of Earth Sciences,Zhejiang University. His main research interests are cloudresolving modeling of precipitation systems and quantitative analysis of precipitation processes. His recent publications include papers in Quarterly Journal of the Royal Meteorological Society, Atmospheric Research, Atmospheric Science Letters,Dynamics of Atmospheres and Oceans, Advances in Atmospheric Sciences and other journals.

    References

    Allen, M. R., and W. J. Ingram. 2002. “Constraints on Future Changes in Climate and the Hydrologic Cycle.” Nature 419: 224-232.

    Chou, M.-D., D. P. Kratz, and W. Ridgway. 1991. “Infrared Radiation Parameterizations in Numerical Climate Models.” Journal of Climate 4: 424-437.

    Chou, M.-D., and M. J. Suarez. 1994. An Efcient Thermal Longwave Radiation Parameterization for Use in General Circulation Model, NASA Tech. Memo. 104606, Vol. 3, 85 pp.[Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771.]

    Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee. 1998. “Parameterizations for Cloud Overlapping and Shortwave Single-scattering Properties for Use in General Circulation and Cloud Ensemble Models.” Journal of Climate 11: 202-214.

    Dudhia, J. 1989. “Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-dimensional Model.” Journal of the Atmospheric Sciences 46: 3077-3107.

    Fu, Q., S. K. Krueger, and K. N. Liou. 1995. “Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters.” Journal of the Atmospheric Sciences 52: 1310-1328.

    Gao, S. 2008. “A Cloud-resolving Modeling Study of Cloud Radiative Efects on Tropical Equilibrium States.” Journal of Geophysical Research 113: D03108. doi:http://dx.doi. org/10.1029/2007JD009177.

    Gao, S., X. Cui, and X. Li. 2009. “A Modeling Study of Diurnal Rainfall Variations during the 21-Day Period of TOGA COARE.”Advances in Atmospheric Sciences 26: 895-905.

    Gao, S., and X. Li. 2010. “Precipitation Equations and Their Applications to the Analysis of Diurnal Variation of Tropical Oceanic Precipitation.” Journal of Geophysical Research 115: D08204. doi:http://dx.doi.org/10.1029/2009JD012452.

    Gao, S., Y. Zhou, and X. Li. 2007. “Efects of Diurnal Variations on Tropical Equilibrium States: A Two-dimensional Cloudresolving Modeling Study.” Journal of the Atmospheric Sciences 64: 656-664.

    Gray, W. M., and R. W. Jacobson Jr. 1977. “Diurnal Variation of Deep Cumulus Convection.” Monthly Weather Review 105: 1171-1188.

    Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin. 1995.“Improvements of an Ice-phase Microphysics Parameterization for Use in Numerical Simulations of Tropical Convection.”Journal of Applied Meteorology 34: 281-287.

    Li, X., C.-H. Sui, K.-M. Lau, and M.-D. Chou. 1999. “Large-scale Forcing and Cloud-Radiation Interaction in the Tropical Deep Convective Regime.” Journal of the Atmospheric Sciences 56: 3028-3042.

    Li, X., C.-H. Sui, and K.-M. Lau. 2002. “Dominant Cloud Microphysical Processes in a Tropical Oceanic Convective System: A 2D Cloud Resolving Modeling Study.” Monthly Weather Review 130: 2481-2491.

    Li, X., X. Shen, and J. Liu. 2014. “Efects of Doubled Carbon Dioxide on Rainfall Responses to Large-scale Forcing: A Twodimensional Cloud-resolving Modeling Study.” Advances in Atmospheric Sciences 31: 525-531.

    Lilly, D. K. 1988. “Cirrus Outfow Dynamics.” Journal of the Atmospheric Sciences 45: 1594-1605.

    Lin, Y.-L., R. D. Farley, and H. D. Orville. 1983. “Bulk Parameterization of the Snow Field in a Cloud Model.” Journal of Climate and Applied Meteorology 22: 1065-1092.

    Liu, J., X. Shen, and X. Li. 2014. “Water Radiative Processes on Heat, Cloud Microphysical and Surface Precipitation Budgets Associated with Pre-summer Torrential Precipitation.” Terrestrial Atmospheric Oceanic Science 25: 41-50.

    Ping, F., Z. Luo, and X. Li. 2007. “Microphysical and Radiative Efects of Ice Clouds on Tropical Equilibrium States: A Twodimensional Cloud-resolving Modeling Study.” Monthly Weather Review 135: 2794-2802.

    Rutledge, S. A., and P. V. Hobbs. 1983. “The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the“Seeder-Feeder” Process in Warm-frontal Rainbands.” Journal of the Atmospheric Sciences 40: 1185-1206.

    Rutledge, S. A., and P. V. Hobbs. 1984. “The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands.” Journal of the Atmospheric Sciences 41: 2949-2972.

    Shen, X., W. Huang, C. Guo, and X. Jiang. 2016. “Precipitation Responses to Radiative Efects of Ice Clouds: A Cloudresolving Modeling Study of a Pre-summer Torrential Precipitation Event.” Advances in Atmospheric Sciences 33.

    Shen, X., Y. Wang, and X. Li. 2011a. “Radiative Efects of Water Clouds on Rainfall Responses to the Large-scale Forcing during Pre-summer Heavy Rainfall over Southern China.”Atmospheric Research 99: 120-128.

    Shen, X., Y. Wang, and X. Li. 2011b. “Efects of Vertical Wind Shear and Cloud Radiative Processes on Responses of Rainfall to the Large-scale Forcing during Pre-summer Heavy Rainfall over Southern China.” Quarterly Journal of the Royal Meteorological Society 137: 236-249.

    Soong, S. T., and Y. Ogura. 1980. “Response of Tradewind Cumuli to Large-scale Processes.” Journal of the Atmospheric Sciences 37: 2035-2050.

    Soong, S. T., and W.-K. Tao. 1980. “Response of Deep Tropical Cumulus Clouds to Mesoscale Processes.” Journal of the Atmospheric Sciences 37: 2016-2034.

    Sui, C.-H., K.-M. Lau, W.-K. Tao, and J. Simpson. 1994. “The Tropical Water and Energy Cycles in a Cumulus Ensemble Model. Part I: Equilibrium Climate.” Journal of the Atmospheric Sciences 51: 711-728.

    Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. Short. 1997. “Diurnal Variations in Tropical Oceanic Cumulus Convection during TOGA COARE.” Journal of the Atmospheric Sciences 54: 639-655.

    Sui, C.-H., X. Li, and K.-M. Lau. 1998. “Radiative-Convective Processes in Simulated Diurnal Variations OfTropical Oceanic Convection.” Journal of the Atmospheric Sciences 55: 2345-2357.

    Tao, W.-K., and J. Simpson. 1993. “The Goddard Cumulus Ensemble Model. Part I: Model Description.” Terrestrial Atmospheric Oceanic Sciences 4: 35-72.

    Tao, W.-K., J. Simpson, and M. McCumber. 1989. “An Ice-water Saturation Adjustment.” Monthly Weather Review 117: 231-235.

    Tao, W.-K., J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala,M.-D. Chou, and K. Pickering. 1993. “Heating, Moisture, and Water Budgets of Tropical and Midlatitude Squall Lines: Comparisons and Sensitivity to Longwave Radiation.” Journal of the Atmospheric Sciences 50: 673-690.

    Wang, Y., X. Shen, and X. Li. 2010. “Microphysical and Radiative Efects of Ice Clouds on Responses of Rainfall to the Largescale Forcing during Pre-Summer Heavy Rainfall over Southern China.” Atmospheric Research 97: 35-46.

    輻射過程; 水云; 冰云; 降水; 長波輻射冷卻; 云分辨模式平衡態(tài)模擬

    29 January 2016

    CONTACT LI Xiao-Fan xiaofanli@zju.edu.cn.

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    水云平衡態(tài)長波
    微波水云間
    保健與生活(2023年6期)2023-03-17 08:39:54
    水云間
    廣義對(duì)稱正則長波方程的孤波解和周期波解及它們與Hamilton能量的關(guān)系
    初析固體物理學(xué)中平衡態(tài)的熱力學(xué)條件
    初析固體物理學(xué)中平衡態(tài)的熱力學(xué)條件
    古琴曲《瀟湘水云》的題解流變考
    胡忌先生讀《水云村稿》札記一則
    中華戲曲(2017年2期)2017-02-16 06:53:16
    “三態(tài)”模型:化學(xué)平衡移動(dòng)教學(xué)有效的教學(xué)思維模型
    基于構(gòu)架點(diǎn)頭角速度的軌道垂向長波不平順在線檢測
    掃描型長波紅外連續(xù)變焦光學(xué)系統(tǒng)
    99热只有精品国产| 神马国产精品三级电影在线观看| 成人国产麻豆网| 床上黄色一级片| 女人十人毛片免费观看3o分钟| 狂野欧美白嫩少妇大欣赏| 日韩欧美国产在线观看| 成人国产综合亚洲| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 成人无遮挡网站| 韩国av在线不卡| 观看免费一级毛片| 日韩中文字幕欧美一区二区| 精品乱码久久久久久99久播| 亚洲五月天丁香| 国产v大片淫在线免费观看| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久久电影| 久久久久久伊人网av| 亚洲av熟女| 午夜激情欧美在线| 18+在线观看网站| 我的老师免费观看完整版| 国产免费av片在线观看野外av| 搡老妇女老女人老熟妇| 一级av片app| 窝窝影院91人妻| 一区二区三区激情视频| 深夜精品福利| 亚洲五月天丁香| 欧美极品一区二区三区四区| 伊人久久精品亚洲午夜| 美女免费视频网站| 校园人妻丝袜中文字幕| 亚洲人成网站在线播| 久久精品国产亚洲av涩爱 | 乱码一卡2卡4卡精品| 色综合色国产| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合久久99| 欧美日韩国产亚洲二区| 少妇人妻一区二区三区视频| а√天堂www在线а√下载| 免费看av在线观看网站| 黄色一级大片看看| 一进一出好大好爽视频| 亚洲欧美清纯卡通| 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 十八禁网站免费在线| 成年人黄色毛片网站| 日韩欧美在线二视频| 又黄又爽又免费观看的视频| 他把我摸到了高潮在线观看| 禁无遮挡网站| 国产精品野战在线观看| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 国产熟女欧美一区二区| 国产精品免费一区二区三区在线| 久久久久九九精品影院| 成人一区二区视频在线观看| 一区二区三区高清视频在线| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 在线播放无遮挡| 日韩欧美国产一区二区入口| 日本免费a在线| 国内精品久久久久久久电影| 人妻制服诱惑在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 两个人视频免费观看高清| 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线| 国产免费av片在线观看野外av| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 久久精品91蜜桃| 精品乱码久久久久久99久播| 99热6这里只有精品| 国产精品人妻久久久久久| 日本五十路高清| 欧美一区二区亚洲| 久久精品国产亚洲av天美| 国产黄片美女视频| 久久人人爽人人爽人人片va| bbb黄色大片| 淫妇啪啪啪对白视频| 小说图片视频综合网站| 男女做爰动态图高潮gif福利片| 久久久久久久久久成人| 国产高清有码在线观看视频| 日韩欧美一区二区三区在线观看| 国产真实伦视频高清在线观看 | 免费看a级黄色片| 色综合色国产| 日韩,欧美,国产一区二区三区 | 午夜久久久久精精品| 日日摸夜夜添夜夜添小说| av专区在线播放| 啦啦啦韩国在线观看视频| 啦啦啦观看免费观看视频高清| 又黄又爽又刺激的免费视频.| 尤物成人国产欧美一区二区三区| 成人综合一区亚洲| 国内精品久久久久精免费| 99久久成人亚洲精品观看| 午夜视频国产福利| 中文字幕av成人在线电影| 亚洲精品一区av在线观看| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 国产精品久久久久久精品电影| 免费大片18禁| 国内久久婷婷六月综合欲色啪| 日日摸夜夜添夜夜添av毛片 | 日本撒尿小便嘘嘘汇集6| 国产高清三级在线| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| 校园人妻丝袜中文字幕| 亚洲在线观看片| 婷婷精品国产亚洲av| 免费电影在线观看免费观看| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 亚洲第一区二区三区不卡| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成a人片在线一区二区| 亚洲在线自拍视频| 亚洲精品亚洲一区二区| 国产一区二区亚洲精品在线观看| 精品日产1卡2卡| 日日夜夜操网爽| 日日啪夜夜撸| 嫩草影院精品99| 欧美极品一区二区三区四区| 三级男女做爰猛烈吃奶摸视频| 国产亚洲91精品色在线| 国产精品一区www在线观看 | 99久久精品热视频| 欧美激情在线99| 一本精品99久久精品77| 在线天堂最新版资源| 久久久久久国产a免费观看| 在现免费观看毛片| 亚洲性久久影院| 久久精品人妻少妇| 69人妻影院| 国产69精品久久久久777片| 99热6这里只有精品| 黄色一级大片看看| 久久久久久伊人网av| 可以在线观看的亚洲视频| 国产高清三级在线| 自拍偷自拍亚洲精品老妇| 九九热线精品视视频播放| 国产精华一区二区三区| 91在线观看av| 亚洲真实伦在线观看| 亚洲欧美日韩卡通动漫| 久久久久精品国产欧美久久久| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 如何舔出高潮| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影| 能在线免费观看的黄片| 麻豆一二三区av精品| 亚洲国产高清在线一区二区三| 99在线人妻在线中文字幕| www.www免费av| 别揉我奶头 嗯啊视频| 身体一侧抽搐| 露出奶头的视频| 一本久久中文字幕| 联通29元200g的流量卡| 我的老师免费观看完整版| 精品乱码久久久久久99久播| 性欧美人与动物交配| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 成人午夜高清在线视频| 校园春色视频在线观看| 国产成人a区在线观看| 变态另类成人亚洲欧美熟女| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 亚洲最大成人中文| 搡女人真爽免费视频火全软件 | 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 尤物成人国产欧美一区二区三区| 亚洲美女黄片视频| 亚洲av一区综合| 亚洲欧美精品综合久久99| 欧美精品啪啪一区二区三区| 国产国拍精品亚洲av在线观看| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 精品人妻视频免费看| 亚洲va在线va天堂va国产| 国产aⅴ精品一区二区三区波| 伦理电影大哥的女人| АⅤ资源中文在线天堂| xxxwww97欧美| 婷婷精品国产亚洲av| 国内精品美女久久久久久| 香蕉av资源在线| 国产精华一区二区三区| 真人一进一出gif抽搐免费| 色综合亚洲欧美另类图片| 91麻豆精品激情在线观看国产| 人妻制服诱惑在线中文字幕| 高清在线国产一区| 免费在线观看日本一区| 人人妻人人看人人澡| 午夜福利在线在线| 日韩强制内射视频| 如何舔出高潮| 在线观看66精品国产| 丰满的人妻完整版| 99riav亚洲国产免费| 久久国产精品人妻蜜桃| 特级一级黄色大片| 精品久久久久久久久亚洲 | 国产一区二区亚洲精品在线观看| 成人性生交大片免费视频hd| 韩国av一区二区三区四区| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 69av精品久久久久久| 欧美国产日韩亚洲一区| 一区二区三区激情视频| 一区二区三区四区激情视频 | av在线观看视频网站免费| 91久久精品国产一区二区三区| 国模一区二区三区四区视频| 日韩精品中文字幕看吧| 亚洲av.av天堂| 久久九九热精品免费| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 欧美成人a在线观看| 成人亚洲精品av一区二区| 欧美精品啪啪一区二区三区| 久久中文看片网| 最后的刺客免费高清国语| 国产成人aa在线观看| 真实男女啪啪啪动态图| 一级黄色大片毛片| 国产黄色小视频在线观看| 中出人妻视频一区二区| 全区人妻精品视频| 亚洲无线在线观看| 中文在线观看免费www的网站| 动漫黄色视频在线观看| 欧美日韩乱码在线| 亚洲图色成人| 亚洲精品一区av在线观看| 一区二区三区四区激情视频 | а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 日韩精品中文字幕看吧| 国产精品精品国产色婷婷| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频 | a级毛片a级免费在线| 国产色爽女视频免费观看| av天堂中文字幕网| 亚洲精华国产精华精| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| av专区在线播放| 久久精品国产清高在天天线| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 国产午夜精品久久久久久一区二区三区 | 又黄又爽又刺激的免费视频.| 亚洲人成网站在线播放欧美日韩| 欧美zozozo另类| 国产av一区在线观看免费| 亚洲美女黄片视频| 啦啦啦啦在线视频资源| 久久人人精品亚洲av| 国产淫片久久久久久久久| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 久久久久免费精品人妻一区二区| 国产不卡一卡二| a在线观看视频网站| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 免费人成在线观看视频色| 尤物成人国产欧美一区二区三区| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 一区二区三区精品91| 乱码一卡2卡4卡精品| 午夜激情福利司机影院| 热99国产精品久久久久久7| 日本猛色少妇xxxxx猛交久久| 大话2 男鬼变身卡| 深夜a级毛片| 日韩制服骚丝袜av| 日韩一区二区三区影片| 亚洲色图av天堂| 在线观看免费视频网站a站| 欧美日韩在线观看h| 久久国产亚洲av麻豆专区| 尤物成人国产欧美一区二区三区| 日韩av在线免费看完整版不卡| 最新中文字幕久久久久| 九九久久精品国产亚洲av麻豆| 人人妻人人看人人澡| 国产毛片在线视频| 国产熟女欧美一区二区| 欧美激情极品国产一区二区三区 | 内地一区二区视频在线| 中文乱码字字幕精品一区二区三区| 国产精品一二三区在线看| 晚上一个人看的免费电影| a 毛片基地| 日韩亚洲欧美综合| 啦啦啦啦在线视频资源| 国产日韩欧美亚洲二区| 嘟嘟电影网在线观看| 纯流量卡能插随身wifi吗| 18禁动态无遮挡网站| 精品一区二区三卡| 内射极品少妇av片p| 十八禁网站网址无遮挡 | 久久国产亚洲av麻豆专区| 亚洲欧美清纯卡通| 国产精品国产三级国产专区5o| 91精品伊人久久大香线蕉| 亚洲国产欧美在线一区| 欧美日韩视频精品一区| av.在线天堂| 在线观看av片永久免费下载| 91午夜精品亚洲一区二区三区| 三级经典国产精品| 欧美日韩综合久久久久久| 国产乱人视频| 九色成人免费人妻av| 美女cb高潮喷水在线观看| 在线免费观看不下载黄p国产| 在线观看人妻少妇| 日韩在线高清观看一区二区三区| 成人毛片a级毛片在线播放| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 国产有黄有色有爽视频| 国产一区二区在线观看日韩| 在线观看一区二区三区| 国产亚洲最大av| 一级二级三级毛片免费看| 大香蕉97超碰在线| 亚洲精品456在线播放app| 秋霞伦理黄片| 精品熟女少妇av免费看| 国产精品偷伦视频观看了| 美女福利国产在线 | 嫩草影院入口| 一本久久精品| 国产综合精华液| 亚洲欧美日韩另类电影网站 | 精品99又大又爽又粗少妇毛片| 精品一区二区三卡| 91狼人影院| 亚洲第一区二区三区不卡| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 免费人成在线观看视频色| 黄色一级大片看看| 国产精品福利在线免费观看| 一级毛片久久久久久久久女| 久久午夜福利片| 国产黄色视频一区二区在线观看| 婷婷色av中文字幕| 亚洲人成网站高清观看| 人人妻人人看人人澡| 青春草视频在线免费观看| 免费看光身美女| 波野结衣二区三区在线| 欧美区成人在线视频| 亚洲精品乱码久久久久久按摩| 亚洲av男天堂| 综合色丁香网| 国产精品爽爽va在线观看网站| 黄片wwwwww| 亚州av有码| 啦啦啦视频在线资源免费观看| 国产精品99久久99久久久不卡 | 国产成人精品久久久久久| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 国产爽快片一区二区三区| av卡一久久| 国产精品蜜桃在线观看| 国产精品麻豆人妻色哟哟久久| 欧美人与善性xxx| 身体一侧抽搐| 国产精品一及| 综合色丁香网| 国产精品久久久久久精品电影小说 | 性色av一级| 久久久久久久亚洲中文字幕| 不卡视频在线观看欧美| 在线天堂最新版资源| 高清日韩中文字幕在线| 亚洲伊人久久精品综合| 18禁裸乳无遮挡动漫免费视频| 天美传媒精品一区二区| 乱系列少妇在线播放| av线在线观看网站| 91狼人影院| 美女脱内裤让男人舔精品视频| 国产黄色免费在线视频| 亚洲怡红院男人天堂| 久久99热这里只频精品6学生| 国产老妇伦熟女老妇高清| 精品人妻熟女av久视频| 久久99热6这里只有精品| 伊人久久国产一区二区| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| av国产精品久久久久影院| 亚洲美女搞黄在线观看| 久久女婷五月综合色啪小说| 久久久成人免费电影| 成人二区视频| 丰满乱子伦码专区| 在线观看人妻少妇| 久久久午夜欧美精品| 国产免费视频播放在线视频| 日韩电影二区| 只有这里有精品99| 精品久久久久久久末码| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 国产男人的电影天堂91| av不卡在线播放| 尾随美女入室| 在线观看一区二区三区| 久久国内精品自在自线图片| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| 超碰av人人做人人爽久久| 少妇精品久久久久久久| 日日啪夜夜撸| 国产成人a∨麻豆精品| 午夜免费观看性视频| 高清av免费在线| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 久久久精品94久久精品| 免费看av在线观看网站| 国产av精品麻豆| xxx大片免费视频| 超碰97精品在线观看| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 丝袜喷水一区| 这个男人来自地球电影免费观看 | 好男人视频免费观看在线| 2021少妇久久久久久久久久久| 熟女电影av网| 婷婷色综合www| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| 精品国产一区二区三区久久久樱花 | 亚洲婷婷狠狠爱综合网| 在线精品无人区一区二区三 | 国产探花极品一区二区| 成人漫画全彩无遮挡| h视频一区二区三区| 亚洲内射少妇av| 日日啪夜夜爽| 草草在线视频免费看| 丝袜脚勾引网站| 99国产精品免费福利视频| 亚洲综合色惰| 国国产精品蜜臀av免费| 99热6这里只有精品| 亚洲最大成人中文| 啦啦啦在线观看免费高清www| 如何舔出高潮| 一本色道久久久久久精品综合| 国产亚洲av片在线观看秒播厂| 久久久久久伊人网av| 99久久人妻综合| 少妇丰满av| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 黄色视频在线播放观看不卡| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影小说 | 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 26uuu在线亚洲综合色| 国产爽快片一区二区三区| 免费在线观看成人毛片| 亚洲一区二区三区欧美精品| 国模一区二区三区四区视频| 99久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 欧美精品人与动牲交sv欧美| 日韩三级伦理在线观看| 熟女人妻精品中文字幕| 五月开心婷婷网| 日韩大片免费观看网站| 国产深夜福利视频在线观看| 久久精品人妻少妇| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| 久久99精品国语久久久| 日韩av免费高清视频| 久热久热在线精品观看| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| 99九九线精品视频在线观看视频| 亚洲av在线观看美女高潮| 久久久久久九九精品二区国产| 一区二区三区四区激情视频| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 久久午夜福利片| 欧美老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 国产色爽女视频免费观看| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看 | 一本—道久久a久久精品蜜桃钙片| 蜜桃在线观看..| 国产高清国产精品国产三级 | 在线观看一区二区三区| 国产精品麻豆人妻色哟哟久久| 爱豆传媒免费全集在线观看| 久久精品国产亚洲网站| 亚洲av.av天堂| 国产成人a区在线观看| 成人国产av品久久久| 高清在线视频一区二区三区| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 18禁在线播放成人免费| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 久久久欧美国产精品| 99热这里只有精品一区| 永久免费av网站大全| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 成人美女网站在线观看视频| 国产 一区精品| 人人妻人人添人人爽欧美一区卜 | 一级a做视频免费观看| 纯流量卡能插随身wifi吗| 男女啪啪激烈高潮av片| 2021少妇久久久久久久久久久| 寂寞人妻少妇视频99o| 亚洲高清免费不卡视频| 视频中文字幕在线观看| 丝瓜视频免费看黄片| 久久人人爽人人爽人人片va| 国产成人freesex在线| 国产精品久久久久成人av| 两个人的视频大全免费| 一级av片app| 亚洲精品乱久久久久久| 国产精品人妻久久久久久| 午夜福利影视在线免费观看| 国产精品偷伦视频观看了| 国产大屁股一区二区在线视频| 大码成人一级视频| 国产伦理片在线播放av一区| 精品久久久精品久久久| 蜜臀久久99精品久久宅男| 精品亚洲成a人片在线观看 | 国产黄片视频在线免费观看| 国产午夜精品一二区理论片| 嫩草影院入口| 国产高清不卡午夜福利| 99久久精品国产国产毛片| 国产成人精品久久久久久| 啦啦啦视频在线资源免费观看| 天堂中文最新版在线下载| 亚洲,一卡二卡三卡| 久久鲁丝午夜福利片| 免费观看无遮挡的男女| 性高湖久久久久久久久免费观看| 一级毛片久久久久久久久女| 高清黄色对白视频在线免费看 | 美女高潮的动态| 亚洲真实伦在线观看| 久久久色成人| 精品国产三级普通话版| 少妇精品久久久久久久|