• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Glaucomatous changes in macular ganglion cell detected byspectraldomainopticalcoherencetomography: comparison with peripapillary retinal nerve fiber layer

    2016-11-16 07:43:12AsaadGhanemDaliaSabryRaniaKamelAymanAbdElGhafar
    國(guó)際眼科雜志 2016年3期
    關(guān)鍵詞:蘇拉視盤(pán)黃斑

    Asaad A.Ghanem,Dalia Sabry,Rania Kamel,Ayman Abd El-Ghafar

    ·Original article·

    Glaucomatous changes in macular ganglion cell detected byspectraldomainopticalcoherencetomography: comparison with peripapillary retinal nerve fiber layer

    Asaad A.Ghanem,Dalia Sabry,Rania Kamel,Ayman Abd El-Ghafar

    Mansoura Ophthalmic Center,Mansoura University,Mansoura 35516,Egypt

    Correspondence to:Asaad A.Ghanem.Mansoura Opthalmic Center,MansouraUniversity,Mansoura 35516,Egypt. asaadghanem@hotmail.com

    目的:通過(guò)節(jié)細(xì)胞內(nèi)網(wǎng)狀層(GCIPL)評(píng)估中度和重度青光眼的損傷程度并比較其與視盤(pán)周?chē)暰W(wǎng)膜神經(jīng)纖維層(PRNFL)的診斷效能,包括敏感性與特異性及ROC曲線(xiàn)下面積(AUC)。

    方法:前瞻性研究。共210眼(包括中度青光眼患者30例54眼,重度青光眼患者34例59眼和正常人50例97眼)納入本研究。所有參與者均接受全面眼科檢查,包括視野檢查、3D-OCT視盤(pán)檢查和3D-OCT黃斑部垂直掃描。記錄并比較所有參與者的GCIPL和PRNFL的AUC、敏感性與特異性。

    結(jié)果:在中度和重度青光眼組中,上部、下部及整體GCIPL和PRNFL厚度明顯變?。≒<0.001)。在中度青光眼組中,GCIPL的敏感度與特異性高于PRNFL(僅上半部分敏感性相同)。重度青光眼組,上部、下部及整體GCIPL的敏感度均低于PRNFL。整體GCIPL的特異性低于PRNFL。上部GCIPL的特異性高于PRNFL。下部GCIPL的特異性與PRNFL相同。

    結(jié)論:對(duì)于區(qū)分中度和重度青光眼,黃斑GCIPL參數(shù)的功能遠(yuǎn)高于PRNFL。兩者聯(lián)合在病情分析中效果最優(yōu),能夠提供更準(zhǔn)確的損傷程度評(píng)估。

    引用:Asaad A.Ghanem,Dalia Sabry,Rania Kamel,Ayman Abd El-Ghafar.比較應(yīng)用SD-OCT檢測(cè)青光眼患者黃斑區(qū)節(jié)細(xì)胞與視盤(pán)周?chē)暰W(wǎng)膜神經(jīng)纖維層的改變.國(guó)際眼科雜志2016;16(3):409-415

    ·AIM:To evaluate the extent of damage caused by moderate and severe glaucoma on ganglion cell inner plexiform layer(GCIPL)and to evaluate the diagnostic performance of this layer compared to the peripapillary retinal nerve fiber layer(PRNFL).This was performed by comparing their area under the curve(AUC)sensitivity and specificity.

    ·METHODS:This study is a prospective study.Two hundred ten eyes(54 eyes of 30 moderate glaucoma subjects,59 eyes of 34 severe glaucoma subjects and 97 eyes of 50 normal subjects)were enrolled in this study. Patients underwent complete ophthalmic examination,visual field(VF)examinationandalso3Doptical coherence tomography(OCT)of the disc and 3D vertical(V)OCT of the macula were performed.The GCIPL and PRNFL AUC,sensitivity and specificity were performed and compared.

    ·RESULTS:A significantly thinner superior,inferior and total GCIPL and PRNFL thickness in moderate and severe glaucoma groups was detected(allP<0.001).In moderate glaucoma,GCIPL showed higher sensitivity and specificity than PRNFL(only the superior half shows equal sensitivity).As regard severe glaucoma the total,superior and inferior sensitivities of the GCIPL were lower than the PRNFL.The total GCIPL specificity was lower than the PRNFL.The superior GCIPL specificity was higher than the PRNFL.The lower GCIPL specificity was equal to that of the PRNFL.

    ·CONCLUSION:TheabilityofthemacularGC/IPL parameterstodiscriminatemoderateandsevere glaucoma is high and comparable to that of the PRNFL.A combination of both in the baseline evaluation is optimal and provides more accurate assessment of the extent of damage.

    moderateglaucoma;severglaucoma;ganglion cell layer;ganglion cell inner plexiform layer;peripapillary retinal nerve fiver layer

    INTRODUCTION

    G laucoma is a neurodegenerative disease associated with progressive loss of retinal ganglion cell layer(GCL). The goal of glaucoma management is to slow down the rate of progressive neural losses to preserve visual function during the patient's lifetime[1-5].

    Optical coherence tomography(OCT)is an optical imaging technique that provides quantitative measurements of retinal thickness alterations associated with retinal diseases.OCT provide maps of normal macular and peripapillary retinal nerve fiber layer(PRNFL)thickness[6].

    Because glaucoma primarily affects retinal ganglion cells and their axons,OCT studies have so far mostly used PRNFL thicknessmeasurementstodetectglaucomaandits progression[7-8]givenitshighreproducibility[9-10]and diagnostic ability to distinguish normal and diseased eyes[11]. Recent studies have shown that the macular ganglion cellinner plexiform layer(GCIPL)complex thickness also has a good glaucoma discriminating power that is comparable to that of the PRNFL and that GCL loss could be detected even in eyes withpre-perimetricglaucoma[12-16].Ithasbeen suggested that the macular GCL thickness may be the most relevant parameter to measure in glaucoma[17-18].

    The present study was performed on patients with moderate and severe glaucoma where the damage is well established in different layers.The aim was to detect the extent of damage caused by moderate and severe glaucoma on GCIPL and to evaluate the diagnostic performance of this layer compared to the PRNFL.This was performed by comparing their area under the curve(AUC)sensitivity and specificity.

    SUBJECTS AND METHODS

    Study Design This was a prospective randomized study. After explaining the details of the study,we obtained written informed consent from all patients before enrollment.The study was approved by Nokhba center for eye surgery and laser subepithelial keratomileusis(LASIK),trust ethics committee and was carried out in accordance with the Decleration of Helsinki(1989)of the world medical association.

    Patients Patients with moderate glaucoma visual field(VF)mean deviation(MD)>-6 and<-12 decibel(dB)and sever glaucoma(VF MD>-12)were recruited from the Glaucoma Clinic,Mansoura Ophthalmic Center from Sep. 2013 to Feb.2014.

    We prospectively recruited 210 eyes(54 eyes of 35 moderate glaucoma subjects,59 eyes of 34 severe glaucoma subjects and 97 eyes of 50 normal subjects).Eight patients had one eye with moderate glaucoma and the other with severe glaucoma.Patients with clinical diagnoses of open-angle glaucoma(OAG)made by an attending ophthalmologist were prospectively invited to be enrolled in the study if they met the following criteria:age>40y,OAG,visual acuity>6/60,VF MD indicating moderate(MD>-6 and<-12 dB)or severe glaucoma(MD>-12 dB).

    Every patient was assessed by two of the authors.Every patient underwent a thorough eye examination on the day of imaging,including automated refraction,unaided(UAVA)and best corrected visual acuity(BCVA)measurement on Landolt chart.Then visual acuity was converted into logarithm of minimum angle of resolution(logMAR),measurement of intraocular pressure(IOP)using Goldmann applanation tonometer,gonioscopy,slit-lamp examination,dilated fundus examination a 78 diopter(D).Visual field examination was repeated with the Humphrey Field Analyzer central 24-2 threshold(Humphrey field analyzer II;Carl Zeiss Meditec,Germany)to confirm the presence and staging of glaucoma. Exclusion criteria were:1)refractive error±6.0 D and astigmatism±3 D;2)eyes with evidence of retina l or neurologic diseases;3)prior ocular surgery or laser therapy;4)anterior or posterior segment inflammation;5)patients conditions that may lead to reduction of sensitivity with misleadingreductioninMD(e.g.cataract,corneal opacities,hazy media,high refractive errors);6)eyes with consistently unreliable VFs(defined as false negative>33%,false positive>33%,and fixation losses>20%)were excluded from the study.Also,pattern standard deviation(PSD)and glaucoma hemifield test(GHT)were used to ensure localized glaucomatous field defects.All patients had at least 1 prior VF examination before being enrolled in the study.

    Optical Coherence Tomography Imaging OCT scanning was performed using Topcon 3D OCT-2000 Version 8.10(Topcon,Tokyo,Japan)to acquire 3D macular cube(V)-Scan(7.0mm×7.0mm-512×128)and 3D optic disc cube(optic disc cube 6.0×6.0mm-512×128)scans in each qualifying eye.Scans were performed by one of the authors. Aninternalfixationtargetwasusedtoimprove reproducibility.Pupil dilation with tropicamide 1%and phenylephrine 2.5%was done prior to scanning.Only goodquality scans,defined as scans with image quality 40 or more(defaultgoodimagequalityis30),withoutRNFL discontinuity or misalignment,involuntary saccade or blinking artifacts,and absence of algorithm segmentation failure on careful visual inspection,were used for analysis.Seven eyes withglaucomawereexcludedbecauseofrepeated segmentation failure caused by low signal strength.

    The glaucoma analysis of the disc and PRNFL were performed using the following scan protocol:scan pattern 3D,scan length 6.0×6.0 mm,scan resolution 512×128 pixels and fixation disc.The cube consists of 50 000 A-Scans per second centered on the optic disc.To ensure adequate centration the disc modify menu was opened and modify(Point 7)option was selected.Seven green points appear at the device predetermined disc boundaries.The points were separately dragged at the actual disc boundaries if there was any deviation.Then modification was completed by pressing“Exit Modify”.The changes were saved before pressing on report button.The PRNFL thickness measurement was calculated using a peripapillary circle 3.4 mm in diameter.Average PRNFL thickness,thickness in the superior and inferior halves,quadrants and clock-hour sectors are provided in theprint out.The deviation from a normative database is provided in a color-coded scheme.PRNFL pseudo color thickness maps and significance maps for the 6.0×6.0 mm area are also provided.Disc parameters used in this research were obtained from thesamescan.Theprintoutalsoincludedisc topography that include:numerical values of different optic nerve head(ONH)parameters,a horizontal disc tomogram,a graph representing the rim disc ratio(R/D ration)in the four quadrants and color photo of the disc with a superimposed two circles:green circle(indicates the disc margin)and red circle(indicates the cup margin).In our research we used the numerical values of the rim area(RA),vertical cup disc ration(VCDR)and the cup disc ration(CDR).

    Macular GCL assessment was performed by the following scan protocol:scan pattern 3D(V),scan length 7.0×7.0 mm,scan resolution 512×128 pixels and fixation macula.The cube consists of 50 000 A-Scans per second centered on the fovea. The reports print out include the following items:color fundus image and vertical macular tomogram on the top beside each other,below them are the thickness map,significance map,average thickness and asymmetry map arranged in the same order from top to bottom;each one of them show 3 parameters which are from left to right those of RNFL thickness(retinal nerve fiber layer thickness and we refer to it as MNFL),GCL +(which corresponds to the GCIPL thickness)and GCL++(whichcorrespondstoMNFL+GCIPLthickness)respectively.The GCL++is referred to as ganglion cell complex(GCC).The thickness map shows 7.0×7.0 mm color coded map.The significance map shows 10×10 grid comparison maps covering 6.0×6.0 mm area of the macula. The comparison result is displayed with color in legend placed in right and the background image is red free image.The averagethicknesspresentsthreenumbersthetopis“Superior”which means average thickness in the upper half,the middle is“Inferior”which means average thickness in the lower half and the bottom is the total.Each average thickness is compared to the normative data and displayed with the color in the legend placed in the right.The asymmetry map shows from left to right subtraction thickness maps covering 6.0×6.0 mm area of macula.The subtraction is performed between two points which symmetrically lie with respect to the center horizontal line.Blue color means that the thickness of the point is thinner than that of the corresponding one.

    At least two good quality scans for the disc and the macula were analyzed for each to ensure reproducible results.Two authors analyzed the scans separately(Sabry D and Kamel R).Investigators were masked to the diagnosis.

    Figure 1 shows the vertical macular scan,the thickness map,thesignificancemap,theaveragethicknessandthe asymmetry map of a normal subject(A),a patient with moderate glaucoma(B)and a patient with severe glaucoma(C).

    Statistical Analysis Data entry and statistical analyses were performed using SPSS(statistical package of social sciences)version 16.0(SPSS Inc.,Chicago,IL,USA).Normality of data was first tested by one sample K-S(Kolmogorov-Smirnov)test.Parametric data were expressed in mean± standard deviation.Non parametric data were expressed in median,minimum and maximum.In addition,one way ANOVA was used to compare means for normal,moderate and sever glaucomatous groups.Also,Kruskal-Wallis test was used to compare non parametric continuous variables in three different glaucomatous groups.The diagnostic accuracy of each GCIPL,RNFLparameterstodifferentiatebetween normal,moderateandsevereglaucomatouseyeswas determined by computing the AUC,sensitivity and specificity and cutoff values.P<0.05 was considered as statistically significant.

    Figure 1 Changes of inner macular layers thickness with the progression of glaucoma Column A is of a normal subject,Column B is of a patient with moderate glaucoma and Column C is of patient with severe glaucoma.Each column shows from above downwards:the vertical macular scan,the thickness map,the significance map,the average thickness and the asymmetry map of a normal subject(left)and a patient with severe glaucoma(right). The average thickness shows progressive thinning of the inner macular layers with the progress of glaucoma.

    RESULTS

    Fifty-four eyes from 35 patients with moderate glaucoma,59 eyes from 34 patients with severe glaucoma and 97 eyes from 50 normal subjects were enrolled.Patient demographic and clinical data are summarized in Table 1.

    Figure 1 Column A is of a normal subject,Column B is of a patient with moderate glaucoma and Column C is of patient with severeglaucoma.Eachcolumnshowsfromabove downwards:the vertical macular scan,the thickness map,thesignificance map,the average thickness and the asymmetry map of a normal subject(left)and a patient with severe glaucoma(right).

    The comparison of total,superior and inferior GCIPL and PRNFL thickness in normal,moderate and severe glaucoma groups are shown in Table 2.All layers showed significant thinning when compared to normal in both moderate and severe glaucoma groups(all P<0.001).

    The comparison of VCDR,CDR and RA in normal,moderate and severe glaucoma groups are shown in Table 3.The VCDR and CDR showed a significantly large cupping and the RA was significantly thinner in both moderate and severe glaucoma groups when compared to normal(all P<0.001).

    Table 1 Patient demographics and clinical data

    Table 2 Total,superior and inferior macular GCIPL and PRNFL in the normal,moderate and severe glaucoma groups

    Table 3 Optic nerve head vertical cup disc ratio,cup disc ratio and rim area in normal,moderate and sever glaucoma groups

    Figure 2 ROC curve showing sensitivities and specificities of GCIPL and PRNFL thickness as a diagnostic test for moderate glaucoma versus normal.

    Sensitivities,specificities,cutoff points and area under the curve(AUC)for different GCIPL and PRNFL thickness parameters evaluated in the study are listed in Table 4 for moderate glaucoma versus normal and Table 5 for severeglaucoma versus moderate.In moderate glaucoma,GCIPL showed higher sensitivity and specificity than PRNFL(only the superior PRNFL showed equal sensitivity to the superior GCIPL).As regard severe glaucoma the total,superior and inferior sensitivities of the GCIPL were lower than the PRNFL.The total GCIPL specificity was lower than the PRNFL.The superior GCIPL specificity was higher than the PRNFL.The lower GCIPL specificity was equal to that of the PRNFL.

    Table 4 Diagnostic accuracy of GCIPL and PRNFL in moderate glaucoma versus normal

    Table 5 Diagnostic accuracy of GCIPL and PRNFL in severe glaucoma versus moderate

    Figure 3 ROC curve showing sensitivities and specificities of GCIPL and PRNFL thickness as a diagnostic test for severe glaucoma versus moderate glaucoma.

    DISCUSSION

    The loss of retinal ganglion cells in glaucomatous eyes traditionally has been judged on the basis of the thinning of the PRNFL and the RA of the ONH and VF defects[1,19-21]. Recent advances in OCT technology have enabled a more precise structural assessment of the macular region.Recently, GCL analysis was developed as an additional tool for assessing structural change in glaucoma by detecting and measuring the thickness of the GCIPL.The GCL analysis is based on the histologic observation that macular GCIPL is topographically less variable among normal individuals than PRNFL and ONH[22-24],which makes normal macular GCIPL parameters easier to identify and deviations from normal easier to detect and quantify[24-27].

    Most of the studies performed on the glaucoma diagnostic ability of the GCL were done on patients with early and preperimetric glaucoma.Some of these studies suggested that the ability of macular GCIPL to discriminate normal eyes and eyes with early glaucoma is high and comparable to thatof the PRNFL and ONH parameters[16,27-28].Others suggested that the glaucoma diagnostic ability of GCIPL differs according to the Location of VF loss[29].Another study found that in eyes with single-hemifield damage,the retinal blood flow is significantly reducedincorrespondinghemispherewhich showed associated thinning of the PRNFL and GCIPL in that hemisphere[30].All these researches suggest that diagnostic ability oftheGCIPLinearlyglaucomaisstillunder investigation.

    We performed our study on patients withmoderate and severe glaucoma(defined as visual field MD>-6 and>-12 dB respectively)where the damage is well established in different layers.The aim is to evaluate the effect of moderate and severe glaucoma on the GCIPL and the diagnostic performance of this layer compared to the PRNFL.

    Inthecurrentstudywedidn'tperformanymanual segmentation or thickness mapping of the central retinal and all parameters used were automatically calculated by the device.Althoughtheseparameterswereautomatically compared by the device to its normative database,any abnormality was only displayed as color coded change.So wecompared the numbers obtained to our normal control group. As expected,the ONH parameters(VCDR,CDR and RA)showed significant changes when compared to normal subjects(all showed P<0.001).Also,on comparing moderate to severe glaucoma,significant changes were detected(all showed P<0.001).

    Comparing the total,superior and inferior GCIPL and PRNFL in moderate and severe glaucoma versus normal,and in severe glaucoma versus moderate,showed significant changes(P<0.001).The significant affection of GCIPL demonstrates the damage caused in this layer by the disease.

    As regard the AUC we compared GCIPL and PNFL of moderateglaucomatonormalandsevereglaucomato moderate.The aim was to avoid the diagnostic bias caused by comparing a very advanced stage with normal and to detect the cutoff point that discriminate moderate glaucoma from normal and severe glaucoma from moderate.

    In moderate glaucoma,the superior,inferior and total GCIPL showed higher sensitivity and specificity than PRNFL(apart from the superior PRNFL that showed equal sensitivity to the superior GCIPL).The high diagnostic performance of both GCIPL and PRNFL at this stage can be explained by large gap betweennormalsubjectsandpatientswithmoderate glaucoma.

    As regard severe glaucoma the total,superior and inferior sensitivities of the GCIPL were lower than the PRNFL.The total GCIPL specificity was lower than the PRNFL.The superiorone was higher than the PRNFL.The lower one was equal to that of the PRNFL.

    In glaucoma the damage starts at the GCL and then proceeds to the PRNFL that can explains the higher sensitivity of GCIPL in moderate glaucoma.In severe glaucoma this is not the case.This may be explained by the fact that the PRNFL measurement is from all-around the fundus which is globally affected at this stage.However the GCIPL measurement is from the central 6 mm cube that shows preserved central VF till late in the disease.This is consistent with the finding detected byapreviousstudythatfoundtheglaucoma diagnostic ability of GCIPL differs according to the Location of VF loss.They found that the GCIPL parameters were more valuable than the PRNFL parameters for detecting glaucoma in eyes with parafoveal VF loss,and the PRNFL parameters were better than the GCIPL parameters for detecting glaucoma in eyes with peripheral VF loss[28].

    With the advancement of OCT technology it is now possibleto follow the glaucoma progression and effect of therapy on the remaining the GCIPL.It is also possible to develop clear cutoff points that discriminate different stages.Accordingly it is recommended to use of the GCL thickness as one of the most important and basic parameters in the evaluation of moderate and severe glaucoma.

    There are scant data in the literature about the thickness of the GCL inmoderate and severe glaucoma.However we think the rapid advancement of OCT technology will soon provide accurate segmentation and measurement of the individual layers of the macula.This will provide a solid normative data and also classification of glaucomatous damage will soon be established depending on clear cutoff points between different stages.

    The ability of the macular GCIPL parameters to discriminate moderate and severe glaucoma is high and comparable to that of the PRNFL.A combination of both in the baseline evaluation is optimal and provides more accurate assessment of the extent of damage.

    REFERENCES

    1 Quigley HA,Dunkelberger GR,Green WR.Retinal ganglion cell atrophy correlatedwithautomatedperimetryinhumaneyeswith glaucoma.Am J Ophthalmol 1989;107(5):453-464

    2 Medeiros FA,Alencar LM,Zangwill LM,Bowd C,Sample PA,Weinreb RN.Prediction of functional loss in glaucoma from progressive optic disc damage.Arch Ophthalmol 2009;127(10):1250-1256

    3 Hood DC,Kardon RH.A framework for comparing structural and functional measures of glaucomatous damage.Prog Retin Eye Res 2007;26(6):688-710

    4 Harwerth RS,Carter-Dawson L,Smith EL 3rd,Barnes G,Holt WF,Crawford ML.Neural losses correlated with visual losses in clinical perimetry.Invest Ophthalmol Vis Sci 2004;45:3152-3160

    5 Kass MA,Heuer DK,Higginbotham EJ,Johnson CA,Keltner JL,Miller JP,Parrish RK 2nd,Wilson MR,Gordon MO.The Ocular Hypertension Treatment Study:a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.Arch Ophthalmol 2002;120(6):701-713;discussion 829-830

    6 Chan A,Duker JS,Ko TH,F(xiàn)ujimoto JG,Schuman JS.Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography.Arch Ophthalmol 2006;124(2):193-198

    7 Leung CK,Cheung CY,Weinreb RN,Qiu K,Liu S,Li H,Xu G,F(xiàn)an N,Pang CP,Tse KK,Lam DS.Evaluation of retinal nerve fiber layer progression in glaucoma:a study on optical coherence tomography guided progression analysis.Invest Ophthalmol Vis Sci 2010;51(1):217-222

    8 Strouthidis NG,F(xiàn)ortune B,Yang H,Sigal IA,Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma.Invest Ophthalmol Vis Sci 2011;52(3):1206-1219

    9 Budenz DL,F(xiàn)redette MJ,F(xiàn)euer WJ,Anderson DR.Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes.Ophthalmology 2008;115(4):661-666

    10 Mwanza JC,Chang RT,Budenz DL,Durbin MK,Gendy MG,Shi W,F(xiàn)euer WJ.Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.Invest Ophthalmol Vis Sci 2010;51(11):5724-5730

    11 Mwanza JC,Oakley JD,Budenz DL,Anderson DR;Cirrus Optical Coherence Tomography Normative Database Study Group.Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.Ophthalmology 2011;118(2):241-248

    12 Garas A,Vargha P,Hollo G.Diagnostic accuracy of nerve fibre layer,macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma.Eye(Lond)2011;25(1):57-65

    13 Kim NR,Lee ES,Seong GJ,Kang SY,Kim JH,Hong S,Kim CY. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia.Br J Ophthalmol 2011;95(8):1115-1121

    14 Schulze A,Lamparter J,Pfeiffer N,Berisha F,Schmidtmann I,Hoffmann EM.Diagnostic ability of retinal ganglion cell complex,retinal nerve fiber layer,and optic nerve head measurements by Fourier-domain optical coherence tomography.Graefes Arch Clin Exp Ophthalmol 2011;249(7):1039-1045

    15 Tan O,Chopra V,Lu AT,Schuman JS,Ishikawa H,Wollstein G,Varma R,Huang D.Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.Ophthalmology 2009;116(12):2305-2314

    16 Lisboa R,Paranhos A Jr,Weinreb RN,Zangwill LM,Leite MT,Medeiros FA.Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma.Invest Ophthalmol Vis Sci 2013;54(5):3417-3425

    17 Nakano N,Hangai M,Nakanishi H,Mori S,Nukada M,Kotera Y,Ikeda HO,Nakamura H,Nonaka A,Yoshimura N.Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography.Ophthalmology 2011;118(12):2414-2426

    18 Quigley HA.Number of people with glaucoma worldwide.Br J Ophthalmol 1996;80(5):389-393

    19 Airaksinen PJ,Tuulonen A,Alanko HI.Rate and pattern of neuroretinal rim area decrease in ocular hypertension and glaucoma.Arch Ophthalmol 1992;110(2):206-210

    20 Sommer A,Katz J,Quigley HA,Miller NR,Robin AL,Richter RC,Witt KA.Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.Arch Ophthalmol 1991;109(1):77-83

    21 Quigley HA,Addicks EM,Green WR.Optic nerve damage in human glaucoma.Ⅲ.Quantitative correlation of nerve fiber loss and visual field defect in glaucoma,ischemic neuropathy,papilledema,and toxic neuropathy.Arch Ophthalmol 1982;100(1):135-146

    22 Curcio CA,Allen KA.Topography of ganglion cells in human retina. J Comp Neurol 1990;300(1):5-25

    23 Meshi A,Goldenberg D,Armarnik S,Segal O,Geffen N.Systematic review of macular ganglion cell complex analysis using spectral domain optical coherencetomographyforglaucomaassessment.WorldJ Ophthalmol 2015;5(2):86-98

    24 Fortune B,Cull G,Reynaud J,Wang L,Burgoyne CF.Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer(RNFL)Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma.Invest Ophthalmol Vis Sci 2015;56(6):3936-3944

    25 Kotowski J,F(xiàn)olio LS,Wollstein G,Ishikawa H,Ling Y,Bilonick RA,Kagemann L,Schuman JS.Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography(SD-OCT)macular scans.Br J Ophthalmol 2012;96(11):1420-1425

    26 Takayama K,Hangai M,Durbin M,Nakano N,Morooka S,Akagi T,Ikeda HO,Yoshimura N.A novel method to detect local ganglion cell loss inearlyglaucomausingspectral-domainopticalcoherence tomography.Invest Ophthalmol Vis Sci 2012;53(11):6904-6913

    27 Mwanza JC,Durbin MK,Budenz DL,Sayyad FE,Chang RT,Neelakantan A,Godfrey DG,Carter R,Crandall AS.Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head.Ophthalmology 2012;119(6):1151-1158

    28 KimKE,YooBW,JeoungJW,ParkKH.Long-Term Reproducibility of Macular Ganglion Cell Analysis in Clinically Stable Glaucoma Patients.Invest Ophthalmol Vis Sci 2015;56(8):4857-4864

    29 Shin HY,Park HL,Jung K,Choi J,Park CK.Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss.Ophthalmology 2014;121(1):93-99

    30 Sehi M,Goharian I,Konduru R,Tan O,Srinivas S,Sadda SR,F(xiàn)rancis BA,HuangD,GreenfieldDS.Retinalbloodflowin glaucomatous eyes with single-hemifield damage.Ophthalmology 2014;121(3):750-758

    比較應(yīng)用SD-OCT檢測(cè)青光眼患者黃斑區(qū)節(jié)細(xì)胞與視盤(pán)周?chē)暰W(wǎng)膜神經(jīng)纖維層的改變

    Asaad A.Ghanem,Dalia Sabry,Rania Kamel,Ayman Abd El-Ghafar

    (埃及,曼蘇拉35516,曼蘇拉大學(xué),曼蘇拉眼科中心)通訊作者:Asaad A.Ghanem.asaadghanem@hotmail.com

    中度青光眼;重度青光眼;節(jié)細(xì)胞層;節(jié)細(xì)胞內(nèi)網(wǎng)狀層;視盤(pán)周?chē)暰W(wǎng)膜神經(jīng)纖維層

    10.3980/j.issn.1672-5123.2016.3.03

    Asaad A.Ghanem,Dalia Sabry,Rania Kamel,Ayman Abd El-Ghafar.Glaucomatous changes in macular ganglion cell detectedbyspectraldomainopticalcoherencetomography: comparison with peripapillary retinal nerve fiber layer.Guoji Yanke Zazhi(Int Eye Sci)2016;16(3):409-415

    2015-02-19 Accepted:2015-12-28

    猜你喜歡
    蘇拉視盤(pán)黃斑
    視盤(pán)傾斜在高度近視中的研究進(jìn)展
    2012年“蘇拉”和“達(dá)維”雙臺(tái)風(fēng)影響的近海風(fēng)暴潮過(guò)程
    伴視盤(pán)出血的埋藏性視盤(pán)玻璃疣患者的臨床特點(diǎn)和眼底影像特征陳秀麗
    裂孔在黃斑
    視盤(pán)內(nèi)出血伴視盤(pán)旁視網(wǎng)膜下出血1例
    從莫奈到蘇拉熱——西方現(xiàn)代繪畫(huà)走進(jìn)清華藝博
    絕對(duì)侵占
    桃之夭夭B(2014年5期)2014-06-24 19:31:18
    TA與Bevacizumab玻璃體腔注射治療BRVO黃斑水腫的對(duì)照研究
    視盤(pán)內(nèi)與鄰近視盤(pán)視網(wǎng)膜下出血
    激光治療視網(wǎng)膜黃斑分支靜脈阻塞
    欧美高清性xxxxhd video| 伦理电影大哥的女人| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜添av毛片| 欧美激情久久久久久爽电影| 免费观看av网站的网址| 午夜福利在线在线| 久久久成人免费电影| 精品久久国产蜜桃| 啦啦啦中文免费视频观看日本| 插阴视频在线观看视频| 夜夜爽夜夜爽视频| 久久99热这里只频精品6学生| 午夜福利视频精品| 久久久久精品性色| 九九爱精品视频在线观看| 成年av动漫网址| 直男gayav资源| 国产探花在线观看一区二区| 99re6热这里在线精品视频| 在线天堂最新版资源| 91午夜精品亚洲一区二区三区| 国产黄频视频在线观看| 亚洲伊人久久精品综合| 黄片无遮挡物在线观看| 好男人视频免费观看在线| 嫩草影院新地址| 国产av国产精品国产| 国产精品精品国产色婷婷| 中国国产av一级| 国产精品秋霞免费鲁丝片| www.av在线官网国产| 白带黄色成豆腐渣| 边亲边吃奶的免费视频| 欧美亚洲 丝袜 人妻 在线| 99热国产这里只有精品6| eeuss影院久久| 国产午夜精品久久久久久一区二区三区| 国产亚洲5aaaaa淫片| 国产亚洲5aaaaa淫片| 日本wwww免费看| 久久久久久久午夜电影| 亚洲欧美日韩卡通动漫| 国产美女午夜福利| 高清毛片免费看| 少妇的逼水好多| 亚洲最大成人中文| 午夜福利网站1000一区二区三区| 婷婷色综合大香蕉| 久久久国产一区二区| 一二三四中文在线观看免费高清| 国产成人aa在线观看| 熟妇人妻不卡中文字幕| 欧美高清成人免费视频www| 99视频精品全部免费 在线| 婷婷色麻豆天堂久久| 99热网站在线观看| 国产视频首页在线观看| 亚洲电影在线观看av| 亚洲激情五月婷婷啪啪| 亚洲怡红院男人天堂| 久久影院123| 高清欧美精品videossex| 成年免费大片在线观看| 久久久久久久亚洲中文字幕| 十八禁网站网址无遮挡 | 六月丁香七月| 99热6这里只有精品| 国产大屁股一区二区在线视频| 色5月婷婷丁香| 国产毛片a区久久久久| 亚洲精品aⅴ在线观看| 男女下面进入的视频免费午夜| 久久久久久国产a免费观看| 一二三四中文在线观看免费高清| 国产黄色视频一区二区在线观看| 亚洲天堂国产精品一区在线| 国产成人freesex在线| 日本-黄色视频高清免费观看| 自拍偷自拍亚洲精品老妇| 五月玫瑰六月丁香| 午夜亚洲福利在线播放| 国产免费一区二区三区四区乱码| 久久久久网色| 精品人妻一区二区三区麻豆| 一级av片app| 国产亚洲av片在线观看秒播厂| 熟妇人妻不卡中文字幕| 中文在线观看免费www的网站| 91狼人影院| 免费观看在线日韩| 国产一区二区在线观看日韩| 亚洲国产欧美人成| 午夜福利视频1000在线观看| 久久久久久久大尺度免费视频| 日日啪夜夜爽| 国产欧美亚洲国产| 久久久午夜欧美精品| 久久人人爽人人爽人人片va| 国模一区二区三区四区视频| 晚上一个人看的免费电影| 国产精品人妻久久久久久| 成年女人看的毛片在线观看| 亚洲国产av新网站| 18禁在线播放成人免费| 国产淫片久久久久久久久| 亚洲图色成人| 日韩国内少妇激情av| 男的添女的下面高潮视频| 九九久久精品国产亚洲av麻豆| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 伊人久久国产一区二区| 欧美激情国产日韩精品一区| 国产午夜福利久久久久久| 成人国产麻豆网| 久久久精品欧美日韩精品| 性色avwww在线观看| 婷婷色av中文字幕| 欧美变态另类bdsm刘玥| 日本免费在线观看一区| 国产一区二区在线观看日韩| 九色成人免费人妻av| 精品久久国产蜜桃| 国产成人aa在线观看| 国产综合精华液| 亚洲人与动物交配视频| 联通29元200g的流量卡| 永久网站在线| 高清日韩中文字幕在线| 丝袜美腿在线中文| 韩国高清视频一区二区三区| 波多野结衣巨乳人妻| 最近中文字幕2019免费版| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 国产片特级美女逼逼视频| 亚洲精品一区蜜桃| 久久精品国产亚洲av涩爱| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 能在线免费看毛片的网站| 国产91av在线免费观看| 亚洲在久久综合| 汤姆久久久久久久影院中文字幕| 国产男女内射视频| 国产精品久久久久久av不卡| 国产精品一区www在线观看| 成人美女网站在线观看视频| 看十八女毛片水多多多| 精华霜和精华液先用哪个| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 看黄色毛片网站| 交换朋友夫妻互换小说| 久久久久久伊人网av| 在线观看国产h片| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩无卡精品| 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看| 亚洲欧美日韩无卡精品| 久久久国产一区二区| 老司机影院成人| 国产成人a区在线观看| 国产熟女欧美一区二区| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区| 亚洲丝袜综合中文字幕| 亚洲电影在线观看av| 99热国产这里只有精品6| 久久人人爽人人爽人人片va| 国内精品美女久久久久久| 久久国产乱子免费精品| 国精品久久久久久国模美| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| 日本午夜av视频| 久久97久久精品| 如何舔出高潮| av线在线观看网站| 三级经典国产精品| 国内揄拍国产精品人妻在线| xxx大片免费视频| 免费高清在线观看视频在线观看| 亚洲欧美日韩东京热| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 午夜免费男女啪啪视频观看| 久久精品人妻少妇| 免费av毛片视频| 亚洲色图综合在线观看| 久久精品夜色国产| 日韩欧美一区视频在线观看 | 日本av手机在线免费观看| 国产黄色视频一区二区在线观看| 男女那种视频在线观看| 一个人看的www免费观看视频| 国产精品秋霞免费鲁丝片| 18禁在线无遮挡免费观看视频| 久久久久久久久久久丰满| 久久久久久久久久久免费av| 日韩制服骚丝袜av| 能在线免费看毛片的网站| 亚洲图色成人| 大陆偷拍与自拍| 99久久精品热视频| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆| 黑人高潮一二区| 亚洲四区av| 成年女人在线观看亚洲视频 | 一本一本综合久久| 精品一区二区三卡| 国产高潮美女av| 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 国产探花在线观看一区二区| 日韩欧美 国产精品| 高清av免费在线| 少妇 在线观看| 高清视频免费观看一区二区| 欧美bdsm另类| 日韩欧美精品免费久久| 国产乱人偷精品视频| 高清午夜精品一区二区三区| 国产成人精品婷婷| 水蜜桃什么品种好| 国产成人一区二区在线| 婷婷色综合大香蕉| 欧美成人一区二区免费高清观看| 男女那种视频在线观看| 亚洲国产精品成人久久小说| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 久久影院123| 精品99又大又爽又粗少妇毛片| 大陆偷拍与自拍| 精品久久久久久久久亚洲| 欧美激情国产日韩精品一区| 亚洲成人中文字幕在线播放| 日本爱情动作片www.在线观看| 成年av动漫网址| av天堂中文字幕网| 国产成人精品婷婷| 人妻系列 视频| 久久久久国产网址| 亚洲av.av天堂| 一区二区三区免费毛片| 99热全是精品| 建设人人有责人人尽责人人享有的 | 亚洲国产欧美人成| 国产伦精品一区二区三区视频9| 国产探花极品一区二区| 91精品一卡2卡3卡4卡| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 国产有黄有色有爽视频| 人妻夜夜爽99麻豆av| 亚洲成人av在线免费| .国产精品久久| 五月伊人婷婷丁香| 九色成人免费人妻av| 少妇猛男粗大的猛烈进出视频 | 国产免费又黄又爽又色| 日韩成人伦理影院| 在线天堂最新版资源| 2022亚洲国产成人精品| 国内揄拍国产精品人妻在线| 亚洲国产精品专区欧美| 日日撸夜夜添| 如何舔出高潮| 欧美成人精品欧美一级黄| 亚洲三级黄色毛片| 看免费成人av毛片| 成人毛片a级毛片在线播放| 日韩伦理黄色片| 国产欧美另类精品又又久久亚洲欧美| 亚洲av一区综合| 大香蕉97超碰在线| 99热这里只有是精品在线观看| 高清在线视频一区二区三区| 日本黄色片子视频| 亚洲国产色片| 亚洲欧美日韩另类电影网站 | 久久国内精品自在自线图片| 亚洲高清免费不卡视频| 性色avwww在线观看| 天天躁日日操中文字幕| 国产成人免费无遮挡视频| 日韩一本色道免费dvd| 国产高潮美女av| 男女下面进入的视频免费午夜| 搡老乐熟女国产| 欧美少妇被猛烈插入视频| 一级二级三级毛片免费看| 在线观看美女被高潮喷水网站| 亚洲一级一片aⅴ在线观看| 2018国产大陆天天弄谢| 爱豆传媒免费全集在线观看| 九九久久精品国产亚洲av麻豆| 成人国产麻豆网| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 蜜桃亚洲精品一区二区三区| 国产精品99久久99久久久不卡 | 2022亚洲国产成人精品| 寂寞人妻少妇视频99o| 久久热精品热| av免费观看日本| 免费电影在线观看免费观看| 少妇的逼好多水| 亚洲av免费高清在线观看| 天堂俺去俺来也www色官网| 日本黄色片子视频| 在线天堂最新版资源| av在线蜜桃| 亚洲欧美日韩无卡精品| 成人国产麻豆网| 日本猛色少妇xxxxx猛交久久| 99热国产这里只有精品6| 国产成人freesex在线| 在线天堂最新版资源| 午夜福利网站1000一区二区三区| 日韩av在线免费看完整版不卡| 亚洲成人中文字幕在线播放| 成人毛片60女人毛片免费| 神马国产精品三级电影在线观看| 国产精品秋霞免费鲁丝片| 精品久久久久久久久av| 综合色av麻豆| 亚洲欧美日韩卡通动漫| 日韩欧美精品免费久久| 婷婷色综合www| av女优亚洲男人天堂| 51国产日韩欧美| 99热全是精品| 国产在线一区二区三区精| 免费黄频网站在线观看国产| 成人美女网站在线观看视频| 麻豆成人av视频| 日韩欧美 国产精品| 看非洲黑人一级黄片| 舔av片在线| 卡戴珊不雅视频在线播放| 狂野欧美激情性bbbbbb| 狠狠精品人妻久久久久久综合| 男女那种视频在线观看| 黄色配什么色好看| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 亚洲伊人久久精品综合| 免费大片黄手机在线观看| 亚洲精品中文字幕在线视频 | 久久精品熟女亚洲av麻豆精品| 国产在线男女| 可以在线观看毛片的网站| 国产成人一区二区在线| 久久久久国产网址| 伦理电影大哥的女人| 欧美+日韩+精品| 91狼人影院| 欧美人与善性xxx| 日韩国内少妇激情av| 尾随美女入室| 国产伦在线观看视频一区| 日韩国内少妇激情av| 免费观看av网站的网址| 男的添女的下面高潮视频| 午夜福利在线在线| 我的女老师完整版在线观看| 激情五月婷婷亚洲| 国产成人免费无遮挡视频| 亚洲成人一二三区av| 亚洲美女搞黄在线观看| 成人美女网站在线观看视频| 国产探花极品一区二区| 22中文网久久字幕| 一区二区av电影网| 亚洲自偷自拍三级| 少妇裸体淫交视频免费看高清| 国产精品嫩草影院av在线观看| 亚洲av不卡在线观看| 国产欧美日韩精品一区二区| 亚洲无线观看免费| 高清午夜精品一区二区三区| 十八禁网站网址无遮挡 | 99久国产av精品国产电影| 波多野结衣巨乳人妻| 观看免费一级毛片| 久久亚洲国产成人精品v| 麻豆成人av视频| 成年版毛片免费区| 国产精品一区二区性色av| 男女啪啪激烈高潮av片| 日本色播在线视频| www.色视频.com| 国产成人精品婷婷| 搡老乐熟女国产| 99久国产av精品国产电影| 少妇熟女欧美另类| 精品一区二区三卡| 午夜免费男女啪啪视频观看| 小蜜桃在线观看免费完整版高清| 日韩,欧美,国产一区二区三区| 国产男女超爽视频在线观看| 午夜福利在线观看免费完整高清在| 免费高清在线观看视频在线观看| 日韩伦理黄色片| 欧美少妇被猛烈插入视频| 少妇裸体淫交视频免费看高清| 国产淫片久久久久久久久| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 男人爽女人下面视频在线观看| 色视频www国产| 国产亚洲最大av| 99热国产这里只有精品6| 有码 亚洲区| 精品国产乱码久久久久久小说| 亚洲av电影在线观看一区二区三区 | 免费播放大片免费观看视频在线观看| 美女内射精品一级片tv| 亚洲国产av新网站| 久久99热这里只频精品6学生| 18禁动态无遮挡网站| 国产精品一区二区在线观看99| 国产精品国产三级国产av玫瑰| 免费观看的影片在线观看| 欧美高清性xxxxhd video| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 一区二区三区免费毛片| 成人美女网站在线观看视频| 大话2 男鬼变身卡| 男女国产视频网站| 简卡轻食公司| 国产乱人偷精品视频| 亚洲最大成人中文| av国产免费在线观看| 嫩草影院入口| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 性插视频无遮挡在线免费观看| 欧美成人精品欧美一级黄| 看黄色毛片网站| h日本视频在线播放| 国产一区二区三区av在线| 国产成人免费观看mmmm| av女优亚洲男人天堂| 建设人人有责人人尽责人人享有的 | 91精品一卡2卡3卡4卡| 亚洲欧美日韩东京热| 亚洲电影在线观看av| 99热网站在线观看| 久久久久久久午夜电影| 欧美日韩视频精品一区| 一级毛片电影观看| 日韩一区二区三区影片| 亚洲性久久影院| 97人妻精品一区二区三区麻豆| 亚洲色图综合在线观看| 内地一区二区视频在线| 大陆偷拍与自拍| 爱豆传媒免费全集在线观看| 精品人妻熟女av久视频| 国产成人精品久久久久久| 好男人视频免费观看在线| 十八禁网站网址无遮挡 | 天天一区二区日本电影三级| 国产亚洲最大av| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 直男gayav资源| 亚洲精品成人久久久久久| 天堂俺去俺来也www色官网| 男女啪啪激烈高潮av片| 国产 精品1| 天堂中文最新版在线下载 | 一边亲一边摸免费视频| 亚洲欧美一区二区三区国产| 日韩电影二区| 久久久成人免费电影| 男人狂女人下面高潮的视频| 亚洲av中文av极速乱| 乱系列少妇在线播放| 欧美xxⅹ黑人| 毛片女人毛片| 色网站视频免费| 各种免费的搞黄视频| 最近2019中文字幕mv第一页| 欧美区成人在线视频| 国精品久久久久久国模美| 人人妻人人看人人澡| 免费播放大片免费观看视频在线观看| 2018国产大陆天天弄谢| 欧美激情在线99| 一个人看视频在线观看www免费| 舔av片在线| 99热这里只有是精品50| 久久久久久伊人网av| 伊人久久国产一区二区| 亚洲欧美成人综合另类久久久| 欧美极品一区二区三区四区| 婷婷色综合大香蕉| 国产一级毛片在线| 少妇人妻一区二区三区视频| 成人鲁丝片一二三区免费| 中文欧美无线码| 韩国高清视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久久久性生活片| 亚洲精品久久久久久婷婷小说| 少妇人妻精品综合一区二区| 免费观看在线日韩| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区| 一本久久精品| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 亚洲欧美一区二区三区黑人 | 日本爱情动作片www.在线观看| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 国产成人aa在线观看| 国内精品美女久久久久久| 嫩草影院新地址| 18禁在线无遮挡免费观看视频| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 成年女人在线观看亚洲视频 | 五月天丁香电影| 成人免费观看视频高清| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| 午夜激情福利司机影院| 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 麻豆国产97在线/欧美| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美在线一区| 又黄又爽又刺激的免费视频.| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| 亚洲精品乱久久久久久| 欧美一级a爱片免费观看看| 亚洲欧洲日产国产| 熟女av电影| av线在线观看网站| 久久精品国产鲁丝片午夜精品| 亚洲av中文av极速乱| 国产淫片久久久久久久久| 欧美xxⅹ黑人| 精品久久久精品久久久| 国产av码专区亚洲av| 日韩欧美精品免费久久| av福利片在线观看| av国产久精品久网站免费入址| 国产欧美亚洲国产| 嫩草影院入口| 成人免费观看视频高清| 日本三级黄在线观看| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 精品人妻视频免费看| 国产精品一二三区在线看| 只有这里有精品99| 亚洲精品成人av观看孕妇| 1000部很黄的大片| 高清欧美精品videossex| 免费看光身美女| 成人漫画全彩无遮挡| 人妻一区二区av| 青春草亚洲视频在线观看| av在线亚洲专区| 99九九线精品视频在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 国产精品久久久久久精品电影| 内地一区二区视频在线| 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 国产精品一区二区性色av| 在线看a的网站| 日韩亚洲欧美综合| 国产亚洲av片在线观看秒播厂| 亚洲精品乱码久久久久久按摩| 少妇人妻精品综合一区二区| freevideosex欧美| 日韩一区二区三区影片| av在线蜜桃| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 亚洲最大成人av| 另类亚洲欧美激情| 国产成人精品婷婷| 国产乱人偷精品视频| 久久99热这里只有精品18| 亚洲图色成人| 少妇人妻 视频| 国产精品久久久久久久久免| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 久久精品夜色国产| 久久久亚洲精品成人影院| 久久久久精品性色| 亚洲第一区二区三区不卡| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 亚洲国产精品成人综合色| 一个人看视频在线观看www免费|