• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    均苯四甲酰亞胺橋聯(lián)的聚酞菁亞鐵的氧還原反應(yīng)

    2013-09-21 09:00:46孫曉然李光躍夏定國(guó)張立美
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:酞菁北京工業(yè)大學(xué)物理化學(xué)

    孫曉然 李光躍 夏定國(guó) 張立美 李 釩

    (1北京工業(yè)大學(xué)化學(xué)與環(huán)境工程學(xué)院,北京100086;2北京大學(xué)工學(xué)院,北京100871;3河北聯(lián)合大學(xué)化學(xué)工程學(xué)院,河北唐山063009)

    1 Introduction

    In the past decades,phthalocyanine(Pc)has been widely applied in many fields,1including dyeing,2,3chemical sensors for gases,4liquid crystals,5,6nonlinear optics,7and catalysis.8Specificity in the applications of Pcs can be introduced by modification of the Pc ring or changes in the central metal.Pcs can form coordination complexes with most metal elements.These complexes are also intensely colored and are thus used as dyes or pigments.2,3Due to their large conjugated systems,they exhibit distinct optical and electrical properties,good chemical stability,and excellent electrocatalysis activities.In recent years,Pcs as the cathode catalysts have gradually substituted for the Pt/C electrode in direct-methanol fuel cells(DMFCs).

    DMFCs are a kind of proton-exchange fuel cells in which methanol is used as the fuel.Their main advantage is easy transportation of methanol,which are energy-dense and stable at all environmental conditions.At present,the efficiency of these cells is quite low.So they are targeted especially to portable applications,where energy and power density are more important than efficiency.Yet,methanol crossover is a problem for the development of DMFCs.This problem can be solved by two ways:(1)preparing the proton-exchange membrane with low methanol-transmittance;(2)preparing new electrocatalysts resistant in methanol oxidation.Nowadays,the methanol-transmittance of the proton-exchange membrane is still very high,which could significantly reduce the performance of DMFCs.Polymeric metallophthalocyanines are electrocatalytically active in oxygen-reduction and resistant in methanol-oxidation.As the cathode catalysts of DMFCs,they draw more and more interests in the research.

    Fig.1 Structure of poly-PcFe

    Fundamentally,redox reactions are a family of reactions that are concerned with the electron or charge transfer between molecules.9In order to better understand the redox mechanism,there have been a lot of efforts to complement experiments by theory.Recently,charge transfer and some other electronic processes have started to be studied computationally for conjugated molecules and their related systems.10-17Based on the ideas mentioned above,we designed a new kind of pyromellitimide-bridged polyphthalocyanine Fe(II)(poly-PcFe,shown in Fig.1)catalyst.This catalyst can be easily synthesized.It is important to understand the reaction process of O2reduction because of its crucial role in determining electrocatalysis activity.In order to provide a complementary view on the O2-reduction reaction,we performed a density functional theory(DFT)to study concerning this catalyst.Three model molecules are designed with different polymerization degrees(P1,P2,and P3,which are shown in Fig.2).To evaluate the influence of polymerization degrees on the O2reduction,molecular geometries were optimized for P1,P2,and P3.In particular,we focused our attention on the frontier molecular orbitals in the model molecules and O2,and the polymerization degree effect on the O2reduction.By scanning the potential curves of the possible process in the O2reduction,we can obtain the trend of reactions between O2and poly-PcFe,thus explaining the process of the O2-reduction reaction.

    2 Computational methods

    All calculations on electronic structures were carried out using the ORCA 2.8 program.18Geometry optimizations and vibration analysis were performed using density functional theory(DFT)method.In DFT,the electron density played the key role and all molecular properties could be derived from the density.The computational effort for DFT was much smaller than for correlated ab initio treatments and actually quite similar to Hatree-Fock theory.DFT applications required the choice of a suitable exchange-correlation functional and one-electron basis set.In this work,a test with a series of functionals(BP86,BLYP,PW91,B3P86,B3LYP,and B3PW91)was performed to confirm the proper functional.As the result,BP86 functional19,20was chosen as the functional,which was also considered to be the preferred DFT approach for carrying out related research.21The single valence quality with one set of polarization functions(SVP)22was chosen as basis sets throughout,which was a proper basis set for ionic compound23,24and not time-consuming.No constrains for symmetry,bonds,angles,or dihedral angles were applied in the geometry optimization calculations.All of the local minima were confirmed by the absence of an imaginary mode in vibrational analysis calculations.Furthermore,the natural bond orbital(NBO)analysis was performed using the NBO 3.0 program.25A useful aspect of the NBO method was that it gives information about interaction in both filled and virtual orbital spaces.26Moreover,the potential energy curves were qualitatively scanned by constrained optimizations,keeping the target bond distance fixed at a serious of values.According to our previous report,27the energy of reaction P+H→PH could take place of the energy of reactionPH in the calculations.

    Fig.2 Structures of three models(P1,P2,and P3)of poly-PcFe

    3 Results and discussion

    3.1 Molecular geometries

    The optimized geometries of pyromellitimide-bridged polyphthalocyanine Fe(II)with different polymerization degrees(n=1-3)are obtained using the BP86 functional with SVP basis sets(shown in Fig.3,P1,P2,and P3 were described in this paper).Their spin multiplicities(S)are 5,9,and 13,respectively.Because of large conjugation effect,all the atoms in phthalocyanine moieties of P1,P2,and P3 are coplanar.Four Fe―N bonds are all 0.1985 nm in P1,which indicates that the Fe―N bonds are equivalent and the dicarboximino groups have little effect on the molecular structure of P1.But pyromellitimide moieties do not conjugate with a benzene ring in the three molecules,due to the stereo-hindrance effect.They have a dihedral angle of 75°.All the bond lengths of Fe―N are 0.1981-0.1982 nm in P2 and P3,slightly shortened by the pyromellitimide moieties.

    We also optimized the geometries of the complexes formed by the three poly-PcFe models and O2.The results show that their geometries are all similar.The complex P3-O2is shown in Fig.4.In this molecule,the bond angle of Fe―O―O is 121°.The Fe―O bond length is 0.228 nm,shorter than the sum of the van der Waals radii(0.278 nm)for the corresponding atoms.28So,the Fe atom in P3 can interact with O2with a weak interaction.According to the Mulliken charge analysis,both of the O atoms are negatively charged.The O―O bond length is 0.126 nm,longer than that in the O2molecule(0.121 nm).This indicates the donation of electrons from the central Fe atom to the anti-bonding orbital of O2.According to the NBO charge analysis,the natural charges of two O atoms in P3-O2are-0.106e and-0.092e,respectively.Thus,P3-O2can be considered as P3 binding an O2molecule.

    3.2 Stability of the O2-complexes

    Fig.4 Geometry of P3-O2complex

    We also calculated the binding energy(ΔE)for the reaction between O2and the three poly-PcFe models to determine the stability of their O2-complexes.As shown in Fig.5,it can be seen that each reaction has a negative binding energy,indicating that all of the calculated reactions are exothermic.That is to say,the selected O2-complex structures are all stable.It is evident that the ΔE decreases almost linearly with increasing polymerization degree.Accordingly,poly-PcFe models with larger polymerization degree should have better stability.

    3.3 Molecular orbital analysis

    According to the study on metallophthalocyanines of Zagal et al.,29,30the interaction between molecular orbital of O2and the atomic orbital of the central metal could cause the charge transfer from the metal atom to O2.The O2-reduction process in this work can be shown as:

    Frontier molecular orbital(FMO)theory has recently provided an elegant explanation for the redox reactions.31In this theory,the lowest unoccupied molecular orbital(LUMO),the highest occupied molecular orbital(HOMO),and the singly occupied molecular orbital(SOMO)play vital roles.For the O2-reduction reaction of poly-PcFe,the following criteria must be met:(1)the molecular orbitals must align for good overlap,which can explain why the Fe―O―O bond angle is nearly 120°;(2)the energies of the SOMOs in O2must be lower than those of the HOMOs in the poly-PcFe models,which is necessary for O2-reduction.As shown in Fig.6,the energy of HOMO in the poly-PcFe models,is higher than that of the SOMOs of O2.This demonstrates that all of the poly-PcFe models can be applied to the catalysis of O2-reduction.It is worthwhile to note that the HOMO energy is increased as the polymerization degree of poly-PcFe models is increased.Comparing the FMO energies,we can conclude that the substituent groups in phthalocyanine Fe(II)polymers could influence their electrocatalytic activities.Stronger electron-withdrawing groups could increase the electrocatalytic activity of Fe-phthalocyanine polymers,such as pyromellitimide groups.This agrees with the studies by Zajal et al.30

    Fig.3 Geometries of P1,P2,and P3

    Fig.5 Calculated binding energies of the O2-complexes of poly-PcFe models

    As reported,Eckhardt et al.32described the relationship between the frontier-orbital energy of conjugated polymers and the onset redox potential for the first time.The formula proposed by them can be written as follows:

    EHOMO=-e(φonset,re+4.4)(unit:eV)

    where EHOMO,e,and φonset,restand for the energy of HOMO,electron charge,and onset reduction potential,respectively.According to the HOMO energy of the poly-PcFe models,we can estimate that the onset potential of O2reduction is higher than 0.87 eV.Furthermore,the results show that poly-PcFe with higher polymerization degree exhibits stronger reduction ability.

    Molecular orbital diagram is an appropriate tool in explaining chemical bonding in molecules.33The molecular orbital diagrams have been calculated for P1-O2.As shown in Fig.7,a σ-bonding orbital can be formed by the linear combination of dz2orbital of Fe atom and π*2pyorbital of O2molecule;a π-bonding orbital can be formed by the linear combination of dyzorbital of Fe atom and π*2pyorbital of O2molecule.In other words,the Fe atom connects with O2molecule by a double bond.Meanwhile,the NBO analysis also confirms the double bond.But the occupancies of them are 0.324 and 0.238.This confirms the weak interaction between Fe atom and O2molecule.

    Fig.6 Calculated energy levels of HOMOs,LUMOs,and SOMOs

    3.4 Potential energy curves and O2-reduction electrocatalytic cycle

    The potential energy curves of P1 involved in the process of the O2-reduction reaction have been studied.Although the DFT method cannot be expected to be sufficiently accurate in calculating energies,previous calculations have indicated that the method may be reliable in calculating hydrogen-transfer potential energy.15,17,18Fig.8(A)shows that the combination of the Fe atom in P1 and O2molecule is an energetically favorable process with a very low potential barrier.The displacement of water molecule by O2could be the rate-determining step in the catalytic cycle.34Fig.8(B)shows a barrierless potential-energy curve for P1-OOH model,the energy of which decreases with the O―H bond length shortened from 0.287 to 0.097 nm.This indicates that the complex P1-O2can spontaneously capture the H+cation in the acidic solution and be reduced to P1-OOH.Meanwhile,F(xiàn)e(II)is oxidized to Fe(III).As depicted in Fig.8(C),P1-OOH changes into P1-OOH2by capturing the H+cation,which is also a spontaneous exothermic process.Its binding energy is smaller than that of P1-O2,because capturing the first H+cation could destroy the O=O double bond in P1-O2and thus need more energy.The data in Fig.8(D)confirmed that P1-OOH2is unstable.It could decompose into P1-O and a water molecule when Fe(III)is oxidized to Fe(IV).Actually,the H+-capturing of P1-OOH and the water-disintegration from P1-OOH2are simultaneous.Figs.8(E)and 8(F)provide the potential energy curves of H+-capturing process of P1-O as functions of the corresponding O―H bond lengths.Similar with P1-O2,P1-O can spontaneously be reduced to P1-OH2,which could be considered as P1 binding a water molecule.Fe(IV)is gradually reduced to Fe(II)in the process.

    Fig.7 Molecular orbitals formed by the atomic orbitals in Fe and O2in P1

    Fig.8 Calculated potential energy curves involved in the O2-reduction reaction

    Fig.9 depicts the O2-reduction reaction of poly-PcFe in details,where the ring of the Pc is represented by two bold vertical lines.Poly-PcFe is used in O2-reduction electrodes that operate by means of the electrocatalytic cycle.The cycle begins with the molecule P1,in which Fe(II)atom is tetra-coordinated by Pc ring.Subsequent binding of O2yields the Fe(II)-O2complex(triplet),a good electron acceptor.This could trigger the reduction of O2(step 1).Since the Fe(II)-O2is a good Lewis base,it captures a proton to form the Fe(III)-hydroperoxide species(quartet,step 2).The Fe(III)-hydroperoxide species is still a good Lewis base and captures another proton.When the cathode supplies a electron,a Fe(IV)-O complex(quintet)and a water are formed(steps 3 and 4).Then,the oxygen atom in the Fe(IV)-O complex is protonated.In this case,the oxygen atom is converted into another water molecule.In the meantime,the Fe(IV)is reduced to Fe(II)(steps 5 and 6,F(xiàn)e(III)-OH:quartet;Fe(II)-OH2:quintet).After this electrocatalytic reaction,the O2molecule can be reduced to two water molecules in the acidic solution,and the poly-PcFe restores to its beginning state by releasing a water molecule.

    Fig.9 Schematic representation of the electrocatalytic cycle of poly-PcFe

    4 Conclusions

    In summary,the process for O2reduction of poly-PcFe was studied by DFT method.Structual analysis and FMO analysis by DFT calculations confirm that the pyromellitimide moieties and phthalocyanine moieties of poly-PcFe are not coplanar.The Fe atom in pyromellitimide moiety could combine O2and form a stable complex by a double bond.The double bond is a linear combination of the d orbital of Fe and SOMO of O2.The charge transfer process takes place from the Fe atom to the binding O2molecule.The FMO results also show that the HOMO energy is increased as the polymerization degree of poly-PcFe isincreased,and strong electron-withdrawing groups of poly-PcFe are favorable to O2reduction.So,the poly-PcFe catalyst with higher polymerization degree and stronger electron-withdrawing groups could have better activi-ties of O2reduction.Based on the HOMO energies,the onset potential of O2reduction with the catalyst is estimated to be less than 0.87 eV.The potential energy curves confirme that O2can be reduced on the poly-PcFe catalyst by means of an electrocatalytic cycle.This poly-PcFe catalyst has electrocatalytic activity for O2reduction in acidic medium.

    (1) Phthalocyanines-Properties and Applications;Leznoff,C.C.,Lever,A.B.P.Eds.;VCH:New York,1989-1996.

    (2) McKeown,N.B.Phthalocyanine Materials-Synthesis,Structure and Function;Cambridge University Press:Cambridge,1998.

    (3)The Porphyrin Handbook;Kadish,K.,Smith,K.M.,Guilard,R.Eds.;Academic Press:San Diego,2003;Vols.15-20.

    (4) de la Torre,G.;Vasquez,P.;Agulló-López,F(xiàn).Adv.Mater.1997,9,265.

    (5) Simon,J.;Sirlin,C.Pure Appl.Chem.1989,61,1625.doi:10.1351/pac198961091625

    (6) Humberstone,P.;Clarkson,G.J.;McKeown,N.B.;Treacher,K.E.J.Mater.Chem.1996,6,315.doi:10.1039/jm9960600315

    (7) Dini,D.;Hanack,M.Physical Properties of 107 Phthalocyanine-Based Materials.In The Porphyrin Handbook,Volumes 11-20:Phthalocyanines:Properties and Materials;Academic Press:San Diego,2003;Vol.17,p 1.

    (8) Lever,A.B.P.;Hempstead,M.R.;Leznoff,C.C.;Liu,W.;Melnik,M.;Nevin,W.A.;Seymour,P.Pure Appl.Chem.1986,58,1467.doi:10.1351/pac198658111467

    (9) Sirotin,S.V.;Tolbin,A.Y.;Moskovskaya,I.F.;Abramchuk,S.S.;Tomilova,L.G.;Romanovsky,B.V.J.Mol.Cat.A:Chem.2010,319,39.doi:10.1016/j.molcata.2009.11.017

    (10) Han,K.L.;He,G.Z.J.Photochem.Photobiol.C 2007,8,55.doi:10.1016/j.jphotochemrev.2007.03.002

    (11) Zhao,G.J.;Han,K.L.J.Phys.Chem.A 2007,111,2469.doi:10.1021/jp068420j

    (12) Zhao,G.J.;Han,K.L.Biophys.J.2008,94,38.doi:10.1529/biophysj.107.113738

    (13)Yu,F(xiàn).B.;Li,P.;Li,G.Y.;Zhao,G.J.;Chu,T.S.;Han,K.L.J.Am.Chem.Soc.2011,133,11030.doi:10.1021/ja202582x

    (14) Li,G.Y.;Zhao,G.J.;Liu,Y.H.;Han,K.L.;He,G.Z.J.Comput.Chem.2010,31,1759.

    (15) Zhao,G.J.;Han,K.L.Accounts Chem.Res.2012,45,404.doi:10.1021/ar200135h

    (16) Li,G.Y.;Chu,T.S.Phys.Chem.Chem.Phys.2011,13,20766.doi:10.1039/c1cp21470e

    (17)Li,G.Y.;Zhao,G.J.;Han,K.L.;He,G.Z.J.Comput.Chem.2011,32,668.doi:10.1002/jcc.v32.4

    (18) Neese,F(xiàn).ORCA-an Ab initio,Density Functional and Semiempirical Program Package;2008.http://www.thch.uni-bonn.de/tc/orca/

    (19) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/1.464913

    (20) Perdew,J.P.Phys.Rev.B 1986,33,8822.doi:10.1103/PhysRevB.33.8822

    (21) Himo,F(xiàn).;Siegbahn,P.E.M.Chem.Rev.2003,103,2421.doi:10.1021/cr020436s

    (22)Treutler,O.;Ahlrichs,R.J.Chem.Phys.1995,102,346.

    (23) Zhong,A.G.;Huang,L.;Jiang,H.J.Acta Phys.-Chim.Sin.2011,27,837.[鐘愛國(guó),黃 凌,蔣華江.物理化學(xué)學(xué)報(bào),2011,27,837.]doi:10.3866/PKU.WHXB20110323

    (24) Schneider,S.K.;Julius,G.R.;Loschen,C.;Raubenheimer,H.G.;Frenking,G.;Herrmann,W.A.Dalton Trans.2006,1226.

    (25)http://www.ccl.net/cca/software/SOURCES/FORTRAN/nbo/index.shtml

    (26) Zheng,W.R.;Xu,J.L.;Xiong,R.Acta Phys.-Chim.Sin.2010,26,2535.[鄭文銳,徐菁利,熊 瑞.物理化學(xué)學(xué)報(bào),2010,26,2535.]doi:10.3866/PKU.WHXB20100931

    (27) Chen,X.;Li,F(xiàn).;Wang,X.Y.;Sun,S.R.;Xia,D.G.J.Phys.Chem.C 2012,116,12553.doi:10.1021/jp300638e

    (28) Favia,A.D.;Cavalli,A.;Masetti,M.;Carotti,A.;Recanatini,M.Proteins 2006,62,1074.

    (29) Zagal,J.H.;Cárdenas-Jirón,G.I.J.Electroanal.Chem.2000,489,96.doi:10.1016/S0022-0728(00)00209-6

    (30) Zagal,J.H.;Gulppi,M.;Issacs,M.;Cardenas-Jiron,G.;Aguirre,M.J.Electrochim.Acta 1998,44,1349.doi:10.1016/S0013-4686(98)00257-6

    (31) Fendorf,S.E.;Fendorf,M.;Sparks,D.L.;Gronsky,R.J.Colloid Interface Sci.1992,153,37.doi:10.1016/0021-9797(92)90296-X

    (32) Eckhardt,H.;Shacklette,L.W.;Jen,K.Y.J.Chem.Phys.1989,91,1303.doi:10.1063/1.457153

    (33) Jean,Y.;Volatron,F(xiàn).An Introduction to Molecular Orbitals;Oxford University Press:Oxford,1993.

    (34) Shaik,S.;Kumar,D.;de Visser,S.P.;Altun,A.;Thiel,W.Chem.Rev.2005,105,2279.doi:10.1021/cr030722j

    猜你喜歡
    酞菁北京工業(yè)大學(xué)物理化學(xué)
    北京工業(yè)大學(xué)
    北京工業(yè)大學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    北京工業(yè)大學(xué)
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    Chemical Concepts from Density Functional Theory
    北京工業(yè)大學(xué)
    纖維素纖維負(fù)載鈷酞菁對(duì)活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對(duì)Li/SOCl2電池催化活性的影響
    成年人黄色毛片网站| 国产主播在线观看一区二区| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 久久国产亚洲av麻豆专区| 亚洲av第一区精品v没综合| 极品少妇高潮喷水抽搐| 成人18禁在线播放| 男女下面插进去视频免费观看| 波多野结衣av一区二区av| 成年人午夜在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区在线观看99| 美女视频免费永久观看网站| 最新美女视频免费是黄的| 午夜福利在线免费观看网站| 国产亚洲精品久久久久久毛片 | 免费观看精品视频网站| 欧美人与性动交α欧美精品济南到| 人妻一区二区av| 亚洲精品中文字幕在线视频| 成熟少妇高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| 飞空精品影院首页| 国产成+人综合+亚洲专区| 国产亚洲欧美98| 久久中文看片网| 亚洲 国产 在线| 免费不卡黄色视频| 久久精品国产亚洲av高清一级| 精品久久久久久,| 午夜激情av网站| 欧美最黄视频在线播放免费 | 曰老女人黄片| 国产精品欧美亚洲77777| bbb黄色大片| 欧美日韩一级在线毛片| 99在线人妻在线中文字幕 | 亚洲欧美一区二区三区黑人| 新久久久久国产一级毛片| 免费日韩欧美在线观看| 成人18禁高潮啪啪吃奶动态图| 18禁裸乳无遮挡动漫免费视频| 女性生殖器流出的白浆| 亚洲第一青青草原| 久久国产乱子伦精品免费另类| 又黄又爽又免费观看的视频| 亚洲欧美激情综合另类| 亚洲第一青青草原| 日韩制服丝袜自拍偷拍| 亚洲精品av麻豆狂野| 在线av久久热| 91国产中文字幕| 国产免费现黄频在线看| 国产精品香港三级国产av潘金莲| 麻豆乱淫一区二区| 亚洲一区二区三区不卡视频| 欧美大码av| 久久这里只有精品19| 51午夜福利影视在线观看| 久久香蕉国产精品| 久久精品aⅴ一区二区三区四区| 韩国精品一区二区三区| videosex国产| 黑人巨大精品欧美一区二区蜜桃| 热99国产精品久久久久久7| 中文字幕色久视频| 十八禁人妻一区二区| 欧美在线一区亚洲| 视频区欧美日本亚洲| 啦啦啦免费观看视频1| 午夜福利欧美成人| 好男人电影高清在线观看| a级毛片黄视频| 免费观看精品视频网站| 精品一区二区三区四区五区乱码| 久久中文字幕人妻熟女| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区三区在线| 午夜91福利影院| 国产欧美日韩综合在线一区二区| cao死你这个sao货| 亚洲一区中文字幕在线| 亚洲成国产人片在线观看| av福利片在线| 中文字幕人妻熟女乱码| 午夜福利在线免费观看网站| 老汉色av国产亚洲站长工具| 在线视频色国产色| 激情在线观看视频在线高清 | 欧美黑人欧美精品刺激| 亚洲国产欧美网| 黑人欧美特级aaaaaa片| 国产精品美女特级片免费视频播放器 | 高清毛片免费观看视频网站 | 精品国产国语对白av| 丰满人妻熟妇乱又伦精品不卡| e午夜精品久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟妇熟女久久| 一区福利在线观看| 亚洲精品成人av观看孕妇| 美国免费a级毛片| 欧美日韩瑟瑟在线播放| 亚洲专区字幕在线| av免费在线观看网站| 亚洲中文字幕日韩| 欧美日韩亚洲高清精品| 婷婷成人精品国产| 99国产精品一区二区三区| 亚洲成人手机| 91九色精品人成在线观看| 亚洲一区高清亚洲精品| 日本wwww免费看| 夜夜爽天天搞| 大陆偷拍与自拍| 90打野战视频偷拍视频| 国产成人精品久久二区二区91| 丝袜人妻中文字幕| 这个男人来自地球电影免费观看| 免费女性裸体啪啪无遮挡网站| 国产伦人伦偷精品视频| a在线观看视频网站| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 免费一级毛片在线播放高清视频 | av有码第一页| 国产有黄有色有爽视频| 欧美日韩乱码在线| 亚洲精品自拍成人| 男女下面插进去视频免费观看| 电影成人av| 亚洲黑人精品在线| 天天操日日干夜夜撸| 狠狠狠狠99中文字幕| 亚洲国产欧美一区二区综合| 91国产中文字幕| 欧美色视频一区免费| 欧美激情高清一区二区三区| 亚洲av熟女| 国产精品av久久久久免费| 天天影视国产精品| 飞空精品影院首页| 一边摸一边做爽爽视频免费| 国产精品欧美亚洲77777| 久久久久久久午夜电影 | а√天堂www在线а√下载 | 亚洲国产看品久久| 国产成+人综合+亚洲专区| aaaaa片日本免费| 久久精品国产亚洲av高清一级| 久久久久精品人妻al黑| 午夜福利一区二区在线看| 建设人人有责人人尽责人人享有的| 国产精品电影一区二区三区 | 大香蕉久久成人网| 亚洲第一青青草原| 在线视频色国产色| 亚洲色图综合在线观看| 亚洲avbb在线观看| 男人的好看免费观看在线视频 | 欧美人与性动交α欧美精品济南到| 国产蜜桃级精品一区二区三区 | a级片在线免费高清观看视频| 曰老女人黄片| 免费观看精品视频网站| 99久久精品国产亚洲精品| 国产精品美女特级片免费视频播放器 | 一个人免费在线观看的高清视频| 午夜影院日韩av| 国产精品1区2区在线观看. | 欧美日韩视频精品一区| av超薄肉色丝袜交足视频| 国产三级黄色录像| 久久久国产欧美日韩av| 脱女人内裤的视频| 欧美一级毛片孕妇| 欧美日韩一级在线毛片| 99国产精品一区二区蜜桃av | av片东京热男人的天堂| 国产精品 国内视频| 免费女性裸体啪啪无遮挡网站| 成人手机av| 亚洲精华国产精华精| 黄色视频,在线免费观看| 久久香蕉国产精品| 国产又色又爽无遮挡免费看| 嫩草影视91久久| 天天躁日日躁夜夜躁夜夜| 丰满迷人的少妇在线观看| 色综合欧美亚洲国产小说| 国产精华一区二区三区| 人成视频在线观看免费观看| 黄色视频不卡| 亚洲中文av在线| 精品视频人人做人人爽| 十八禁高潮呻吟视频| 悠悠久久av| 天堂俺去俺来也www色官网| 999久久久精品免费观看国产| 午夜日韩欧美国产| 国产99久久九九免费精品| 脱女人内裤的视频| 高清欧美精品videossex| 婷婷丁香在线五月| 欧美激情高清一区二区三区| www.999成人在线观看| 亚洲少妇的诱惑av| 十八禁高潮呻吟视频| 国产精品久久久av美女十八| 欧美日韩亚洲高清精品| 亚洲熟女毛片儿| 一级a爱视频在线免费观看| 国产精品免费视频内射| 国产精品免费视频内射| 日韩中文字幕欧美一区二区| 亚洲色图av天堂| 9191精品国产免费久久| 女同久久另类99精品国产91| 亚洲国产欧美网| 欧美性长视频在线观看| 亚洲中文字幕日韩| 国产男靠女视频免费网站| 精品一品国产午夜福利视频| 国产xxxxx性猛交| 一进一出好大好爽视频| 国产精品综合久久久久久久免费 | 久久久久久亚洲精品国产蜜桃av| 满18在线观看网站| 狠狠婷婷综合久久久久久88av| 少妇裸体淫交视频免费看高清 | 久久久久视频综合| 在线观看免费日韩欧美大片| 男女床上黄色一级片免费看| 精品人妻1区二区| 午夜激情av网站| 欧美日韩精品网址| 热re99久久精品国产66热6| 欧美精品亚洲一区二区| 激情在线观看视频在线高清 | 国产精品久久久av美女十八| 亚洲成人国产一区在线观看| 亚洲成人国产一区在线观看| 精品人妻在线不人妻| 国产精品久久久av美女十八| 天天躁狠狠躁夜夜躁狠狠躁| 看片在线看免费视频| 9191精品国产免费久久| 中出人妻视频一区二区| 久久青草综合色| 黄色怎么调成土黄色| 久久影院123| 亚洲精品乱久久久久久| 青草久久国产| 高清毛片免费观看视频网站 | 精品卡一卡二卡四卡免费| 咕卡用的链子| 欧美性长视频在线观看| 亚洲专区国产一区二区| 美国免费a级毛片| 老熟妇乱子伦视频在线观看| 9色porny在线观看| 国产成+人综合+亚洲专区| 国产精品久久久久成人av| 一本综合久久免费| 欧美 亚洲 国产 日韩一| 97人妻天天添夜夜摸| 三上悠亚av全集在线观看| 波多野结衣av一区二区av| 免费黄频网站在线观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产主播在线观看一区二区| av在线播放免费不卡| 国产不卡一卡二| 久久香蕉国产精品| 老司机影院毛片| www.999成人在线观看| 亚洲性夜色夜夜综合| 亚洲,欧美精品.| 美女高潮喷水抽搐中文字幕| 日本黄色日本黄色录像| 在线天堂中文资源库| 精品国产一区二区三区久久久樱花| 啦啦啦 在线观看视频| 国产高清视频在线播放一区| 男人舔女人的私密视频| 亚洲国产毛片av蜜桃av| 日韩欧美在线二视频 | 日韩一卡2卡3卡4卡2021年| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲高清精品| 国产成+人综合+亚洲专区| 国产在视频线精品| 成年人午夜在线观看视频| 精品少妇久久久久久888优播| 丁香六月欧美| 精品久久久精品久久久| 亚洲精品av麻豆狂野| 久久久久国产精品人妻aⅴ院 | 亚洲中文日韩欧美视频| 欧美日韩瑟瑟在线播放| 老司机深夜福利视频在线观看| 水蜜桃什么品种好| 亚洲全国av大片| 亚洲精品粉嫩美女一区| 国产成人精品无人区| 满18在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 丰满的人妻完整版| 精品一品国产午夜福利视频| 国产成人精品在线电影| 国产亚洲精品久久久久5区| 亚洲aⅴ乱码一区二区在线播放 | 超碰成人久久| 香蕉久久夜色| 在线十欧美十亚洲十日本专区| 色老头精品视频在线观看| 国产精品免费视频内射| 欧美日韩亚洲高清精品| 在线观看一区二区三区激情| 在线天堂中文资源库| 91av网站免费观看| a在线观看视频网站| 国产成人一区二区三区免费视频网站| 国产欧美日韩一区二区精品| 老鸭窝网址在线观看| 欧美日韩成人在线一区二区| 丝袜人妻中文字幕| 精品熟女少妇八av免费久了| 国产精品免费大片| 久久久久久久久免费视频了| 中文字幕高清在线视频| 手机成人av网站| 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| 人妻一区二区av| 久久中文字幕人妻熟女| 视频在线观看一区二区三区| 精品福利永久在线观看| 男人的好看免费观看在线视频 | 91精品国产国语对白视频| 国产乱人伦免费视频| 色在线成人网| 美女高潮喷水抽搐中文字幕| 久久中文字幕一级| 国产精品美女特级片免费视频播放器 | 久久热在线av| 黄色a级毛片大全视频| 一级黄色大片毛片| 女人高潮潮喷娇喘18禁视频| 久久久久精品人妻al黑| 国产三级黄色录像| 日韩欧美一区二区三区在线观看 | 午夜影院日韩av| 午夜精品国产一区二区电影| 国产一区二区三区视频了| 又紧又爽又黄一区二区| 免费少妇av软件| 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片 | 久久ye,这里只有精品| 国内久久婷婷六月综合欲色啪| 国产成人啪精品午夜网站| 国产男女内射视频| 在线观看舔阴道视频| 国产成人欧美| 在线观看免费视频网站a站| 露出奶头的视频| 这个男人来自地球电影免费观看| 国产成人免费观看mmmm| 高潮久久久久久久久久久不卡| 丝袜美足系列| 黄网站色视频无遮挡免费观看| 搡老岳熟女国产| 天堂√8在线中文| 国产精品久久久久久人妻精品电影| 国产黄色免费在线视频| 欧美黄色淫秽网站| 国精品久久久久久国模美| 国产99久久九九免费精品| 色老头精品视频在线观看| 亚洲熟女毛片儿| tube8黄色片| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| 亚洲精品粉嫩美女一区| 一夜夜www| 精品久久久久久电影网| 国产成人av激情在线播放| 动漫黄色视频在线观看| 欧美在线黄色| 90打野战视频偷拍视频| 人成视频在线观看免费观看| 欧美色视频一区免费| 久久香蕉激情| 亚洲精品av麻豆狂野| 999久久久国产精品视频| 精品亚洲成国产av| 亚洲精品美女久久久久99蜜臀| 大型av网站在线播放| 亚洲人成伊人成综合网2020| 亚洲av片天天在线观看| 欧美日韩黄片免| av欧美777| 一级片免费观看大全| 一级片'在线观看视频| 黑人操中国人逼视频| 不卡一级毛片| 欧美午夜高清在线| 亚洲人成电影观看| 脱女人内裤的视频| 欧美成人午夜精品| 99re6热这里在线精品视频| 日韩一卡2卡3卡4卡2021年| 国产乱人伦免费视频| 一进一出好大好爽视频| 两性夫妻黄色片| 搡老乐熟女国产| 女性被躁到高潮视频| 国产在线观看jvid| 国产精品.久久久| 国产成人一区二区三区免费视频网站| 精品少妇久久久久久888优播| 在线观看www视频免费| 国产一区二区激情短视频| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 老鸭窝网址在线观看| av不卡在线播放| 欧美日本中文国产一区发布| 国产区一区二久久| 精品福利观看| 老熟女久久久| 精品国产一区二区三区久久久樱花| 亚洲一区高清亚洲精品| 亚洲午夜理论影院| 精品亚洲成a人片在线观看| 国产精品自产拍在线观看55亚洲 | 国产人伦9x9x在线观看| 国产成人欧美| 亚洲av美国av| 国产麻豆69| 欧美性长视频在线观看| 精品一品国产午夜福利视频| 亚洲国产精品一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美性长视频在线观看| 美女午夜性视频免费| 国产欧美日韩一区二区精品| 亚洲九九香蕉| 亚洲中文字幕日韩| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 成人影院久久| 成年版毛片免费区| 另类亚洲欧美激情| 在线观看日韩欧美| 岛国在线观看网站| 亚洲,欧美精品.| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 亚洲精品在线观看二区| 精品久久久久久久毛片微露脸| 精品久久蜜臀av无| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产 | 9191精品国产免费久久| 两个人免费观看高清视频| 久久久国产成人免费| 曰老女人黄片| 国产精品二区激情视频| 69精品国产乱码久久久| 黄色a级毛片大全视频| 999久久久国产精品视频| 黄色视频,在线免费观看| 夫妻午夜视频| 麻豆成人av在线观看| 人妻 亚洲 视频| 精品久久蜜臀av无| 国产视频一区二区在线看| 人人妻人人澡人人爽人人夜夜| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影 | 亚洲国产看品久久| 国产精品美女特级片免费视频播放器 | av国产精品久久久久影院| 欧美日韩福利视频一区二区| 在线av久久热| www日本在线高清视频| 亚洲视频免费观看视频| 国产色视频综合| 免费在线观看视频国产中文字幕亚洲| 人妻 亚洲 视频| 麻豆av在线久日| 丰满迷人的少妇在线观看| 亚洲美女黄片视频| 国产精品av久久久久免费| 国产高清国产精品国产三级| 亚洲成人免费av在线播放| 亚洲国产精品一区二区三区在线| 欧美丝袜亚洲另类 | 午夜免费观看网址| 91精品三级在线观看| 久久久久国内视频| 搡老乐熟女国产| 麻豆乱淫一区二区| 午夜福利免费观看在线| 成人三级做爰电影| 欧美国产精品一级二级三级| 下体分泌物呈黄色| 精品一区二区三卡| 亚洲一区二区三区欧美精品| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区蜜桃| 国产蜜桃级精品一区二区三区 | 男女免费视频国产| 国产成人欧美在线观看 | 丰满迷人的少妇在线观看| 久久精品亚洲精品国产色婷小说| 涩涩av久久男人的天堂| 国产精品自产拍在线观看55亚洲 | 精品第一国产精品| 久久久久国产精品人妻aⅴ院 | 欧美日韩中文字幕国产精品一区二区三区 | 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 欧美成人午夜精品| 亚洲av美国av| 99香蕉大伊视频| 在线观看舔阴道视频| 啦啦啦免费观看视频1| 夜夜爽天天搞| av网站在线播放免费| 欧美成人午夜精品| 90打野战视频偷拍视频| 亚洲情色 制服丝袜| 欧美黑人精品巨大| 免费在线观看亚洲国产| 一级黄色大片毛片| 亚洲国产精品一区二区三区在线| 亚洲精品久久午夜乱码| 精品人妻在线不人妻| 精品一区二区三区四区五区乱码| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 亚洲 欧美一区二区三区| 一二三四社区在线视频社区8| 国产精品一区二区在线不卡| videos熟女内射| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产高清国产av | 视频区图区小说| 建设人人有责人人尽责人人享有的| 大型av网站在线播放| av电影中文网址| 叶爱在线成人免费视频播放| av国产精品久久久久影院| 午夜福利,免费看| 欧美丝袜亚洲另类 | 在线观看www视频免费| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 精品国产乱码久久久久久男人| 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品va在线观看不卡| 极品教师在线免费播放| 久久人妻av系列| 国产精品影院久久| 香蕉国产在线看| 怎么达到女性高潮| av在线播放免费不卡| 国产成人欧美在线观看 | 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 成人永久免费在线观看视频| 亚洲成人国产一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 亚洲五月婷婷丁香| 国产亚洲精品一区二区www | 欧美成狂野欧美在线观看| 亚洲人成77777在线视频| 欧美久久黑人一区二区| 1024香蕉在线观看| av天堂久久9| 亚洲精品美女久久久久99蜜臀| 黄色a级毛片大全视频| 一二三四社区在线视频社区8| 99精品在免费线老司机午夜| 美女高潮喷水抽搐中文字幕| 91老司机精品| 日韩欧美三级三区| 精品第一国产精品| 男女床上黄色一级片免费看| 最近最新中文字幕大全电影3 | 欧美黑人精品巨大| 男女下面插进去视频免费观看| 免费日韩欧美在线观看| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 久久久久久久午夜电影 | 亚洲 欧美一区二区三区| 夫妻午夜视频| 自线自在国产av| 一本一本久久a久久精品综合妖精| 很黄的视频免费| 高清欧美精品videossex| 老汉色∧v一级毛片| 免费高清在线观看日韩| 人人妻人人添人人爽欧美一区卜| 亚洲成av片中文字幕在线观看| av天堂久久9|