• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微納米多孔不銹鋼表面高效吸附活性生物大分子

    2013-09-17 06:58:44余占江陳永強(qiáng)楊曉達(dá)
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:藥學(xué)院物理化學(xué)學(xué)報(bào)

    余占江 陳永強(qiáng) 楊曉達(dá),*

    (1北京大學(xué)藥學(xué)院化學(xué)生物學(xué)系,天然和仿生藥物國家重點(diǎn)實(shí)驗(yàn)室,北京100191;2樂普(北京)醫(yī)療器械股份有限公司,北京100022)

    1 Introduction

    In the efforts for discovery of novel biomaterials in medical devices and implants,improving the biocompatibility and mechanical performance has always been the two primary issues.The next generation of biomaterials has been proposed to be smart or biomimetic materials.A key challenge in designing smart biomaterials is to modify material surface with functional biological or synthetic molecules/nanoparticals to mimic the extracellular matrix(ECM)of natural tissue.1

    Among biopolymers,alloys,and ceramics,stainless steel(AISI 316L)is one of the most prominent available commercial materials for medical devices,2-4e.g.,cardiovascular stents,bone,and dental implants.The 316 L stainless steel exhibits long-standing performance and good biocompatibility,2which make stainless steel implants safe and efficient treatment option over the much more expensive anecdotal superior titanium alloys.5

    One major limitation for stainless steel is the lack of chemically active groups on the metal surface for covalently immobilization of functional molecules.A great deal of efforts have been made to engineer the metal surface with a variety of organic and inorganic coatings,for instance,heparin hydrogel,6carbohydrates,7polydopamine,8,9poly(ethylene glycol)and various hydrophilic polymers,10-12peptides and peptide nanofiber,13-16polyelectrolyte micelles,17alkanethiol layers,18doped diamond-like carbon,19sputtered TiN/TiO2,20,21hydroxylapatite,22hydrothermal calcium nanocomposites,23and S-phase layers,24etc.On these bases,antibodies,vascular endothelial growth factor(VEGF),VE-cadherin,thrombin inhibitor,and liposomes were covalently attached to the surface of metal implants.These works improved greatly the cytocompatibility of the materials,for instance,the pro-healing approach immobilized antibodies capturing endothelial progenitor cells(EPC)from circulation on the blood contact surface of the stents;25the stents were shown to significantly reduce the thrombosis by facilitating stent endothelialization.26,27However,the use of synthetic polymer matrixes was suggested negative for in-stent restenosis by some studies.25,28

    Surface modification at the nanoscale was suggested to promote protein adsorption and cell adhesion.12,29-31Grafting the surface roughness and topography by electrochemical erosion29or ultrafast laser irradiation32has been investigated to improve cytocompatibility.A functionalized TiO2nanonodule-in-micropit smart titanium surfaces was shown to enhance osteoblast proliferation and differentiation while the micropitted surface actually inhibited osteoblast growth.20Comparing with mirror-polished stainless steel surfaces,nanostructured surfaces showed better adhesion and differentiation for osteoblastic cells.29It was found that cells responsed to surface energy and three dimensional(3D)patterns.31The 40-75 nm nanopores on 316L stainless steel enhanced fibroblast cell proliferation and signal transduction while~200 nm nanopore surfaces greatly attenuated.30However,the effects of micro/nano surface on adsorption of functional biological molecules for smart biomaterial have so far not been well investigated.

    It has long been recognized that stainless steel surface can irreversibly adsorb proteins33-35but far less effective for functional protein immobilization than some noble metals,e.g.,gold that is most frequently used for immobilization of biomolecules.36,37Providing that micro/nano-structured surface of stainless steel can effectively adsorb active biomacromolecules,a novel polymer-free smart metal platform for developing new biomaterials,e.g.,stents,would be achieved.For this purpose,the present work investigated adsorption of antibodies and enzymes on micro/nanoporous 316L stainless steel in comparison with smooth and gold-coating stainless steel surfaces.

    2 Experimental

    2.1 Materials

    316L stainless steel plates and stents were from Lepu Medical Technology Co.,Ltd.(Beijing).Mouse monoclonal antibody against human CD34 was from Biolegend(USA),FITC-labeled goat anti-mouse monoclonal antibody(FITC-IgG)and horseradish peroxidase conjugated goat anti-mouse immunoglobulins(HRP-IgG)from BD Biosciences(USA).4?,6-Diamidino-2-phenylindole(DAPI,the purity≥99%),RPIM 1640,4?,6-diamidino-2-phenylindole,diaminobenzidine(DAB,the purity ≥99%)and tetramethylbenzidine(TMB,the purity≥99%)from Amresco(USA),L929 fibroblast and CD34 positive KG-1a cells were from American Type Culture Collection(ATCC,USA).Horse radish peroxidase(HRP,EC.1.11.1.7)and all other reagents of analytical grade were from Sigma-Aldrich(USA).

    2.2 Preparation of 316L stainless steel surface

    The polished 316L stainless steel plates(1.0 cm×1.0 cm)were cleansed with 20%hydrochloride acid for 10 h at room temperature and 75%ethanol for 15 min at 100 kHz ultrasonicator,the plates were dried in a stream of filtrated air.To produce a porous surface,the plates were acid-etched with 10%hydrochloride acid for 10 min in the assistance of 0.2 A,500 Hz electric current.For gold coating,the plates were either sputter-coated with gold or incubated with 5%H2AuCl4solution for 17 h at 37°C.All the treated metal plates were cleaned finally by 75%ethanol as described above.Then the products were observed and analyzed with a S-4800 scanning electron microscope(SEM,Hitachi,Japan).

    2.3 Adsorption of anti-CD34 antibodies or HRP on metal surface

    The metal plates were incubated for 30 min at 37°C with antihuman CD34 monoclonal antibody(0-200 μg·mL-1)or HRP(0-0.5 mg·mL-1)in 0.1 mmol·L-1of carbonate sodium buffer,pH 9.6.Then the plates were washed three times with 10 mmol·L-1phosphate buffered saline(PBS,pH 7.4)containing 0.2%Tween-20.

    To investigate the effect of surfactant on protein adsorption,the cleaned plates were pre-incubated with 0.5%-5%Tween-20 before incubation with 200 μg·mL-1of monoclonal antibody against human CD34 or 0.5 mg·mL-1of HRP as described above.

    2.4 Analysis of protein adsorption on metal surface

    For analysis of the amount of HRP adsorbed on the metal surface,38the treated plate was put into a 12-well cultural plate and then 0.8 mL of colorization solution containing 0.1 mmol·L-1of tetramethylbenzidine(TMB)was added and incubated for 15 min at 37°C.The reaction was terminated with 0.5 mL of 1 mol·L-1H2SO4and the absorbance at 450 nm was measured with a microplate reader(ASCENT,Labsystems Oy,Finland).

    For analysis of the amount of anti-CD34 antibodies on the metal surface with an ELISA assay,the plates were first blocked with 10%bovine serum albumin(BSA)in 10 mmol·L-1phosphate buffered saline(pH 7.4)for 24 h at 4°C,then incubated with HRP-conjugated goat anti-mouse antibody(BD Biosciences,USA)diluted(1:500)in 10 mmol·L-1PBS,pH 7.4 for 1 h at 37°C.After three-times washing,colorization with TMB substrate was conducted as described above.

    2.5 Wettability assessment

    For comparison of the wettability,the contact angles for metal plates were measured with an optical contact angle instrument(DSA100,Kruss Inc.,Germany).

    2.6 In vitro cell capturing activity of anti-CD34 antibodies-coated 316L stainless steel stents

    To determine the specific activity of antibody coated on stainless steel surface,the in vitro cell capturing activity of micro/nanoporous stents with or without antibody coating were incubated at 37 °C with cell suspension(1×106mL-1,either CD34+KG-1a cells or fibroblast L929 cells)for 1 h.These cells were previously stained with 50 μg·mL-1DAPI fluorescent dye as described in literature.39After rinsing three times with PBS,the stents were photographed and analyzed on a Fluorescence Microscope equipped with an image analyzing program(BX41,OLYMPUS,Japan).

    2.7 Statistical analysis

    All results were expressed as mean±standard error of each sample.Each experiment was repeated independently three times.One-way ANOVA was conducted using an OriginTM8.0 program(Microcal,USA)for data comparison.A value of p<0.05 was considered significant.

    3 Results

    3.1 SEM observation on 316L stainless steel surface

    The surface of various 316L stainless steel plates were observed under a microscopy(Fig.1).Although sputter-gold plates showed yellow color,these plates exhibited a similar shining smooth surface to that of polished metal plate(Fig.1(A,B)).Chemically deposited-gold plates(Fig.1(C))showed a tarnished but plainer surface with a lightly golden color when compared with the sputter-gold plates.In contrast,the porous plates by anodization treatment(Fig.1(D))showed a rough surface.When taking a closer look on SEM(Fig.2),the plates showed a microtexture that is full of irregular pores with an average size of(400±160)nm.The surface roughness was estimated and the contour arithmetic mean deviations(Ra)were 0.007,0.005,0.013,and 0.033 μm for polished stainless steel plate,sputter-gold plate,chemically deposited-gold plate and porous plate,respectively.

    3.2 Protein adsorption on surface of metal plates

    For assessment of protein adsorption,an enzyme(HRP)and a mouse monoclonal antibody against human CD34 were used as the representative of functional biological macromolecules.The physical data of HRP and antibody are listed in Table 1.

    Fig.1 Microscopic images(30×)of surfaces of polished stainless steel plate(A),sputter-gold plate(B),chemically deposited-gold plate(C),and porous plate by anodization treatment(D)

    Fig.2 Scanning electron microscope(SEM)images of the surface of porous stainless steel plate by anodization treatment

    Adsorption of HRP on various stainless steel plates were shown in Fig.3(A).The amount of HRP,expressed as enzymatic activity,increased with enzyme concentrations in solution.Polished plates and gold-coated plates exhibited similar extents of enzyme adsorption while porous plate adsorbed most amount of HRP than the other three plates.

    For antibody(monoclonal anti-CD34 antibodies)adsorption(Fig.3(B)),polished stainless steel plates hardly adsorb antibodies.Chemically deposited-gold plates adsorbed a few with increase of antibody concentration in solution.The sputter-gold plates could most effectively adsorb antibody in a concentration-dependent manner.The porous plates exhibited a similar capacity of antibody adsorption as the sputter-gold plate,however,with a saturation concentration.The maximal amount of antibody adsorption on porous plates was calculated to be ~1200 ng·cm-2according to a calibration method described previously.38

    3.3 Effect of surfactant on protein adsorption

    As shown in Fig.4,pretreatment of metal plates by surfactant Tween-20 could significantly reduce antibody adsorption almost by half;Herein,the porous plates exhibited a similar effect with the sputter-gold plates.However,Tween-20 did not affect adsorption of HRP on both metal surfaces.

    3.4 Wettability of metal plates upon protein adsorption

    Surface wettability was thought to be one important factor tuning cell adhesion and protein adsorption31,40,41and also closely related with the adsorbed amount of proteins.42The results of water contact angles of the plates before and after protein adsorption were shown in Fig.4.It is noted that porous treatment and gold coating barely reduced the contact angles.However,adsorption of protein can significantly increase the wettability of the metal surface.Although on the porous plate,protein adsorption produced the best wetness surface,nevertheless,the difference between the plates was far less than that between the protein species.This indicated that change of surface wettability for metal plates is more dependent on the adsorbed protein.

    3.5 Cell capture capacity of antibodies adsorbed tomicro/nanoporous 316L stainless steel stents

    In smart biomaterials,antibodies are used to selectively attach target cells(e.g.,stem cell or progenitor cells)to form mimetic tissue on the implants in situ.To test the efficiency and the selectivity of the antibodies immobilized,we tested the cellcapture capacity of porous metal stents coated with anti-CD34 mouse monoclonal antibodies.The results are shown in Fig.5 and Fig.6.For CD34 negative L929 fibroblast cells,bare porous metal surface caught a few cells(~9844 cells·cm-2);while the antibody-coated metal surface held a little more(~11593 cells·cm-2),probably due to better wettability after antibody coating.For CD34 positive KG-1a cells,bare porous metal surface caught much fewer amount(~3929 cells·cm-2)than L929 cells.This is conceivable because fibroblasts usually have higher adhesive capacity.Remarkably,the antibody-coated metal surface caught almost ten folds of cells(~36256 cells·cm-2).These results indicated the antibody can remain high efficiency and specificity on the micro/nanoporous sur-face of stainless steel.

    Table 1 Physical data of tested proteins

    Fig.3 Adsorption curves for HRP(A)and mouse monoclonal antibodies against CD34(B)on 316Lstainless steel plates variously treated as described above

    Fig.4 Effect of surfactant on antibody(A)and horse radish peroxidase(B)adsorption on porous and sputter-gold stainless steel plates

    Fig.5 Contact angles of various 316Lstainless steel plates before and after adsorption of proteins(HRPor mouse monoclonal antibodies)

    Fig.6 Fluorescence microscopic images(40×)of CD34 positive or negative cells adhesive to micro/nanoporous 316Lstainless steel stents

    4 Discussion

    For effective immobilization of functional biological molecules on surface of biomaterials,the amount of biomolecules,the stability of immobilization,and the residue activity are the key concerns.Therefore,most methods use covalent bonds to attach biomolecules10,43,44and in this way modification of metal surface with organic polymers or inorganic particles with active groups(e.g.,―OH,―CHO,―COOH,―NH2,etc.)would be necessary.

    In the present work,we tested the efficiency of direct physical adsorption of antibodies and enzymes on stainless steel surface by making use of micro/nano structures with an aim to develop novel smart metal implant,e.g.,prohealing stents.The experimental results indicate that the stainless steel with micro/nano texture can high-efficiently adsorb biomacromolecules with desired biological activity.

    First,the micro/nanoporous stainless steel surface adsorbed high amount of proteins(Fig.3),which is close to(for antibodies)or even more(for HRP)than those attached to sputter-gold surface.Gold can form coordination bond with―SH of proteins or adsorb protein via strong van der Waals interactions.36Gold surface is well-known in biomedical and bioanalytical applications for immobilization of protein or even protein particles.37Herein,the protein adsorption capacity of the porous stainless steel surface is shown to be at least comparable with the gold surface that is much more expensive.

    The reasons for high protein adsorption capacity for the porous stainless steel surface may lie on the followings:(i)the porous plates exhibited much rougher surface.The surface roughness is one key factor for molecular adsorption because the rough surface has bigger external surface area and pocket effect supports more protein loading.45,46In fact,the amount of HRP adsorption was by and large with the surface roughness(Fig.3(A));(ii)formation of protein multilayers by surface-induced aggregation as observed previously on stainless steel microparticles;34,47(iii)the monoclonal antibody showed different adsorption profile from that of HRP.The molecular size of monoclonal antibody(~15 nm)is larger than that of HRP(~6 nm);however,considering the pore size(~400 nm)of the metal plate,this size difference is too small to explain the adsorption profile.The mechanism of interaction between protein molecules with porous surface is worthwhile to be investigated further.

    Second,the protein attached on the porous stainless steel surface is stable.The experimental results showed that adsorption treatment with 10%BSA or 0.2%Tween-20 solution could not remove the enzymes/antibodies from the metal plate,which agrees with that stainless steel-protein interaction is strong48and protein adsorption to stainless steel could be irreversible.34,47While pre-treatment with Tween-20 buffer could reduce antibody adsorption by half(Fig.4(A))but had no effects on HRP adsorption,possibly because of the interaction between the antibody and surfactant.

    The wettability of the stainless steel has been proposed to be a predominant mechanism governing both protein adsorption and cell adhesion.40,41As shown in Fig.5,there was a great reduce of water contact angles upon antibody or HRP adsorption,indicating significant reduce of surface Gibbs free energy and suggesting a highly spontaneous and strong adsorption of antibody/HRP protein onto the surface like fibrinogen.49Several points are worthwhile to note here:(1)the wettability of HRP coated surfaces are much higher than that of antibody-coated surface,indicating that the wettability of protein-modified metal surface is primarily dependent on the properties of the protein rather than the nature of metal.Similar adsorption behavior of proteins at stainless steel-liquid interfaces has been observed previously;33(2)although the surface of gold-modified plates adsorbed more proteins than the stainless steel plates,however,the wettability of gold surface is apparently less.Since surface wettability is correlated to the transition of surface cytocompatibility from cell-phobic to cell-philic,31,41this result may suggest that the protein-engineered stainless steel surface could be better than gold for medical implants;(3)for the same type of metal surfaces,higher amount of protein adsorption gave higher wettability,which is consistent with previous observation.42

    Third,many works have shown that due to the strong surface interaction,adsorption of protein(e.g.,fibrinogen and BSA)on 316L stainless steel could result in partial unfolding of proteins and significant changes in the secondary structure that occur predominantly within the first minute of adsorption.46,49This raises a question of whether the proteins directly on the metal surface can keep their biological activity and specificity.

    Fig.7 Quantatification of adhesion of CD34 positive(KG-1a)or negative(L-929)cells to bare or antibody-coated micro/nanoporous 316Lstainless steel stents

    Fortunately,we observed that both HRP enzyme and antibodies retained high activity on the porous metal surface.Especially,as shown in Figs.6 and 7,stainless steel stents with micro/nanoporous surface coated with an anti-CD34 antibody can capture the target cells with both high efficiency and high specificity,which shall allow the development of novel polymer-free and economic smart biomaterials with stainless steel by direct protein adsorption on micro/nanoporous surface.

    The reasons for antibodies and HRP to keep their specific activity remain further investigated.However,several possibilities may include:(1)unlike fibrinogen and BSA,HRP and antibodies are rigid global proteins and thus resist to conformational change;(2)the surface pocket of the porous metal may accommodate the enzyme/antibody molecules in favorable states similarly to the case of protease on microporous zeolite MCM-22;45(3)the proteins may form multilayers on the metal surface.Then the proteins in the upper layers may be less influenced by surface forces and then keep a full activity.Nonetheless,in the future studies,systematic exploration to the roles of 3D micro/nano morphology of metal surface on immobilization of a variety of biological macromolecules and the effects on their structure and biological functions are envisaged.

    5 Conclusions

    In summary,the present work investigated adsorption of two important functional biomolecules,i.e.,monoclonal antibodies and HRP enzymes,on micro/nanoporous 316L stainless steel in comparison with smooth and gold-coating stainless steel surfaces.Our results indicate that antibodies and enzymes can be loaded firmly on the micro/nanoporous surface in a large amount and these proteins retained high biological activity.In addition,the porous metal surface coated with functional protein exhibited much enhanced wettability,indicating a better cytocompatibility.The current work suggested novel polymerfree and economic smart biomaterials with stainless steel for biomedical applications.

    (1) Holzapfel,B.M.;Reichert,J.C.;Schantz,J.T.;Gbureck,U.;Rackwitz,L.;Noth,U.;Jakob,F.;Rudert,M.;Groll,J.;Hutmacher,D.W.Adv.Drug Deliv.Rev.2013,65,581.doi:10.1016/j.addr.2012.07.009

    (2) Nagarajan,S.;Mohana,M.;Sudhagar,P.;Raman,V.;Nishimura,T.;Kim,S.;Kang,Y.S.;Rajendran,N.ACS Appl.Mater.Interfaces 2012,4,5134.

    (3)Abdel-Fattah,T.M.;Loftis,D.;Mahapatro,A.J.Biomed.Nanotechnol.2011,7,794.doi:10.1166/jbn.2011.1346

    (4) Hayes,J.S.;Richards,R.G.Expert.Rev.Med.Devices 2010,7,843.doi:10.1586/erd.10.53

    (5)Weckbach,S.;Losacco,J.T.;Hahnhaussen,J.;Gebhard,F.;Stahel,P.F.Unfallchirurg 2012,115,75.doi:10.1007/s00113-011-2145-0

    (6)Joung,Y.K.;You,S.S.;Park,K.M.;Go,D.H.;Park,K.D.Colloids Surf.B:Biointerfaces 2012,99,102.doi:10.1016/j.colsurfb.2011.10.047

    (7) Slaney,A.M.;Wright,V.A.;Meloncelli,P.J.;Harris,K.D.;West,L.J.;Lowary,T.L.;Buriak,J.M.ACS Appl.Mater.Interfaces 2011,3,1601.doi:10.1021/am200158y

    (8) Lionetto,S.;Little,A.;Moriceau,G.;Heymann,D.;Decurtins,M.;Plecko,M.;Filgueira,L.;Cadosch,D.J.Biomed.Mater.Res.A 2013,101,991.

    (9)Yang,Z.;Tu,Q.;Zhu,Y.;Luo,R.;Li,X.;Xie,Y.;Maitz,M.F.;Wang,J.;Huang,N.Adv.Healthc.Mater.2012,1,548.doi:10.1002/adhm.201200073

    (10)Kang,C.K.;Lim,W.H.;Kyeong,S.;Choe,W.S.;Kim,H.S.;Jun,B.H.;Lee,Y.S.Colloids Surf.B:Biointerfaces 2013,102,744.doi:10.1016/j.colsurfb.2012.09.008

    (11) Caro,A.;Humblot,V.;Methivier,C.;Minier,M.;Salmain,M.;Pradier,C.M.J.Phys.Chem.B 2009,113,2101.doi:10.1021/jp805284s

    (12)Kang,C.K.;Lee,Y.S.J.Mater.Sci.Mater.Med.2007,18,1389.doi:10.1007/s10856-006-0079-9

    (13) Ceylan,H.;Tekinay,A.B.;Guler,M.O.Biomaterials 2011,32,8797.doi:10.1016/j.biomaterials.2011.08.018

    (14) Davis,E.M.;Li,D.Y.;Irvin,R.T.Biomaterials 2011,32,5311.doi:10.1016/j.biomaterials.2011.04.027

    (15) Ignatova,M.;Voccia,S.;Gabriel,S.;Gilbert,B.;Cossement,D.;Jerome,R.;Jerome,C.Langmuir 2009,25,891.doi:10.1021/la802472e

    (16)Imamura,K.;Kawasaki,Y.;Awadzu,T.;Sakiyama,T.;Nakanishi,K.J.Colloid Interface Sci.2003,267,294.doi:10.1016/S0021-9797(03)00700-8

    (17) Falentin-Daudre,C.;Faure,E.;Svaldo-Lanero,T.;Farina,F.;Jerome,C.;Van De Weerdt,C.;Martial,J.;Duwez,A.S.;Detrembleur,C.Langmuir 2012,28,7233.doi:10.1021/la3003965

    (18) Harvey,J.;Bergdahl,A.;Dadafarin,H.;Ling,L.;Davis,E.C.;Omanovic,S.Biotechnol.Lett.2012,34,1159.doi:10.1007/s10529-012-0885-8

    (19) Secker,T.J.;Herve,R.;Zhao,Q.;Borisenko,K.B.;Abel,E.W.;Keevil,C.W.Biofouling 2012,28,563.doi:10.1080/08927014.2012.698387

    (20) Horia,N.;Iwasaa,F.;Uenoa,T.;Takeuchib,K.;Tsukimuraa,N.;Yamadaa,M.;Hattorib,M.;Yamamotoc,A.;Ogawaa,T.Dental Materials 2010,26,275.doi:10.1016/j.dental.2009.11.077

    (21)Subramanian,B.;Ananthakumar,R.;Kobayashi,A.;Jayachandran,M.J.Mater.Sci.Mater.Med.2012,23,329.doi:10.1007/s10856-011-4500-7

    (22) Subramanian,B.;Dhandapani,P.;Maruthamuthu,S.;Jayachandran,M.J.Biomater.Appl.2012,26,687.doi:10.1177/0885328210377534

    (23)Valanezahad,A.;Ishikawa,K.;Tsuru,K.;Maruta,M.;Matsuya,S.Dent.Mater.J.2011,30,749.doi:10.4012/dmj.2010-153

    (24) Buhagiar,J.;Bell,T.;Sammons,R.;Dong,H.J.Mater.Sci.Mater.Med.2011,22,1269.

    (25)Wendel,H.P.;Avci-Adali,M.;Ziemer,G.Int.J.Cardiol.2010,145,115.doi:10.1016/j.ijcard.2009.06.020

    (26) Granada,J.F.;Inami,S.;Aboodi,M.S.;Tellez,A.;Milewski,K.;Wallace-Bradley,D.;Parker,S.;Rowland,S.;Nakazawa,G.;Vorpahl,M.;Kolodgie,F.D.;Kaluza,G.L.;Leon,M.B.;Virmani,R.Circ.Cardiovasc.Interv.2010,3,257.doi:10.1161/CIRCINTERVENTIONS.109.919936

    (27) McGuigan,A.P.;Sefton,M.V.Biomaterials 2007,28,2547.doi:10.1016/j.biomaterials.2007.01.039

    (28) Rossi,M.L.;Zavalloni,D.;Gasparini,G.L.;Mango,R.;Belli,G.;Presbitero,P.Int.J.Cardiol.2010,141,e20.

    (29) Le Guehennec,L.;Martin,F.;Lopez-Heredia,M.A.;Louarn,G.;Amouriq,Y.;Cousty,J.;Layrolle,P.Nanomedicine 2008,3,61.doi:10.2217/17435889.3.1.61

    (30) Pan,H.A.;Liang,J.Y.;Hung,Y.C.;Lee,C.H.;Chiou,J.C.;Huang,G.S.Biomaterials 2013,34,841.doi:10.1016/j.biomaterials.2012.09.078

    (31) Ranellaa,A.;Barberogloua,M.;Bakogiannia,S.;Fotakisa,C.;Stratakisa,E.Acta Biomaterialia 2010,6,2711.doi:10.1016/j.actbio.2010.01.016

    (32) Nayak,B.K.;Gupta,M.C.Optics and Lasers in Engineering 2010,48,940.doi:10.1016/j.optlaseng.2010.04.010

    (33) Fukuzaki,S.;Urano,H.;Nagata,K.J.Ferment.Bioeng.1995,80,6.doi:10.1016/0922-338X(95)98168-K

    (34) Bee,J.S.;Chiu,D.;Sawicki,S.;Stevenson,J.L.;Chatterjee,K.;Freund,E.;Carpenter,J.F.;Randolph,T.W.J.Pharm.Sci.2009,98,3218.

    (35)Sakiyama,T.;Aya,A.;Embutsu,M.;Imamura,K.;Nakanishi,K.J.Biosci.Bioeng.2006,101,434.doi:10.1263/jbb.101.434

    (36)Hagiwara,T.;Sakiyama,T.;Watanabe,H.Langmuir 2009,25,226.

    (37) He,C.X.;Yuan,A.P.;Zhang,Q.L.;Ren,X.Z.;Li,C.H.;Liu,J.H.Acta Phys.-Chim.Sin.2012,28,2721.[何傳新,袁安朋,張黔玲,任祥忠,李翠華,劉劍洪.物理化學(xué)學(xué)報(bào),2012,28,2721.]doi:10.3866/PKU.WHXB201207191

    (38)Zhang,F.;Guo,W.;Yu,Z.;Wang,Y.C.Chin.J.Pharm.Anal.2011,31,862.

    (39) Berry,J.L.;Santamarina,A.;Moore,J.E.,Jr.;Roychowdhury,S.;Routh,W.D.Ann.Biomed.Eng.2000,28,386.doi:10.1114/1.276

    (40) Hao,L.;Lawrence,J.Proc.Inst.Mech.Eng.H 2006,220,47.doi:10.1243/095441105X68999

    (41) Mikulewicz,M.;Chojnacka,K.Biol.Trace.Elem.Res.2011,142,865.doi:10.1007/s12011-010-8798-7

    (42) Matsumura,H.;Saburi,M.Colloids Surf.B:Biointerfaces 2006,47,146.doi:10.1016/j.colsurfb.2005.12.004

    (43) Mourtas,S.;Kastellorizios,M.;Klepetsanis,P.;Farsari,E.;Amanatides,E.;Mataras,D.;Pistillo,B.R.;Favia,P.;Sardella,E.;d?Agostino,R.;Antimisiaris,S.G.Colloids Surf.B:Biointerfaces 2011,84,214.doi:10.1016/j.colsurfb.2011.01.002

    (44) Muller,R.;Abke,J.;Schnell,E.;Macionczyk,F.;Gbureck,U.;Mehrl,R.;Ruszczak,Z.;Kujat,R.;Englert,C.;Nerlich,M.;Angele,P.Biomaterials 2005,26,6962.doi:10.1016/j.biomaterials.2005.05.013

    (45)Liu,P.;Xing,G.W.;Li,X.W.;Ye,Y.H.Acta Phys.-Chim.Sin.2010,26,1113.[劉 平,邢國文,李宣文,葉蘊(yùn)華.物理化學(xué)學(xué)報(bào),2010,26,1113.]doi:10.3866/PKU.WHXB20100448

    (46) Omanovic,S.;Roscoe,S.G.J.Colloid Interface Sci.2000,227,452.doi:10.1006/jcis.2000.6913

    (47) Bee,J.S.;Davis,M.;Freund,E.;Carpenter,J.F.;Randolph,T.W.Biotechnol.Bioeng.2010,105,121.doi:10.1002/bit.v105:1

    (48) Hedberg,Y.S.;Killian,M.S.;Blomberg,E.;Virtanen,S.;Schmuki,P.;Odnevall Wallinder,I.Langmuir 2012,28,16306.doi:10.1021/la3039279

    (49)Desroches,M.J.;Omanovic,S.Phys.Chem.Chem.Phys.2008,10,2502.doi:10.1039/b719371h

    猜你喜歡
    藥學(xué)院物理化學(xué)學(xué)報(bào)
    蘭州大學(xué)藥學(xué)院簡介
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    《深空探測學(xué)報(bào)》
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    HSCCC-ELSD法分離純化青葙子中的皂苷
    精品少妇一区二区三区视频日本电影 | 天天躁狠狠躁夜夜躁狠狠躁| 天堂8中文在线网| 亚洲精品国产一区二区精华液| 亚洲精品视频女| 日韩一本色道免费dvd| 亚洲成色77777| 老司机影院毛片| videosex国产| 亚洲欧美一区二区三区黑人 | 免费日韩欧美在线观看| 卡戴珊不雅视频在线播放| 在现免费观看毛片| 在线观看www视频免费| 涩涩av久久男人的天堂| 一区福利在线观看| 日韩欧美一区视频在线观看| 国产在线一区二区三区精| 午夜免费观看性视频| 久久这里有精品视频免费| 亚洲第一青青草原| av视频免费观看在线观看| 午夜福利一区二区在线看| 熟女av电影| 成人免费观看视频高清| 精品福利永久在线观看| 超色免费av| 欧美日韩一级在线毛片| 夫妻午夜视频| 亚洲精品av麻豆狂野| 一本久久精品| 久久久精品区二区三区| 18禁动态无遮挡网站| 亚洲三级黄色毛片| 日韩在线高清观看一区二区三区| 久久久精品免费免费高清| 久久国产精品大桥未久av| 亚洲av中文av极速乱| 午夜福利网站1000一区二区三区| 国产 一区精品| 一本色道久久久久久精品综合| 91久久精品国产一区二区三区| 多毛熟女@视频| 日本爱情动作片www.在线观看| 一二三四中文在线观看免费高清| 丰满少妇做爰视频| 日韩欧美精品免费久久| 亚洲欧美一区二区三区国产| 免费黄色在线免费观看| 老汉色∧v一级毛片| 日日啪夜夜爽| 1024香蕉在线观看| 成人免费观看视频高清| 一级,二级,三级黄色视频| 亚洲激情五月婷婷啪啪| 日本午夜av视频| 天天躁夜夜躁狠狠久久av| 大陆偷拍与自拍| 熟女电影av网| 久久精品国产亚洲av高清一级| 久久久久久久久久人人人人人人| 成人毛片60女人毛片免费| 伦理电影大哥的女人| 90打野战视频偷拍视频| 亚洲欧美精品自产自拍| 久久国产精品大桥未久av| 午夜福利视频精品| 亚洲国产精品一区三区| 亚洲伊人久久精品综合| 爱豆传媒免费全集在线观看| 亚洲国产欧美在线一区| 91久久精品国产一区二区三区| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 亚洲激情五月婷婷啪啪| 黄频高清免费视频| 男女边摸边吃奶| 精品国产一区二区久久| 国产黄频视频在线观看| 国产精品秋霞免费鲁丝片| 色吧在线观看| 久久久久久久久免费视频了| 好男人视频免费观看在线| 欧美精品亚洲一区二区| 久久人人97超碰香蕉20202| 欧美日韩视频高清一区二区三区二| 九九爱精品视频在线观看| 成人影院久久| 精品国产乱码久久久久久小说| 欧美亚洲 丝袜 人妻 在线| 国产一区二区在线观看av| 成人影院久久| 五月天丁香电影| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 久久国产精品男人的天堂亚洲| 免费在线观看完整版高清| 丝袜美腿诱惑在线| 91午夜精品亚洲一区二区三区| 亚洲天堂av无毛| 可以免费在线观看a视频的电影网站 | 波多野结衣av一区二区av| 777久久人妻少妇嫩草av网站| 中文字幕制服av| 亚洲第一av免费看| 熟女电影av网| 日韩av不卡免费在线播放| 精品一区二区三区四区五区乱码 | 搡女人真爽免费视频火全软件| 亚洲精品乱久久久久久| 国产精品免费大片| 欧美日韩国产mv在线观看视频| 熟妇人妻不卡中文字幕| 蜜桃在线观看..| 考比视频在线观看| 国产精品嫩草影院av在线观看| 亚洲av成人精品一二三区| 一级毛片电影观看| 久久久久久久久免费视频了| 又黄又粗又硬又大视频| 国产成人精品婷婷| 国产黄色免费在线视频| av网站免费在线观看视频| 国产男女超爽视频在线观看| 午夜福利在线观看免费完整高清在| 交换朋友夫妻互换小说| 午夜福利网站1000一区二区三区| 男女边摸边吃奶| 欧美日韩一区二区视频在线观看视频在线| 日本vs欧美在线观看视频| 欧美日韩视频高清一区二区三区二| 国产精品久久久久成人av| 久久97久久精品| 青春草亚洲视频在线观看| 久久久国产一区二区| 久久青草综合色| 日本欧美国产在线视频| 在线观看www视频免费| 午夜福利视频在线观看免费| 日本黄色日本黄色录像| 久久久久久久久久久久大奶| 亚洲人成网站在线观看播放| 午夜免费观看性视频| 国产麻豆69| 中文字幕人妻丝袜制服| 欧美亚洲 丝袜 人妻 在线| 一级片'在线观看视频| 久久青草综合色| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 日本av免费视频播放| 五月伊人婷婷丁香| 日韩av免费高清视频| 国产av国产精品国产| 老司机影院成人| av在线app专区| 久久久久久久久久久免费av| 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| 精品国产超薄肉色丝袜足j| 亚洲欧美精品综合一区二区三区 | 国产麻豆69| 一区二区三区四区激情视频| 又黄又粗又硬又大视频| 美女中出高潮动态图| 亚洲av欧美aⅴ国产| 中国三级夫妇交换| 婷婷色综合www| 蜜桃国产av成人99| 久久精品国产亚洲av涩爱| 男女下面插进去视频免费观看| 成年女人毛片免费观看观看9 | 欧美人与性动交α欧美软件| 91成人精品电影| 肉色欧美久久久久久久蜜桃| 国产精品秋霞免费鲁丝片| 久久韩国三级中文字幕| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩综合久久久久久| 一区二区av电影网| 色播在线永久视频| 久久久久久人妻| 99国产精品免费福利视频| 亚洲一码二码三码区别大吗| 久久精品亚洲av国产电影网| 熟女少妇亚洲综合色aaa.| 国产免费一区二区三区四区乱码| 中文乱码字字幕精品一区二区三区| 成年av动漫网址| 日韩一区二区视频免费看| 在线天堂最新版资源| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 久久国内精品自在自线图片| 久久精品国产亚洲av天美| 久久久国产精品麻豆| 如日韩欧美国产精品一区二区三区| av一本久久久久| 亚洲国产色片| 丰满饥渴人妻一区二区三| 电影成人av| 制服诱惑二区| 99久久中文字幕三级久久日本| 欧美中文综合在线视频| xxxhd国产人妻xxx| 狂野欧美激情性bbbbbb| 蜜桃在线观看..| 一区在线观看完整版| 美女福利国产在线| 国产亚洲精品第一综合不卡| 精品国产一区二区三区久久久樱花| 99香蕉大伊视频| 天美传媒精品一区二区| 最近手机中文字幕大全| 人妻系列 视频| 亚洲国产精品999| 两性夫妻黄色片| 亚洲国产av新网站| av国产久精品久网站免费入址| 中文字幕制服av| 尾随美女入室| 久久精品国产自在天天线| av在线播放精品| 美女xxoo啪啪120秒动态图| 欧美成人午夜精品| 超碰97精品在线观看| 亚洲av在线观看美女高潮| 天天躁夜夜躁狠狠躁躁| 男人爽女人下面视频在线观看| 人人澡人人妻人| 激情五月婷婷亚洲| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 日韩电影二区| 狠狠婷婷综合久久久久久88av| 日韩中字成人| 亚洲av电影在线观看一区二区三区| 老司机影院成人| av在线老鸭窝| 欧美激情高清一区二区三区 | 国产极品天堂在线| 2018国产大陆天天弄谢| 欧美国产精品va在线观看不卡| 97在线人人人人妻| 色网站视频免费| 99热网站在线观看| 色视频在线一区二区三区| 天天躁夜夜躁狠狠躁躁| av有码第一页| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 精品亚洲成国产av| 新久久久久国产一级毛片| 亚洲国产毛片av蜜桃av| 热99久久久久精品小说推荐| 国语对白做爰xxxⅹ性视频网站| 丰满乱子伦码专区| 超碰成人久久| 在线观看www视频免费| 亚洲精品国产av蜜桃| 欧美日韩综合久久久久久| 欧美中文综合在线视频| 亚洲五月色婷婷综合| 午夜福利,免费看| 亚洲美女黄色视频免费看| 亚洲情色 制服丝袜| 啦啦啦在线免费观看视频4| 亚洲欧美日韩另类电影网站| 亚洲男人天堂网一区| 极品人妻少妇av视频| videossex国产| 亚洲第一av免费看| 如日韩欧美国产精品一区二区三区| 最近中文字幕高清免费大全6| 在现免费观看毛片| 亚洲三区欧美一区| 亚洲国产看品久久| 中文天堂在线官网| 国产亚洲午夜精品一区二区久久| 三级国产精品片| kizo精华| 久久99蜜桃精品久久| 久久人人爽av亚洲精品天堂| 91成人精品电影| 99精国产麻豆久久婷婷| www.精华液| 精品亚洲乱码少妇综合久久| 免费在线观看黄色视频的| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 啦啦啦视频在线资源免费观看| 熟女av电影| 国产亚洲欧美精品永久| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 亚洲精品在线美女| 亚洲激情五月婷婷啪啪| 一级a爱视频在线免费观看| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 宅男免费午夜| 国产视频首页在线观看| 考比视频在线观看| www.精华液| 久久久a久久爽久久v久久| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 亚洲精品成人av观看孕妇| 在线看a的网站| 9191精品国产免费久久| 成人亚洲精品一区在线观看| 亚洲成人手机| 国产成人精品在线电影| 男男h啪啪无遮挡| 91精品三级在线观看| 国产片内射在线| 欧美97在线视频| 久久久精品国产亚洲av高清涩受| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 看免费av毛片| 狠狠精品人妻久久久久久综合| 成年女人在线观看亚洲视频| 国产成人欧美| 久久午夜综合久久蜜桃| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 看免费成人av毛片| 2018国产大陆天天弄谢| 亚洲国产欧美日韩在线播放| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 久久国内精品自在自线图片| 国产成人精品一,二区| 久久久亚洲精品成人影院| 七月丁香在线播放| 老司机亚洲免费影院| tube8黄色片| 欧美最新免费一区二区三区| av免费在线看不卡| 国产老妇伦熟女老妇高清| 一级爰片在线观看| 在线看a的网站| 少妇的丰满在线观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美一区二区三区久久| 人人妻人人澡人人爽人人夜夜| 我的亚洲天堂| 九草在线视频观看| 午夜福利视频精品| 午夜福利在线免费观看网站| av国产久精品久网站免费入址| 久久av网站| 青春草亚洲视频在线观看| 少妇被粗大的猛进出69影院| 欧美另类一区| 蜜桃在线观看..| av一本久久久久| 少妇被粗大的猛进出69影院| 欧美另类一区| 免费在线观看完整版高清| 一级毛片电影观看| 国产伦理片在线播放av一区| 国产成人av激情在线播放| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久久久免| 看非洲黑人一级黄片| 欧美 日韩 精品 国产| 国产精品无大码| 老汉色∧v一级毛片| 免费高清在线观看视频在线观看| 激情视频va一区二区三区| 亚洲av中文av极速乱| 国产日韩欧美视频二区| 街头女战士在线观看网站| 亚洲四区av| 丝袜美腿诱惑在线| 日本欧美国产在线视频| 日韩人妻精品一区2区三区| 久久久久精品性色| a级毛片在线看网站| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 欧美国产精品va在线观看不卡| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 9热在线视频观看99| 成人毛片a级毛片在线播放| 久久青草综合色| 久久久久国产网址| 在线观看免费高清a一片| 免费大片黄手机在线观看| 国精品久久久久久国模美| 黄色一级大片看看| 久久午夜福利片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 日韩中字成人| 国产极品天堂在线| 王馨瑶露胸无遮挡在线观看| 十八禁高潮呻吟视频| 夜夜骑夜夜射夜夜干| 亚洲少妇的诱惑av| 91午夜精品亚洲一区二区三区| 99九九在线精品视频| 国产精品久久久久久久久免| av有码第一页| 精品一区二区免费观看| 一边摸一边做爽爽视频免费| 亚洲人成网站在线观看播放| 美女大奶头黄色视频| 国产精品欧美亚洲77777| 18禁观看日本| 青草久久国产| 免费黄色在线免费观看| 免费观看av网站的网址| 天美传媒精品一区二区| 久久婷婷青草| 久久这里只有精品19| 欧美精品亚洲一区二区| 少妇的逼水好多| 亚洲av男天堂| 一二三四在线观看免费中文在| 黄色配什么色好看| av天堂久久9| 久久久久久久大尺度免费视频| 国产精品成人在线| 欧美成人午夜免费资源| 七月丁香在线播放| 日韩欧美一区视频在线观看| 精品第一国产精品| 亚洲三级黄色毛片| 在线观看国产h片| www.av在线官网国产| 一二三四中文在线观看免费高清| 精品国产乱码久久久久久男人| 中文乱码字字幕精品一区二区三区| 电影成人av| 免费看av在线观看网站| 久久精品国产自在天天线| videos熟女内射| 亚洲内射少妇av| 18+在线观看网站| 我的亚洲天堂| 久久国产精品大桥未久av| 亚洲四区av| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 亚洲伊人久久精品综合| 午夜免费观看性视频| 精品第一国产精品| videosex国产| 男人爽女人下面视频在线观看| a级毛片在线看网站| 婷婷色av中文字幕| 极品人妻少妇av视频| 精品一区二区三卡| 美女高潮到喷水免费观看| 这个男人来自地球电影免费观看 | 中文字幕亚洲精品专区| 99久久中文字幕三级久久日本| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 久久女婷五月综合色啪小说| 超碰成人久久| 国产精品成人在线| av线在线观看网站| 又粗又硬又长又爽又黄的视频| 国产av一区二区精品久久| 免费观看性生交大片5| 亚洲av电影在线进入| 欧美人与性动交α欧美软件| 国产精品国产三级专区第一集| 国产成人欧美| 中文字幕色久视频| 午夜福利,免费看| 91精品伊人久久大香线蕉| 日本-黄色视频高清免费观看| 韩国av在线不卡| 亚洲av成人精品一二三区| 日本欧美视频一区| 青春草亚洲视频在线观看| 大香蕉久久网| 亚洲精品日本国产第一区| 只有这里有精品99| av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 十八禁网站网址无遮挡| 一本大道久久a久久精品| 最新的欧美精品一区二区| 午夜精品国产一区二区电影| 熟女少妇亚洲综合色aaa.| 99国产精品免费福利视频| 日韩免费高清中文字幕av| 麻豆av在线久日| 亚洲美女搞黄在线观看| 熟女少妇亚洲综合色aaa.| 久久久久精品人妻al黑| 午夜福利影视在线免费观看| 只有这里有精品99| 91成人精品电影| 国产精品一区二区在线不卡| 久久女婷五月综合色啪小说| 少妇人妻精品综合一区二区| 精品国产一区二区久久| 午夜影院在线不卡| 久久久久久久久免费视频了| 叶爱在线成人免费视频播放| 丰满饥渴人妻一区二区三| 极品人妻少妇av视频| 另类亚洲欧美激情| 国产精品久久久久久av不卡| 男女边摸边吃奶| 久久久久久久国产电影| 国产精品免费大片| 免费大片黄手机在线观看| 成年人午夜在线观看视频| 日本av免费视频播放| 午夜影院在线不卡| 天堂8中文在线网| 国产av码专区亚洲av| 秋霞在线观看毛片| 国产一区二区在线观看av| 久久毛片免费看一区二区三区| 免费观看无遮挡的男女| 高清黄色对白视频在线免费看| 亚洲国产欧美日韩在线播放| 777米奇影视久久| 欧美人与善性xxx| 日本欧美国产在线视频| 日本av免费视频播放| 天天影视国产精品| 我的亚洲天堂| 中文字幕另类日韩欧美亚洲嫩草| 妹子高潮喷水视频| 亚洲一级一片aⅴ在线观看| 亚洲欧美成人精品一区二区| 日日爽夜夜爽网站| 久久免费观看电影| 飞空精品影院首页| 亚洲国产欧美在线一区| 亚洲精品美女久久av网站| 亚洲国产色片| 国产熟女午夜一区二区三区| 精品国产一区二区三区四区第35| 天美传媒精品一区二区| 天天操日日干夜夜撸| 香蕉精品网在线| 久久久久国产一级毛片高清牌| 亚洲精品美女久久av网站| 女性被躁到高潮视频| 两性夫妻黄色片| 波多野结衣av一区二区av| 精品少妇久久久久久888优播| 成人毛片60女人毛片免费| 香蕉精品网在线| www.精华液| 精品酒店卫生间| 777久久人妻少妇嫩草av网站| 久久这里只有精品19| 欧美变态另类bdsm刘玥| 美国免费a级毛片| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 日本爱情动作片www.在线观看| 交换朋友夫妻互换小说| 久久久久久人妻| 国产精品欧美亚洲77777| 人人妻人人澡人人爽人人夜夜| 97精品久久久久久久久久精品| 女人精品久久久久毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久久久免| 日韩伦理黄色片| 国产乱人偷精品视频| 桃花免费在线播放| 丝袜喷水一区| 免费av中文字幕在线| 亚洲欧美成人精品一区二区| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 久久久精品国产亚洲av高清涩受| 男女午夜视频在线观看| 一区在线观看完整版| 欧美成人午夜精品| 精品国产乱码久久久久久男人| 大陆偷拍与自拍| 日韩av免费高清视频| av国产久精品久网站免费入址| 十八禁高潮呻吟视频| 大码成人一级视频| 两个人免费观看高清视频| 26uuu在线亚洲综合色| 又黄又粗又硬又大视频| 韩国高清视频一区二区三区| 国产成人精品福利久久| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 黄色视频在线播放观看不卡| 色94色欧美一区二区| 不卡av一区二区三区| 午夜福利在线观看免费完整高清在| 在线观看免费高清a一片| 一级毛片黄色毛片免费观看视频| 咕卡用的链子|