• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Channel Error Compensation for Multi-channel SAR Based on Cost Function

    2014-08-05 06:33:50ZhangLeiDengYunkaiWangYuZhengShichaoYangLiangInstituteofElectronicsChineseAcademyofSciencesBeijing100190ChinaUniversityofChineseAcademyofSciencesBeijing100049China
    雷達(dá)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:失配代價(jià)中國(guó)科學(xué)院

    Zhang Lei Deng Yun-kai Wang Yu Zheng Shi-chao Yang Liang(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)(University of Chinese Academy of Sciences, Beijing 100049, China)

    Channel Error Compensation for Multi-channel SAR Based on Cost Function

    Zhang Lei*①②Deng Yun-kai①Wang Yu①Zheng Shi-chao①②Yang Liang①②①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)②(University of Chinese Academy of Sciences, Beijing 100049, China)

    Multi-channel in azimuth is a technique to achieve high-resolution as well as wide-swath in Synthetic Aperture Radar (SAR) systems. Channel error is inevitable in multi-channel systems and it induces blurring in subsequent SAR imagery. Existing compensation approaches are sensitive to system parameters as well as the imaging scenes. Uncertainty of the parameters impacts the validation of these algorithms. In this paper, an improved approach is presented to remove the channel error. Based on the error form, this approach models channel error as three parts: the range gain error, the pulse sampling clock error, and the transmission phase error. The range gain error and the pulse sampling clock error are removed alternately. Then the proposed approach uses cost function to estimate the transmission phase error so that it is independent from the imaging scene. Point target simulations are carried out to investigate the performance, and real data comparison experiments are carried out to verify this approach.

    Synthetic Aperture Radar (SAR); Multi-channel; Channel error compensation

    CLC index: TN957.52

    1 Introduction

    Synthetic Aperture Radar (SAR) is a widely used remote sensing instrument. High-resolution as well as wide-swath is one of the main goals of system design[1,2]. For conventional spaceborne SAR, high resolution in azimuth requires large Doppler bandwidth, which means a high Pulse Repetition Frequency (PRF) to avoid ambiguity. However, wide imaging swath requires wide range beam, hence PRF must be low to guarantee the echo integrality. This contradiction is known as the minimum-antenna-area constraint[3].

    Multi-channel technique was proposed to break through this constraint. Multi-channel can be realized either in the range direction[4]or in the azimuth direction, even in both directions[5,6]. Besides, channels can be placed either on single platform or distribute platforms[7,8]. Multi-channel in azimuth on single platform has been tested withTerraSAR-X, and the outcomes are encouraging[9]. Due to the effects of the qualities of modules, the construction of the system and the atmosphere, channel imbalance is inevitable in multi-channel system. Channel imbalance presents in echo data in terms of amplitude error and phase error. These errors impair the reconstruction of azimuth signals thus the final SAR image will be ambiguous[10].

    Several algorithms have been proposed to remove channel errors. They can be classified as two categories: methods based on inner calibration and methods based on raw data. Inner calibration[11]uses calibration subsystem to get imbalance information. This method works precisely, but it can not monitor the imbalance outside system loop such as antennas. Methods based on raw data can overcome this limitation. In this method[12], signal covariance is formulated and then be decomposed by eigenvalues and the corresponding eigenvectors. The phase error between channels is derived in signal subspace. Method introduced by Ref. [13]works in a different way that it divides channel imbalance into pulse sampling clock error and channel phase error. It uses azimuth crosscorrelation to estimate these errors. Usually, methods based on raw data are sensitive to the imaging scene. Strong targets are likely to destroy the signal correlation and the validations of these algorithms are impacted.

    In this paper, an improved method to handle channel imbalance is proposed. The method models channel imbalance as three parts: the range gain error, the pulse sampling clock error, and the transmission phase error. The range gain error is removed alternately with the pulse sampling clock error. The estimation of transmission phase error is improved using cost function. Compared with existing methods, the proposed one is independent on the imaging scene, so it is more robust.

    2 Signal and Error Model

    Fig. 1 System geometry of azimuth multi-channel SAR

    Fig.1 shows the geometry of a SAR system with four channels in azimuth. Antennas of each channel and the corresponding phase-centers are marked with rectangles and triangles respectively. Suppose that channel 1 transmits signal and all four channels receive echo signal. By compensating a known constant phase between channels, the received echo signal can be converted into the equivalent self-transmit and self-receive signal[14]. The equivalent phase-centers are marked with circles, which are located halfway in between the transmitting (channel 1) and the respective receiving phase-center.

    The echo signal received by channel 1 is denoted by s1(τ, η), where τ is the fast time and η is the slow time. According to the slow time delay, the echo signal received by channel m can be written as

    where m is the channel number ranging from 2 to M (M is the total channels), ΔDmis the distance from the equivalent phase-center of channel m to that of channel 1, Vris the platform velocity.

    For a spaceborne SAR system, its antenna radiation characteristic is measured in laboratory before launched. However, such characteristic usually changes in orbit because of antenna unfold error, satellite shake, modules invalidation and so on. So the gains of each channel are different. Antenna gain is a parameter of two dimensions, and this paper only focuses on range direction.

    Because of the mis-synchronizing of the sampling clock, channels start to receive signal at different time. This leads to echoes from different range aligned in data. So it is needed to shift the pulse and align the data according to the range.

    The inconsistency of receiver characteristic of channels brings a constant gain error and a constant phase error.

    Based on the three sources discussed above, the channel errors are modeled as three parts: the range gain error, the pulse sampling clock error, and the transmission phase error. Thus the actual echo signal is formulated as

    where δ am(τ) is the range gain error composed of the antenna gain error in range and the receiver gain error, Δτmis the pulse sampling clock error, Δ ?mis the transmission phase error i.e. the receiver phase error. These errors induce blurring in subsequent SAR imaging, so that the images are ambiguous in the azimuth.

    3 Error Compensation

    3.1 Range gain error and pulse sampling clock error

    For range gain error, we have

    Because Δτmis also needed to be estimated, we use s1(τ+Δτm,η) instead. After δ am(τ) is removed, we get

    Transform Eq. (4) into range frequency domain and performing azimuth cross-correlation[13], the phase is formulated

    where fdcis the Doppler center frequency. Fitting the phase to a straight line, we can obtain Δτmfrom the slope.

    The compensation of δ am(τ) as well as Δτmneeds to be done alternately with two reasons. First, by multiplying a linear phase with(fτ,η), Δτmis removed. According to the property of Fourier transform, the echo data are shifted in range time domain. This will bring a new range gain difference. Second, we use s1(τ, η) instead of s1(τ+δτm,η) when estimating δ am(τ).Alternation is terminated when the variety of Δτmestimated is below certain threshold (e.g. corresponding propagation phase is smaller than π/100).

    The validation of Eq. (5) is related to the imaging scene. The relationship between the azimuth antenna pattern and the signal azimuth power spectrum is likely to be destroyed when several strong targets exist. Then, Δ?mestimated using Eq. (5) is not precisely enough.

    3.2 Transmission phase error

    After several alternations, the remaining part is the transmission phase error between channels i.e. Δ?m. We solve this problem resorting to the cost function-an effective way of SAR image autofocus[15]. For airborne SAR system, phase error in azimuth is unavoidable due to motion errors, unknown atmosphere effect and so on. This phase error causes defocusing in SAR image. The aim of autofocus is to estimate such phase error and refocus the image. One kind of autofocus technique is using the cost function. Cost function is derived from SAR images and used to justify whether an image is completely focused because its value relates to the extent of an image into focus. The transmission phase error Δ?mis constant in range, so its estimation can be treated as a special case of autofocus.

    Blurred images caused by transmission phase error have two main characteristics. On one hand, the main lobe of the point target becomes wide. On the other hand, ambiguous images contain several ghosts in azimuth. Although defocused, these ghosts share the same shape with the actual targets. According to these two characteristics, we develop a new cost function called Image Self-Correlation in Azimuth (ISCA)

    where I(m, n) is a SAR image, m and n are range coordinate and azimuth coordinate respectively, k is azimuth offset,*denotes conjugation, Emimplies average in range. ISCA is normalized by the denominator. Thus, we have

    Ambiguous is exhibited by ISCA in two main ways. First, a wider main lobe means the ISCA of a focused image descends faster around k=0 (zero peak) than that of a defocused one, i.e. the zero peak is sharper. Second, the curve of selfcorrelation may have a couple of peaks besides the one at k=0 (non-zero peak). When the image is fully focused, these non-zero peaks become flat i.e. the ghosts are suppressed.

    Thus, the estimation of transmission phase error can be described as

    3.3 Iteration and the imaging algorithm

    As the optimization in Eq. (8) has no closedform solution, we resort to an iterative method called coordinate descent algorithm[16]that Δ?mis obtained in sequence with iterations.

    Suppose Δ? represents a vector with dimension M-1. The optimization procedure is to find the most appropriate vector in (M -1)-dimensional space. In coordinate descent optimization, each parameter (coordinator) is optimized sequentially, while holding all other parameters constant. Let δ denote the m-th coordinate (the transmission phase error of the mth channel) of the i-th iteration. At the next iteration i+1, the coordinate descent estimated is

    where m ranges from 2 to M. Note that parameters Δ ?2,…,Δ ?m-1have already been updated whereas parameters δ ?m+1,… , Δ ?Mare waiting for the updating. Because the parameters are interdependent, optimization over the entire set of parameters must be performed a number of times. The coordinate descent algorithm has the possibility to get local optimum. Changing the parameters optimization order can solve this problem. That is at the i-th iteration, optimize from Δ?2to Δ?M, and at the (i+1)-th iteration, from Δ?Mto Δ?2.

    It is interesting that different imaging algorithms correspond to distinct iterative processes.

    If frequency domain imaging algorithms such as the Chirp Scaling Algorithm (CSA) are chosen, the iterative process is shown in Fig. 2(a). Because the imaging process is involved, the time consumption of the total iteration will be quite large especially when the number of channels is large. At the expense of time, we get channel error removed accurately and robustly.

    Fig. 2 Flow chart of the compensation

    The conditions will turn better when Back-Projection imaging Algorithm (BPA) is used. BPA is a flexible algorithm, it can be used in almost all SAR working modes. If BPA is adopted, the iterative process is given by Fig. 2(b), where only multi-channel accumulation is involved in iteration. Thus the iteration requires few time. After each single channel is imaged, we can select some range bins with highest contrast as sample set to be used in the estimation. This will speed up the iteration further.

    4 Simulation and Real Data Experiment

    4.1 Simulation experiment

    To analyze the performance of the proposed method, we first use Monte Carlo simulation with point target echo. The system has five channels in azimuth with parameters set as shown in Tab. 1. For the pulse sampling clock error estimation, the error interval is set to be [-0.5ΔT, 0.5ΔT]with uniform distribution, where ΔT is the range sampling interval unit. For the transmission phase error estimation, the error interval is set to be [-0.5π, 0.5π]with uniform distribution. The system SNR is set from 10 dB to 30 dB with step of 2 dB. For each SNR, the simulation is carried out 100 times.

    Tab. 1 System parameters point target echo

    The simulation results are given by Fig. 3, the Averaged Root-Mean-Square Error (ARMSE) is defined by

    where M is the total channels, N is the simulation times, ε is the error set, ?ε is the error estimated, and subscript m and n indicate the channel and the sample respectively. From Fig. 3, it is shown that the ARMSE of pulse sampling clock error estimated is dependent on system SNR. This is because Eq. (5) is derived with cross-correlation. While for the transmission phase error estimation, our method is independent on system SNR. This is another superiority compared with other algorithms.

    4.2 Real data experiment

    In this Section, we use some sets of airborne data to evaluate the proposed method. For comparison, the data are also processed with the method in Ref. [13]. The test data are collected by an airborne SAR system, which is an experimental platform of a future spaceborrne SAR system. There are two channels in azimuth working in strip-map mode. The SAR system is multi-carrier and the main parameters are listed in Tab. 2.

    Tab. 2 System parameters of the airborne SAR

    Fig. 3 Point target simulation results

    Since the original data are oversampled in azimuth, we extract specific samples to simulate the undersampled signal as illustrated by Fig. 4. Channel 1 is ahead in time. We refer sample m to‘Sm’ and channel m to ‘CHm’ for short. The first sample of the new data set comes from S1CH1of the original data. The second sample comes from S2CH2of the original data. Then we jump across four samples, i.e. the third sample of the new data set comes from S7CH1of the original data and goes on. Thus the actual PRF is 250 Hz for C-band and 125 Hz for L-band. The experimental data set size is 16384 (range) by 16384 (azimuth) in sample.

    Fig. 5 to Fig. 7 give the results of experiment executed on C-band data. Range gains of the two channels are drawn in Fig. 5(a). It shows that not only the gain but also the pattern are not identical. Fig. 5(b) shows the phase grads of channel crosscorrelation, that the linear variation is quite clear. Severe jitters at high frequency are caused by oversampling, i.e. the noise outside signal bandwidth.

    A part of the final images are shown in Fig. 7. Fig. 7(a) is the image of the uncalibrated data. Ambiguity is so heavy that the factory can not be distinguished. Result of method in Ref. [13]is given by Fig. 7(b). Because the factory is stronger than the other targets, the ghosts still exist. Fig. 7(c) draws the image processed by the proposed approach. Ambiguity is greatly suppressed and we can recognize the factory on the left clearly.

    Fig. 4 Timing diagram of the new data set

    Fig. 5 Range gain error and pulse sampling clock error

    Fig. 8 and Fig. 9 give the results of experiment executed on L-band data. Different from the C-band one, there is no obvious peak on the cost function curves. This is because of the scene content. The scene of C-band is mainly plowland so the factory as well as its ghost is prominent. While the one of L-band is mainly seaside city, that no particular human structure can be considered as prominent. As no peak is available, we use the mean value as the evaluation criterion, which is 0.487 before calibration and 0.262 after. Lower cross-correlation implies better focus.

    Fig. 6 The cost functions of C-band data

    Fig. 7 Imaging results of C-band data

    Fig. 8 The cost functions of L-band data

    Fig. 9 Imaging results of L-band data

    In the experiments above, the proposed method performs well and the improvement is shown obviously.

    5 Conclusion

    Channel imbalance is inevitable in multichannel system. In this paper, an improved approach for compensating channel imbalance in azimuth multi-channel SAR is proposed. The method calibrates not only the gain error but also the phase error. Point target simulations reveal the algorithm accuracy with different system SNR and shows that the proposed approach has high precision, and is less sensitive to the imaging scene as well as SNR. Real airborne SAR data are used to investigate the effectiveness, and the results show the validation of the approach at different wave bands. The proposed approach is proven to be working well. In the paper, only the range gain error is modeled. The algorithm considering azimuth antenna pattern error will be our future research focus.

    [1] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F: Radar and Signal Processing, 1992, 139(2): 122-135.

    [2]鄧云凱, 趙鳳軍, 王宇. 星載SAR技術(shù)的發(fā)展趨勢(shì)及應(yīng)用淺析[J]. 雷達(dá)學(xué)報(bào), 2012, 1(1): 1-10.

    Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10.

    [3] Curlander J C and McDonough R N. Synthetic Aperture Radar-Systems and Signal Processing[M]. New York: John Wiley & Sons, 1991.

    [4]馮帆, 黨紅杏, 譚小敏. 基于Capon譜估計(jì)的星載SAR自適應(yīng)DBF研究[J]. 雷達(dá)學(xué)報(bào), 2014, 3(1): 53-60

    Feng Fan, Dang Hong-xing, and Tan Xiao-min. Study on adaptive digital beamforming for spaceborne SAR based on Capon spatial spectrum estimation[J]. Journal of Radars, 2014, 3(1): 53-60.

    [5]Malliot H. Wide swath SAR and radar altimeter[C]. IEEE Geoscience and Remote Sensing Symposium, Espoo, Finland, 1991: 87-97.

    [6] Callaghan G D and Longstaff I D. Wide-swath space-borne SAR using a quad-element array[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(3): 159-165.

    [7] Goodman N A, Lin S C, Rajakrishna D, et al.. Processing of multiple-receiver spaceborne arrays for wide-area SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(4): 841-852.

    [8]Martin M, Klupar P, Kilberg S, et al.. Techsat21 and revolutionizing spaee missions using microsatellites[C]. In 15th AIAA Conference on Small Satellites, UT, USA, 2001: 1-5.

    [9] Kim J H, Younis M, Prats-Iraola P, et al.. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 579-590.

    [10]Jing W, Xing M, Qiu C W, et al.. Unambiguous reconstruction and high-resolution imaging for multiplechannel SAR and airborne experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102-106.

    [11]Renyuan C, Kai J, Yanmei Y, et al.. High resolution dual channel receiving SAR compensation technique[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 713-717.

    [12]Yang T, Li Z, Liu Y, et al.. Channel error estimation methods for multichannel SAR systems in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 548-552.

    [13]Feng J, Gao C, Zhang Y, et al.. Phase mismatch calibration of the multi-channel SAR based on azimuth crosscorrelation[J]. IEEE Geosciences and Remote Sensing Letters, 2013, 10(4): 903-907.

    [14]Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264.

    [15]Berizzi F and Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191.

    [16]Kragh T J. Monotonic iterative algorithm for minimumentropy autofocus[C]. In Proceedings Adaptive Sensor Array Process (ASAP) Workshop, Lexington, MA, USA, 2006.

    Zhang Lei was born in Jilin, China in 1985. He received her Ph.D. degree from the Institute of Electronics, Chinese Academy of Sciences in 2014. He is currently an assistant research fellow with the Institute of Electronics, Chinese Academy of Sciences. His research interests are signal process of high resolution SAR.

    E-mail: 314forever@163.com

    Deng Yun-kai was born in 1962. Professor, Ph.D. supervisor, major research in spaceborne SAR design.

    E-mail: ykdeng@mail.ie.ac.cn

    Robert Wang was born in 1980. He is now a Research Fellow and Ph.D. supervisor of Institute of Electronics, Chinese Academy of Science, he is a Senior Member of IEEE. His main research interest is Bistotic SAR (BiSAR) and signal processing of FMCW SAR.

    E-mail: yuwang@mail.ie.ac.cn

    Zheng Shi-chao was born in Rizhao, China in 1986, Ph.D. candidate, major research in signal process of wide area monitoring radar.

    E-mail: jerryiszsc@163.com

    Yang Liang was born in Yantai, China in 1984, Ph.D. candidate, major research in SAR raw data simulation.

    E-mail: yangliang_mail@163.com

    基于代價(jià)函數(shù)的通道誤差校正方法

    張 磊①②鄧云凱①王 宇①鄭世超①②楊 亮①②①(中國(guó)科學(xué)院電子學(xué)研究所 北京 100190)②(中國(guó)科學(xué)院大學(xué) 北京 100049)

    方位多通道技術(shù)是合成孔徑雷達(dá)(SAR)實(shí)現(xiàn)高分寬測(cè)的手段之一。在多通道系統(tǒng)中通道失配是不可避免的,這會(huì)導(dǎo)致SAR圖像模糊。已有的通道失配校正方法大多依賴于系統(tǒng)參數(shù)以及場(chǎng)景內(nèi)容。參數(shù)的不確定性將會(huì)大大降低校正算法的穩(wěn)定性。該文提出了一種改進(jìn)的通道失配校正方法,根據(jù)失配產(chǎn)生的原因,將通道失配分為距離增益誤差、脈沖采樣時(shí)鐘誤差和傳輸相位誤差3項(xiàng)。前兩項(xiàng)誤差通過交替估計(jì)進(jìn)行補(bǔ)償,而傳輸相位誤差則通過代價(jià)函數(shù)給予估計(jì)。該方法對(duì)成像場(chǎng)景的依賴較小,基于機(jī)載多通道驗(yàn)證平臺(tái)實(shí)測(cè)數(shù)據(jù)的實(shí)驗(yàn)驗(yàn)證了該方法的有效性。

    合成孔徑雷達(dá)(SAR);多通道;通道誤差校正

    TN957.52

    A

    2095-283X(2014)05-0556-09

    10.3724/SP.J.1300.2014.14052

    Manuscript received March 19, 2014; revised July 8, 2014.

    Published online September 12, 2014.

    Supported by the National Natural Science Foundation of China (No. 61172122, 61422113).

    *Corresponding author: Zhang Lei

    E-mail: 314forever@163.com

    猜你喜歡
    失配代價(jià)中國(guó)科學(xué)院
    《中國(guó)科學(xué)院院刊》新媒體
    基于無差拍電流預(yù)測(cè)控制的PMSM電感失配研究
    中國(guó)科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    基于特征分解的方位向多通道SAR相位失配校正方法
    愛的代價(jià)
    海峽姐妹(2017年12期)2018-01-31 02:12:22
    代價(jià)
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    殘留應(yīng)變對(duì)晶格失配太陽(yáng)電池設(shè)計(jì)的影響
    交錯(cuò)采樣技術(shù)中的失配誤差建模與估計(jì)
    成年人免费黄色播放视频 | 日韩视频在线欧美| 国产视频内射| 亚洲精品日本国产第一区| 六月丁香七月| 国产精品久久久久久av不卡| 9色porny在线观看| 大片电影免费在线观看免费| 26uuu在线亚洲综合色| 纵有疾风起免费观看全集完整版| 欧美高清成人免费视频www| 亚洲国产精品国产精品| 如何舔出高潮| 99热这里只有是精品在线观看| 人妻少妇偷人精品九色| 亚洲av免费高清在线观看| 最后的刺客免费高清国语| 久久久久久久精品精品| av天堂久久9| 丰满乱子伦码专区| 久久人人爽人人爽人人片va| 久久久国产一区二区| 色婷婷av一区二区三区视频| 少妇丰满av| 亚洲熟女精品中文字幕| 国产精品偷伦视频观看了| 91午夜精品亚洲一区二区三区| 日本-黄色视频高清免费观看| 国产高清不卡午夜福利| 一个人看视频在线观看www免费| 国产 一区精品| 久久久久久久久久人人人人人人| 人人妻人人爽人人添夜夜欢视频 | 欧美日本中文国产一区发布| 国产成人freesex在线| 亚洲精华国产精华液的使用体验| 在线观看一区二区三区激情| 亚洲人成网站在线播| 国产爽快片一区二区三区| 国产精品久久久久久精品古装| 亚洲精品成人av观看孕妇| 亚洲欧美日韩另类电影网站| 亚洲国产最新在线播放| 成人无遮挡网站| 日本爱情动作片www.在线观看| a级毛片免费高清观看在线播放| 在线观看三级黄色| 我的女老师完整版在线观看| 国产极品粉嫩免费观看在线 | 人人妻人人看人人澡| 久久狼人影院| 一级黄片播放器| 丰满少妇做爰视频| 国产视频首页在线观看| 欧美国产精品一级二级三级 | 国产精品麻豆人妻色哟哟久久| 久久久久久久大尺度免费视频| 国产精品伦人一区二区| 欧美成人精品欧美一级黄| 女的被弄到高潮叫床怎么办| 亚洲国产欧美日韩在线播放 | 日韩av不卡免费在线播放| 22中文网久久字幕| 22中文网久久字幕| 午夜日本视频在线| 日韩av不卡免费在线播放| 精品人妻偷拍中文字幕| 欧美精品人与动牲交sv欧美| 久久久亚洲精品成人影院| 免费av不卡在线播放| 最近中文字幕2019免费版| 美女脱内裤让男人舔精品视频| 熟女电影av网| 美女脱内裤让男人舔精品视频| 亚洲电影在线观看av| 美女脱内裤让男人舔精品视频| 国产精品久久久久久久电影| 亚洲欧美精品自产自拍| 在线看a的网站| 交换朋友夫妻互换小说| 亚洲国产精品一区二区三区在线| 国产精品一区二区性色av| 亚洲欧美一区二区三区黑人 | 一级毛片黄色毛片免费观看视频| 夫妻性生交免费视频一级片| 日韩熟女老妇一区二区性免费视频| 久久久国产精品麻豆| 九九在线视频观看精品| 日本-黄色视频高清免费观看| 成人毛片60女人毛片免费| 男的添女的下面高潮视频| 日韩欧美 国产精品| 天天躁夜夜躁狠狠久久av| 日日啪夜夜撸| 黄片无遮挡物在线观看| 26uuu在线亚洲综合色| 我的女老师完整版在线观看| 国产精品人妻久久久影院| 国产一区亚洲一区在线观看| 一边亲一边摸免费视频| 国国产精品蜜臀av免费| 噜噜噜噜噜久久久久久91| 天堂8中文在线网| 少妇猛男粗大的猛烈进出视频| 最后的刺客免费高清国语| 在线 av 中文字幕| 亚洲欧美日韩另类电影网站| 男人狂女人下面高潮的视频| 丝袜在线中文字幕| 亚洲av不卡在线观看| 九九爱精品视频在线观看| 观看免费一级毛片| 男女无遮挡免费网站观看| 91精品一卡2卡3卡4卡| 麻豆成人av视频| 欧美日本中文国产一区发布| 免费av不卡在线播放| 寂寞人妻少妇视频99o| 这个男人来自地球电影免费观看 | 简卡轻食公司| 热re99久久精品国产66热6| 中文字幕亚洲精品专区| 观看免费一级毛片| 偷拍熟女少妇极品色| 日韩中文字幕视频在线看片| 日韩中文字幕视频在线看片| 欧美另类一区| 亚洲色图综合在线观看| 毛片一级片免费看久久久久| 我要看黄色一级片免费的| 水蜜桃什么品种好| 三级国产精品片| 久久久久久人妻| 欧美精品高潮呻吟av久久| 精品一品国产午夜福利视频| 国产伦精品一区二区三区四那| 国产伦理片在线播放av一区| 黄色日韩在线| 在线看a的网站| 在线观看免费日韩欧美大片 | 2022亚洲国产成人精品| 一区在线观看完整版| 一本色道久久久久久精品综合| 国产亚洲最大av| 国产av国产精品国产| 午夜福利影视在线免费观看| a 毛片基地| 亚洲精品456在线播放app| 久久久久久久久久久丰满| 久久狼人影院| 精品少妇黑人巨大在线播放| 久久久国产精品麻豆| 亚洲av日韩在线播放| 国产亚洲5aaaaa淫片| 搡女人真爽免费视频火全软件| 国产精品国产三级国产av玫瑰| 国产亚洲午夜精品一区二区久久| 久久午夜综合久久蜜桃| 91精品国产国语对白视频| 最后的刺客免费高清国语| 少妇人妻精品综合一区二区| 嘟嘟电影网在线观看| 国产日韩欧美亚洲二区| 国产精品人妻久久久久久| 女人久久www免费人成看片| 国产成人精品无人区| 一区二区三区精品91| 成人国产麻豆网| 亚洲欧洲日产国产| 91精品国产国语对白视频| av女优亚洲男人天堂| 女的被弄到高潮叫床怎么办| 国产免费又黄又爽又色| 国产精品国产av在线观看| 日韩,欧美,国产一区二区三区| 人体艺术视频欧美日本| 久久热精品热| 人人妻人人澡人人看| 高清av免费在线| 日日摸夜夜添夜夜爱| 亚洲国产精品成人久久小说| 日本黄色片子视频| 国产乱人偷精品视频| 精品一品国产午夜福利视频| 国产在线视频一区二区| 成人毛片60女人毛片免费| 欧美日韩精品成人综合77777| 18禁裸乳无遮挡动漫免费视频| 99九九线精品视频在线观看视频| 午夜91福利影院| 麻豆精品久久久久久蜜桃| 老熟女久久久| 国产伦精品一区二区三区四那| 少妇高潮的动态图| 国产黄色免费在线视频| 精品国产一区二区久久| 国产成人精品婷婷| 一二三四中文在线观看免费高清| a 毛片基地| 成年av动漫网址| 人人妻人人看人人澡| 欧美区成人在线视频| 欧美日韩在线观看h| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久av不卡| 久久99热6这里只有精品| 国产日韩欧美亚洲二区| 日本黄色日本黄色录像| 欧美精品一区二区大全| 搡女人真爽免费视频火全软件| 国产高清国产精品国产三级| 国产精品熟女久久久久浪| 亚洲av不卡在线观看| 国产欧美日韩精品一区二区| 亚洲成人av在线免费| 久久久午夜欧美精品| 亚洲一级一片aⅴ在线观看| 久久综合国产亚洲精品| 一本一本综合久久| 免费看av在线观看网站| 成年女人在线观看亚洲视频| 免费av不卡在线播放| 蜜臀久久99精品久久宅男| 亚洲国产欧美在线一区| 在线观看免费高清a一片| 免费黄色在线免费观看| tube8黄色片| 伦精品一区二区三区| 国产永久视频网站| 美女国产视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 草草在线视频免费看| 成人18禁高潮啪啪吃奶动态图 | 一级,二级,三级黄色视频| 精品久久久久久电影网| 精品少妇久久久久久888优播| 麻豆成人午夜福利视频| 中文字幕人妻熟人妻熟丝袜美| 蜜桃在线观看..| 在线看a的网站| 精品一区二区免费观看| 一级二级三级毛片免费看| 亚洲av免费高清在线观看| 亚洲不卡免费看| 久久av网站| freevideosex欧美| 五月玫瑰六月丁香| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 国产午夜精品一二区理论片| 国产精品久久久久久久电影| 免费观看a级毛片全部| 噜噜噜噜噜久久久久久91| 一本一本综合久久| 涩涩av久久男人的天堂| 看免费成人av毛片| 亚洲熟女精品中文字幕| 成人特级av手机在线观看| 99久国产av精品国产电影| 三上悠亚av全集在线观看 | 亚洲av成人精品一二三区| 一级毛片久久久久久久久女| 五月天丁香电影| 国产日韩欧美亚洲二区| 男人狂女人下面高潮的视频| 麻豆精品久久久久久蜜桃| 男人添女人高潮全过程视频| 插逼视频在线观看| 国内揄拍国产精品人妻在线| 99九九线精品视频在线观看视频| 国产成人aa在线观看| h视频一区二区三区| 三级国产精品欧美在线观看| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频精品| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av涩爱| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 欧美 亚洲 国产 日韩一| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 日本午夜av视频| 天堂8中文在线网| 韩国av在线不卡| 18+在线观看网站| a级毛片在线看网站| 国产男女内射视频| 精品一区二区三区视频在线| 在线观看人妻少妇| 肉色欧美久久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 91久久精品国产一区二区成人| 亚洲精品中文字幕在线视频 | 一级毛片黄色毛片免费观看视频| 极品人妻少妇av视频| 91精品国产国语对白视频| 亚洲av不卡在线观看| 成年人免费黄色播放视频 | 伦理电影免费视频| 国产成人aa在线观看| 日韩一区二区视频免费看| 制服丝袜香蕉在线| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| av黄色大香蕉| 黄色日韩在线| 99久久精品热视频| 国模一区二区三区四区视频| 在线亚洲精品国产二区图片欧美 | 熟女av电影| 亚洲av中文av极速乱| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 在线播放无遮挡| 国产精品成人在线| 我要看日韩黄色一级片| 久久精品久久久久久久性| 亚洲无线观看免费| 黄片无遮挡物在线观看| 人人妻人人添人人爽欧美一区卜| 麻豆乱淫一区二区| 欧美变态另类bdsm刘玥| 午夜日本视频在线| 美女xxoo啪啪120秒动态图| 国产69精品久久久久777片| 中文资源天堂在线| 日产精品乱码卡一卡2卡三| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 青春草视频在线免费观看| 美女大奶头黄色视频| 男女国产视频网站| 国产中年淑女户外野战色| 国产精品不卡视频一区二区| 亚洲精品视频女| 国产精品女同一区二区软件| 麻豆精品久久久久久蜜桃| 国产探花极品一区二区| 日韩精品有码人妻一区| 美女内射精品一级片tv| 精品亚洲成国产av| 大话2 男鬼变身卡| 有码 亚洲区| 亚洲精品成人av观看孕妇| 精品少妇黑人巨大在线播放| 少妇人妻 视频| 国产在视频线精品| 夜夜爽夜夜爽视频| 久久久久久久久久久久大奶| 午夜久久久在线观看| 少妇人妻精品综合一区二区| 日日摸夜夜添夜夜添av毛片| 精品人妻偷拍中文字幕| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久亚洲中文字幕| 久久99一区二区三区| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 免费看光身美女| 草草在线视频免费看| 一本大道久久a久久精品| 欧美一级a爱片免费观看看| av网站免费在线观看视频| 99九九线精品视频在线观看视频| 亚洲国产欧美日韩在线播放 | 天堂8中文在线网| 中文字幕制服av| 大陆偷拍与自拍| 亚洲av福利一区| 久久久久精品性色| 久久毛片免费看一区二区三区| 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 高清在线视频一区二区三区| 亚洲av日韩在线播放| 国产视频首页在线观看| 嘟嘟电影网在线观看| 精品国产一区二区三区久久久樱花| 国产精品国产三级国产av玫瑰| 日韩亚洲欧美综合| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 偷拍熟女少妇极品色| 丝瓜视频免费看黄片| 插逼视频在线观看| √禁漫天堂资源中文www| 极品教师在线视频| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 国产淫片久久久久久久久| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频 | 五月玫瑰六月丁香| 天堂俺去俺来也www色官网| 欧美人与善性xxx| 国产女主播在线喷水免费视频网站| 亚洲av福利一区| 三级国产精品片| 黄色一级大片看看| 亚洲精品,欧美精品| 欧美国产精品一级二级三级 | 国产一区二区三区综合在线观看 | 日韩一区二区三区影片| 人妻制服诱惑在线中文字幕| 一本—道久久a久久精品蜜桃钙片| 最近的中文字幕免费完整| www.av在线官网国产| 一级毛片 在线播放| a 毛片基地| 亚洲欧美日韩东京热| 黑人高潮一二区| 色视频www国产| 99精国产麻豆久久婷婷| 有码 亚洲区| 国产91av在线免费观看| 亚洲电影在线观看av| 丰满迷人的少妇在线观看| 久久精品国产a三级三级三级| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| 国产亚洲av片在线观看秒播厂| 国产成人精品无人区| 日本av手机在线免费观看| 又黄又爽又刺激的免费视频.| 这个男人来自地球电影免费观看 | 内射极品少妇av片p| 美女国产视频在线观看| 51国产日韩欧美| 日韩成人伦理影院| 亚洲怡红院男人天堂| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 日本vs欧美在线观看视频 | 欧美xxⅹ黑人| 99久久精品一区二区三区| 日韩av不卡免费在线播放| 久久久久久久精品精品| 日韩视频在线欧美| 免费观看a级毛片全部| 日本欧美国产在线视频| 国产伦在线观看视频一区| 亚洲一级一片aⅴ在线观看| 性色av一级| 国产熟女欧美一区二区| 亚洲国产精品一区三区| 丝瓜视频免费看黄片| 国产亚洲5aaaaa淫片| 欧美日韩国产mv在线观看视频| 欧美高清成人免费视频www| 极品人妻少妇av视频| 人妻系列 视频| 大陆偷拍与自拍| 我要看日韩黄色一级片| av黄色大香蕉| av播播在线观看一区| 我要看黄色一级片免费的| 欧美+日韩+精品| 五月玫瑰六月丁香| 香蕉精品网在线| 在线观看av片永久免费下载| av在线播放精品| a级一级毛片免费在线观看| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 中文字幕人妻丝袜制服| 成人漫画全彩无遮挡| 午夜影院在线不卡| 哪个播放器可以免费观看大片| 热99国产精品久久久久久7| 黄色配什么色好看| 日本猛色少妇xxxxx猛交久久| av线在线观看网站| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 人人妻人人爽人人添夜夜欢视频 | 六月丁香七月| 亚洲国产精品国产精品| 汤姆久久久久久久影院中文字幕| 亚洲国产最新在线播放| 国产伦理片在线播放av一区| 国产一区亚洲一区在线观看| 国产一级毛片在线| 久久热精品热| 好男人视频免费观看在线| 人妻一区二区av| av又黄又爽大尺度在线免费看| 亚洲美女搞黄在线观看| 精品人妻偷拍中文字幕| 人妻人人澡人人爽人人| 99国产精品免费福利视频| 高清av免费在线| 国产在线一区二区三区精| 深夜a级毛片| 老司机影院成人| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 精品视频人人做人人爽| 亚洲欧洲国产日韩| 超碰97精品在线观看| 日韩人妻高清精品专区| 春色校园在线视频观看| 日本黄色日本黄色录像| 国产亚洲最大av| 国产日韩欧美在线精品| 亚洲欧洲国产日韩| 欧美丝袜亚洲另类| 中文天堂在线官网| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 久久久久人妻精品一区果冻| tube8黄色片| 亚洲欧美成人综合另类久久久| 欧美3d第一页| 91久久精品电影网| 一本大道久久a久久精品| 九草在线视频观看| 中国国产av一级| 国产欧美日韩精品一区二区| 亚洲欧洲国产日韩| 美女视频免费永久观看网站| freevideosex欧美| 国产精品久久久久久精品电影小说| 久久久久久久久久成人| 国产成人91sexporn| 妹子高潮喷水视频| 久久热精品热| 国产精品熟女久久久久浪| 成人亚洲精品一区在线观看| 久久99热这里只频精品6学生| 免费看不卡的av| 国产男女内射视频| 国产精品麻豆人妻色哟哟久久| 国产伦精品一区二区三区视频9| 热re99久久精品国产66热6| freevideosex欧美| 精品人妻熟女av久视频| 一级毛片黄色毛片免费观看视频| 国模一区二区三区四区视频| 久久鲁丝午夜福利片| 18禁在线播放成人免费| 免费看不卡的av| 男女边吃奶边做爰视频| 国产高清三级在线| 国产精品国产三级国产av玫瑰| 亚洲图色成人| 精华霜和精华液先用哪个| 一级av片app| 国产 一区精品| 韩国高清视频一区二区三区| 亚洲精品亚洲一区二区| 曰老女人黄片| 交换朋友夫妻互换小说| 国产片特级美女逼逼视频| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 99精国产麻豆久久婷婷| 国产成人a∨麻豆精品| 五月开心婷婷网| 国产免费视频播放在线视频| 黄色一级大片看看| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 校园人妻丝袜中文字幕| 中文资源天堂在线| 男女国产视频网站| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 成人午夜精彩视频在线观看| 欧美国产精品一级二级三级 | 我的女老师完整版在线观看| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| 国产深夜福利视频在线观看| 成人国产麻豆网| 久久久久久人妻| 最新中文字幕久久久久| 久热久热在线精品观看| 五月伊人婷婷丁香| 三上悠亚av全集在线观看 | 国产中年淑女户外野战色| 亚洲av国产av综合av卡| 免费在线观看成人毛片| 一区二区三区精品91| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 国产亚洲5aaaaa淫片| 青春草国产在线视频| 91aial.com中文字幕在线观看| 久热久热在线精品观看| 欧美bdsm另类| 免费黄网站久久成人精品| 99久久精品热视频| 中文在线观看免费www的网站| 一本—道久久a久久精品蜜桃钙片| 国产亚洲av片在线观看秒播厂| 97超视频在线观看视频| 日韩视频在线欧美| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 欧美日本中文国产一区发布| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 免费观看在线日韩| 男人爽女人下面视频在线观看| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片| 精品国产乱码久久久久久小说| 成年av动漫网址|