• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-biennial oscillation signal detected in the stratospheric zonal wind at 55-65°N

    2016-11-23 02:37:00ZHANGYuandZHOULiBo
    關(guān)鍵詞:極區(qū)緯向平流層

    ZHANG Yuand ZHOU Li-Bo

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bDepartment of Lower Atmosphere Observation and Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;cCollege of Earth Science, University of the Chinese Academy of Sciences, Beijing, China

    Quasi-biennial oscillation signal detected in the stratospheric zonal wind at 55-65°N

    ZHANG Yua,b,cand ZHOU Li-Boa,b

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bDepartment of Lower Atmosphere Observation and Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;cCollege of Earth Science, University of the Chinese Academy of Sciences, Beijing, China

    To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55—65°N is analyzed. The seasonal cycle, solar cycle,and linear trend in the zonal wind at these latitudes are analyzed and removed, and the QBO signal is retrieved from the monthly zonal wind for the period 1979—2014. The zonal wind has a strong decreasing trend in winter, with a maximum decrease (less than -0.35 m s-1yr-1) occurring within 70—100°E. The zonal wind has an in-phase response of 1.6 m s-1to the solar cycle, with a maximum within 100—140°E. A clear QBO signal is detected in the zonal wind during the period 1979—2014,with an amplitude of 2.5 m s-1and a period of 30 months. The latitudinal distribution of the QBO signal is inhomogeneous, with a maximum within 120—180°E and a minimum within 25—45°E.

    ARTICLE HISTORY

    Revised 12 December 2015

    Accepted 27 January 2016

    Quasi-Biennial Oscillation;zonal wind; Arctic vortex

    北極極渦是一個(gè)存在于極區(qū)對(duì)流層中上層和平流層的大尺度氣旋性環(huán)流系統(tǒng), 是極區(qū)大氣運(yùn)動(dòng)的主要特征。赤道平流層風(fēng)場(chǎng)的準(zhǔn)兩年振蕩,可以對(duì)行星波的傳播進(jìn)行調(diào)制,從而對(duì)北極極渦的強(qiáng)度產(chǎn)生影響。為了定量描述,赤道平流層風(fēng)場(chǎng)的準(zhǔn)兩年振蕩對(duì)北極極渦的影響,我們對(duì)表征北極極渦強(qiáng)度的55-65°N緯度帶平流層緯向風(fēng)進(jìn)行了分析,提取出了北極極渦中的準(zhǔn)兩年振蕩信號(hào),并發(fā)現(xiàn)了該信號(hào)的緯向不均一性,120-180°E為高值區(qū),25-45°E為低值區(qū)。

    1. Introduction

    The Arctic vortex is a large-scale cyclonic circulation in the winter troposphere and stratosphere around the North Pole (Andrews, Holton, and Leovy 1987). The strong circumpolar westerly isolates the Arctic atmosphere from the lower latitudes, and formulates the nature of the Arctic atmosphere (Karpetchko, Kyr?, and Knudsen 2005). For example, total ozone in the Arctic region is much lower than in the middle and low latitudes (Zhou et al. 2001). As the edge of the Arctic atmosphere, the Arctic vortex plays an important role in the interaction between the Arctic and lower-latitude air, through large-scale dynamic processes such as blocking highs, cut-of lows, and Rossby-wave breaking (Akiyoshi and Zhou 2007; Baldwin and Holton 1988). The variation of the Arctic vortex can impact upon tropospheric systems at lower latitudes, the East Asian winter monsoon, extreme-cold events in North America,and precipitation over the North Atlantic, among other climatic phenomena (Thompson and Wallace 1998, 2002; Walter and Graf 2005; Wu and Wang 2002; Zhang, Gao,and Liu 2008). On the contrary, the Arctic vortex can also be infuenced by external factors, such as solar irradiance,ENSO, and the quasi-biennial oscillation (QBO) (Angell 1992; Labitzke and Loon 1988). Camp and Tung (2007)pointed out the important impact of solar irradiance on the variation in the Arctic vortex. Butler and Polvani (2011)revealed the infuence of ENSO on the frequency of stratospheric sudden warming. Holton and Tan (1980) found a close relationship between the strength of the Arctic vortex and the equatorial QBO, with a weaker vortex being associated with the easterly phase of the QBO.

    The QBO is the dominant oscillation in the wind of the equatorial stratosphere, with easterly and westerly wind shifting in a period of about 28 months, which can propagate downwards without a decrease in amplitude (Holton 1992). Holton and Lindzen (1972) and Andrews, Holton,and Leovy (1987) discussed the momentum driving source for the QBO, and attributed it to vertically propagating equatorial Kelvin and Rossby-gravity waves. Consideringthe consistency of the QBO period, Dunkerton (1997) suggested the importance of laterally propagating Rossby waves in driving the QBO.

    Through modulating the propagation of planetary waves, the impact of the QBO can spread to the atmospheric circulations of higher latitudes (Holton and Tan 1980, 1982). Since the tropical easterly of the QBO prevents the difusion of planetary-wave energy via waveguides from the higher to the lower latitudes, the mean fows in the middle and high latitudes—including the Arctic vortex—could be weakened during the easterly phase of the QBO, and vice versa (Baldwin et al. 2001). The impacts of the QBO on the mid- and high-latitude atmosphere have been widely reported (Anstey and Shepherd 2014; Dunkerton and Baldwin 1991; Gray and Russell 1999;Shi et al. 2009; Sitnov 1996; Zou and Gao 1997; Zou et al. 2005). For example, Sitnov (1996) found the QBO signal in the temperature, wind and tropopause height outside of the tropical region. Zou and Gao (1997) and Zou et al.(2005) detected an impact of the QBO on ozone variation at 60—70°S and 50—60°N. However, the impact of the QBO on the general circulation at high latitudes of the NH, especially the Arctic vortex, has yet to be detected.

    As the westerly jet of the Arctic vortex generally exists within 55—65°N (Waugh and Randel 1999), the zonal wind in this zone could present the features of the circulation at the high latitudes, including the Arctic vortex. In the present study, to investigate the impacts of the QBO on high-latitude circulation and the Arctic vortex, the zonal wind at 55—65°N is analyzed, and the QBO signal in the zonal wind investigated.

    2. Data and methods

    The zonal wind data are from ERA-Interim (Berrisford et al. 2009; Dee et al. 2011), with a horizontal resolution of 1.5° latitude × 1.5° longitude, and 37 pressure levels from 1000 to 1 hPa. In this study, the monthly averaged zonal wind at 30 hPa within 55—65°N is selected to investigate the zonal wind variation. The zonal wind at 30 hPa over Singapore is normalized as the QBO index, and the 10.7-cm solar fux is adopted from the National Research Council of Canada(http://www.spaceweather.ca/solarfux/sx-4-en.php/) as the solar irradiance index.

    The seasonal cycle, solar cycle, and linear trend in the zonal wind at 55—65°N are removed and then the ‘superimposed epoch' method (Sitnov 1996) is utilized to retrieve the QBO signal in the zonal wind within that latitudinal range. In this method, the QBO ‘key-0' time points are frstly set as the monthly easterly to westerly wind shifts at 30 hPa over Singapore, and then the monthly zonal wind anomalies at 55—65°N are averaged with ±27 month lags according to the QBO ‘key-0' time points. Negative lags correspond to the months preceding the zonal wind phase shift, and vice versa.

    3. Results

    3.1. Seasonal cycle

    Averaging the zonal wind between 55°N and 65°N, the zonal-mean zonal wind is obtained and its seasonal variation for 1979—2014 is shown in Figure 1(a). The zonal-mean zonal wind over the 55—65°N latitude belt decreases from winter to summer and increases thereafter. The zonal-mean zonal wind reaches a minimum (-6.4 m s-1) in June and a maximum (25.3 m s-1) in January, with an amplitude of 31.7 m s-1. This seasonal cycle of zonal-mean zonal wind refects the evolution of the Arctic vortex; the vortex forms in late autumn (November) with a weak circumpolar westerly, develops in winter (December—January—February)with a strong westerly jet at the edge of the vortex (large positive zonal wind value at 55—65°N), and decays in late spring (May) with a weak easterly (small negative zonal wind value) (Akiyoshi and Zhou 2007; Nash et al. 1996;Waugh and Randel 1999).

    Figure 1.Seasonal cycle of zonal wind between 55°N and 65°N,averaged for 1979—2014, for the (a) zonal mean and (b) for each longitude.

    Figure 1(b) further shows the longitudinal distribution of the seasonal cycle of zonal wind within 55—65°N. The zonal wind at each longitude has the same seasonal cycle as the zonal-mean situation described above, with the zonal wind decreasing from winter to summer and increasing from summer to winter. The maximum zonal wind is located in the Siberia section (60—90°E) in January with a value larger than 32.0 m s-1, while the minimum is in the Pacifc section (165°E—170°W) with a value less than -6.5 m s-1in June. The strongest zonal wind (above 34.0 m s-1) is centered at 80°E in central Russia, while the weakest (below -6.5 m s-1) is at 175°E in the Bering Sea,resulting in variability above 40.5 m s-1. The second maximum zonal wind, with a value between 32.0 and 34.0 m s-1,is found in the Atlantic section (30°W—0°).

    Therefore, the zonal wind at 55—65°N has strong seasonal variation, with a weak easterly in summer and a strong westerly in winter, refecting the evolution of the Arctic vortex. The latitudinal distribution of the zonal wind is inhomogeneous, with a strong westerly in the Siberia section in winter.

    3.2. Trends

    Using linear regression, the seasonal trends are calculated for the zonal-mean zonal wind. The 55—65°N zonal-mean zonal wind has a strong decreasing trend in winter(December—January—February) and a weak increase in spring (March and April) during 1979—2014 (Figure 2(a)). The maximum decrease (-0.29 ± 0.05 m s-1yr-1) occurs in January and the maximum increase (0.13 ± 0.03 m s-1yr-1)in April. The winter zonal wind decrease over the 55—65°N latitudinal belt suggests a weakening of the Arctic vortex during 1979—2014, while the spring zonal wind increase indicates a long duration of the Arctic vortex, which has been reported previously for certain years, such as 1979/1980 and 1998/1999 (Langematz and Kunze 2006).

    Figure 2(b) presents the seasonal trends of zonal wind at each longitude averaged for the 55—65°N latitude belt,in which statistically signifcant values are shaded. The zonal wind decreases in winter and increases in spring at each longitude during 1979—2014. The maximum decrease(less than -0.35 m s-1yr-1) occurs in the Siberia section between 70°E and 110°E from January to February, with a center (-0.38 m s-1yr-1) at 95°E in February. The maximum increase (larger than 0.20 m s-1yr-1) occurs in the south Norwegian Sea between 10°W and 20°E from March to April, with a center (-0.22 m s-1yr-1) at 10°E in April.

    Therefore, the zonal wind between 55°N and 65°N has a strong decreasing trend in winter, with the maximum decrease in the Siberia section, and a weak increase in spring within 10°W—20°E during 1979—2014. This may indicate a weakening and long duration of the Arctic vortex in this period.

    Figure 2.Seasonal trends of zonal wind at 55—65°N for the (a)zonal mean and (b) for each longitude, during 1979—2014.

    3.3. Eleven-year solar cycle

    Solar irradiance has important impacts on wind variation (Angell 1992), and therefore should be included as a possible factor of infuence with respect to the long-term variation in zonal wind. The zonal wind responses to the solar cycle can be obtained via a statistical regression model for the long-term variation in zonal wind, which includes the seasonal cycle, trends, and solar cycle. Figure 3 illustrates the zonal wind responses to the solar cycle during 1979—2014, in which negative areas are shaded. The zonal wind responses at 55—65°N are in-phase with the solar cycle, with a zonally averaged value of 1.6 m s-1. The maximum responses (more than 2.0 m s-1) occur within 100—140°E, while the weakest (less than 0.5 m s-1) occur within 20—40°E. The inhomogeneous solar-related zonal wind along the 55—65°N latitudinal belt might be related to the distribution of ozone. Results have shown that the distribution of total ozone in the high latitudes of the NH is inhomogeneous, with a maximum over the North Pacifcregion and a minimum over the North Atlantic region (Zou et al. 2006). The ozone can absorb the solar energy and further afect the circulation.

    Figure 3.Zonal wind responses to the solar cycle between 55°N and 65°N, from 1979 to 2014 (432 months in total).

    Therefore, an in-phase zonal wind response to the solar cycle is detected, with a zonally averaged value of 1.6 m s-1. The solar-related zonal wind response has a maximum within 100—140°E and a minimum within 20—40°E,which might be related to the inhomogeneous distribution of ozone at high latitudes.

    3.4. Quasi-biennial oscillation

    To investigate the impacts of the QBO on high-latitude circulation and the Arctic vortex, the monthly zonal wind anomalies for each 1.5° of longitude between 55°N and 65°N are obtained by subtracting the seasonal cycle,trends and solar cycle from the zonal wind data series and applying a seven-month smoothing. The reason for the seven-month smoothing is that seven months covers about one-quarter of the period of the QBO; the QBO normally operates at a period of 26—30 months, and thus a seven-month smoothing flters out the smaller perturbations while retaining the main components of the QBO (Zou, Ji,and Zhou 2000). Since the QBO itself is not a strictly periodic process, a superimposed epoch method (Sitnov 1996)is applied to the analysis. In this method, key-0 months of the tropical QBO are defned as the months when the QBO index changes its phase from easterly to westerly. Therefore, the QBO periods are defned by easterly and westerly months on both sides of the key-0 month. Using the above method, the zonal wind responses to the QBO are retrieved by averaging the monthly zonal wind anomalies in each lag month (lags up to ±27 months) from the QBO key-0 months. A clear in-phase QBO signal is detected in the zonal-mean zonal winds at 55—65°N (Figure 4(a)),i.e. the zonal wind anomalies have negative values in the QBO easterly phase, and vice versa. The in-phase variation of zonal wind with the QBO is mainly caused by the planetary-wave energy difusing through waveguides from the higher latitudes to the lower latitudes (Baldwin et al. 2001). From the fgure, the 55—65°N zonal-mean wind anomalies have negative values from lag -11 to lag 1 (13 months),with a minimum of -1.5 m s-1, and have positive values from lag 2 to lag 18 (17 months), with a maximum of 1.0 m s-1. Therefore, the QBO signal detected in the zonal-mean zonal wind has an amplitude of 2.5 m s-1, a period of 30 months, and a lag of about 1.5 months to the tropical QBO.

    Figure 4.The QBO signal in the zonal wind, for the (a) zonal mean and (b) for each longitude.

    Figure 4(b) further presents the QBO signal in zonal wind at each longitude between 55°N and 65°N. The QBO-related zonal wind variation at 55—65°N has periods of around 30 months at most longitudes, except for the Pacifc section (150°E—150°W) with its period of around 32 months. The amplitudes of the QBO signal at diferent longitudes vary from 2.2 to 4.3 m s-1, with a maximum(larger than 4.2 m s-1) within 120—180°E and a minimum(less than 2.3 m s-1) within 25—45°E. It is known that the tropical QBO signal can spread to the high latitudes,through modulation of the planetary wave propagation(Holton and Tan 1980, 1982). Suo (2008) and Zyulyaeva and Zhadin (2009) discovered an equatorward propagation of planetary waves in the stratosphere over central and eastern Siberia (90—180°E). The strong QBO signal at 55—65°N within 120—180°E can be attributed to the strong difusion along the waveguide to lower latitudes in this region.

    Therefore, a clear QBO signal is detected in the zonal wind at 55—65°N, with an amplitude of 2.5 m s-1in the zonal average and a period of 30 months. The latitudinal distribution of the QBO signal in the zonal wind is inhomogeneous, featuring a maximum within 120—180°E and a minimum within 25—45°E, which could be related to the modulation of the planetary wave propagation from the Arctic region to the lower latitudes.

    4. Conclusion

    Based on the present study, the following conclusions can be drawn:

    (1) The 55—65°N zonal wind has significant seasonal variation, with a weak easterly in summer and a strong westerly in winter, reflecting the evolution of the Arctic vortex. The latitudinal distribution of the zonal wind is inhomogeneous, with a strong westerly in the Siberia section in winter.

    (2) The 55—65°N zonal wind during 1979—2014 shows

    a decreasing trend in winter, with a maximum decrease in the Siberia section, and an increasing trend in spring, with a maximum increase within 10°W—20°E. This may indicate a weakening and long duration of the Arctic vortex in this period.(3) The 55—65°N zonal wind response to the 11-year solar cycle features a maximum response of 2.0 m s-1within 100—140°E and a minimum within 20—40°E.

    (4) A clear QBO signal is detected in the 55—65°N zonal wind for the period 1979—2014, with an amplitude of 2.5 m s-1, a period of 30 months,and a lag of about 1.5 months to the tropical QBO. The latitudinal distribution of the QBO signal in the zonal wind is inhomogeneous, featuring a maximum within 150—180°E and a minimum within 25—45°E.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This study was supported by the Special Fund for Meteorological Research in the Public Interest [grant number GYHY201206041];the projects entitled ‘Comprehensive Evaluation of Polar Areas in Global and Regional Climate Changes' [grant number CHINARE2015—2019]; ‘Polar Environment Comprehensive Investigation and Assessment' [grant number CHINARE2015—2019].

    Notes on contributors

    ZHANG Yu is a PhD candidate at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). His main research interests are climatology, polar vortex, and stratospheric ozone. His recent publications include papers in Acta Meteorologica Sinica, Journal of Geophysical Research Atmospheres and other journals.

    ZHOU Li-Bo is a professor at IAP, CAS. His main research interests are stratospheric polar vortex, Asian monsoon, atmospheric dynamics. His recent publications include papers in Journal of Geophysical Research Atmospheres, Geophysical Research Letters,Advances in Atmospheric Sciences, Acta Meteorologica Sinica and other journals.

    References

    Akiyoshi, H., and L. B. Zhou. 2007. “Midlatitude and High-Latitude N2O Distributions in the Northern Hemisphere in Early and Late Arctic Polar Vortex Breakup Years.” Journal of Geophysical Research 112: D18305. doi:10.1029/2007JD008491.

    Andrews, D. G., J. R. Holton, and C. B. Leovy. 1987. Middle Atmosphere Dynamics. New York: Academic Press. 313 pp.

    Angell, J. K. 1992. “Relation between 300-mb North Polar Vortex and Equatorial SST, QBO, and Sunspot Number and the Record Contraction of the Vortex in 1988—89.” Journal of Climate 5: 22—29.

    Anstey, J. A., and T. G. Shepherd. 2014. “High-Latitude Infuence of the Quasi-Biennial Oscillation.” Quarterly Journal of the Royal Meteorological Society 140: 1—21.

    Baldwin, M. P., L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes,W. J. Randel, J. R. Holton, et al. 2001. “The Quasi-Biennial Oscillation.” Reviews of Geophysics 39: 179—229.

    Baldwin, M. P., and J. R. Holton. 1988. “Climatology of the Stratospheric Polar Vortex and Planetary Wave Breaking.”Journal of the Atmospheric Sciences 45: 1123—1142.

    Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala. 2009. The ERA-Interim Archive,Era Report Series 1, Technical Report, European Centre for Medium Range Weather Forecasts, Berkshire, UK, 23 pp.

    Butler, A. H., and L. M. Polvani. 2011. “El Ni?o, La Ni?a, and Stratospheric Sudden Warmings: A Reevaluation in Light of the Observational Record.” Geophysical Research Letters 38: L13807. doi:10.1029/2011GL048084.

    Camp, C. D., and K.-K. Tung. 2007. “The Infuence of the Solar Cycle and QBO on the Late-Winter Stratospheric Polar Vortex.”Journal of the Atmospheric Sciences 64: 1267—1283.

    Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, and P. Bauer. 2011. “The ERA-Interim Reanalysis: Confguration and Performance of the Data Assimilation System.” Quarterly Journal of the Royal Meteorological Society 137: 553—597.

    Dunkerton, T. J. 1997. “The Role of Gravity Waves in the Quasi-Biennial Oscillation.” Journal of Geophysical Research: Atmospheres 102: 26053—26076.

    Dunkerton, T. J., and M. P. Baldwin. 1991. “Quasi-Biennial Modulation of Planetary-Wave Fluxes in the Northern Hemisphere Winter.” Journal of the Atmospheric Sciences 48: 1043—1061.

    Gray, L. J., and J. M. Russell. 1999. “Interannual Variability of Trace Gases in the Subtropical Winter Stratosphere.” Journal of the Atmospheric Sciences 56: 977—993.

    Holton, J. 1992. An Introduction to Dynamic Meteorology. 3rd ed.,435—436. San Diego, CA: Academic Press.

    Holton, J. R., and R. S. Lindzen. 1972. “An Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere.” Journal of the Atmospheric Sciences 29: 1076—1079.

    Holton, J. R., and H. C. Tan. 1980. “The Infuence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb.”Journal of the Atmospheric Sciences 37: 2200—2208.

    Holton, J. R., and H. C. Tan. 1982. “The Quasi-Biennial Oscillation in the Northern Hemisphere Lower Stratosphere.” Journal of the Meteorological Society of Japan 60: 140—148.

    Karpetchko, A., E. Kyr?, and B. M. Knudsen. 2005. “Arctic and Antarctic Polar Vortices 1957—2002 as Seen from the ERA-40 Reanalyses.” Journal of Geophysical Research 110: D21109. doi:10.1029/2005JD006113.

    Labitzke, K., and H. Loon. 1988. “Associations between the 11-Year Solar Cycle, the QBO and the Atmosphere. Part I: The Troposphere and Stratosphere in the Northern Hemisphere in Winter.” Journal of Atmospheric and Terrestrial Physics 50: 197—206.

    Langematz, U., and M. Kunze. 2006. “An Update on Dynamical Changes in the Arctic and Antarctic Stratospheric Polar Vortices.” Climate Dynamics 27: 647—660.

    Nash, E. R., P. A. Newman, J. E. Rosenfeld, and M. R. Schoeberl. 1996. “An Objective Determination of the Polar Vortex Using Ertel's Potential Vorticity.” Journal of Geophysical Research: Atmospheres 101: 9471—9478.

    Shi, C. H., B. Zheng, Y. J. Chen, and Y. Bi. 2009. “The Quasi-Biennial Oscillation of Water Vapor in Tropic Stratosphere.” Chinese Journal of Geophysics 52: 2428—2435.

    Sitnov, S. A. 1996. “Vertical Structure of the Extratropical Quasi-Biennial Oscillation in Ozone, Temperature, and Wind Derived from Ozonesonde Data.” Journal of Geophysical Research: Atmospheres 101: 12855—12866.

    Suo, L. L. 2008. Diagnostic Study on the Mechanisms of the Stratosphere Polar Vortex Infuencing the Troposphere [D]. [In Chinese.] Beijing: Peking University.

    Thompson, D. W. J., and J. M. Wallace. 1998. “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields.” Geophysical Research Letters 25: 1297—1300.

    Thompson, D. W. J., and J. M. Wallace. 2002. “Stratospheric Connection to Northern Hemisphere Wintertime Weather: Implications for Prediction.” Journal of Climate 15: 1421—1428. Walter, K., and H. F. Graf. 2005. “The North Atlantic Variability Structure, Storm Tracks, and Precipitation Depending on the Polar Vortex Strength.” Atmospheric Chemistry and Physics 5: 239—248.

    Waugh, D. W., and W. J. Randel. 1999. “Climatology of Arctic and Antarctic Polar Vortices Using Elliptical Diagnostics.” Journal of the Atmospheric Sciences 56: 1594—1613.

    Wu, B., and J. Wang. 2002. “Possible Impacts of Winter Arctic Oscillation on Siberian High, the East Asian Winter Monsoon and Sea-Ice Extent.” Advances in Atmospheric Sciences 19: 297—320.

    Zhang, H., S. Gao, and Y. Liu. 2008. “Advances of Research on Polar Vortex.” [In Chinese.] Plateau Meteorology 27: 452—461.

    Zhou, L. B., H. Zou, C. P. Ji, W. Wang, and Y. X. Jian. 2001. “The Scandinavia Ozone Loss and Surface Heating.” Advances in Atmospheric Sciences 18: 454—466.

    Zou, H., and Y. Gao. 1997. “Long-Term Variation in TOMS Ozone over 60—70°S.” Geophysical Research Letters 24: 2295—2298.

    Zou, H., C. Ji, and L. B. Zhou. 2000. “QBO Signal in Total Ozone over Tibet.” Advances in Atmospheric Sciences 17: 562—568.

    Zou, H., P. Li, L. B. Zhou, S. Ma, and C. P. Ji. 2006. “On Low Ozone over the North Atlantic and High Ozone over the North Pacifc.” [In Chinese.] Chinese Journal of Atmospheric Science 30: 905—912.

    Zou, H., L. Zhou, Y. Gao, X. Chen, P. Li, C. Ji, S. Ma, and D. Gao. 2005.“Total Ozone Variation between 50° and 60°N.” Geophysical Research Letters 32: L23812. doi:10.1029/2005GL024012.

    Zyulyaeva, Y. A., and E. A. Zhadin. 2009. “Analysis of Three-Dimensional Eliassen—Palm Fluxes in the Lower Stratosphere.”Russian Meteorology and Hydrology 34: 483—490.

    28 September 2015

    CONTACT ZHOU Li-Bo zhoulibo@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    極區(qū)緯向平流層
    青藏高原上空平流層水汽的時(shí)空演變特征
    基于副氣囊的平流層浮空器高度控制
    紗線強(qiáng)力對(duì)純棉平紋面料強(qiáng)力的影響
    直升機(jī)極區(qū)海洋環(huán)境加速試驗(yàn)環(huán)境譜研究
    利用掩星溫度數(shù)據(jù)推算大氣月平均緯向風(fēng)場(chǎng)
    一種極區(qū)統(tǒng)一坐標(biāo)系及其導(dǎo)航參數(shù)轉(zhuǎn)換方法*
    溫度對(duì)絲綢面料粘襯熱縮率的影響
    絲綢(2018年10期)2018-10-15 09:54:16
    柞蠶絲面料在粘襯過(guò)程中的熱縮率變化分析
    1979~2011年間平流層溫度及平流層水汽的演變趨勢(shì)
    極區(qū)間接橫向慣性導(dǎo)航方法
    亚洲av日韩精品久久久久久密| 黄色怎么调成土黄色| 国产成人精品无人区| 国产精品av久久久久免费| 91成年电影在线观看| 变态另类成人亚洲欧美熟女 | 久久精品91无色码中文字幕| 国产成人精品久久二区二区91| videosex国产| www.999成人在线观看| 国产av一区二区精品久久| 乱人伦中国视频| 老司机靠b影院| 欧美日韩黄片免| 在线观看66精品国产| 99国产精品一区二区三区| 真人做人爱边吃奶动态| 国产亚洲精品综合一区在线观看 | 日韩大码丰满熟妇| 两个人看的免费小视频| 欧美日韩亚洲高清精品| 久久久精品欧美日韩精品| 别揉我奶头~嗯~啊~动态视频| 丰满迷人的少妇在线观看| 少妇 在线观看| 在线观看一区二区三区| 亚洲黑人精品在线| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 丰满的人妻完整版| 香蕉国产在线看| 最近最新中文字幕大全电影3 | 两个人看的免费小视频| 激情视频va一区二区三区| 丰满的人妻完整版| 真人一进一出gif抽搐免费| 91大片在线观看| 少妇 在线观看| 少妇被粗大的猛进出69影院| 中文欧美无线码| 最近最新中文字幕大全电影3 | 高潮久久久久久久久久久不卡| 欧美成人午夜精品| 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区| 最近最新中文字幕大全电影3 | 亚洲欧美日韩高清在线视频| 国产99白浆流出| 亚洲久久久国产精品| 亚洲五月婷婷丁香| 欧美最黄视频在线播放免费 | 久久天躁狠狠躁夜夜2o2o| 午夜成年电影在线免费观看| 亚洲中文字幕日韩| 欧美激情极品国产一区二区三区| 99精品久久久久人妻精品| 一级毛片女人18水好多| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 亚洲 国产 在线| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 91在线观看av| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 91大片在线观看| 精品国产亚洲在线| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 欧美精品亚洲一区二区| 黄色女人牲交| 久久久国产成人免费| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| av在线天堂中文字幕 | 欧美一区二区精品小视频在线| 久久精品影院6| 成人黄色视频免费在线看| 黄色a级毛片大全视频| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 大码成人一级视频| 女同久久另类99精品国产91| 午夜福利,免费看| 成人手机av| 18禁黄网站禁片午夜丰满| 50天的宝宝边吃奶边哭怎么回事| 亚洲少妇的诱惑av| 精品福利永久在线观看| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av | 老司机深夜福利视频在线观看| 啦啦啦免费观看视频1| 老鸭窝网址在线观看| 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻aⅴ院| 日本 av在线| 国产精品久久视频播放| 99精品在免费线老司机午夜| 日本五十路高清| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| 免费高清视频大片| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 91精品三级在线观看| 黄色片一级片一级黄色片| 美女福利国产在线| av欧美777| 黄片大片在线免费观看| 国产99久久九九免费精品| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 色综合欧美亚洲国产小说| 国产精品免费视频内射| 久久香蕉国产精品| 高清av免费在线| 亚洲欧美激情在线| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区 | 在线永久观看黄色视频| 国产极品粉嫩免费观看在线| www日本在线高清视频| 久久精品aⅴ一区二区三区四区| 午夜亚洲福利在线播放| 极品人妻少妇av视频| 国产成人免费无遮挡视频| 超碰97精品在线观看| av视频免费观看在线观看| 18美女黄网站色大片免费观看| 久久草成人影院| 50天的宝宝边吃奶边哭怎么回事| 美女扒开内裤让男人捅视频| 正在播放国产对白刺激| 亚洲 欧美一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av五月六月丁香网| 久久香蕉精品热| av中文乱码字幕在线| 日韩欧美一区视频在线观看| 亚洲熟妇熟女久久| 这个男人来自地球电影免费观看| 男男h啪啪无遮挡| 成人三级黄色视频| 波多野结衣一区麻豆| 国产成人免费无遮挡视频| 亚洲国产精品sss在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久av美女十八| 日韩视频一区二区在线观看| 视频区图区小说| 免费观看精品视频网站| 国产成人欧美| 精品一区二区三卡| 国产成人精品无人区| 日韩欧美在线二视频| 亚洲精品成人av观看孕妇| 亚洲国产看品久久| 日韩欧美免费精品| 国产精华一区二区三区| www.熟女人妻精品国产| √禁漫天堂资源中文www| 少妇裸体淫交视频免费看高清 | 国产一区二区三区在线臀色熟女 | 欧美日韩黄片免| 亚洲欧美日韩无卡精品| 国产伦人伦偷精品视频| 欧美日韩视频精品一区| 久久国产乱子伦精品免费另类| 国产一卡二卡三卡精品| 极品教师在线免费播放| 国产精品久久久久久人妻精品电影| 一级作爱视频免费观看| 色综合欧美亚洲国产小说| 男女高潮啪啪啪动态图| 热re99久久国产66热| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 精品日产1卡2卡| 色哟哟哟哟哟哟| 99国产综合亚洲精品| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 大香蕉久久成人网| 曰老女人黄片| 亚洲狠狠婷婷综合久久图片| 人人澡人人妻人| 无遮挡黄片免费观看| 在线观看午夜福利视频| 中文字幕精品免费在线观看视频| 欧美激情极品国产一区二区三区| 伦理电影免费视频| 亚洲成人精品中文字幕电影 | 欧美激情久久久久久爽电影 | 18禁黄网站禁片午夜丰满| 亚洲av五月六月丁香网| 香蕉丝袜av| 免费久久久久久久精品成人欧美视频| 日韩精品青青久久久久久| 国产精品久久久久久人妻精品电影| 日日爽夜夜爽网站| 国产一卡二卡三卡精品| 免费久久久久久久精品成人欧美视频| 午夜影院日韩av| 成人手机av| 不卡av一区二区三区| 午夜福利,免费看| 国产成人精品久久二区二区91| xxxhd国产人妻xxx| 少妇被粗大的猛进出69影院| 精品欧美一区二区三区在线| 亚洲精品国产区一区二| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 中文字幕人妻丝袜一区二区| 亚洲精品国产色婷婷电影| 女人高潮潮喷娇喘18禁视频| 精品熟女少妇八av免费久了| 成人特级黄色片久久久久久久| 欧美日韩亚洲综合一区二区三区_| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 精品无人区乱码1区二区| 在线观看66精品国产| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 亚洲少妇的诱惑av| bbb黄色大片| 在线观看免费视频日本深夜| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 黄色女人牲交| 色综合欧美亚洲国产小说| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 亚洲午夜精品一区,二区,三区| 亚洲精品国产精品久久久不卡| 午夜久久久在线观看| 欧美+亚洲+日韩+国产| 又大又爽又粗| 激情在线观看视频在线高清| 国产成人精品在线电影| 久久影院123| 亚洲欧美日韩无卡精品| 99久久精品国产亚洲精品| 不卡一级毛片| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 亚洲精品在线观看二区| 黄色片一级片一级黄色片| 黄网站色视频无遮挡免费观看| 免费观看人在逋| 99精品在免费线老司机午夜| 天堂动漫精品| 欧美大码av| 亚洲国产精品999在线| 国产极品粉嫩免费观看在线| 亚洲精品国产区一区二| 久久精品91无色码中文字幕| 高清欧美精品videossex| 国产三级黄色录像| xxxhd国产人妻xxx| www.999成人在线观看| 午夜久久久在线观看| 国产野战对白在线观看| 麻豆国产av国片精品| 一二三四在线观看免费中文在| 国产av精品麻豆| 黄色a级毛片大全视频| 欧美黑人精品巨大| 精品日产1卡2卡| 免费看a级黄色片| 波多野结衣一区麻豆| 一级a爱视频在线免费观看| 国产伦人伦偷精品视频| 中文字幕精品免费在线观看视频| 久久久国产精品麻豆| 人人妻人人添人人爽欧美一区卜| 亚洲成人国产一区在线观看| av天堂久久9| 日韩精品免费视频一区二区三区| 亚洲第一欧美日韩一区二区三区| 新久久久久国产一级毛片| av福利片在线| 国产高清视频在线播放一区| 久9热在线精品视频| 亚洲成人免费电影在线观看| 十八禁人妻一区二区| 午夜激情av网站| 亚洲av第一区精品v没综合| 亚洲午夜理论影院| 国产一区二区三区在线臀色熟女 | 日本a在线网址| netflix在线观看网站| 亚洲av成人av| 久久青草综合色| 亚洲,欧美精品.| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 精品电影一区二区在线| bbb黄色大片| 免费在线观看影片大全网站| 久久香蕉激情| 99久久久亚洲精品蜜臀av| 国产成人影院久久av| 国产精品99久久99久久久不卡| 免费观看人在逋| 黑人操中国人逼视频| 19禁男女啪啪无遮挡网站| xxx96com| 欧美黄色片欧美黄色片| 国产av一区在线观看免费| 欧美在线黄色| 欧美另类亚洲清纯唯美| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 免费av毛片视频| 国产亚洲欧美精品永久| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 国产三级在线视频| 国产97色在线日韩免费| 亚洲美女黄片视频| 久久草成人影院| 亚洲欧美日韩无卡精品| 成人三级做爰电影| av在线播放免费不卡| 精品久久蜜臀av无| 搡老岳熟女国产| 狂野欧美激情性xxxx| 亚洲少妇的诱惑av| 国产成人欧美在线观看| 美女午夜性视频免费| 女人被狂操c到高潮| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 国产深夜福利视频在线观看| 精品久久久久久电影网| 亚洲少妇的诱惑av| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 精品午夜福利视频在线观看一区| 精品久久久久久,| 性少妇av在线| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 午夜成年电影在线免费观看| 国产一卡二卡三卡精品| 夜夜躁狠狠躁天天躁| 十八禁网站免费在线| 亚洲欧美日韩高清在线视频| 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 成人亚洲精品一区在线观看| 美国免费a级毛片| 成在线人永久免费视频| 老司机深夜福利视频在线观看| 日本免费a在线| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 不卡av一区二区三区| 狠狠狠狠99中文字幕| 又黄又粗又硬又大视频| 交换朋友夫妻互换小说| 国产视频一区二区在线看| 麻豆av在线久日| 欧美成人午夜精品| 99在线视频只有这里精品首页| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 涩涩av久久男人的天堂| 精品久久蜜臀av无| 久热这里只有精品99| 国产片内射在线| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| 精品国产乱码久久久久久男人| 超碰成人久久| 亚洲五月天丁香| 久热爱精品视频在线9| 中国美女看黄片| 一区二区三区激情视频| 免费在线观看黄色视频的| 伊人久久大香线蕉亚洲五| 极品人妻少妇av视频| 亚洲美女黄片视频| 两性夫妻黄色片| 丝袜在线中文字幕| 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲男人的天堂狠狠| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 美女国产高潮福利片在线看| 超色免费av| 在线观看www视频免费| 成人黄色视频免费在线看| 91字幕亚洲| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 国产精品永久免费网站| 久久精品影院6| 看黄色毛片网站| 中文字幕人妻丝袜制服| 亚洲欧美精品综合一区二区三区| 91国产中文字幕| 老汉色∧v一级毛片| 欧美日韩一级在线毛片| 亚洲少妇的诱惑av| 首页视频小说图片口味搜索| 丁香欧美五月| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 真人一进一出gif抽搐免费| 天堂中文最新版在线下载| 中文字幕人妻熟女乱码| 午夜福利影视在线免费观看| 长腿黑丝高跟| 18禁黄网站禁片午夜丰满| 久久香蕉精品热| 90打野战视频偷拍视频| 国产高清videossex| 天天影视国产精品| 人人妻人人澡人人看| 国产亚洲av高清不卡| 电影成人av| 久久久久国产精品人妻aⅴ院| 国产精品av久久久久免费| 中文字幕高清在线视频| 亚洲激情在线av| 欧美人与性动交α欧美精品济南到| 91九色精品人成在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 国产精品98久久久久久宅男小说| 国产亚洲精品久久久久5区| 黄色怎么调成土黄色| 99国产极品粉嫩在线观看| 麻豆av在线久日| 午夜日韩欧美国产| 亚洲第一av免费看| 99热国产这里只有精品6| 国产精品亚洲一级av第二区| 欧美av亚洲av综合av国产av| 美女 人体艺术 gogo| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 欧美日韩av久久| 亚洲五月婷婷丁香| 久久久久亚洲av毛片大全| 亚洲欧美精品综合久久99| 国产精品国产av在线观看| 国产精品电影一区二区三区| 日本a在线网址| 黄网站色视频无遮挡免费观看| 视频区图区小说| 巨乳人妻的诱惑在线观看| 搡老乐熟女国产| 亚洲av日韩精品久久久久久密| 在线十欧美十亚洲十日本专区| 国产黄色免费在线视频| 18禁观看日本| 一级片'在线观看视频| 国产成年人精品一区二区 | 美女高潮到喷水免费观看| 日韩国内少妇激情av| 久久99一区二区三区| 日韩国内少妇激情av| 久久久久久久精品吃奶| 手机成人av网站| 人成视频在线观看免费观看| 九色亚洲精品在线播放| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 亚洲国产精品一区二区三区在线| 国产精品乱码一区二三区的特点 | av网站免费在线观看视频| 亚洲国产精品合色在线| 亚洲国产精品一区二区三区在线| 不卡av一区二区三区| 91成年电影在线观看| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费 | 午夜老司机福利片| 91字幕亚洲| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 在线观看日韩欧美| 悠悠久久av| 69精品国产乱码久久久| 999久久久国产精品视频| av片东京热男人的天堂| 久久国产乱子伦精品免费另类| 日本vs欧美在线观看视频| 91成人精品电影| 久久久国产成人精品二区 | 欧美成人免费av一区二区三区| 精品国产一区二区三区四区第35| 校园春色视频在线观看| 成人三级黄色视频| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区色噜噜 | 热re99久久国产66热| 午夜福利免费观看在线| 成人精品一区二区免费| 99在线人妻在线中文字幕| 啦啦啦在线免费观看视频4| 亚洲熟妇熟女久久| 99国产精品99久久久久| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 日韩三级视频一区二区三区| 夜夜躁狠狠躁天天躁| 91精品三级在线观看| 免费一级毛片在线播放高清视频 | 亚洲一区高清亚洲精品| 亚洲,欧美精品.| 一本综合久久免费| 午夜精品在线福利| 午夜福利欧美成人| 亚洲色图综合在线观看| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品 欧美亚洲| 欧美日本中文国产一区发布| 欧美日韩精品网址| 亚洲人成伊人成综合网2020| a级片在线免费高清观看视频| 9191精品国产免费久久| 在线观看免费日韩欧美大片| 美女大奶头视频| 欧美最黄视频在线播放免费 | 又黄又粗又硬又大视频| 亚洲人成电影观看| 亚洲成人免费av在线播放| 人人澡人人妻人| 亚洲国产精品一区二区三区在线| 午夜精品国产一区二区电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成77777在线视频| 久久香蕉精品热| 女人被狂操c到高潮| 天堂√8在线中文| 又黄又爽又免费观看的视频| 国产极品粉嫩免费观看在线| 他把我摸到了高潮在线观看| 日韩免费高清中文字幕av| 波多野结衣一区麻豆| 日本 av在线| 午夜91福利影院| 嫁个100分男人电影在线观看| 午夜影院日韩av| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲欧美精品永久| 成人亚洲精品一区在线观看| 夜夜看夜夜爽夜夜摸 | 另类亚洲欧美激情| 日韩免费高清中文字幕av| 欧美人与性动交α欧美精品济南到| 国产主播在线观看一区二区| 国产成人精品久久二区二区免费| 一区二区三区精品91| 国产真人三级小视频在线观看| 免费一级毛片在线播放高清视频 | 黄片播放在线免费| 69av精品久久久久久| 自线自在国产av| 成人18禁高潮啪啪吃奶动态图| 一夜夜www| 欧美+亚洲+日韩+国产| 久久人妻av系列| 69av精品久久久久久| 人人妻,人人澡人人爽秒播| 丰满迷人的少妇在线观看| 国产成人精品无人区| 亚洲精品在线观看二区| 午夜免费鲁丝| 久久天躁狠狠躁夜夜2o2o| 天天躁狠狠躁夜夜躁狠狠躁| 黄色毛片三级朝国网站| 18禁裸乳无遮挡免费网站照片 | 水蜜桃什么品种好| 无人区码免费观看不卡| 深夜精品福利| 欧美精品亚洲一区二区| 国产精品亚洲av一区麻豆| 国产精品九九99| 久久精品91蜜桃| 日本三级黄在线观看|