• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Channel Error Compensation for Multi-channel SAR Based on Cost Function

    2014-10-03 12:25:34ZhangLeiDengYunkaiWangYuZhengShichaoYangLiangInstituteofElectronicsChineseAcademyofSciencesBeijing100190China
    雷達(dá)學(xué)報 2014年5期
    關(guān)鍵詞:王宇譜估計淺析

    Zhang Lei Deng Yun-kai Wang Yu Zheng Shi-chao② Yang Liang②(Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China)

    ②(University of Chinese Academy of Sciences,Beijing 100049,China)

    1 Introduction

    Synthetic Aperture Radar (SAR) is a widely used remote sensing instrument.High-resolution as well as wide-swath is one of the main goals of system design[1,2].For conventional spaceborne SAR,high resolution in azimuth requires large Doppler bandwidth,which means a high Pulse Repetition Frequency (PRF) to avoid ambiguity.However,wide imaging swath requires wide range beam,hence PRF must be low to guarantee the echo integrality.This contradiction is known as the minimum-antenna-area constraint[3].

    Multi-channel technique was proposed to break through this constraint.Multi-channel can be realized either in the range direction[4]or in the azimuth direction,even in both directions[5,6].Besides,channels can be placed either on single platform or distribute platforms[7,8].Multi-channel in azimuth on single platform has been tested with TerraSAR-X,and the outcomes are encouraging[9].Due to the effects of the qualities of modules,the construction of the system and the atmosphere,channel imbalance is inevitable in multi-channel system.Channel imbalance presents in echo data in terms of amplitude error and phase error.These errors impair the reconstruction of azimuth signals thus the final SAR image will be ambiguous[10].

    Several algorithms have been proposed to remove channel errors.They can be classified as two categories: methods based on inner calibration and methods based on raw data.Inner calibration[11]uses calibration subsystem to get imbalance information.This method works precisely,but it can not monitor the imbalance outside system loop such as antennas.Methods based on raw data can overcome this limitation.In this method[12],signal covariance is formulated and then be decomposed by eigenvalues and the corresponding eigenvectors.The phase error between channels is derived in signal subspace.Method introduced by Ref.[13]works in a different way that it divides channel imbalance into pulse sampling clock error and channel phase error.It uses azimuth crosscorrelation to estimate these errors.Usually,methods based on raw data are sensitive to the imaging scene.Strong targets are likely to destroy the signal correlation and the validations of these algorithms are impacted.

    In this paper,an improved method to handle channel imbalance is proposed.The method models channel imbalance as three parts: the range gain error,the pulse sampling clock error,and the transmission phase error.The range gain error is removed alternately with the pulse sampling clock error.The estimation of transmission phase error is improved using cost function.Compared with existing methods,the proposed one is independent on the imaging scene,so it is more robust.

    2 Signal and Error Model

    Fig.1 System geometry of azimuth multi-channel SAR

    Fig.1 shows the geometry of a SAR system with four channels in azimuth.Antennas of each channel and the corresponding phase-centers are marked with rectangles and triangles respectively.Suppose that channel 1 transmits signal and all four channels receive echo signal.By compensating a known constant phase between channels,the received echo signal can be converted into the equivalent self-transmit and self-receive signal[14].The equivalent phase-centers are marked with circles,which are located halfway in between the transmitting (channel 1) and the respective receiving phase-center.

    The echo signal received by channel 1 is denoted by s1(τ,η),where τ is the fast time and η is the slow time.According to the slow time delay,the echo signal received by channel m can be written as

    where m is the channel number ranging from 2 to M (M is the total channels),ΔDmis the distance from the equivalent phase-center of channel m to that of channel 1,Vris the platform velocity.

    For a spaceborne SAR system,its antenna radiation characteristic is measured in laboratory before launched.However,such characteristic usually changes in orbit because of antenna unfold error,satellite shake,modules invalidation and so on.So the gains of each channel are different.Antenna gain is a parameter of two dimensions,and this paper only focuses on range direction.

    Because of the mis-synchronizing of the sampling clock,channels start to receive signal at different time.This leads to echoes from different range aligned in data.So it is needed to shift the pulse and align the data according to the range.

    The inconsistency of receiver characteristic of channels brings a constant gain error and a constant phase error.

    Based on the three sources discussed above,the channel errors are modeled as three parts: the range gain error,the pulse sampling clock error,and the transmission phase error.Thus the actual echo signal is formulated as

    whereΔam(τ) is the range gain error composed of the antenna gain error in range and the receiver gain error,Δτmis the pulse sampling clock error,Δφmis the transmission phase error i.e.the receiver phase error.These errors induce blurring in subsequent SAR imaging,so that the images are ambiguous in the azimuth.

    3 Error Compensation

    3.1 Range gain error and pulse sampling clock error

    For range gain error,we have

    Because Δτmis also needed to be estimated,we use s1(τ+Δτm,η) instead.AfterΔam(τ) is removed,we get

    Transform Eq.(4) into range frequency domain and performing azimuth cross-correlation[13],the phase is formulated

    where fdcis the Doppler center frequency.Fitting the phase to a straight line,we can obtain Δτmfrom the slope.

    The compensation ofΔam(τ) as well as Δτmneeds to be done alternately with two reasons.First,by multiplying a linear phase with,Δτmis removed.According to the property of Fourier transform,the echo data are shifted in range time domain.This will bring a new range gain difference.Second,we use s1(τ,η) instead of s1(τ+Δτm,η)when estimatingΔam(τ).Alternation is terminated when the variety of Δτmestimated is below certain threshold (e.g.corresponding propagation phase is smaller than π/100).

    The validation of Eq.(5) is related to the imaging scene.The relationship between the azimuth antenna pattern and the signal azimuth power spectrum is likely to be destroyed when several strong targets exist.Then,Δφmestimated using Eq.(5) is not precisely enough.

    3.2 Transmission phase error

    After several alternations,the remaining part is the transmission phase error between channels i.e.Δφm.We solve this problem resorting to the cost function-an effective way of SAR image autofocus[15].For airborne SAR system,phase error in azimuth is unavoidable due to motion errors,unknown atmosphere effect and so on.This phase error causes defocusing in SAR image.The aim of autofocus is to estimate such phase error and refocus the image.One kind of autofocus technique is using the cost function.Cost function is derived from SAR images and used to justify whether an image is completely focused because its value relates to the extent of an image into focus.The transmission phase error Δφmis constant in range,so its estimation can be treated as a special case of autofocus.

    Blurred images caused by transmission phase error have two main characteristics.On one hand,the main lobe of the point target becomes wide.On the other hand,ambiguous images contain several ghosts in azimuth.Although defocused,these ghosts share the same shape with the actual targets.According to these two characteristics,we develop a new cost function called Image Self-Correlation in Azimuth (ISCA)

    where I(m,n) is a SAR image,m and n are range coordinate and azimuth coordinate respectively,k is azimuth offset,*denotes conjugation,Emimplies average in range.ISCA is normalized by the denominator.Thus,we have

    Ambiguous is exhibited by ISCA in two main ways.First,a wider main lobe means the ISCA of a focused image descends faster around k=0 (zero peak) than that of a defocused one,i.e.the zero peak is sharper.Second,the curve of selfcorrelation may have a couple of peaks besides the one at k=0 (non-zero peak).When the image is fully focused,these non-zero peaks become flat i.e.the ghosts are suppressed.

    Thus,the estimation of transmission phase error can be described as

    whereΔφ=[Δφ2Δφ3…ΔφM],is the optimal solution,ext denotes judging with the width of the zero peak or with the height of nonzero peaks.

    3.3 Iteration and the imaging algorithm

    As the optimization in Eq.(8) has no closedform solution,we resort to an iterative method called coordinate descent algorithm[16]that Δφmis obtained in sequence with iterations.

    Suppose Δφ represents a vector with dimension M?1.The optimization procedure is to find the most appropriate vector in (1)-M?dimensional space. In coordinate descent optimization,each parameter (coordinator) is optimized sequentially,while holding all other parameters constant.Letdenote the m-th coordinate (the transmission phase error of the mth channel) of the i-th iteration.At the next iteration i+1,the coordinate descent estimated is

    where m ranges from 2 to M.Note that parameters Δφ2,…,Δφm?1have already been updated whereas parametersΔφm+1,…,ΔφMare waiting for the updating.Because the parameters are interdependent,optimization over the entire set of parameters must be performed a number of times.The coordinate descent algorithm has the possibility to get local optimum.Changing the parameters optimization order can solve this problem.That is at the i-th iteration,optimize from Δφ2to ΔφM,and at the (i+1)-th iteration,from ΔφMto Δφ2.

    It is interesting that different imaging algorithms correspond to distinct iterative processes.

    If frequency domain imaging algorithms such as the Chirp Scaling Algorithm (CSA) are chosen,the iterative process is shown in Fig.2(a).Because the imaging process is involved,the time consumption of the total iteration will be quite large especially when the number of channels is large.At the expense of time,we get channel error removed accurately and robustly.

    Fig.2 Flow chart of the compensation

    The conditions will turn better when Back-Projection imaging Algorithm (BPA) is used.BPA is a flexible algorithm,it can be used in almost all SAR working modes.If BPA is adopted,the iterative process is given by Fig.2(b),where only multi-channel accumulation is involved in iteration.Thus the iteration requires few time.After each single channel is imaged,we can select some range bins with highest contrast as sample set to be used in the estimation.This will speed up the iteration further.

    4 Simulation and Real Data Experiment

    4.1 Simulation experiment

    To analyze the performance of the proposed method,we first use Monte Carlo simulation with point target echo.The system has five channels in azimuth with parameters set as shown in Tab.1.For the pulse sampling clock error estimation,the error interval is set to be [-0.5ΔT,0.5ΔT]with uniform distribution,where ΔT is the range sampling interval unit.For the transmission phase error estimation,the error interval is set to be[-0.5π,0.5π]with uniform distribution.The system SNR is set from 10 dB to 30 dB with step of 2 dB.For each SNR,the simulation is carried out 100 times.

    Tab.1 System parameters point target echo

    The simulation results are given by Fig.3,the Averaged Root-Mean-Square Error (ARMSE) is defined by

    where M is the total channels,N is the simulation times,ε is the error set,?ε is the error estimated,and subscript m and n indicate the channel and the sample respectively.From Fig.3,it is shown that the ARMSE of pulse sampling clock error estimated is dependent on system SNR.This is because Eq.(5) is derived with cross-correlation.While for the transmission phase error estimation,our method is independent on system SNR.This is another superiority compared with other algorithms.

    4.2 Real data experiment

    In this Section,we use some sets of airborne data to evaluate the proposed method.For comparison,the data are also processed with the method in Ref.[13].The test data are collected by an airborne SAR system,which is an experimental platform of a future spaceborrne SAR system.There are two channels in azimuth working in strip-map mode.The SAR system is multi-carrier and the main parameters are listed in Tab.2.

    Tab.2 System parameters of the airborne SAR

    Fig.3 Point target simulation results

    Since the original data are oversampled in azimuth,we extract specific samples to simulate the undersampled signal as illustrated by Fig.4.Channel 1 is ahead in time.We refer sample m to‘Sm’ and channel m to ‘CHm’ for short.The first sample of the new data set comes from S1CH1of the original data.The second sample comes from S2CH2of the original data.Then we jump across four samples,i.e.the third sample of the new data set comes from S7CH1of the original data and goes on.Thus the actual PRF is 250 Hz for C-band and 125 Hz for L-band.The experimental data set size is 16384(range) by 16384 (azimuth) in sample.

    Fig.5 to Fig.7 give the results of experiment executed on C-band data.Range gains of the two channels are drawn in Fig.5(a).It shows that not only the gain but also the pattern are not identical.Fig.5(b) shows the phase grads of channel crosscorrelation,that the linear variation is quite clear.Severe jitters at high frequency are caused by oversampling,i.e.the noise outside signal bandwidth.

    Fig.4 Timing diagram of the new data set

    Fig.5 Range gain error and pulse sampling clock error

    A part of the final images are shown in Fig.7.Fig.7(a) is the image of the uncalibrated data.Ambiguity is so heavy that the factory can not be distinguished.Result of method in Ref.[13]is given by Fig.7(b).Because the factory is stronger than the other targets,the ghosts still exist.Fig.7(c)draws the image processed by the proposed approach.Ambiguity is greatly suppressed and we can recognize the factory on the left clearly.

    Fig.8 and Fig.9 give the results of experiment executed on L-band data.Different from the C-band one,there is no obvious peak on the cost function curves.This is because of the scene content.The scene of C-band is mainly plowland so the factory as well as its ghost is prominent.While the one of L-band is mainly seaside city,that no particular human structure can be considered as prominent.As no peak is available,we use the mean value as the evaluation criterion,which is 0.487 before calibration and 0.262 after.Lower cross-correlation implies better focus.

    Fig.6 The cost functions of C-band data

    Fig.7 Imaging results of C-band data

    Fig.8 The cost functions of L-band data

    Fig.9 Imaging results of L-band data

    In the experiments above,the proposed method performs well and the improvement is shown obviously.

    5 Conclusion

    Channel imbalance is inevitable in multichannel system.In this paper,an improved approach for compensating channel imbalance in azimuth multi-channel SAR is proposed.The method calibrates not only the gain error but also the phase error.Point target simulations reveal the algorithm accuracy with different system SNR and shows that the proposed approach has high precision,and is less sensitive to the imaging scene as well as SNR.Real airborne SAR data are used to investigate the effectiveness,and the results show the validation of the approach at different wave bands.The proposed approach is proven to be working well.In the paper,only the range gain error is modeled.The algorithm considering azimuth antenna pattern error will be our future research focus.

    [1]Currie A and Brown M A.Wide-swath SAR[J].IEE Proceedings F: Radar and Signal Processing,1992,139(2):122-135.

    [2]鄧云凱,趙鳳軍,王宇.星載SAR技術(shù)的發(fā)展趨勢及應(yīng)用淺析[J].雷達(dá)學(xué)報,2012,1(1): 1-10.Deng Yun-kai,Zhao Feng-jun,and Wang Yu.Brief analysis on the development and application of spaceborne SAR[J].Journal of Radars,2012,1(1): 1-10.

    [3]Curlander J C and McDonough R N.Synthetic Aperture Radar-Systems and Signal Processing[M].New York: John Wiley & Sons,1991.

    [4]馮帆,黨紅杏,譚小敏.基于Capon譜估計的星載SAR自適應(yīng)DBF研究[J].雷達(dá)學(xué)報,2014,3(1): 53-60 Feng Fan,Dang Hong-xing,and Tan Xiao-min.Study on adaptive digital beamforming for spaceborne SAR based on Capon spatial spectrum estimation[J].Journal of Radars,2014,3(1): 53-60.

    [5]Malliot H.Wide swath SAR and radar altimeter[C].IEEE Geoscience and Remote Sensing Symposium,Espoo,Finland,1991: 87-97.

    [6]Callaghan G D and Longstaff I D.Wide-swath space-borne SAR using a quad-element array[J].IEE Proceedings-Radar,Sonar and Navigation,1999,146(3): 159-165.

    [7]Goodman N A,Lin S C,Rajakrishna D,et al..Processing of multiple-receiver spaceborne arrays for wide-area SAR[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(4): 841-852.

    [8]Martin M,Klupar P,Kilberg S,et al..Techsat21 andrevolutionizing spaee missions using microsatellites[C].In 15th AIAA Conference on Small Satellites,UT,USA,2001:1-5.

    [9]Kim J H,Younis M,Prats-Iraola P,et al..First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J].IEEE Transactions on Geoscience and Remote Sensin g,2013,51(1): 579-590.

    [10]Jing W,Xing M,Qiu C W,et al..Unambiguous reconstruction and high-resolution imaging for multiplechannel SAR and airborne experiment results[J].IEEE Geoscience and Remote Sensing Letters,2009,6(1): 102-106.

    [11]Renyuan C,Kai J,Yanmei Y,et al..High resolution dual channel receiving SAR compensation technique[C].1st Asian and Pacific Conference on Synthetic Aperture Radar,Huangshan,China,2007: 713-717.

    [12]Yang T,Li Z,Liu Y,et al..Channel error estimation methods for multichannel SAR systems in azimuth[J].IE EE Geoscience and Remote S ensing Letters,2013,10(3):548-552.

    [13]Feng J,Gao C,Zhang Y,et al..Phase mismatch calibration of the multi-channel SAR based on azimuth crosscorrelation[J].IE EE Geosciences and Remote S ensing Letters,2013,10(4): 903-907.

    [14]Krieger G,Gebert N,and Moreira A.Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J].IE EE Geoscience and Remote Sensing Letters,2004,1(4): 260-264.

    [15]Berizzi F and Corsini G.Autofocusing of inverse synthetic aperture radar images using contrast optimization[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(3): 1185-1191.

    [16]Kragh T J.Monotonic iterative algorithm for minimumentropy autofocus[C].In Proceedings Adaptive Sensor Array Process (ASAP) Workshop,Lexington,MA,USA,2006.

    猜你喜歡
    王宇譜估計淺析
    基于ShuffleNet V2算法的三維視線估計
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    淺析VLAN間靈活互訪
    電子制作(2019年14期)2019-08-20 05:43:30
    淺析35kV隔離開關(guān)常見缺陷及處理
    電子制作(2018年18期)2018-11-14 01:48:26
    Cavitation erosion in bloods*
    基于MATLAB實現(xiàn)的AR模型功率譜估計
    淺析“譙”字“酷烈”義
    經(jīng)典功率譜估計方法的研究
    Welch譜估計的隨機誤差與置信度
    脈沖噪聲環(huán)境下的改進(jìn)MUSIC譜估計方法
    十分钟在线观看高清视频www | 久久久亚洲精品成人影院| 少妇的逼水好多| 日本欧美视频一区| 又爽又黄a免费视频| 国产国拍精品亚洲av在线观看| 精华霜和精华液先用哪个| 国产欧美日韩综合在线一区二区 | 免费av中文字幕在线| av又黄又爽大尺度在线免费看| 美女国产视频在线观看| 女人精品久久久久毛片| av免费在线看不卡| 亚洲一级一片aⅴ在线观看| 国产成人免费观看mmmm| 国产欧美另类精品又又久久亚洲欧美| 九九久久精品国产亚洲av麻豆| 日本色播在线视频| 日韩伦理黄色片| 日韩中字成人| 免费播放大片免费观看视频在线观看| 少妇人妻 视频| 菩萨蛮人人尽说江南好唐韦庄| 桃花免费在线播放| 国产精品国产三级国产av玫瑰| 免费不卡的大黄色大毛片视频在线观看| 高清av免费在线| 中文精品一卡2卡3卡4更新| 一级毛片 在线播放| 日韩中文字幕视频在线看片| 高清av免费在线| 国产日韩一区二区三区精品不卡 | 欧美bdsm另类| 亚洲欧美成人综合另类久久久| 视频区图区小说| 国产伦精品一区二区三区视频9| 十分钟在线观看高清视频www | 亚洲国产精品成人久久小说| 欧美精品亚洲一区二区| 99热6这里只有精品| 妹子高潮喷水视频| 免费黄网站久久成人精品| 久久精品国产a三级三级三级| 伊人久久国产一区二区| 91成人精品电影| 中文字幕久久专区| 成人午夜精彩视频在线观看| 午夜视频国产福利| 色5月婷婷丁香| 十八禁网站网址无遮挡 | 免费久久久久久久精品成人欧美视频 | av福利片在线| 九九久久精品国产亚洲av麻豆| 欧美精品国产亚洲| 一级毛片电影观看| 欧美日韩视频高清一区二区三区二| 亚洲色图综合在线观看| 高清不卡的av网站| 午夜免费鲁丝| 卡戴珊不雅视频在线播放| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 丝袜脚勾引网站| 欧美3d第一页| videos熟女内射| 午夜影院在线不卡| 久热这里只有精品99| 熟女av电影| 欧美激情极品国产一区二区三区 | 久久6这里有精品| 99九九在线精品视频 | 国产av码专区亚洲av| 国产精品一区二区性色av| 久久久久久久久久久免费av| 国产av精品麻豆| 大话2 男鬼变身卡| 街头女战士在线观看网站| 久久99蜜桃精品久久| 一区二区三区精品91| 亚洲欧美成人综合另类久久久| 一本色道久久久久久精品综合| 国产亚洲欧美精品永久| 激情五月婷婷亚洲| 久久久久久久精品精品| 好男人视频免费观看在线| 一本一本综合久久| 日本黄色片子视频| 久久精品国产亚洲av天美| 在线观看一区二区三区激情| av专区在线播放| 欧美变态另类bdsm刘玥| 成年人免费黄色播放视频 | 国产精品秋霞免费鲁丝片| 在线观看三级黄色| 中文精品一卡2卡3卡4更新| 成人18禁高潮啪啪吃奶动态图 | 亚洲av成人精品一二三区| av免费在线看不卡| 国产精品免费大片| 精品国产乱码久久久久久小说| 69精品国产乱码久久久| 久久久久视频综合| 一级二级三级毛片免费看| 国产免费一区二区三区四区乱码| 精品人妻熟女av久视频| 欧美 日韩 精品 国产| 乱码一卡2卡4卡精品| 内地一区二区视频在线| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 高清在线视频一区二区三区| 久久狼人影院| 欧美变态另类bdsm刘玥| 人妻一区二区av| 国产黄片美女视频| 欧美日韩综合久久久久久| 全区人妻精品视频| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 久久人人爽人人爽人人片va| 青青草视频在线视频观看| 亚洲欧美日韩卡通动漫| av不卡在线播放| 国产乱来视频区| 涩涩av久久男人的天堂| a级片在线免费高清观看视频| 亚洲av二区三区四区| 两个人的视频大全免费| 国产一区二区三区av在线| 99久久中文字幕三级久久日本| 亚洲欧洲精品一区二区精品久久久 | av卡一久久| 老司机影院成人| 免费看日本二区| 国产成人精品一,二区| 国产精品人妻久久久久久| 夫妻性生交免费视频一级片| 国产黄色免费在线视频| 日韩大片免费观看网站| av天堂久久9| 国内精品宾馆在线| 国产亚洲一区二区精品| 丝袜喷水一区| 国产探花极品一区二区| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 黑人猛操日本美女一级片| 18禁在线无遮挡免费观看视频| 国产黄色视频一区二区在线观看| 亚洲av不卡在线观看| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 欧美三级亚洲精品| 国产亚洲5aaaaa淫片| 国产成人免费观看mmmm| 青春草亚洲视频在线观看| 欧美 亚洲 国产 日韩一| 日韩一区二区三区影片| 亚洲精品乱码久久久v下载方式| 亚洲丝袜综合中文字幕| 国产精品一区二区在线观看99| 天天躁夜夜躁狠狠久久av| 精华霜和精华液先用哪个| 一级片'在线观看视频| 天美传媒精品一区二区| 国产精品久久久久久精品电影小说| 欧美 日韩 精品 国产| 精品一品国产午夜福利视频| 国产黄片美女视频| freevideosex欧美| 日韩中文字幕视频在线看片| 免费观看无遮挡的男女| 秋霞在线观看毛片| 中文在线观看免费www的网站| 精品视频人人做人人爽| 国产白丝娇喘喷水9色精品| 亚洲精品自拍成人| 亚洲av成人精品一二三区| 国产精品三级大全| 能在线免费看毛片的网站| 麻豆精品久久久久久蜜桃| 免费黄频网站在线观看国产| 人人妻人人澡人人爽人人夜夜| 2022亚洲国产成人精品| 日本午夜av视频| 91久久精品国产一区二区三区| 能在线免费看毛片的网站| 日本黄色片子视频| 国产精品麻豆人妻色哟哟久久| 看免费成人av毛片| 人人妻人人澡人人爽人人夜夜| 国产极品天堂在线| 国产精品人妻久久久影院| 国产免费一区二区三区四区乱码| 亚洲欧美日韩另类电影网站| 老熟女久久久| 在线精品无人区一区二区三| 亚洲av日韩在线播放| 精品久久久久久电影网| 一区二区三区四区激情视频| 在线 av 中文字幕| 高清毛片免费看| 久久久欧美国产精品| 肉色欧美久久久久久久蜜桃| 欧美bdsm另类| 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 亚洲第一av免费看| 黑丝袜美女国产一区| 观看av在线不卡| 男的添女的下面高潮视频| av免费观看日本| 国产精品一区二区在线不卡| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 久久久久国产网址| 2022亚洲国产成人精品| 久久人人爽人人爽人人片va| 精品卡一卡二卡四卡免费| 纯流量卡能插随身wifi吗| 赤兔流量卡办理| 我的老师免费观看完整版| 草草在线视频免费看| 综合色丁香网| 国产日韩欧美视频二区| 国产精品国产av在线观看| 成年美女黄网站色视频大全免费 | 纵有疾风起免费观看全集完整版| 亚洲美女视频黄频| 18禁在线播放成人免费| 精品人妻熟女av久视频| 乱码一卡2卡4卡精品| 三级经典国产精品| 久久久久精品久久久久真实原创| 在线观看美女被高潮喷水网站| 亚洲欧美一区二区三区国产| 老女人水多毛片| 成人亚洲精品一区在线观看| 国产精品偷伦视频观看了| 国产男女内射视频| 精品少妇内射三级| 天堂俺去俺来也www色官网| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| 久久精品久久久久久噜噜老黄| 亚洲情色 制服丝袜| 人妻系列 视频| 少妇的逼水好多| 亚洲精品日韩在线中文字幕| 欧美国产精品一级二级三级 | 国产精品久久久久久久电影| 自拍偷自拍亚洲精品老妇| 国产成人精品婷婷| 国产精品熟女久久久久浪| 内地一区二区视频在线| 女人久久www免费人成看片| 国产精品无大码| 亚洲精品国产色婷婷电影| 最近2019中文字幕mv第一页| 国产欧美日韩精品一区二区| 人妻夜夜爽99麻豆av| 日本wwww免费看| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久丰满| 午夜福利,免费看| 男人舔奶头视频| 激情五月婷婷亚洲| 欧美xxxx性猛交bbbb| 久久婷婷青草| 在线观看av片永久免费下载| 九色成人免费人妻av| 99久久精品国产国产毛片| 久久久国产欧美日韩av| 久久国产精品大桥未久av | 久热久热在线精品观看| 99re6热这里在线精品视频| 国产黄频视频在线观看| 欧美性感艳星| 国产亚洲一区二区精品| 久久毛片免费看一区二区三区| av网站免费在线观看视频| 精品午夜福利在线看| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆| 99精国产麻豆久久婷婷| 人人妻人人澡人人看| 国产成人免费无遮挡视频| 久热久热在线精品观看| 亚洲性久久影院| 一区在线观看完整版| 黄色毛片三级朝国网站 | 日日啪夜夜撸| 亚洲欧洲日产国产| 国语对白做爰xxxⅹ性视频网站| 涩涩av久久男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 亚洲av福利一区| 国产片特级美女逼逼视频| 国产淫语在线视频| 国内少妇人妻偷人精品xxx网站| 在线观看三级黄色| 亚洲四区av| 美女中出高潮动态图| 天天操日日干夜夜撸| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 久久精品国产亚洲av涩爱| 亚洲欧美一区二区三区黑人 | 亚洲国产精品专区欧美| 国产精品久久久久成人av| 欧美一级a爱片免费观看看| 午夜日本视频在线| 中国国产av一级| 天堂俺去俺来也www色官网| 久久久久国产网址| 精品久久久久久久久亚洲| 美女福利国产在线| 中文字幕制服av| 夫妻性生交免费视频一级片| 精品久久久久久电影网| 春色校园在线视频观看| 热re99久久精品国产66热6| 国产淫语在线视频| 黄色配什么色好看| 岛国毛片在线播放| 蜜桃在线观看..| 亚洲欧美清纯卡通| 欧美bdsm另类| 久久久久久久久久人人人人人人| 大香蕉久久网| 欧美日韩精品成人综合77777| 九九在线视频观看精品| 日韩伦理黄色片| 热99国产精品久久久久久7| 久久久欧美国产精品| 免费观看a级毛片全部| 六月丁香七月| 国产一区有黄有色的免费视频| 欧美日韩一区二区视频在线观看视频在线| 亚州av有码| 最近2019中文字幕mv第一页| 麻豆成人av视频| 观看av在线不卡| 一本大道久久a久久精品| 青春草视频在线免费观看| 中文天堂在线官网| 欧美性感艳星| 欧美成人午夜免费资源| 日本免费在线观看一区| 男女国产视频网站| 免费在线观看成人毛片| 国产探花极品一区二区| 亚洲怡红院男人天堂| 丰满少妇做爰视频| 黄色欧美视频在线观看| 天天操日日干夜夜撸| 一级a做视频免费观看| 日韩一区二区三区影片| 色5月婷婷丁香| 2022亚洲国产成人精品| 啦啦啦视频在线资源免费观看| 自线自在国产av| 欧美xxⅹ黑人| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 丰满饥渴人妻一区二区三| 人人妻人人澡人人爽人人夜夜| 亚洲国产欧美在线一区| 精品人妻熟女av久视频| 日韩成人伦理影院| 少妇人妻 视频| 亚洲精品日本国产第一区| 99re6热这里在线精品视频| 视频区图区小说| videossex国产| 久久久a久久爽久久v久久| 午夜日本视频在线| 中文字幕av电影在线播放| 国产乱人偷精品视频| 日韩人妻高清精品专区| 日本爱情动作片www.在线观看| 涩涩av久久男人的天堂| 亚洲激情五月婷婷啪啪| 国产高清有码在线观看视频| 狠狠精品人妻久久久久久综合| 国产熟女欧美一区二区| 国产亚洲最大av| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 日韩强制内射视频| 久久精品国产a三级三级三级| 纵有疾风起免费观看全集完整版| 18禁在线播放成人免费| 观看免费一级毛片| 亚洲一区二区三区欧美精品| 少妇猛男粗大的猛烈进出视频| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 久久精品夜色国产| 久久久国产精品麻豆| 国产国拍精品亚洲av在线观看| 国产无遮挡羞羞视频在线观看| 日本-黄色视频高清免费观看| 一级毛片久久久久久久久女| 亚洲国产毛片av蜜桃av| 国产精品福利在线免费观看| 一本久久精品| a级片在线免费高清观看视频| 各种免费的搞黄视频| 青春草国产在线视频| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 国产爽快片一区二区三区| 亚洲欧美一区二区三区黑人 | 人人澡人人妻人| 亚洲图色成人| 91午夜精品亚洲一区二区三区| 国产精品久久久久久av不卡| 少妇的逼水好多| 九九久久精品国产亚洲av麻豆| 久久久久精品性色| 国产在线免费精品| 97在线视频观看| 国产深夜福利视频在线观看| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 日韩电影二区| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 三级经典国产精品| 久久午夜综合久久蜜桃| 新久久久久国产一级毛片| 一区二区三区精品91| 久久国内精品自在自线图片| 精品人妻熟女毛片av久久网站| 国产男女内射视频| 高清毛片免费看| 欧美精品人与动牲交sv欧美| 免费观看无遮挡的男女| 99久久精品一区二区三区| 女人精品久久久久毛片| 国产精品国产三级国产专区5o| 两个人的视频大全免费| 免费观看无遮挡的男女| 午夜免费男女啪啪视频观看| 26uuu在线亚洲综合色| 中文乱码字字幕精品一区二区三区| 大香蕉久久网| 一级片'在线观看视频| 三上悠亚av全集在线观看 | 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 久久久久久久国产电影| 成年人免费黄色播放视频 | 久久精品国产亚洲网站| av.在线天堂| 嫩草影院入口| 不卡视频在线观看欧美| 国产亚洲午夜精品一区二区久久| 一个人免费看片子| 久久精品国产自在天天线| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| av卡一久久| 免费不卡的大黄色大毛片视频在线观看| 嘟嘟电影网在线观看| 亚洲精品自拍成人| 国产在视频线精品| 老司机影院毛片| 午夜免费鲁丝| 亚洲精品一二三| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 久久99蜜桃精品久久| 国产 精品1| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 欧美人与善性xxx| 午夜久久久在线观看| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 另类精品久久| 汤姆久久久久久久影院中文字幕| 在现免费观看毛片| 欧美区成人在线视频| 少妇猛男粗大的猛烈进出视频| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级| 久久精品熟女亚洲av麻豆精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 日本黄大片高清| 日韩免费高清中文字幕av| 亚洲av二区三区四区| 午夜免费鲁丝| kizo精华| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 国产欧美另类精品又又久久亚洲欧美| 自线自在国产av| 精品久久久久久久久亚洲| 国产日韩欧美视频二区| 国内少妇人妻偷人精品xxx网站| 国内精品宾馆在线| 久久国产精品大桥未久av | 午夜福利,免费看| 狂野欧美激情性xxxx在线观看| 亚洲丝袜综合中文字幕| 啦啦啦在线观看免费高清www| 一个人免费看片子| 久久久久久久久大av| 欧美成人午夜免费资源| 免费观看a级毛片全部| 在线观看www视频免费| 这个男人来自地球电影免费观看 | 草草在线视频免费看| 纯流量卡能插随身wifi吗| 日本色播在线视频| 亚洲国产欧美日韩在线播放 | 99热这里只有是精品在线观看| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 大话2 男鬼变身卡| 99九九在线精品视频 | 美女内射精品一级片tv| 黄色配什么色好看| 国产av国产精品国产| 国产精品99久久久久久久久| 9色porny在线观看| 久久久久久久久久成人| 成人特级av手机在线观看| 另类亚洲欧美激情| 伦理电影免费视频| 人妻 亚洲 视频| 一级a做视频免费观看| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 九色成人免费人妻av| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 亚洲丝袜综合中文字幕| 国产亚洲欧美精品永久| 一级毛片aaaaaa免费看小| a级毛片免费高清观看在线播放| 午夜免费男女啪啪视频观看| 激情五月婷婷亚洲| 欧美老熟妇乱子伦牲交| 天堂8中文在线网| 午夜福利,免费看| 色视频在线一区二区三区| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| 国产精品.久久久| 美女内射精品一级片tv| 国产有黄有色有爽视频| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 国产 精品1| 这个男人来自地球电影免费观看 | 久久ye,这里只有精品| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 日韩一区二区视频免费看| 亚洲av电影在线观看一区二区三区| 中文资源天堂在线| 亚洲,一卡二卡三卡| 波野结衣二区三区在线| 高清欧美精品videossex| 亚洲国产精品一区二区三区在线| 丝袜脚勾引网站| 男女边摸边吃奶| 青春草国产在线视频| 日本与韩国留学比较| 婷婷色av中文字幕| 人人妻人人澡人人看| 中文在线观看免费www的网站| 97超视频在线观看视频| 青春草视频在线免费观看| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 久久青草综合色| 黄色日韩在线| 国产精品嫩草影院av在线观看| 成人毛片a级毛片在线播放| 秋霞在线观看毛片| 观看av在线不卡| 97在线人人人人妻| 亚洲自偷自拍三级| 另类亚洲欧美激情| 91在线精品国自产拍蜜月| 波野结衣二区三区在线| 夜夜骑夜夜射夜夜干| 亚洲av二区三区四区| 久久综合国产亚洲精品| 人妻一区二区av| 国精品久久久久久国模美| 免费看光身美女| 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| 人人妻人人看人人澡| 免费观看性生交大片5| 人体艺术视频欧美日本| 老司机影院成人| 国产极品天堂在线| 久久久久久人妻|