• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Channel Error Compensation for Multi-channel SAR Based on Cost Function

    2014-08-05 06:33:50ZhangLeiDengYunkaiWangYuZhengShichaoYangLiangInstituteofElectronicsChineseAcademyofSciencesBeijing100190ChinaUniversityofChineseAcademyofSciencesBeijing100049China
    雷達(dá)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:失配代價(jià)中國(guó)科學(xué)院

    Zhang Lei Deng Yun-kai Wang Yu Zheng Shi-chao Yang Liang(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)(University of Chinese Academy of Sciences, Beijing 100049, China)

    Channel Error Compensation for Multi-channel SAR Based on Cost Function

    Zhang Lei*①②Deng Yun-kai①Wang Yu①Zheng Shi-chao①②Yang Liang①②①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)②(University of Chinese Academy of Sciences, Beijing 100049, China)

    Multi-channel in azimuth is a technique to achieve high-resolution as well as wide-swath in Synthetic Aperture Radar (SAR) systems. Channel error is inevitable in multi-channel systems and it induces blurring in subsequent SAR imagery. Existing compensation approaches are sensitive to system parameters as well as the imaging scenes. Uncertainty of the parameters impacts the validation of these algorithms. In this paper, an improved approach is presented to remove the channel error. Based on the error form, this approach models channel error as three parts: the range gain error, the pulse sampling clock error, and the transmission phase error. The range gain error and the pulse sampling clock error are removed alternately. Then the proposed approach uses cost function to estimate the transmission phase error so that it is independent from the imaging scene. Point target simulations are carried out to investigate the performance, and real data comparison experiments are carried out to verify this approach.

    Synthetic Aperture Radar (SAR); Multi-channel; Channel error compensation

    CLC index: TN957.52

    1 Introduction

    Synthetic Aperture Radar (SAR) is a widely used remote sensing instrument. High-resolution as well as wide-swath is one of the main goals of system design[1,2]. For conventional spaceborne SAR, high resolution in azimuth requires large Doppler bandwidth, which means a high Pulse Repetition Frequency (PRF) to avoid ambiguity. However, wide imaging swath requires wide range beam, hence PRF must be low to guarantee the echo integrality. This contradiction is known as the minimum-antenna-area constraint[3].

    Multi-channel technique was proposed to break through this constraint. Multi-channel can be realized either in the range direction[4]or in the azimuth direction, even in both directions[5,6]. Besides, channels can be placed either on single platform or distribute platforms[7,8]. Multi-channel in azimuth on single platform has been tested withTerraSAR-X, and the outcomes are encouraging[9]. Due to the effects of the qualities of modules, the construction of the system and the atmosphere, channel imbalance is inevitable in multi-channel system. Channel imbalance presents in echo data in terms of amplitude error and phase error. These errors impair the reconstruction of azimuth signals thus the final SAR image will be ambiguous[10].

    Several algorithms have been proposed to remove channel errors. They can be classified as two categories: methods based on inner calibration and methods based on raw data. Inner calibration[11]uses calibration subsystem to get imbalance information. This method works precisely, but it can not monitor the imbalance outside system loop such as antennas. Methods based on raw data can overcome this limitation. In this method[12], signal covariance is formulated and then be decomposed by eigenvalues and the corresponding eigenvectors. The phase error between channels is derived in signal subspace. Method introduced by Ref. [13]works in a different way that it divides channel imbalance into pulse sampling clock error and channel phase error. It uses azimuth crosscorrelation to estimate these errors. Usually, methods based on raw data are sensitive to the imaging scene. Strong targets are likely to destroy the signal correlation and the validations of these algorithms are impacted.

    In this paper, an improved method to handle channel imbalance is proposed. The method models channel imbalance as three parts: the range gain error, the pulse sampling clock error, and the transmission phase error. The range gain error is removed alternately with the pulse sampling clock error. The estimation of transmission phase error is improved using cost function. Compared with existing methods, the proposed one is independent on the imaging scene, so it is more robust.

    2 Signal and Error Model

    Fig. 1 System geometry of azimuth multi-channel SAR

    Fig.1 shows the geometry of a SAR system with four channels in azimuth. Antennas of each channel and the corresponding phase-centers are marked with rectangles and triangles respectively. Suppose that channel 1 transmits signal and all four channels receive echo signal. By compensating a known constant phase between channels, the received echo signal can be converted into the equivalent self-transmit and self-receive signal[14]. The equivalent phase-centers are marked with circles, which are located halfway in between the transmitting (channel 1) and the respective receiving phase-center.

    The echo signal received by channel 1 is denoted by s1(τ, η), where τ is the fast time and η is the slow time. According to the slow time delay, the echo signal received by channel m can be written as

    where m is the channel number ranging from 2 to M (M is the total channels), ΔDmis the distance from the equivalent phase-center of channel m to that of channel 1, Vris the platform velocity.

    For a spaceborne SAR system, its antenna radiation characteristic is measured in laboratory before launched. However, such characteristic usually changes in orbit because of antenna unfold error, satellite shake, modules invalidation and so on. So the gains of each channel are different. Antenna gain is a parameter of two dimensions, and this paper only focuses on range direction.

    Because of the mis-synchronizing of the sampling clock, channels start to receive signal at different time. This leads to echoes from different range aligned in data. So it is needed to shift the pulse and align the data according to the range.

    The inconsistency of receiver characteristic of channels brings a constant gain error and a constant phase error.

    Based on the three sources discussed above, the channel errors are modeled as three parts: the range gain error, the pulse sampling clock error, and the transmission phase error. Thus the actual echo signal is formulated as

    where δ am(τ) is the range gain error composed of the antenna gain error in range and the receiver gain error, Δτmis the pulse sampling clock error, Δ ?mis the transmission phase error i.e. the receiver phase error. These errors induce blurring in subsequent SAR imaging, so that the images are ambiguous in the azimuth.

    3 Error Compensation

    3.1 Range gain error and pulse sampling clock error

    For range gain error, we have

    Because Δτmis also needed to be estimated, we use s1(τ+Δτm,η) instead. After δ am(τ) is removed, we get

    Transform Eq. (4) into range frequency domain and performing azimuth cross-correlation[13], the phase is formulated

    where fdcis the Doppler center frequency. Fitting the phase to a straight line, we can obtain Δτmfrom the slope.

    The compensation of δ am(τ) as well as Δτmneeds to be done alternately with two reasons. First, by multiplying a linear phase with(fτ,η), Δτmis removed. According to the property of Fourier transform, the echo data are shifted in range time domain. This will bring a new range gain difference. Second, we use s1(τ, η) instead of s1(τ+δτm,η) when estimating δ am(τ).Alternation is terminated when the variety of Δτmestimated is below certain threshold (e.g. corresponding propagation phase is smaller than π/100).

    The validation of Eq. (5) is related to the imaging scene. The relationship between the azimuth antenna pattern and the signal azimuth power spectrum is likely to be destroyed when several strong targets exist. Then, Δ?mestimated using Eq. (5) is not precisely enough.

    3.2 Transmission phase error

    After several alternations, the remaining part is the transmission phase error between channels i.e. Δ?m. We solve this problem resorting to the cost function-an effective way of SAR image autofocus[15]. For airborne SAR system, phase error in azimuth is unavoidable due to motion errors, unknown atmosphere effect and so on. This phase error causes defocusing in SAR image. The aim of autofocus is to estimate such phase error and refocus the image. One kind of autofocus technique is using the cost function. Cost function is derived from SAR images and used to justify whether an image is completely focused because its value relates to the extent of an image into focus. The transmission phase error Δ?mis constant in range, so its estimation can be treated as a special case of autofocus.

    Blurred images caused by transmission phase error have two main characteristics. On one hand, the main lobe of the point target becomes wide. On the other hand, ambiguous images contain several ghosts in azimuth. Although defocused, these ghosts share the same shape with the actual targets. According to these two characteristics, we develop a new cost function called Image Self-Correlation in Azimuth (ISCA)

    where I(m, n) is a SAR image, m and n are range coordinate and azimuth coordinate respectively, k is azimuth offset,*denotes conjugation, Emimplies average in range. ISCA is normalized by the denominator. Thus, we have

    Ambiguous is exhibited by ISCA in two main ways. First, a wider main lobe means the ISCA of a focused image descends faster around k=0 (zero peak) than that of a defocused one, i.e. the zero peak is sharper. Second, the curve of selfcorrelation may have a couple of peaks besides the one at k=0 (non-zero peak). When the image is fully focused, these non-zero peaks become flat i.e. the ghosts are suppressed.

    Thus, the estimation of transmission phase error can be described as

    3.3 Iteration and the imaging algorithm

    As the optimization in Eq. (8) has no closedform solution, we resort to an iterative method called coordinate descent algorithm[16]that Δ?mis obtained in sequence with iterations.

    Suppose Δ? represents a vector with dimension M-1. The optimization procedure is to find the most appropriate vector in (M -1)-dimensional space. In coordinate descent optimization, each parameter (coordinator) is optimized sequentially, while holding all other parameters constant. Let δ denote the m-th coordinate (the transmission phase error of the mth channel) of the i-th iteration. At the next iteration i+1, the coordinate descent estimated is

    where m ranges from 2 to M. Note that parameters Δ ?2,…,Δ ?m-1have already been updated whereas parameters δ ?m+1,… , Δ ?Mare waiting for the updating. Because the parameters are interdependent, optimization over the entire set of parameters must be performed a number of times. The coordinate descent algorithm has the possibility to get local optimum. Changing the parameters optimization order can solve this problem. That is at the i-th iteration, optimize from Δ?2to Δ?M, and at the (i+1)-th iteration, from Δ?Mto Δ?2.

    It is interesting that different imaging algorithms correspond to distinct iterative processes.

    If frequency domain imaging algorithms such as the Chirp Scaling Algorithm (CSA) are chosen, the iterative process is shown in Fig. 2(a). Because the imaging process is involved, the time consumption of the total iteration will be quite large especially when the number of channels is large. At the expense of time, we get channel error removed accurately and robustly.

    Fig. 2 Flow chart of the compensation

    The conditions will turn better when Back-Projection imaging Algorithm (BPA) is used. BPA is a flexible algorithm, it can be used in almost all SAR working modes. If BPA is adopted, the iterative process is given by Fig. 2(b), where only multi-channel accumulation is involved in iteration. Thus the iteration requires few time. After each single channel is imaged, we can select some range bins with highest contrast as sample set to be used in the estimation. This will speed up the iteration further.

    4 Simulation and Real Data Experiment

    4.1 Simulation experiment

    To analyze the performance of the proposed method, we first use Monte Carlo simulation with point target echo. The system has five channels in azimuth with parameters set as shown in Tab. 1. For the pulse sampling clock error estimation, the error interval is set to be [-0.5ΔT, 0.5ΔT]with uniform distribution, where ΔT is the range sampling interval unit. For the transmission phase error estimation, the error interval is set to be [-0.5π, 0.5π]with uniform distribution. The system SNR is set from 10 dB to 30 dB with step of 2 dB. For each SNR, the simulation is carried out 100 times.

    Tab. 1 System parameters point target echo

    The simulation results are given by Fig. 3, the Averaged Root-Mean-Square Error (ARMSE) is defined by

    where M is the total channels, N is the simulation times, ε is the error set, ?ε is the error estimated, and subscript m and n indicate the channel and the sample respectively. From Fig. 3, it is shown that the ARMSE of pulse sampling clock error estimated is dependent on system SNR. This is because Eq. (5) is derived with cross-correlation. While for the transmission phase error estimation, our method is independent on system SNR. This is another superiority compared with other algorithms.

    4.2 Real data experiment

    In this Section, we use some sets of airborne data to evaluate the proposed method. For comparison, the data are also processed with the method in Ref. [13]. The test data are collected by an airborne SAR system, which is an experimental platform of a future spaceborrne SAR system. There are two channels in azimuth working in strip-map mode. The SAR system is multi-carrier and the main parameters are listed in Tab. 2.

    Tab. 2 System parameters of the airborne SAR

    Fig. 3 Point target simulation results

    Since the original data are oversampled in azimuth, we extract specific samples to simulate the undersampled signal as illustrated by Fig. 4. Channel 1 is ahead in time. We refer sample m to‘Sm’ and channel m to ‘CHm’ for short. The first sample of the new data set comes from S1CH1of the original data. The second sample comes from S2CH2of the original data. Then we jump across four samples, i.e. the third sample of the new data set comes from S7CH1of the original data and goes on. Thus the actual PRF is 250 Hz for C-band and 125 Hz for L-band. The experimental data set size is 16384 (range) by 16384 (azimuth) in sample.

    Fig. 5 to Fig. 7 give the results of experiment executed on C-band data. Range gains of the two channels are drawn in Fig. 5(a). It shows that not only the gain but also the pattern are not identical. Fig. 5(b) shows the phase grads of channel crosscorrelation, that the linear variation is quite clear. Severe jitters at high frequency are caused by oversampling, i.e. the noise outside signal bandwidth.

    A part of the final images are shown in Fig. 7. Fig. 7(a) is the image of the uncalibrated data. Ambiguity is so heavy that the factory can not be distinguished. Result of method in Ref. [13]is given by Fig. 7(b). Because the factory is stronger than the other targets, the ghosts still exist. Fig. 7(c) draws the image processed by the proposed approach. Ambiguity is greatly suppressed and we can recognize the factory on the left clearly.

    Fig. 4 Timing diagram of the new data set

    Fig. 5 Range gain error and pulse sampling clock error

    Fig. 8 and Fig. 9 give the results of experiment executed on L-band data. Different from the C-band one, there is no obvious peak on the cost function curves. This is because of the scene content. The scene of C-band is mainly plowland so the factory as well as its ghost is prominent. While the one of L-band is mainly seaside city, that no particular human structure can be considered as prominent. As no peak is available, we use the mean value as the evaluation criterion, which is 0.487 before calibration and 0.262 after. Lower cross-correlation implies better focus.

    Fig. 6 The cost functions of C-band data

    Fig. 7 Imaging results of C-band data

    Fig. 8 The cost functions of L-band data

    Fig. 9 Imaging results of L-band data

    In the experiments above, the proposed method performs well and the improvement is shown obviously.

    5 Conclusion

    Channel imbalance is inevitable in multichannel system. In this paper, an improved approach for compensating channel imbalance in azimuth multi-channel SAR is proposed. The method calibrates not only the gain error but also the phase error. Point target simulations reveal the algorithm accuracy with different system SNR and shows that the proposed approach has high precision, and is less sensitive to the imaging scene as well as SNR. Real airborne SAR data are used to investigate the effectiveness, and the results show the validation of the approach at different wave bands. The proposed approach is proven to be working well. In the paper, only the range gain error is modeled. The algorithm considering azimuth antenna pattern error will be our future research focus.

    [1] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F: Radar and Signal Processing, 1992, 139(2): 122-135.

    [2]鄧云凱, 趙鳳軍, 王宇. 星載SAR技術(shù)的發(fā)展趨勢(shì)及應(yīng)用淺析[J]. 雷達(dá)學(xué)報(bào), 2012, 1(1): 1-10.

    Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10.

    [3] Curlander J C and McDonough R N. Synthetic Aperture Radar-Systems and Signal Processing[M]. New York: John Wiley & Sons, 1991.

    [4]馮帆, 黨紅杏, 譚小敏. 基于Capon譜估計(jì)的星載SAR自適應(yīng)DBF研究[J]. 雷達(dá)學(xué)報(bào), 2014, 3(1): 53-60

    Feng Fan, Dang Hong-xing, and Tan Xiao-min. Study on adaptive digital beamforming for spaceborne SAR based on Capon spatial spectrum estimation[J]. Journal of Radars, 2014, 3(1): 53-60.

    [5]Malliot H. Wide swath SAR and radar altimeter[C]. IEEE Geoscience and Remote Sensing Symposium, Espoo, Finland, 1991: 87-97.

    [6] Callaghan G D and Longstaff I D. Wide-swath space-borne SAR using a quad-element array[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(3): 159-165.

    [7] Goodman N A, Lin S C, Rajakrishna D, et al.. Processing of multiple-receiver spaceborne arrays for wide-area SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(4): 841-852.

    [8]Martin M, Klupar P, Kilberg S, et al.. Techsat21 and revolutionizing spaee missions using microsatellites[C]. In 15th AIAA Conference on Small Satellites, UT, USA, 2001: 1-5.

    [9] Kim J H, Younis M, Prats-Iraola P, et al.. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 579-590.

    [10]Jing W, Xing M, Qiu C W, et al.. Unambiguous reconstruction and high-resolution imaging for multiplechannel SAR and airborne experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102-106.

    [11]Renyuan C, Kai J, Yanmei Y, et al.. High resolution dual channel receiving SAR compensation technique[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 713-717.

    [12]Yang T, Li Z, Liu Y, et al.. Channel error estimation methods for multichannel SAR systems in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 548-552.

    [13]Feng J, Gao C, Zhang Y, et al.. Phase mismatch calibration of the multi-channel SAR based on azimuth crosscorrelation[J]. IEEE Geosciences and Remote Sensing Letters, 2013, 10(4): 903-907.

    [14]Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264.

    [15]Berizzi F and Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191.

    [16]Kragh T J. Monotonic iterative algorithm for minimumentropy autofocus[C]. In Proceedings Adaptive Sensor Array Process (ASAP) Workshop, Lexington, MA, USA, 2006.

    Zhang Lei was born in Jilin, China in 1985. He received her Ph.D. degree from the Institute of Electronics, Chinese Academy of Sciences in 2014. He is currently an assistant research fellow with the Institute of Electronics, Chinese Academy of Sciences. His research interests are signal process of high resolution SAR.

    E-mail: 314forever@163.com

    Deng Yun-kai was born in 1962. Professor, Ph.D. supervisor, major research in spaceborne SAR design.

    E-mail: ykdeng@mail.ie.ac.cn

    Robert Wang was born in 1980. He is now a Research Fellow and Ph.D. supervisor of Institute of Electronics, Chinese Academy of Science, he is a Senior Member of IEEE. His main research interest is Bistotic SAR (BiSAR) and signal processing of FMCW SAR.

    E-mail: yuwang@mail.ie.ac.cn

    Zheng Shi-chao was born in Rizhao, China in 1986, Ph.D. candidate, major research in signal process of wide area monitoring radar.

    E-mail: jerryiszsc@163.com

    Yang Liang was born in Yantai, China in 1984, Ph.D. candidate, major research in SAR raw data simulation.

    E-mail: yangliang_mail@163.com

    基于代價(jià)函數(shù)的通道誤差校正方法

    張 磊①②鄧云凱①王 宇①鄭世超①②楊 亮①②①(中國(guó)科學(xué)院電子學(xué)研究所 北京 100190)②(中國(guó)科學(xué)院大學(xué) 北京 100049)

    方位多通道技術(shù)是合成孔徑雷達(dá)(SAR)實(shí)現(xiàn)高分寬測(cè)的手段之一。在多通道系統(tǒng)中通道失配是不可避免的,這會(huì)導(dǎo)致SAR圖像模糊。已有的通道失配校正方法大多依賴于系統(tǒng)參數(shù)以及場(chǎng)景內(nèi)容。參數(shù)的不確定性將會(huì)大大降低校正算法的穩(wěn)定性。該文提出了一種改進(jìn)的通道失配校正方法,根據(jù)失配產(chǎn)生的原因,將通道失配分為距離增益誤差、脈沖采樣時(shí)鐘誤差和傳輸相位誤差3項(xiàng)。前兩項(xiàng)誤差通過交替估計(jì)進(jìn)行補(bǔ)償,而傳輸相位誤差則通過代價(jià)函數(shù)給予估計(jì)。該方法對(duì)成像場(chǎng)景的依賴較小,基于機(jī)載多通道驗(yàn)證平臺(tái)實(shí)測(cè)數(shù)據(jù)的實(shí)驗(yàn)驗(yàn)證了該方法的有效性。

    合成孔徑雷達(dá)(SAR);多通道;通道誤差校正

    TN957.52

    A

    2095-283X(2014)05-0556-09

    10.3724/SP.J.1300.2014.14052

    Manuscript received March 19, 2014; revised July 8, 2014.

    Published online September 12, 2014.

    Supported by the National Natural Science Foundation of China (No. 61172122, 61422113).

    *Corresponding author: Zhang Lei

    E-mail: 314forever@163.com

    猜你喜歡
    失配代價(jià)中國(guó)科學(xué)院
    《中國(guó)科學(xué)院院刊》新媒體
    基于無差拍電流預(yù)測(cè)控制的PMSM電感失配研究
    中國(guó)科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    基于特征分解的方位向多通道SAR相位失配校正方法
    愛的代價(jià)
    海峽姐妹(2017年12期)2018-01-31 02:12:22
    代價(jià)
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    殘留應(yīng)變對(duì)晶格失配太陽(yáng)電池設(shè)計(jì)的影響
    交錯(cuò)采樣技術(shù)中的失配誤差建模與估計(jì)
    天天躁狠狠躁夜夜躁狠狠躁| h视频一区二区三区| 国产麻豆69| 亚洲美女黄色视频免费看| 中文欧美无线码| √禁漫天堂资源中文www| 人妻人人澡人人爽人人| 999久久久国产精品视频| 伦精品一区二区三区| a级毛片在线看网站| 少妇的丰满在线观看| 亚洲,一卡二卡三卡| 国产亚洲一区二区精品| 欧美97在线视频| 久久久国产精品麻豆| 男人操女人黄网站| 啦啦啦视频在线资源免费观看| 国产日韩欧美视频二区| 少妇的逼水好多| 久久精品国产亚洲av高清一级| 久久久精品国产亚洲av高清涩受| 91精品国产国语对白视频| 最近的中文字幕免费完整| 亚洲欧美色中文字幕在线| 免费高清在线观看日韩| 欧美日韩一级在线毛片| 99久久综合免费| 亚洲国产成人一精品久久久| 老司机影院毛片| 久久久久精品久久久久真实原创| 欧美国产精品一级二级三级| 久久精品夜色国产| 国产午夜精品一二区理论片| 国产精品成人在线| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 18+在线观看网站| 久久免费观看电影| 国产一区二区 视频在线| 秋霞在线观看毛片| 亚洲久久久国产精品| 亚洲人成电影观看| 欧美日韩视频高清一区二区三区二| 亚洲成国产人片在线观看| 嫩草影院入口| 少妇精品久久久久久久| 国产成人精品久久久久久| 一级毛片 在线播放| 9191精品国产免费久久| 国产精品麻豆人妻色哟哟久久| 熟女电影av网| 色哟哟·www| 久久久久网色| 国产午夜精品一二区理论片| 大香蕉久久成人网| 在线观看美女被高潮喷水网站| 国产乱来视频区| 熟妇人妻不卡中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 赤兔流量卡办理| 永久免费av网站大全| 精品久久蜜臀av无| 国产精品免费视频内射| 十八禁高潮呻吟视频| 999久久久国产精品视频| 欧美在线黄色| 午夜日本视频在线| 黄色怎么调成土黄色| 亚洲av综合色区一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲美女黄色视频免费看| 久久热在线av| 免费黄网站久久成人精品| 亚洲中文av在线| 人人妻人人澡人人看| av在线播放精品| 18禁动态无遮挡网站| 免费在线观看完整版高清| 99国产精品免费福利视频| 亚洲第一青青草原| av福利片在线| 久久国内精品自在自线图片| 久久毛片免费看一区二区三区| 18在线观看网站| 国产人伦9x9x在线观看 | 久久精品国产自在天天线| 日韩成人av中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 成年人午夜在线观看视频| 日本欧美视频一区| 亚洲人成电影观看| 亚洲成人手机| 国产成人精品一,二区| 满18在线观看网站| 国产精品 欧美亚洲| 久久久久国产精品人妻一区二区| 九草在线视频观看| 可以免费在线观看a视频的电影网站 | 好男人视频免费观看在线| 乱人伦中国视频| 你懂的网址亚洲精品在线观看| 日韩中文字幕视频在线看片| 一边摸一边做爽爽视频免费| 亚洲成色77777| 亚洲av.av天堂| 久久国内精品自在自线图片| 少妇被粗大的猛进出69影院| 成人手机av| 久久97久久精品| 伊人久久国产一区二区| 一级片免费观看大全| 成人影院久久| 亚洲美女搞黄在线观看| 中文字幕人妻丝袜制服| www.熟女人妻精品国产| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 久久久久国产一级毛片高清牌| 亚洲国产色片| 18+在线观看网站| 日本午夜av视频| av卡一久久| 久久久久久久亚洲中文字幕| 国产黄色免费在线视频| 9191精品国产免费久久| 少妇被粗大的猛进出69影院| 日本wwww免费看| 99久久精品国产国产毛片| 男女无遮挡免费网站观看| 麻豆av在线久日| 国产精品女同一区二区软件| 丝袜喷水一区| 国产精品偷伦视频观看了| av国产精品久久久久影院| 欧美成人午夜免费资源| 永久免费av网站大全| 国产日韩一区二区三区精品不卡| 女人高潮潮喷娇喘18禁视频| 亚洲精品视频女| 黑人猛操日本美女一级片| 好男人视频免费观看在线| 免费看av在线观看网站| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 日韩中文字幕欧美一区二区 | 免费看不卡的av| av免费观看日本| 99九九在线精品视频| 国产免费又黄又爽又色| 如日韩欧美国产精品一区二区三区| 午夜福利视频精品| 国产午夜精品一二区理论片| av片东京热男人的天堂| 妹子高潮喷水视频| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 午夜影院日韩av| 老鸭窝网址在线观看| 国产成人av激情在线播放| 日韩精品青青久久久久久| 久久中文字幕人妻熟女| 50天的宝宝边吃奶边哭怎么回事| 精品国产一区二区三区四区第35| 操出白浆在线播放| 亚洲色图av天堂| 天堂动漫精品| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 国产精品一区二区在线不卡| 欧美+亚洲+日韩+国产| 日韩av在线大香蕉| 热re99久久国产66热| 国产xxxxx性猛交| 嫁个100分男人电影在线观看| 看片在线看免费视频| 免费少妇av软件| 中国美女看黄片| 成年人免费黄色播放视频| 中国美女看黄片| 午夜久久久在线观看| av电影中文网址| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| xxx96com| av欧美777| 波多野结衣一区麻豆| 一本综合久久免费| 亚洲视频免费观看视频| 无人区码免费观看不卡| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 精品欧美一区二区三区在线| 日韩国内少妇激情av| 自线自在国产av| 99国产精品免费福利视频| 美女 人体艺术 gogo| 9热在线视频观看99| www.999成人在线观看| 夜夜夜夜夜久久久久| av免费在线观看网站| 久久久水蜜桃国产精品网| 老司机午夜福利在线观看视频| 中文亚洲av片在线观看爽| 精品久久久久久久毛片微露脸| 免费av中文字幕在线| 亚洲 国产 在线| 日韩人妻精品一区2区三区| 一级毛片精品| 亚洲成人国产一区在线观看| 两人在一起打扑克的视频| 女同久久另类99精品国产91| а√天堂www在线а√下载| 亚洲在线自拍视频| 久久精品国产亚洲av香蕉五月| 无人区码免费观看不卡| 欧美日韩黄片免| 久久99一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲国产毛片av蜜桃av| 99久久国产精品久久久| 精品少妇一区二区三区视频日本电影| 黑丝袜美女国产一区| 级片在线观看| 国产真人三级小视频在线观看| tocl精华| 一级黄色大片毛片| 亚洲av熟女| 啦啦啦在线免费观看视频4| 午夜福利欧美成人| 久99久视频精品免费| 手机成人av网站| 五月开心婷婷网| www.熟女人妻精品国产| 日韩 欧美 亚洲 中文字幕| 久99久视频精品免费| 亚洲专区国产一区二区| 久久99一区二区三区| 啦啦啦在线免费观看视频4| 男女做爰动态图高潮gif福利片 | 成人影院久久| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 日韩高清综合在线| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 成人18禁在线播放| 男女下面进入的视频免费午夜 | 一个人免费在线观看的高清视频| 亚洲精品国产一区二区精华液| 91字幕亚洲| 十八禁人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 99在线人妻在线中文字幕| 成熟少妇高潮喷水视频| 亚洲自拍偷在线| 久久久国产成人免费| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 亚洲精品av麻豆狂野| 在线永久观看黄色视频| 中出人妻视频一区二区| 无遮挡黄片免费观看| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 久久中文字幕一级| 黑人操中国人逼视频| 久久精品影院6| 黄色丝袜av网址大全| 国产在线观看jvid| 99久久国产精品久久久| 妹子高潮喷水视频| 久久精品亚洲av国产电影网| 变态另类成人亚洲欧美熟女 | 欧美另类亚洲清纯唯美| 巨乳人妻的诱惑在线观看| 操出白浆在线播放| ponron亚洲| 又大又爽又粗| 久热爱精品视频在线9| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 国产精品二区激情视频| 91大片在线观看| 久久狼人影院| 99久久综合精品五月天人人| 国产在线观看jvid| 可以免费在线观看a视频的电影网站| 91字幕亚洲| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 免费日韩欧美在线观看| 18禁美女被吸乳视频| 国产亚洲精品综合一区在线观看 | 成人永久免费在线观看视频| 黄色视频,在线免费观看| 啦啦啦在线免费观看视频4| 日韩欧美三级三区| 亚洲精品国产色婷婷电影| 午夜福利欧美成人| 一级片'在线观看视频| 亚洲成人免费av在线播放| 人人妻人人澡人人看| 久久婷婷成人综合色麻豆| a在线观看视频网站| 97人妻天天添夜夜摸| 91av网站免费观看| 又黄又粗又硬又大视频| 国产av精品麻豆| 免费一级毛片在线播放高清视频 | 午夜精品久久久久久毛片777| 麻豆成人av在线观看| cao死你这个sao货| 亚洲一区中文字幕在线| 亚洲av熟女| 欧美人与性动交α欧美软件| 18禁美女被吸乳视频| 91九色精品人成在线观看| 久久香蕉国产精品| 精品高清国产在线一区| 亚洲人成77777在线视频| av国产精品久久久久影院| 美女高潮喷水抽搐中文字幕| 欧美久久黑人一区二区| 国产精品二区激情视频| 免费在线观看日本一区| 天堂√8在线中文| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 丰满迷人的少妇在线观看| 免费av毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 一区二区日韩欧美中文字幕| 人妻久久中文字幕网| 男女午夜视频在线观看| 女人被狂操c到高潮| 最好的美女福利视频网| 两人在一起打扑克的视频| 乱人伦中国视频| 国产成人一区二区三区免费视频网站| 波多野结衣高清无吗| 国产国语露脸激情在线看| 久久婷婷成人综合色麻豆| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼 | 精品一区二区三卡| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| svipshipincom国产片| 亚洲精品久久成人aⅴ小说| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 女人精品久久久久毛片| 久久久国产欧美日韩av| 色综合欧美亚洲国产小说| 天天影视国产精品| 法律面前人人平等表现在哪些方面| av欧美777| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 成人18禁在线播放| 黄片小视频在线播放| 久久人妻av系列| 99热只有精品国产| 国产精品电影一区二区三区| 亚洲熟妇熟女久久| 丝袜美足系列| 日本免费a在线| 亚洲专区字幕在线| 精品福利永久在线观看| 国产亚洲av高清不卡| a在线观看视频网站| 成人特级黄色片久久久久久久| 黄片大片在线免费观看| 亚洲一区二区三区色噜噜 | 亚洲精品一卡2卡三卡4卡5卡| 交换朋友夫妻互换小说| 麻豆成人av在线观看| 99riav亚洲国产免费| 一区二区三区激情视频| 在线观看日韩欧美| 日本五十路高清| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 国产单亲对白刺激| 国产高清激情床上av| 久久伊人香网站| 国产高清激情床上av| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 最新美女视频免费是黄的| 男女床上黄色一级片免费看| 一区二区三区国产精品乱码| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 国产视频一区二区在线看| 久久九九热精品免费| 999精品在线视频| 久9热在线精品视频| 一进一出抽搐gif免费好疼 | 午夜免费观看网址| 欧美最黄视频在线播放免费 | xxx96com| 久久久久久久午夜电影 | 国产精品久久视频播放| 亚洲精品中文字幕在线视频| 国产精品秋霞免费鲁丝片| 久久人人精品亚洲av| 婷婷丁香在线五月| 亚洲成人国产一区在线观看| 久久 成人 亚洲| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 又大又爽又粗| 三上悠亚av全集在线观看| 极品人妻少妇av视频| 丁香欧美五月| 亚洲精品国产色婷婷电影| 天堂动漫精品| 韩国av一区二区三区四区| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 国产精华一区二区三区| 精品电影一区二区在线| 国产单亲对白刺激| 免费av毛片视频| 人妻丰满熟妇av一区二区三区| 国产亚洲欧美在线一区二区| 久久精品亚洲熟妇少妇任你| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 国产成人一区二区三区免费视频网站| 日本欧美视频一区| 精品第一国产精品| 久久久久久大精品| 欧美激情久久久久久爽电影 | 亚洲在线自拍视频| 嫩草影院精品99| 欧美激情久久久久久爽电影 | 亚洲在线自拍视频| 成在线人永久免费视频| 国产精品99久久99久久久不卡| a在线观看视频网站| 一进一出抽搐gif免费好疼 | 日韩欧美三级三区| 看黄色毛片网站| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 神马国产精品三级电影在线观看 | 88av欧美| 咕卡用的链子| 最近最新免费中文字幕在线| 午夜视频精品福利| 大码成人一级视频| 18禁国产床啪视频网站| 色综合婷婷激情| 满18在线观看网站| 不卡一级毛片| 首页视频小说图片口味搜索| 精品一区二区三卡| 久久伊人香网站| 国产成年人精品一区二区 | 免费人成视频x8x8入口观看| 天堂俺去俺来也www色官网| 夜夜爽天天搞| 老司机在亚洲福利影院| 午夜福利在线观看吧| 中文亚洲av片在线观看爽| 无人区码免费观看不卡| 国产精品香港三级国产av潘金莲| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 女人精品久久久久毛片| 久久天堂一区二区三区四区| 国产激情欧美一区二区| 欧美日本中文国产一区发布| 高清欧美精品videossex| 这个男人来自地球电影免费观看| 国产视频一区二区在线看| 一进一出抽搐动态| 巨乳人妻的诱惑在线观看| 欧美久久黑人一区二区| 99国产综合亚洲精品| 亚洲欧美精品综合一区二区三区| 免费在线观看黄色视频的| 波多野结衣av一区二区av| 国产高清国产精品国产三级| 欧美日韩中文字幕国产精品一区二区三区 | 欧美久久黑人一区二区| av在线天堂中文字幕 | 亚洲精品中文字幕一二三四区| 中文亚洲av片在线观看爽| 久久久精品国产亚洲av高清涩受| 国产主播在线观看一区二区| 丁香六月欧美| 国产精品久久久久久人妻精品电影| 亚洲精品中文字幕在线视频| 少妇的丰满在线观看| 精品乱码久久久久久99久播| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美一区二区综合| 日本免费一区二区三区高清不卡 | 国产精品国产高清国产av| 久久性视频一级片| 亚洲成人精品中文字幕电影 | av欧美777| 亚洲色图综合在线观看| 亚洲精品中文字幕一二三四区| 精品一区二区三区视频在线观看免费 | 国产成人精品久久二区二区免费| 一个人观看的视频www高清免费观看 | 欧美精品亚洲一区二区| 国产精品美女特级片免费视频播放器 | 99热国产这里只有精品6| 国产在线观看jvid| 怎么达到女性高潮| 久久99一区二区三区| 老司机靠b影院| 欧美一级毛片孕妇| 久久精品影院6| 欧美精品啪啪一区二区三区| 久久香蕉激情| avwww免费| 91精品国产国语对白视频| 啪啪无遮挡十八禁网站| 女人被躁到高潮嗷嗷叫费观| 成熟少妇高潮喷水视频| 久久香蕉国产精品| 欧美精品亚洲一区二区| 国产精品秋霞免费鲁丝片| 国产免费av片在线观看野外av| 中文字幕高清在线视频| 中亚洲国语对白在线视频| 日韩欧美国产一区二区入口| 成人影院久久| 日韩欧美免费精品| 精品国产超薄肉色丝袜足j| 国产区一区二久久| 男女做爰动态图高潮gif福利片 | 国产精品99久久99久久久不卡| 视频区图区小说| 亚洲精品久久成人aⅴ小说| 真人做人爱边吃奶动态| 麻豆av在线久日| 国产av在哪里看| 久久国产精品人妻蜜桃| 一夜夜www| 99久久久亚洲精品蜜臀av| 精品午夜福利视频在线观看一区| 黄色视频不卡| 水蜜桃什么品种好| 视频区图区小说| 一进一出好大好爽视频| 香蕉久久夜色| 91国产中文字幕| 一级a爱片免费观看的视频| 国产99久久九九免费精品| 国产成人精品无人区| 大型黄色视频在线免费观看| svipshipincom国产片| 嫩草影院精品99| 激情视频va一区二区三区| 国产单亲对白刺激| 亚洲熟妇熟女久久| 亚洲精品一卡2卡三卡4卡5卡| 性少妇av在线| 国产精品二区激情视频| 一边摸一边抽搐一进一出视频| 无人区码免费观看不卡| 1024香蕉在线观看| 国产伦一二天堂av在线观看| 国产欧美日韩一区二区精品| 久久亚洲精品不卡| 咕卡用的链子| 欧美色视频一区免费| av欧美777| 久久精品国产综合久久久| 成年人黄色毛片网站| 国产精品香港三级国产av潘金莲| 在线国产一区二区在线| 国产精华一区二区三区| 国产又色又爽无遮挡免费看| 午夜日韩欧美国产| 亚洲五月婷婷丁香| 午夜福利欧美成人| 国产亚洲精品综合一区在线观看 | 国产男靠女视频免费网站| 丰满迷人的少妇在线观看| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全免费视频| 97碰自拍视频| 最近最新中文字幕大全电影3 | av欧美777| 咕卡用的链子| 欧美人与性动交α欧美精品济南到| 黄色女人牲交| 超碰成人久久| 精品国产一区二区久久| 久久天堂一区二区三区四区| 不卡av一区二区三区| 黄色片一级片一级黄色片| 欧美黄色片欧美黄色片|