禹長(zhǎng)龍 王菊芳 李國(guó)剛
摘要:運(yùn)用Leray-Schauder非線性抉擇定理研究了一類(lèi)無(wú)窮區(qū)間上含有p-Laplacian算子的n階微分方程積分邊值問(wèn)題:
(φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0 x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=xn-2(0)=0,limt→+∞x(n-1)(t)=0 解的存在性,其中η∈[0,+∞),α∈[0,+∞)且f∈C([0,+∞)×R×R,[0,+∞))。 關(guān)鍵詞:常微分方程其他學(xué)科;p-Laplacian算子;n階微分方程;積分邊值問(wèn)題;Leray-Schauder非線性抉擇定理 中圖分類(lèi)號(hào):O175MSC(2010)主題分類(lèi):34B40文獻(xiàn)標(biāo)志碼:A Existence of positive solutions for nth-order integral boundary value problems with p-Laplacian operator on infinite interval YU Changlong, WANG Jufang, LI Guogang (School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China ) Abstract:In this paper, Leray-Schauder nonlinear alternative theorem is used to study the existence of positive solutions for nth-order integral boundary value problems with p-Laplacian operator on infinite interval (φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0 x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=xn-2(0)=0,limt→+∞x(n-1)(t)=0 where η∈[0,+∞),α∈[0,+∞) and f∈C([0,+∞)×R×R,[0,+∞)). Keywords:ordinary differential equation; p-Laplacian; nth-order differential equation; integral boundary value problems;Leray-Schauder nonlinear alternative theorem 收稿日期:2015-03-08;修回日期:2015-05-10;責(zé)任編輯:張軍 基金項(xiàng)目:國(guó)家自然科學(xué)基金(11201112);河北省自然科學(xué)基金(A2013208147,A2014208152,A2015208114,A2015208051);河北省教育廳基金(Z2014062);河北省教育廳自然科學(xué)青年基金(QN2015175) 作者簡(jiǎn)介:禹長(zhǎng)龍(1978—),男,河北陽(yáng)原人,講師,碩士,主要從事微分方程邊值問(wèn)題、數(shù)值計(jì)算等方面的研究。 E-mail:changlongyu@126.com 禹長(zhǎng)龍,王菊芳,李國(guó)剛.無(wú)窮區(qū)間上含有p-Laplacian算子的n階積分邊值問(wèn)題正解的存在性[J].河北科技大學(xué)學(xué)報(bào),2015,36(4):382-389. YU Changlong, WANG Jufang,LI Guogang.Existence of positive solutions for nth-order integral boundary value problems with p-Laplacian operator on infinite interval[J].Journal of Hebei University of Science and Technology,2015,36(4):382-389.1問(wèn)題提出 無(wú)窮區(qū)間上的邊值問(wèn)題起源于應(yīng)用數(shù)學(xué)和物理領(lǐng)域,具有廣泛的應(yīng)用背景。早在1908年,BLAIUS利用相似變化技巧,對(duì)不可壓縮均勻流體沿零攻繞流無(wú)限大平板的邊界層情況給出了著名的布拉休斯邊界層方程: f′′′(η)+f(η)f″(η)=0, f(0)=f′(0)=0,f′(+∞)=1。 這是出現(xiàn)最早的無(wú)窮區(qū)間邊值問(wèn)題[1]。1957年,KIDDER在研究半無(wú)窮多孔介質(zhì)壓力與位置及時(shí)間的關(guān)系時(shí)也得到無(wú)窮區(qū)間上的邊值問(wèn)題: 河北科技大學(xué)學(xué)報(bào)2015年第4期禹長(zhǎng)龍,等:無(wú)窮區(qū)間上含有p-Laplacian算子的n階積分邊值問(wèn)題正解的存在性W″+2z(1-αW1/2)1/2W′=0, W(0)=1,W(+∞)=0, 對(duì)這類(lèi)問(wèn)題的一系列研究,形成了無(wú)窮區(qū)間上的邊值問(wèn)題[2]。近年來(lái),由于無(wú)窮區(qū)間邊值問(wèn)題的廣泛應(yīng)用,引起了越來(lái)越多人們對(duì)無(wú)窮區(qū)間邊值問(wèn)題解的存在性的關(guān)注,主要結(jié)果見(jiàn)文獻(xiàn)[3]—文獻(xiàn)[11]。 無(wú)窮區(qū)間上含p-Laplacian算子的微分方程邊值問(wèn)題也被廣泛研究[12-15],無(wú)窮區(qū)間上的含p-Laplacian算子的高階微分方程邊值問(wèn)題的研究結(jié)果很少。關(guān)于這類(lèi)方程在積分邊界條件下的邊值問(wèn)題的結(jié)論目前還未見(jiàn)到。 本文研究一類(lèi)無(wú)窮區(qū)間上的含p-Laplacian算子的階微分方程積分邊值問(wèn)題:
(φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0 x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=x(n-2)(0)=0,limt→+∞x(n-1)(t)=0(1) 解的存在性,其中η∈[0,+∞),α∈[0,+∞)且f∈C([0,+∞)×R×R,[0,+∞))。 假設(shè)滿足以下條件: H1)0<α∫+∞ηg(τ)dτ<1且0<∫+∞ηg(τ)τn-2dτ<+∞; H2)f:[0,+∞)×R×R→[0,+∞)連續(xù); H3)F(t,u,v)=f(t,(1+t)n-1u,(1+t)n-2v),ω∈C1([0,+∞),[0,+∞))非減,且θ(x)∈L1[0,+∞),使得|F(t,u,v)|≤θ(t)φp(ω(|u|)); H4)∫+∞0φ-1p(∫+∞sa(τ)dτ)ds<+∞。 2預(yù)備知識(shí) 定義空間: X=x∈Cn-1[0,+∞),sup0≤t<+∞|x(t)|1+tn-1<+∞,sup0≤t<+∞|x′(t)|1+tn-2<+∞, 賦予范數(shù)‖x‖=max{‖x‖1,‖x′‖1},其中‖x‖1=sup0≤t<+∞|x(t)|1+tn-1,‖x′‖1=sup0≤t<+∞|x′(t)|1+tn-2。易證X為一個(gè)巴拿赫空間。 設(shè)PX,且P=x∈X:x(t)≥0,t∈[0,+∞),x(0)=α∫+∞ηg(t)x(t)dt,limt→+∞xn-1(t)=0。 下面給出Leray-Schauder非線性抉擇定理。 定理1[16]設(shè)X為賦范線性空間,KX為有界凸子集,ΩK為相對(duì)開(kāi)集,T:→K為全連續(xù)映射,點(diǎn)p∈Ω,則下列結(jié)論至少有1個(gè)成立: 1)T在中有不動(dòng)點(diǎn); 2)x∈Ω,λ∈(0,1),使x=λTx+(1-λ)p有解。 由于Arzela-Ascoli定理在無(wú)窮區(qū)間上是失效的,為此給出一個(gè)新的判定無(wú)窮區(qū)間相對(duì)緊集的準(zhǔn)則。 引理1設(shè)V={x∈X:‖x‖ x(t)1+tn-1-x(t′)1+(t′)n-1<ε,x′(t)1+tn-2-x′(t′)1+(t′)n-2<ε, 則V為X中的相對(duì)緊集。 證明引理的證明類(lèi)似于文獻(xiàn)[17]中引理2.2的證明。 引理2設(shè)y∈C(R+,R+),則邊值問(wèn)題: (φp(x(n-1)))′(t)+y(t)=0,0 x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=x(n-2)(0)=0,limt→+∞x(n-1)(t)=0(2) 有唯一解: x(t)=∫+∞0G(t,s)φ-1p(∫+∞sy(τ)dτ)ds, 其中,G(t,s)稱(chēng)為n階積分邊值問(wèn)題(2)的Green函數(shù),且 G(t,s)=α(n-2)?。?-α∫+∞ηg(τ)dτ)· ∫+∞ηg(τ)(τ-s)n-2dτ+(1-α∫+∞ηg(τ)dτ)(t-s)n-2,0≤s≤min{η,t}, ∫+∞ηg(τ)(τ-s)n-2dτ,t≤s≤η, ∫+∞sg(τ)(τ-s)n-2dτ+(1-α∫+∞ηg(τ)dτ)(t-s)n-2,η≤s≤t, ∫+∞sg(τ)(τ-s)n-2dτ,s≥max{η,t}。 證明對(duì)邊值問(wèn)題(2)的第1式兩邊積分,積分區(qū)間為[t,+∞),則有: ∫+∞t(φp(xn-1))′(τ)dτ=∫+∞t-y(τ)dτ, 由邊界條件limt→+∞x(n-1)(t)=0可得: x(n-1)(t)=φ-1p(∫+∞ty(τ)dτ)。(3) 對(duì)式(3)兩邊積分,積分區(qū)間為[0,t],則有: ∫t0xn-1(s)ds=∫t0φ-1p(∫+∞sy(τ)dτ)ds, 由邊界條件可得: x(n-2)(t)=∫t0φ-1p(∫+∞sy(τ)dτ)ds,(4) 再對(duì)式(4)兩邊積分,積分區(qū)間為[0,t],則有: ∫t0xn-2(γ)dγ=∫t0(∫γ0φ-1p(∫+∞sy(τ)dτ)ds)dγ, 由邊界條件并交換積分次序得: x(n-3)(t)=∫t0(t-s)φ-1p(∫+∞sy(τ)dτ)ds。(5) 重復(fù)上面的過(guò)程,經(jīng)過(guò)n次積分可得: x(t)=x(0)+∫t01(n-2)?。╰-s)n-2φ-1p(∫+∞sy(τ)dτ)ds,(6) 又x(0)=α∫+∞ηg(τ)x(τ)dτ,于是有: x(0)=α(n-2)?。?-α∫+∞ηg(τ)dτ)[∫η0φ-1p(∫+∞sy(τ)dτ)∫+∞ηg(τ)(τ-s)n-2dτds· ∫+∞ηφ-1p(∫+∞sy(τ)dτ)∫+∞ηg(τ)(τ-s)n-2dτds], 因此可得: x(t)=α(n-2)?。?-α∫+∞ηg(τ)dτ)∫η0φ-1p(∫+∞sy(τ)dτ)∫+∞ηg(τ)(τ-s)n-2dτds· ∫+∞ηφ-1p(∫+∞sy(τ)dτ)∫+∞sg(τ)(τ-s)n-2dτds+∫t01(n-2)?。╰-s)n-2φ-1p(∫+∞sy(τ)dτ)ds=
∫+∞0G(t,s)(φ-1p(∫+∞sy(τ)dτ))ds,
其中,G(t,s)=α(n-2)?。?-α∫+∞ηg(τ)dτ)·
∫+∞ηg(τ)(τ-s)n-2dτ+(1-α∫+∞ηg(τ)dτ)(t-s)n-2,0≤s≤min{η,t},
∫+∞ηg(τ)(τ-s)n-2dτ,t≤s≤η,
∫+∞sg(τ)(τ-s)n-2dτ+(1-α∫+∞ηg(τ)dτ)(t-s)n-2,η≤s≤t,
∫+∞sg(τ)(τ-s)n-2dτ,s≥max{η,t}。
引理得證。
引理3t,s∈[0,+∞),則有:
0≤G(t,s)≤α(n-2)?。?-α∫+∞ηg(τ)dτ)∫+∞ηg(τ)τn-2dτ+(1-α∫+∞ηg(τ)dτ)tn-2。
證明由函數(shù)的單調(diào)性易證。
定義算子T:P→X為
(Tx)(t)=∫+∞0G(t,s)φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds,
且易得:
(Tx)′(t)=∫t0(t-s)n-3(n-3)!φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds。
引理4假設(shè)條件H1)—條件H4)成立,則算子T:P→P是全連續(xù)的。
證明易證T:P→P成立。下面證T連續(xù)且是相對(duì)緊的。
首先,證明算子T是連續(xù)的。
設(shè)xn,x∈P且n→+∞時(shí),xn→x,則存在r0使得supn∈N\{0}‖xn‖≤r0。令
Br0=sup{f(t,(1+t)n-1u,(1+t)n-2v),(t,u,v)∈[0,+∞)×[0,r0]2},
顯然有:
∫+∞0a(τ)|f(τ,xn,x′n)-f(τ,x,x′)|dτ≤2Br0∫+∞0a(τ)dτ<+∞,
由勒貝格控制收斂定理可得:
|φ-1p(∫+∞0a(τ)f(τ,xn,x′n)dτ-φ-1p(∫+∞0a(τ)f(τ,x,x′)dτ)|→0,n→+∞,
于是有:
‖(Txn)-(Tx)‖1=supt∈[0,+∞)(Txn)(t)-(Tx)(t)1+tn-1=
supt∈[0,+∞)11+tn-1∫+∞0G(t,s)φ-1p(∫+∞sa(τ)f(τ,xn(τ),x′n(τ))dτ)-
φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤
supt∈[0,+∞)α(n-2)?。?-α∫+∞ηg(t)dt)(1+tn-1)(∫+∞0g(τ)τn-2dτ+
(1-α∫+∞ηg(τ)dτ)tn-2)∫+∞0φ-1p(∫+∞sa(τ)f(τ,xn(τ),x′n(τ))dτ)-
φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds→0,n→+∞,
‖(Txn)′-(Tx)′‖1=supt∈[0,+∞)(Txn)′(t)-(Tx)′(t)1+tn-2=
supt∈[0,+∞)1(n-3)?。?+tn-2)∫t0(t-s)n-3(φ-1p(∫+∞sa(τ)f(τ,xn(τ),x′n(τ))dτ)-
φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ))ds≤
supt∈[0,+∞)1(n-3)?。?+t-2)∫t0(t-s)n-3φ-1p(∫+∞sa(τ)f(τ,xn(τ),x′n(τ))dτ)-
φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds→0,n→+∞。
綜上所述,當(dāng)n→+∞時(shí),‖(Txn)-(Tx)‖→0,所以T是連續(xù)的。
其次,證明算子T將有界集映為相對(duì)緊集。
設(shè)Ω是P的任意有界集,則存在r>0,使得x∈Ω,‖x‖ ‖(Tx)‖1=supt∈[0,+∞)(Tx)1+tn-1= supt∈[0,+∞)11+tn-1∫+∞0G(t,s)φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤ supt∈[0,+∞)α(∫+∞0g(τ)τn-2dτ+(1-α∫+∞ηg(τ)dτ)tn-2)(1+tn-1)(n-2)?。?-α∫+∞ηg(t)dt)· ∫+∞0φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤ α(n-2)!(∫+∞ηg(τ)τn-2dτ1-∫+∞ηg(τ)dτ+1)∫+∞0φ-1p(∫+∞sa(τ)dτ)dsφ-1p(Br), 且 ‖(Tx)′‖1=supt∈[0,+∞)(Tx)′1+tn-2= supt∈[0,+∞)1(n-3)?。?+tn-2)∫t0(t-s)n-3(φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ))ds≤ supt∈[0,+∞)tn-3(n-3)?。?+tn-2)∫+∞0φ-1p(∫+∞sa(τ)Brdτ)ds≤ 1(n-3)?。ā?∞0φ-1p(∫+∞sa(τ)dτ)dsφ-1p(Br),取 M=max{α(n-2)?。ā?∞ηg(τ)τn-2dτ1-∫+∞ηg(τ)dτ+1),1(n-3)!}∫+∞0φ-1p(∫+∞sa(τ)dτ)ds, 則有‖TX‖≤Mφ-1p(Br)。于是TΩ有界。 下證x∈Ω,TΩ是等度連續(xù)的。 L∈(0,+∞),且t1,t2∈[0,L],因?yàn)椤?∞0φ-1p(∫+∞sa(τ)dτ)ds<+∞,且函數(shù)G(t,s)1+tn-1連續(xù),所以有:
(Tx)(t1)1+tn-11-(Tx)(t2)1+tn-12=11+tn-11∫+∞0G(t1,s)φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds-
11+tn-12∫+∞0G(t2,s)φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds=
φ-1p(Br)∫+∞0φ-1p(∫+∞sa(τ)dτ)G(t1,s)1+tn-11-G(t2,s)1+tn-12ds→0,t1→t2,
同理可得:
(Tx)′(t1)1+tn-21-(Tx)′(t2)1+tn-22=1(n-3)!∫t10(t1-s)n-31+tn-21φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds-
1(n-3)!∫t20(t2-s)n-31+tn-22φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤
φ-1p(Br)(n-3)!∫t10φ-1p(∫+∞sa(τ)dτ)(t1-s)n-31+tn-21-(t2-s)n-31+tn-22ds+
φ-1p(Br)(n-3)!∫t2t1φ-1p(∫+∞sa(τ)dτ)(t2-s)n-31+tn-22ds→0,t1→t2,
所以對(duì)x∈Ω,TΩ是等度連續(xù)的。
最后,證明TΩ是一致收斂的。對(duì)于x∈Ω,有:
limt→+∞(Tx)(t)1+tn-1=limt→+∞11+tn-1∫+∞sG(t,s)φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤
limt→+∞α(∫+∞0g(τ)τn-2dτ+(1-α∫+∞ηg(τ)dτ)tn-2)(1+tn-1)(n-2)?。?-α∫+∞ηg(t)dt)·
∫+∞0φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤
limt→+∞α(∫+∞0g(τ)τn-2dτ+(1-α∫+∞ηg(τ)dτ)tn-2)(1+tn-1)(n-2)?。?-α∫+∞ηg(t)dt)·
∫+∞0φ-1p(∫+∞sa(τ)dτ)ds·φ-1p(Br)=0,
且
limt→+∞(Tx)′(t)1+tn-2=limt→+∞1(n-3)?。?+tn-2)∫t0(t-s)n-3φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds≤
limt→+∞1(n-3)?。?+tn-2)∫t0(t-s)n-3φ-1p(∫+∞sa(τ)dτ)ds·φ-1p(Br)=0。
所以TΩ是一致收斂的,由引理1得TΩ是相對(duì)緊集,即T是緊算子,因此,T:P→P是全連續(xù)的,證畢。
3主要結(jié)論及證明
定理2 設(shè)條件H1)—條件H4)成立,且假設(shè)條件H3)中的函數(shù)ω和θ滿足:
H5)ρ>0使得:
Lω(ρ)∫+∞0φ-1p(∫+∞sθ(s)a(τ)dτ)ds>1,
則邊值問(wèn)題(1)至少有1個(gè)正解x(t),且
0 其中: L=minρ(n-2)?。?-∫+∞ηg(τ)dτ)α(∫+∞ηg(τ)(τn-2-1)dτ+1),ρ(n-3)!。 證明考慮邊值問(wèn)題: (φp(x(n-1)))′(t)+λa(t)f(t,x(t),x′(t))=0,0 x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=xn-2(0)=0,limt→+∞x(n-1)(t)=0,(7) 其中0<λ<1,求解式(7)等價(jià)于求解不動(dòng)點(diǎn)問(wèn)題x=λTx。 令U={x∈X,‖x‖≤ρ},斷言對(duì)于x∈U,λ∈(0,1),x≠λTx。假使不然,設(shè)存在x∈U,λ∈(0,1),使得x=λTx,則 ‖x‖1=‖λTx‖1=supt∈[0,+∞)λ(Tx)(t)1+tn-1≤supt∈[0,+∞)(Tx)(t)1+tn-1= supt∈[0,+∞)∫+∞0G(t,s)1+tn-1φ-1p(∫+∞sa(τ)f(τ,x),x′(τ))dτ)ds≤ supt∈[0,+∞)α(∫+∞0g(τ)τn-2dτ+(1-α∫+∞ηg(τ)dτ)tn-2)(1+tn-1)(n-2)?。?-α∫+∞ηg(t)dt)· ∫+∞0φ-1p(∫+∞sa(τ)F(τ,x(τ)1+tn-1,x′(τ))dτ)ds≤ α(n-2)?。ā?∞ηg(τ)τn-2dτ1-∫+∞ηg(τ)dτ+1)∫+∞0φ-1p(∫+∞sθ(τ)φp(ω(|x(τ)|1+τn-1))a(τ)dτ)ds≤ αω(ρ)(n-2)!(∫+∞ηg(τ)τn-2dτ1-∫+∞ηg(τ)dτ+1)∫+∞0φ-1p(∫+∞sθ(τ)a(τ)dτ)ds, 所以 ρ≤αω(ρ)(n-2)!(∫+∞ηg(τ)τn-2dτ1-∫+∞ηg(τ)dτ+1)∫+∞0φ-1p(∫+∞sθ(τ)a(τ)dτ)ds, 即 ρ(n-2)!(1-∫+∞ηg(τ)dτ)αω(ρ)(∫+∞ηg(τ)(τn-2-1)dτ+1)∫+∞0φ-1p(∫+∞sθ(τ)a(τ)dτ)ds≤1。 同理,有: ‖x′‖1=‖λ(Tx)′‖1=supt∈[0,+∞)λ(Tx)′(t)1+tn-2≤supt∈[0,+∞)(Tx)′(t)1+tn-2= supt∈[0,+∞)∫+∞0(t-s)n-3(1+tn-2)(n-3)!φ-1p(∫+∞sa(τ)f(τ,x(τ),x′(τ))dτ)ds=
supt∈[0,+∞)∫+∞0(t-s)n-3(1+tn-2)(n-3)!φ-1p(∫+∞sa(τ)F(τ,x(τ)1+tn-2,x′(τ))dτ)ds≤
1(n-3)!∫+∞0φ-1p(∫+∞sa(τ)F(τ,x(τ)1+tn-2,x′(τ))dτ)ds≤
1(n-3)!∫+∞0φ-1p(∫+∞sθ(s)φ-1p(ω(|x(τ)|1+tn-2))a(τ)dτ)ds≤
ω(ρ)(n-3)!∫+∞0φ-1p(∫+∞sθ(s)a(τ)dτ)ds,
所以
ρ≤ω(ρ)(n-3)!∫+∞0φ-1p(∫+∞sθ(s)a(τ)dτ)ds,
即
ρ(n-3)!ω(ρ)∫+∞0φ-1p(∫+∞sθ(s)a(τ)dτ)ds≤1,
這與條件H5)矛盾,由定理1和引理4可得邊值問(wèn)題(1)至少有1個(gè)正解x(t),且‖x(t)‖<ρ。
參考文獻(xiàn)/References:
[1]鄭連存,張欣欣,赫冀成.傳輸過(guò)程奇異非線性邊值問(wèn)題[M].北京:科學(xué)出版社,2003.
ZHENG Liancun,ZHANG Xinxin,HE Jicheng.Singular nonlinear Boundary Value Problem for Transmission Process[M].Beijing:Science Press,2003.
[2]KIDDER R E. Unsteady flow of gas through a semi-infinite porous medium[J]. J Appl Mech,1957, 27:329-332.
[3]AGARWAL R P,OREGAN D. Nonlinear boundary value problems on the semi-infinite interval: An upper and lower solution approach[J]. Mathematika,2002,49:129-140.
[4]禹長(zhǎng)龍,李志廣,魏會(huì)賢,等.無(wú)窮區(qū)間上二階m點(diǎn)共振邊值問(wèn)題解的存在性和唯一性[J].河北科技大學(xué)學(xué)報(bào),2013,34(1):7-14.
YU Changlong, LI Zhiguang, WEI Huixian,et al. Existence and uniqueness of solutions for second-order m-point boundary value problems at resonance on infinite interval[J]. Journal of Hebei University of Science and Technology, 2013,34(1):7-14.
[5]AGARWAL R P,OREGAN D. Infinite Interval Problems for Differential, Difference and Integral Equations[M]. Nether lands:Kluwer Academic Publisher, 2001.
[6]BAI C,F(xiàn)ANG J. On positive solutions of boundary value problems for second-order functional differential equations on infinite intervals[J].J Math Anal Appl, 2003, 282: 711-731.
[7]BAXLEY J V. Existence and uniqueness for nonlinear boundary value problems on infinite interval[J]. J Math Anal Appl, 1990,147:127-133.
[8]YU C,GUO Y,JI Y. Existence of solutions for m-point boundary value problems on a half-line[J]. Advances in Difference Equations, 2009,15: 11.
[9]GALLARDO J M. Second order differential operators with integral boundary conditions and generation of semigroups[J]. Rocky Mt J Math, 2000, 30: 1265-1292.
[10]郭彥平,李春景,韓迎迎. 帶p-Laplace算子的三階微分方程邊值問(wèn)題正解的存在性[J]. 河北科技大學(xué)學(xué)報(bào),2014,35(6):524-528.
GUO Yanping, LI Chunjing, HAN Yingying. Existence of positive solutions for boundary value problem of the third order differential equations with p-Laplacian[J].Journal of Hebei University of Science and Technology,2014,35(6):524-528.
[11]GUO D. Integro-differential equations on unbounded domains in banach spaces[J]. Chin Ann of Math, 1999, 4:435-446.
[12]LIAN H,PANG H,GE W. Triple positive solutions for boundary value problems on infinite intervals[J]. Nonlinear Anal, 2007, 67: 2199-2207.
[13] GUO Yanping,YU Changlong,WANG Jufang.Existence of three positive solutions for m-point boundary valueproblems on infinite intervals[J]. Nonlinear Analysis,2009,71: 717-722.
[14]YU C,WANG J,GUO Y,et al. Positive solutions for boundary-value problems with integral boundary conditions on infinite intervals[J]. Elec J Diff Equa, 2012, 158:1-9.
[15]禹長(zhǎng)龍,王菊芳,左春艷.一類(lèi)含有p-Laplacian算子二階三點(diǎn)邊值問(wèn)題正解的存在性[J].河北科技大學(xué)學(xué)報(bào),2014,35(2):127-133.
YU Changlong, WANG Jufang,ZUO Chunyan. Existence of positive solutions for second-order three-point boundary value problems with p-Laplacian operator[J].Journal of Hebei University of Science and Technology, 2014,35(2):127-133.
[16]LERAY J,SCHAUDER J. Topologie et equations fonctionelles[J]. Ann Sci Ecole Nor, 1934, 51: 45-78.
[17]LIU Y. Boundary value problem for second order differential equations on unbounded domain[J]. Acta Anal Funct Appl, 2002,4:211-216.第36卷第4期河北科技大學(xué)學(xué)報(bào)Vol.36,No.4